

Title:

Nascent evolution of recombination rate differences as a consequence of chromosomal rearrangements

Authors:

Näsvall, K.^{1*^o}, Boman, J.¹, Höök, L.¹, Vila, R.², Wiklund, C.³, and Backström, N.¹

Affiliations:

1. Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University.
Norbyvägen 18D, 752 36 Uppsala, Sweden
2. Butterfly Diversity and Evolution Lab, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
3. Department of Zoology: Division of Ecology, Stockholm University, Stockholm, Sweden

13 * Correspondence:

14 Karin Näsvall: karin.nasvall@ebc.uu.se

15

16 Abstract

17 Reshuffling of genetic variation occurs both by independent assortment of chromosomes and by
18 homologous recombination. Such reshuffling can generate novel allele combinations and break linkage
19 between advantageous and deleterious variants which increases both the potential and the efficacy of natural
20 selection. Here we used high-density linkage maps to characterize global and regional recombination rate
21 variation in two populations of the wood white butterfly (*Leptidea sinapis*) with distinct karyotypes. The
22 recombination data were compared to estimates of genetic diversity and measures of selection to assess the
23 relationship between chromosomal rearrangements, crossing over, maintenance of genetic diversity and
24 adaptation. Our data show that the recombination rate is influenced by both chromosome size and number,
25 but that the difference in recombination rate between karyotypes is reduced as a consequence of a higher
26 frequency of double crossovers in larger chromosomes. As expected from effects of selection on linked
27 sites, we observed an overall positive association between recombination rate and genetic diversity in both
28 populations. Our results also revealed a significant effect of chromosomal rearrangements on the rate of
29 intergenic diversity change between populations, but limited effects on polymorphisms in coding sequence.
30 We conclude that chromosomal rearrangements can have considerable effects on the recombination
31 landscape and consequently influence both maintenance of genetic diversity and efficiency of selection in
32 natural populations.

33 Author summary

34 Reshuffling genetic variation is fundamental for maintaining genetic diversity and creating novel allelic
35 combinations. The two main processes involved are the independent assortment of chromosomes and
36 homologous recombination. The number and size of chromosomes can influence the amount of pairwise
37 reshuffling and local recombination patterns. However, studying this in natural populations is challenging.
38 In this study, we used the wood white butterfly, which exhibits an extreme within-species karyotype
39 difference. Extensive fusions and fissions have resulted in almost twice as many chromosomes in the
40 southern populations compared to the northeast populations. This unique system allowed us to assess the
41 relationship between karyotype differences, pairwise reshuffling, recombination rate variation and
42 subsequent effects on diversity and linked selection. We found that a higher number of chromosomes result
43 in a higher recombination rate, although the difference was less than expected due to multiple
44 recombination events occurring on longer chromosomes. Both populations showed an association between
45 recombination rate and genome-wide patterns of genetic diversity and efficacy of selection. We provide
46 evidence that chromosomal rearrangements have considerable effects on the recombination landscape and
47 thereby influence the maintenance of genetic diversity in populations.

48 Introduction

49 Genetic variation is a prerequisite for evolutionary change and mutation is the ultimate source of novel
50 genetic variants. However, mutation only contributes to variation at individual genomic sites and
51 establishment of new combinations of alleles across loci is dependent on reshuffling via independent
52 segregation and recombination. Physical linkage can lead to a reduction in genetic diversity as a
53 consequence of fixation or loss of haplotype blocks, either by random drift, or more rapidly by selection
54 via hitch-hiking and/or background selection [1,2]. Recombination events resolved as crossovers (from here
55 on recombination) breaks physical linkage and generally leads to maintenance of genetic variation by
56 generating a higher number of segregating haplotypes in the population [3–5]. Physical linkage between
57 variants influenced by natural selection can also result in less efficient selection than if such variants would
58 have been segregating independently. This process is generally referred to as Hill-Robertson interference,
59 and can lead to an increased accumulation rate of deleterious mutations in regions with reduced
60 recombination rate [6,7]. However, reshuffling can also break up co-adapted or synergistically interacting
61 loci and therefore hinder beneficial epistasis.

62

63 Reshuffling of genetic variation occurs by two different mechanisms in diploid organisms. First, the
64 independent assortment of homologous chromosomes to the gametes during meiosis (Mendel's second law)
65 results in reshuffling of loci located on different chromosomes. Hence, the higher the number of
66 chromosomes in an organism, the higher the potential for pairwise reshuffling. However, the effect renders
67 a diminishing return as the probability of pairwise reshuffling approaches the maximum of 0.5 [8]. Second,
68 the exchange of genetic material between chromosome pairs during homologous recombination can lead to
69 novel allele combinations within chromosomes. Consequently, characterizing where and how often
70 recombination events occur along chromosomes is key to understanding maintenance of genetic diversity
71 and the efficiency of selection in different parts of the genome. Empirical data have unveiled that the
72 recombination rate differs over several orders of magnitude, both among species, between chromosomes

73 and across different genomic regions [9–11]. Interspecific variation in genome wide recombination
74 frequency could be related to differences in haploid chromosome number [10] since at least one
75 recombination event per chromosome pair is necessary for correct segregation during meiosis in many
76 organisms [9–11]. However, there are exceptions to this generalisation. In Lepidoptera females and some
77 Diptera males, for example, where meiotic divisions are achiasmatic [12–14]. The location and frequency
78 of crossover events along chromosomes has been investigated in several different organisms. The results
79 so far generally show that the recombination landscape can be highly heterogeneous and that location and
80 frequency of recombination events can be affected by, for example, interference between chiasmata,
81 presence of centromeres and telomeres, nucleotide composition and chromatin state [9,10,15–17].
82 However, despite the potential importance of chromosomal rearrangements on the recombination landscape
83 and recombination-dependent evolutionary processes, detailed analyses of links between karyotype
84 changes and recombination are limited, in particular in natural populations where fine-scale recombination
85 rate data have been difficult to establish.

86
87 In order to explore how karyotype differences affect the recombination rate in a natural system, we used
88 the wood white butterfly (*Leptidea sinapis*), a species within the Eurasian genus *Leptidea* which have
89 considerable interspecific karyotype variability compared to the majority of other lepidopterans which
90 usually have a remarkably stable karyotype of $2n \sim 62$ [18]. Within *L. sinapis*, there is also extreme
91 intraspecific variation in karyotype; chromosome numbers range from $2n = 56 - 62$ in the northern
92 (Scandinavia) and eastern (central Asia) parts to $2n = 108 - 110$ in the south-western (Iberian peninsula)
93 part of the distribution range [19,20]. We know from genomic data that the intraspecific karyotype
94 rearrangements in *L. sinapis* predominantly have been driven by recurrent fissions and fusions and that
95 fission/fusion polymorphisms currently segregate in different populations [21]. Previous analyses in other
96 butterfly species have unveiled an inverse relationship between chromosome size and recombination rate
97 [22], and a positive association between chromosome count and neutral diversity across Lepidoptera
98 [23,24]. In addition, a detailed analysis in *Heliconius* ssp. has shown that fused chromosomes have a

99 reduced recombination rate and genetic diversity as compared to chromosomes not involved in
100 rearrangements [25,26]. Here, we use a study system that allows us to investigate the effects of extensive
101 chromosomal rearrangements, both fissions and fusions, on the recombination landscape and
102 recombination-dependent evolutionary processes.

103

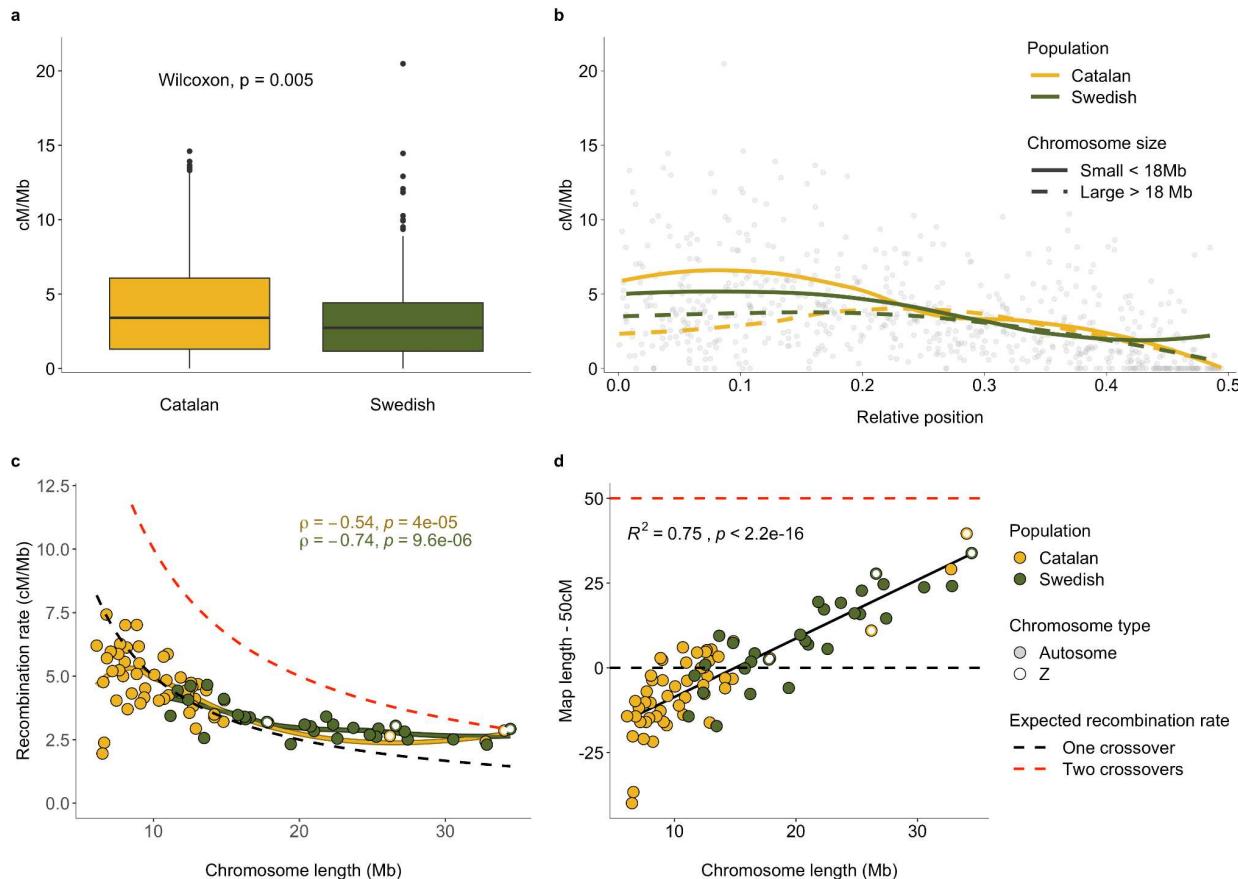
104 The aims of the study were; i) to characterize the recombination landscape in Swedish ($2n = 56, 57$) and
105 Catalan ($2n = 106 - 110$) populations of *L. sinapis*, two populations with highly different karyotypes, ii) to
106 compare the genome-wide probability of pairwise reshuffling between the two populations, and, iii) to
107 quantify the effect of chromosomal rearrangements on maintenance/loss of genetic diversity and the
108 efficacy of selection. We hypothesized that the Catalan population, with a more fragmented karyotype,
109 would have a higher recombination rate and a higher total pairwise reshuffling rate, resulting in reduced
110 linkage disequilibrium, higher neutral genetic diversity and increased efficacy in removal of slightly
111 deleterious mutations.

112 Results

113 Recombination rates

114 We used pedigree data from a previous study to estimate the recombination rate from linkage maps for the
115 two populations. The total recombination distance was considerably longer for the Catalan (2,300 cM) than
116 for the Swedish (1,711 cM) population (Suppl. Fig. 1, Suppl. Table 1). Despite a shorter recombination
117 distance per chromosome in the Catalan (average = 43 cM; range = 10 - 90 cM) compared to the Swedish
118 population (average = 59 cM; range 33 - 84 cM), the average recombination rate in the Catalan population
119 was significantly higher (mean and standard deviation; 4.25 ± 211 cM / Mb) than in the Swedish population
120 (3.03 ± 641 cM/Mb) (Wilcoxon's test; $W = 1,726,620$, p -value = 4.33×10^{-2} ; Fig. 1). In the Catalan
121 population, the recombination rate was lower on the Z-chromosome than on the autosomes, but this

122 difference was not significant (Z-chromosomes = 2.86 ± 139 ; Autosomes = 4.46 ± 217 cM / Mb;
123 Wilcoxon's test; $W = 168,928$; p-value = 3.99×10^{-01}). This effect can be a consequence of the relative
124 difference in size between the Z-chromosomes and the autosomes in the two different populations. The Z-
125 chromosomes are virtually conserved between the two populations and hence constitute the largest
126 chromosomes in the Catalan population, except for one large autosome. In the Swedish population on the
127 other hand, the sizes of the Z-chromosomes are comparable to the majority of autosomes and the
128 recombination rates of the two chromosome classes were also very similar ($Z = 3.03 \pm 36.3$; $A = 3.03 \pm$
129 675 cM / Mb).


130

131 We observed a significant negative association between the recombination rate and chromosome size in
132 both the Swedish (Spearman's rank correlation, $\rho = -0.51$, p-value = 5.1×10^{-3}) and the Catalan population
133 ($\rho = -0.44$, p-value = 1.2×10^{-3} ; Fig. 1). The larger chromosomes in the Catalan population had similar
134 recombination rates as chromosomes of comparable size in the Swedish population, suggesting that the
135 overall difference in total linkage map length and average recombination rate between the populations is
136 predominantly an effect of the difference in karyotype structure. We also found that the recombination rate
137 on smaller chromosomes was close to the expected rate (50 cM / chromosome) with a single crossover per
138 meiosis (Fig. 1). However, the recombination rate on the larger chromosomes was higher, showing that
139 more than one crossover per meiosis can occur if a chromosome is large enough ($> \sim 18$ Mb). The 'excess
140 map length' (remaining after removing the assumed obligate crossover (50 cM) from chromosome specific
141 estimates) was significantly positively associated with chromosome size and explained 75% of the variation
142 (linear regression model, $R^2 = 0.75$, p-value = 2.2×10^{-16} ; Fig. 1).

143

144 The regional distribution of recombination events showed a bimodal pattern for the larger chromosomes ($>$
145 ~ 18 Mb) with a pronounced drop in the center and at the ends (Fig. 1, Suppl. Fig. 2). For smaller
146 chromosomes ($< \sim 18$ Mb) on the other hand, the recombination rate was highest in the center (Fig. 1,
147 Suppl. Fig. 2). The decrease in recombination in the chromosome ends was less pronounced in the small

148 chromosomes in the Swedish population (Fig. 1). This could be a consequence of that several of the smaller
 149 chromosomes are involved in ‘fusion polymorphisms’ currently segregating in the Swedish population.
 150

151
 152 Fig. 1. a) The distribution of recombination rate estimates (cM, y-axis) in the Catalan and Swedish populations,
 153 respectively. Box hinges represent the 25th and 75th percentiles, whiskers extend to values within 1.5 times the
 154 distance between the 25th and 75th percentiles and solid dots represent outliers. b) Regional distribution of the
 155 recombination rate (cM / Mb; y-axis) for relative positions from the center (0) to the end (0.5) of chromosomes in the
 156 Swedish (green) and the Catalan (yellow) populations, respectively. Lines represent local regression (LOESS) of large
 157 (> 18 Mb; dashed lines) and small chromosomes (< 18 Mb; solid lines), respectively. c) Association between the
 158 weighted mean recombination rate (cM / Mb; y-axis) and chromosome size (Mb; x-axis) in the Swedish (green) and
 159 Catalan (yellow) populations. The dashed lines represent the expected recombination rate with one (black) and two
 160 (red) crossovers per meiosis. The Z-chromosomes are represented by open and the autosomes by filled circles. d)

161 Excess map length (map length - 50 cM; y-axis) as a function of chromosome size. Colors and symbols as in c) and
162 the regression line and statistics correspond to a linear regression model.

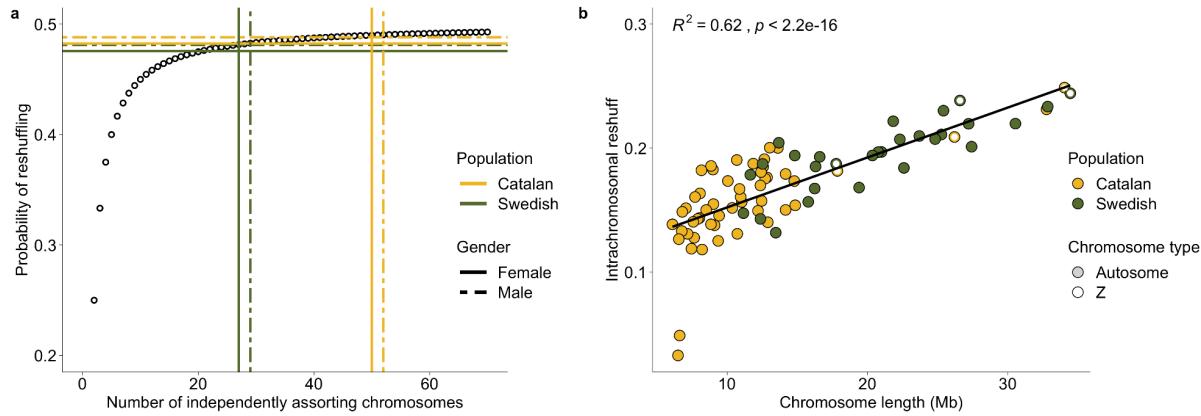
163 Pairwise reshuffling

164 We proceeded by estimating the relative contribution of independent segregation and homologous
165 recombination to the total reshuffling rate in the different populations. The major mechanism for genome-
166 wide reshuffling was the number of chromosomes in both populations (Table 1). The male
167 interchromosomal contribution was 106 times higher than the intrachromosomal contribution in the Catalan
168 and 61 times higher in the Swedish population. Despite the lower recombination rate on larger
169 chromosomes, the contribution of intrachromosomal pair-wise reshuffling increased linearly with
170 chromosome size and size explained 62% of the variation between chromosomes (Fig. 2). This is likely a
171 consequence of the occasional occurrence of double crossovers on larger chromosomes which should
172 increase the pairwise reshuffling rate.

173

174 Table 1. Estimates of the male intrachromosomal (Intra male) and interchromosomal (Inter male) contribution to
175 genome-wide reshuffling. The total contribution of males (Total male) and females (Inter female) and sex-average
176 reshuffling (Sex average) are also given for comparison.

Population	Intra male	Inter male	Total male	Intra female	Inter female	Sex average
Catalan	0.0045	0.488	0.493	0	0.482	0.487
Swedish	0.0079	0.481	0.489	0	0.476	0.483


177

178

179 The analysis revealed that the proportional difference in total reshuffling is less than 1% higher in the
180 Catalan than in the Swedish population, despite the fact that the difference in chromosome numbers is

181 almost two-fold and that females contribute more to the total reshuffling rate in the Catalan population
182 (Table 1). The difference in reshuffling between populations was further reduced by the higher probability
183 of intrachromosomal reshuffling in the Swedish males - the genome-wide intrachromosomal reshuffling
184 contribution was 75.6% higher in the Swedish population (Table 1).

185

186

187 Fig. 2. a) Genome-wide probability of pairwise reshuffling per population and sex as a function of number of
188 independently segregating chromosomes (interchromosomal effect). The open circles represent the expected trajectory
189 of reshuffling in genomes with equal-sized chromosomes as the chromosome number increases (x-axis). b) The
190 probability of pairwise reshuffling within each chromosome (y-axis) as a function of chromosome size (x-axis) in the
191 two populations (intrachromosomal reshuffling). The line represents a linear regression model.

192 Associations between recombination and genetic diversity

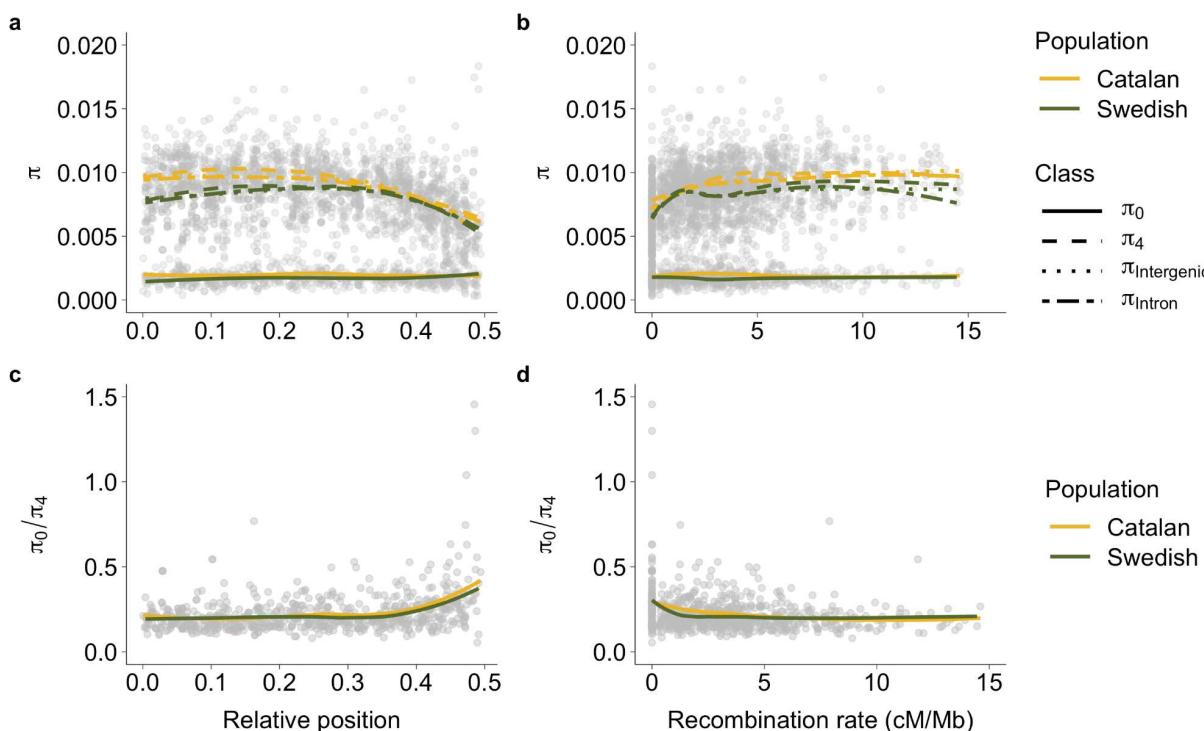
193 Given the observed variation between populations in both overall map length, average recombination rate
194 and relative intrachromosomal reshuffling rate, we proceeded by investigating the relationship between
195 recombination rate and genetic diversity. We found that the Catalan population had significantly higher π
196 in all site categories (Wilcoxon's test; p -values = 2.73×10^{-4} - 7.05×10^{-7}), but we did not detect any
197 difference between the populations in the ratio of zero- (π_0) to four-fold (π_4) degenerate sites (p -value =
198 1.52×10^{-1} ; Table 2). Consistent with the ongoing and dynamic karyotype changes in these populations,
199 there was also no significant association between π per chromosome and chromosome length after

200 excluding the Z-chromosomes (Suppl. Fig. 3). However, the regional distribution of π estimates followed
201 the expectations from the nearly neutral theory in both populations, with a decrease in π and an increase in
202 π_0 / π_4 at the terminal ends of the chromosomes where the recombination rate is significantly reduced (Fig.
203 3). We also observed a lower neutral genetic diversity for the Z-chromosomes compared to the autosomes.
204 In addition, while Z1 and Z3 had similar π_0 / π_4 -ratios as the autosomes, Z2 had a significantly higher $\pi_0 /$
205 π_4 -ratio compared to the other chromosomes in both populations, driven by an elevated π_0 (Suppl. Fig. 3).

206

207 Table 2. Genome wide estimates of pairwise nucleotide diversity (π) for different nucleotide site categories and the
208 ratio of π at zero- and four-fold degenerate sites (π_0 / π_4) for each population. The ranges for chromosome specific
209 estimates are given in parentheses. The statistics (W) and the p-values correspond to Wilcoxon rank sum tests with
210 continuity correction.

Sites	Catalan (*10 ⁻²)	Swedish (*10 ⁻²)	W	p-value
π_0	0.19 (0.12 – 0.28)	0.16 (0.09 - 0.19)	1,183	2.43*10 ⁻⁰⁵
π_4	0.92 (0.51 – 1.26)	0.82 (0.43 – 1.02)	1,124	2.73*10 ⁻⁰⁴
$\pi_{\text{Intergenic}}$	0.90 (0.59 – 1.19)	0.80 (0.50 - 0.97)	1,258	7.05*10 ⁻⁰⁷
π_{Intron}	0.87 (0.57 – 1.10)	0.79 (0.48 - 0.96)	1,175	3.44*10 ⁻⁰⁵
π_0 / π_4	20.37 (13.97 – 34.85)	19.54 (16.56 – 31.40)	900	1.52*10 ⁻⁰¹


211

212 We applied linear models to investigate the association between different diversity estimates and the
213 variation in the regional recombination rate in each population in more detail. These analyses revealed that
214 window-based estimates of diversity at all site categories, except π_0 ($R^2 < 0.01$, $p\text{-value} > 2*10^{-01}$), were
215 significantly associated with the recombination rate in both populations ($R^2 = 0.05 - 0.13$, permuted p-
216 values $< 1*10^{-03}$; Fig. 3, Suppl. Fig. 4). Consequently, there was a negative relationship between the

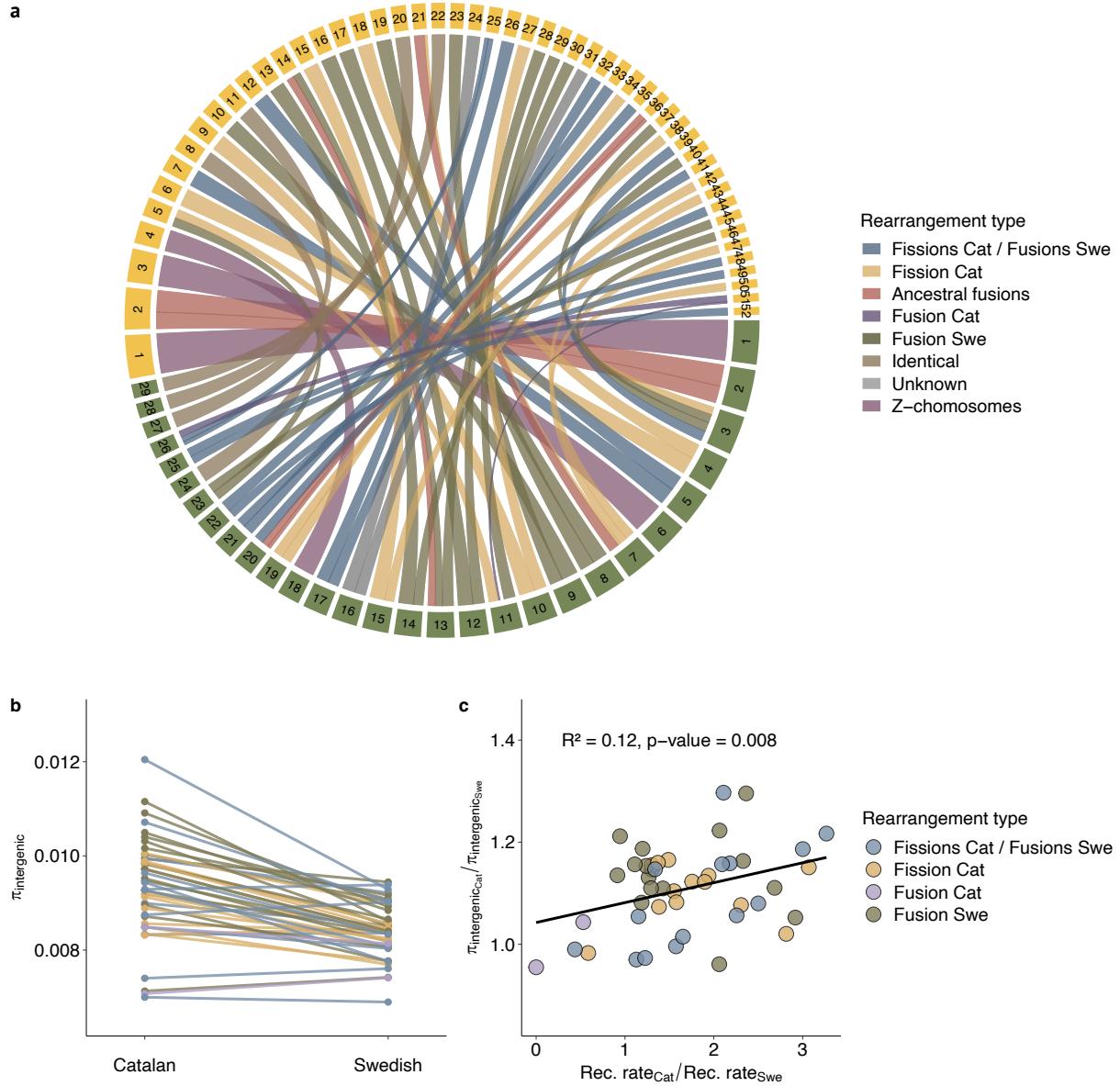
217 recombination rate and π_0 / π_4 in both the Catalan ($R^2 = 0.04$, p-values $< 1 * 10^{-3}$) and the Swedish population
218 ($R^2 = 0.05$, p-values $< 1 * 10^{-3}$), suggesting that the overall recombination landscape has been stable enough
219 to have a similar effect on diversity and efficacy of selection in both populations since they diverged (Fig.
220 3, Suppl. Fig. 4). The relationship between recombination rate was non-linear with a stronger association
221 in low recombination regions, indicating a limited effect on diversity and efficacy of selection when the
222 recombination rate increases above a certain level (~ 2 cM / Mb).

223

224

225

226 Fig. 3. a) Regional distribution of nucleotide diversity (π) in zero-fold (π_0), four-fold degenerate (π_4), intergenic and
227 intronic sites. b) Nucleotide diversity (π) as a function of the recombination rate in each population estimated in 2 Mb
228 windows. c) Zero-fold/four-fold diversity (π_0 / π_4) along the chromosome (relative position from chromosome center
229 (0) to chromosome end (0.5)) for the Swedish (green) and Catalan (yellow) *L. sinapis* populations. d) Zero-fold/four-
230 fold diversity (π_0 / π_4) as a function of the recombination rate in each population estimated in 2 Mb windows. Lines
231 represent local regression lines (LOESS).


232

233 Global and regional estimates of recombination and diversity could be affected by other covarying
234 variables, such as different genomic features, nucleotide composition and demographic processes. In an
235 attempt to account for these variables and investigate the relative effect of karyotype rearrangements, we
236 quantified how observed changes in recombination rate between populations were associated with changes
237 in diversity between the populations. This analysis was performed using homologous segments in ancestral
238 chromosome blocks (Fig. 4). We focused on ancestral chromosomal units where the fission / fusion has
239 been inferred to occur after the split from the closest outgroup species (*L. reali*), and cases where incomplete
240 lineage sorting or reuse of chromosomal break-points have resulted in differences in karyotype between the
241 two populations. This analysis unveiled a significant positive association between the change in
242 recombination rate and intergenic π (Linear regression, $R^2 = 0.12$, permuted p-value = $7.99*10^{-3}$; Fig. 4).
243 There was also a positive relationship between recombination and intronic π , but this trend was not
244 significant after correction for multiple testing. We found no associations between recombination rate
245 change with changes in π for other site classes or with π_0 / π_4 , possibly an effect of stronger selective
246 constraints for those sites (Suppl. Fig. 5).

247

248 To summarize, the analysis shows that chromosomal rearrangements have affected the recombination
249 landscape and changes in the level of standing genetic variation in intergenic sequences in *L. sinapis*.

250

251

252 Fig. 4. a) Chromosomal rearrangements between Swedish (green squares) and Catalan (yellow squares) population of
 253 *L. sinapis*, the bands representing homology are colored by fission/fusion history. Chromosomes are ordered by size
 254 in each respective population (data from [21]) b) Diversity estimates (π), specifically for intergenic sites across
 255 ancestral chromosomal units in each population. c) The ratio between Catalan and Swedish π , as a function of the
 256 ratio between Catalan and Swedish recombination rate for intergenic sites in each ancestral chromosomal unit with
 257 known fusion/fission history. The line represents the slope from a model II linear regression (R^2 and permuted p-
 258 value on top).

259 Discussion

260 General

261 Here we characterized the effects of extensive within-species chromosomal rearrangement on
262 recombination and total pairwise reshuffling rate variation and combined this with analyzing the associated
263 influences on levels of genetic diversity and the efficacy of natural selection. In summary, we found i) that
264 karyotype rearrangements affect both the genome-wide and the regional recombination rate, ii) that the
265 number of chromosomes and their relative size are major determinants of the recombination rate, but that
266 karyotype changes have very limited effects on the total pairwise reshuffling rate, and iii) that
267 recombination rate changes associated with chromosome fissions and fusions have detectable effects on the
268 neutral diversity at intergenic sites, but not on the efficacy of selection.

269

270 Recombination rate analysis

271 Our linkage map data revealed that the recombination rate was higher in the Catalan than in the Swedish
272 population. This is expected given that chromosome size previously has been shown to be strongly
273 associated with recombination rate in Lepidoptera [22,24]. We found that both *Leptidea* populations had
274 global recombination rates in parity with genome-wide estimates in other Lepidoptera species, although
275 direct comparison here is difficult since different methods have been applied [22,26,27]. However, the
276 effective recombination rate per gene is likely higher in *L. sinapis*, since it has a large genome size (686
277 Mb) compared to many other butterfly species [28]. The difference in recombination rate between
278 populations was lower than predicted from karyotype differences if the average chromosome map length
279 would have been 50 cM. One potential explanation for this deviation is the occurrence of multiple
280 crossovers in large chromosomes, an explanation which is supported by our observation that excess

281 recombination (> 50 cM / chromosome) increases linearly with chromosome size. The presence of multiple
282 crossovers per chromosome indicates that butterflies are not limited to one crossover per meiosis, as *C.*
283 *elegans* [29], but rather that the number of crossovers is dependent on chromosome size like in other
284 holocentric species [30]. Notably, we also found that smaller chromosomes sometimes showed a lower
285 average crossover rate than expected if crossovers are necessary for correct segregation during meiosis in
286 males (i.e. < 50 cM / chromosome). This could potentially be a result of very closely located double
287 crossovers or single crossovers occurring close to the chromosome ends. Such events are likely largely
288 undetected with our marker density. Another explanation, perhaps less likely, could be that correct
289 segregation in male meiosis might not require chiasma formation at all, as has been observed in the
290 achiasmatic Lepidoptera females. Unpaired univalents have for example been observed during meiosis in
291 crosses between chromosome races of *L. sinapis* [31]. Another factor that likely can influence the difference
292 in recombination rate between larger and smaller chromosomes is the difference in telomeric and
293 subtelomeric proportions where the recombination rate was observed to be significantly reduced.

294

295 We also found that the recombination landscape along many of the larger chromosomes was bimodal, with
296 a tendency towards lower recombination rate in the center. Similar patterns have been observed in other
297 recombination analyses in Lepidoptera [22,24,32], but typically not as pronounced as in other organisms
298 [15,29,33]. There are two potential explanations for this bimodality in recombination frequency along larger
299 chromosomes. First, it is likely that interference will occur when > 1 chiasmata are formed on a single
300 chromosome [34]. This would likely result in chiasma formation towards chromosome ends, but not all the
301 way towards the telomeres where recombination seems to be inhibited [35]. An alternative, albeit not
302 exclusive explanation, is that double-strand break initiation is directed away from the center and closer
303 towards the telomere regions, as a consequence of physical proximity when the chromosome ends aggregate
304 close to the nuclear membrane (the ‘meiotic bouquet’) during early meiotic stages [9].

305

306 Reshuffling rate estimates

307 Changes in chromosome numbers as a consequence of fissions and fusions may have an effect on the
308 reshuffling rate of genetic variants, since there are more opportunities for independent segregation with an
309 increasing number of chromosomes. We therefore investigated the relative contribution of both independent
310 segregation and recombination to the total reshuffling rate in the two *L. sinapis* populations. The probability
311 of interchromosomal pairwise reshuffling was close to the maximum (50%) in both populations, which
312 means that the difference in number of chromosome pairs between the Catalan and the Swedish *L. sinapis*
313 (29 and 52, respectively) has a marginal effect on difference in total reshuffling rate (diminishing return
314 when chromosome numbers exceed $n = 25 - 30$; [8]). Notably, most eukaryotes have a diploid chromosome
315 number $\ll 50$, with a mean $2n = 17.05$ [10] and reshuffling has been proposed to be beneficial for short
316 term distribution of diversity in the offspring [36]. However, the relatively limited range of chromosome
317 numbers in natural populations indicates that there are only minor selective advantages of increasing the
318 chromosome number above a certain threshold. Possible explanations can be that beneficial or co-adapted
319 allele combinations can be inherited together when there are fewer chromosomes and there could possibly
320 be increased risks for segregation errors with higher chromosome numbers. Here we show that the
321 reshuffling between chromosomes contributes much more (orders of magnitude) than intrachromosomal
322 processes to the total reshuffling rate in both populations, confirming the paramount importance of
323 independent assortment of chromosomes for distributing variation in the gametes. Homologous
324 recombination can therefore be seen as a long-term mechanism for disruption of linkage (and Hill-
325 Robertson-interference) between closely positioned loci within chromosomes. It has for example been
326 shown that increasing the number of recombination events is more important than increasing the number
327 of chromosomes for the efficiency of selection [37]. Although we found that the intrachromosomal
328 reshuffling contributed marginally to the total rate, we also found that the pairwise reshuffling was almost
329 twice as high in the Swedish population compared to the Catalan population. This is obviously an effect of
330 chromosome size, analogous to the positive correlation between genetic map length and intra chromosomal

331 reshuffling rate in some plants [15]. The underlying process must be that > 1 crossover can occur on larger
332 chromosomes, and that these crossovers are located distantly enough to increase intrachromosomal
333 reshuffling significantly (double crossovers increase the intrachromosomal pairwise reshuffling if they are
334 far apart - two crossovers located at $\frac{1}{4}$ of the chromosome length from the terminal results in as high
335 pairwise reshuffling as one crossover in the center). Our data suggest that recombination events are limited
336 by interference mechanism that both influence the distance between, and the total numbers of, chiasmata
337 occurring on a single chromosome. Interference seems to be ubiquitous among sexually reproducing
338 organisms, but the precise mechanism is not described for many species [34,35]. We also found that
339 chromosomes < 20 Mb roughly have a recombination distance of 50 cM, similar to the situation in *H.*
340 *melpomene* where all chromosomes are < 20 Mb [26,38]. These results spur interest in further investigating
341 the mechanistic basis of recombination interference in butterflies in general. In summary, we observed a
342 higher recombination rate in the smaller chromosomes, but this was compensated for by a higher
343 intrachromosomal reshuffling in larger chromosomes. Hence, we proceeded by assessing if these differences
344 and similarities in recombination and reshuffling can affect levels of genetic diversity.

345

346 Associations between recombination and genetic variation

347 To get more information about how chromosome rearrangements and recombination rate differences
348 between populations and genomic regions are associated with genetic diversity, we estimated a set of
349 population genetic summary statistics at different site categories. Our results show that there was a
350 significantly higher overall genetic diversity in the Catalan population than in the Swedish population. Such
351 a difference could obviously be a consequence of differences in demographic history or other evolutionary
352 processes that affect the populations differently. First, we know that *L. sinapis* populations inhabiting
353 warmer climatic regions (e.g. Catalonia) are multivoltine with 3 - 4 generations per year, while the
354 populations at higher latitudes (e.g. Sweden) predominantly are univoltine [39]. A shorter generation time

355 leads to a higher input of novel mutations per time unit, but this should only affect the segregating neutral
356 diversity in the populations differently if they are not at mutation-drift-equilibrium [40]. Second, the
357 demographic histories are likely different between the two populations. While Catalonia likely represents
358 a refugium from the last glaciation period, Sweden must have been colonized well after the ice sheet
359 retracted. This founder event in the north likely occurred with influx of individuals from another refugial
360 population, potentially as far east as central Asia [32,41]. Hence, both the shorter generation time and the
361 absence of obvious founder events could have led to a higher genome-wide level of genetic diversity in the
362 Catalan population.

363
364 To further investigate the effects of recombination on patterns of genetic diversity we therefore focused on
365 intra-genomic variation in each population separately. We found that the levels of genetic diversity were
366 heterogeneous across chromosomes and there was no association between genetic diversity and
367 chromosome size after excluding the Z-chromosomes from the analysis. The latter result could be a
368 consequence of the dynamic ongoing karyotype rearrangements in this species, and fits well with linkage-
369 disequilibrium-based recombination rate estimates in the Swedish population [32]. The recurrent fissions
370 and fusions that must have occurred over the divergence time of the populations should mean that both the
371 size of chromosomes and (consequently) the recombination rate has been under constant change, which
372 would reduce the association between current chromosome states, recombination rates and levels of genetic
373 diversity. In addition, a time lag between changes in recombination rate and subsequent changes in genetic
374 diversity is expected, which should dilute the signals further [42]. However, we did actually detect a
375 significant genome-wide association between genetic diversity and recombination rate in both populations.
376 This suggests that the split between population occurred a sufficiently long time ago for recombination rate
377 differences to affect genetic diversity. Here, the association was strong at the lower end of the recombination
378 rate spectrum and reached a threshold at moderate recombination rates, with similar levels to those
379 previously detected in *Drosophila* [43]. This is also in line with theoretical predictions of the association
380 between recombination and genetic variation [44].

381
382 The regional distribution of genetic diversity along the chromosomes were in line with the expectations [3],
383 following the trajectory of the recombination landscape in both populations. It should be noted that the
384 chromosomal rearrangements in *L. sinapis* mainly have involved fusions and/or fissions of comparatively
385 large chromosome parts [21]. The distribution of the recombination landscape on chromosomes could hence
386 be partly maintained even after fusion of two smaller chromosomes or a fission of a larger chromosome -
387 i.e. unimodality in small chromosomes with recombination predominantly occurring at the center and
388 bimodality in larger chromosomes with recombination events towards, but not at, chromosome ends.
389 However, this relative stability obviously depends on the history of the merged chromosome units. Recent
390 fusions, for example, would be expected to have comparatively high genetic diversity as a result of the
391 higher recombination rate on the previously smaller chromosomes, while more ancient fusions would have
392 a lower level of genetic diversity as a consequence of a more long-term recombination rate reduction [25].
393 It should be noted that fission / fusion polymorphisms are known to be segregating in the populations [21]
394 and that the linkage maps used here are composite maps of different families which may add some
395 uncertainty to the estimates of recombination rates. To further investigate the extent of potential individual
396 differences in recombination rate as a consequence of karyotype variation between families within a
397 specific population, we would need to produce individual recombination maps for males homozygous for
398 each karyotype.
399
400 Both cytogenetics [20], linkage mapping and genome assemblies [21] have revealed the existence of an
401 unusual sex-chromosome system in the *Leptidea* genus where e.g. *L. sinapis* has a karyotype including
402 three Z-chromosomes and three W-chromosomes. Of the three Z-chromosomes, one is homologous to the
403 inferred ancestral Z-chromosome (Z1) in Lepidoptera while the other two (Z2, Z3) seem to have been
404 recruited as sex-chromosomes in the *Leptidea* genus specifically [20]. To understand how this relatively
405 new evolution of sex-chromosomes have affected the recombination and diversity landscapes, we compared
406 the different Z-chromosomes to the set of autosomes. The results from this analysis showed that the Z-

407 chromosomes had a lower neutral genetic diversity than autosomes. This is expected given that the N_e of a
408 Z-chromosome should be approximately $\frac{3}{4}$ of any autosome, under the assumption of equal sex ratios. A
409 reduced level of genetic diversity on the Z-chromosome has also been observed in the *Heliconius*
410 *melpomene* and the Monarch butterfly, but not in the moth *Manduca sexta* [45,46], suggesting that relative
411 N_e of Z-chromosomes and autosomes might vary between species, or that other factors than mutation-drift
412 balance drive relative levels of genetic diversity between chromosome classes. An interesting result was
413 that while Z1 and Z3 had similar π_0 / π_4 -ratios as the autosomes, Z2 had a dramatically higher π_0 / π_4 -ratio
414 compared to the other chromosomes in both populations. The higher ratio was a consequence of an elevated
415 π_0 , indicating reduced selective constraints on Z2 (or possibly a group of genes under strong positive
416 selection). This result is somewhat puzzling since Z2 is the most structurally conserved of all chromosomes
417 within *Leptidea* [21,47] and the observation, although outside of the scope of this article, definitely merits
418 further investigations into the evolutionary forces underlying sex-chromosome formation and maintenance
419 in this genus.

420
421 The efficacy of selection translates to both removal of deleterious mutations and fixation rate of adaptive
422 mutations. Hence, under the assumption that most novel mutations are neutral or slightly deleterious, i.e.
423 the nearly neutral theory [48], we expect an increase in the π_0 / π_4 -ratio with reduced efficiency of selection.
424 Since the efficiency of selection is dependent on N_e , the frequency of (slightly) deleterious mutations is
425 expected to segregate at higher rates in regions of low recombination [49]. Our data showed a negative
426 association between the recombination rate and the π_0 / π_4 -ratio in both populations, an observation
427 supporting the nearly neutral theory. However, we did not detect any significant difference between the two
428 populations, which would be expected given the difference in overall recombination rate (i.e. a lower N_e in
429 the Swedish population). In addition, there was no detectable effect of the variance in recombination rate
430 in rearranged chromosomes on the ratio of π_0 / π_4 . This indicates that the average recombination rate is high
431 enough to efficiently remove slightly deleterious mutations in both populations, consistent with the
432 observations that selection efficiency can be maintained at a stable level even at relatively low

433 recombination frequencies [50]. In the genome-wide analysis we observed that the π_0 / π_4 -ratio approached
434 the asymptote when the recombination rate was > 2 cM / Mb. Hence, an increase in the recombination rate
435 above that level does not seem to affect the efficiency of selection in this system. It is also possible that the
436 relatively short divergence time between these populations [51], in combination with the extensive
437 chromosome changes, affects our power to detect signals of selection.

438
439 We found a positive association between the variation in intergenic diversity change and the variation in
440 recombination rate change across ancestry blocks, with recombination rate explaining $> 12\%$ of the
441 variation in intergenic diversity in rearranged chromosomes. A positive association between recombination
442 rate and genetic diversity has been observed in many different taxa [52] and our data lends further support
443 for that recombination is a more potent mechanism than pairwise chromosome reshuffling for breaking
444 linkage disequilibrium and, hence, maintenance of genetic diversity [37]. It is noteworthy that we did not
445 see any significant association between changes in recombination rate in rearranged regions and genetic
446 diversity at other site categories (introns, π_0 , π_4). This is likely a consequence of temporal differences in
447 the effects of reduced linkage disequilibrium on genetic diversity at sites under direct and indirect selection
448 pressure.

449 Conclusion

450 We investigated the difference in recombination rate between two populations of *L. sinapis* with extreme
451 difference in karyotype structure and chromosome count. We show that karyotype evolution directly affects
452 the global recombination rate, but that recombination has a limited effect on total pairwise reshuffling,
453 partly as a consequence of multiple crossovers in larger chromosomes. A key observation from our data
454 was a significant difference in neutral genetic diversity (but not on the efficacy of selection) in regions
455 where chromosome rearrangements have affected the recombination rate. Finally, we validate the

456 importance of recombination rate variation driving differences in maintenance of nucleotide diversity
457 between populations at an early stage of divergence.

458 Methods

459 Linkage map

460 We used Swedish (n = 6 families; 186 offspring) and Catalan (n = 6 families; 186 offspring) full-sib families
461 of *L. sinapis* to develop RAD-seq based linkage maps for two populations that represent the most extreme
462 karyotype variants in the species. Details about family structure, RADseq data generation and preprocessing
463 are available in [21]. To get recombination rate information, the linkage map markers were anchored on
464 recently established chromosome-level assemblies for each respective population [21]. The filtered reads
465 were mapped to the genome assembly from each population using bwa *mem* [53] with default options. The
466 mapped reads were sorted with samtools *sort* and filtered based on quality (samtools *view -q 10*), and reads
467 with multiple mapping locations were removed with a custom script [54]. Mapping coverage was assessed
468 with Qualimap [55] and only individuals with > 100,000 mapping reads were included in the study,
469 resulting in 184 and 178 offspring in the Swedish and Catalan pedigrees, respectively. Samtools *mpileup*
470 [56] with options minimum mapping quality (-q) 10 and minimum base quality (-Q) 10 was used to identify
471 variants, which were converted to genotype likelihoods using *Pileup2Likelihoods* in LepMap3 with default
472 settings [57]; minimum coverage = 3 per individual (*minCoverage* = 3) and < 30% of the individuals
473 allowed to have lower coverage than minimum coverage (*numLowerCoverage* = 0.3). Only markers
474 mapping to chromosome-sized scaffolds in each respective population were retained for downstream
475 analysis. LepMap3 [57] was used to construct linkage maps for the two populations separately applying the
476 following steps. Informative markers were identified with *ParentCall2* using default settings, except for
477 *ZLimit* which was set to 2 to identify markers segregating as sex chromosomes. Non-informative markers
478 were removed with *removeNonInformative* = 1. Markers showing segregation distortion, minimum allele

479 frequency below 0.05 or absence in more than 50% of the individuals were excluded with *Filtering2*
480 (options *dataTolerance* = 0.00001, *MAFLimit* = 0.05, *missingLimit* = 0.5). In addition, only markers
481 represented in at least four families in each population, were retained (*familyInformativeLimit* = 4). As a
482 first mapping step, markers were assigned to linkage groups with *SeparateChromosomes2* using female
483 informative markers only (*informativeMask* = 2). The optimal LOD-score threshold was empirically
484 estimated to 11 for the Swedish and 7 for the Catalan population. Markers that were informative in either
485 males or both sexes were subsequently added with *JoinSingles2All* with the same LOD-score thresholds.
486 Linkage groups covering several scaffolds were split based on information from the physical assembly
487 before ordering the markers along the chromosomes with the module *Ordermarkers2*. Only male
488 informative markers (*informativeMask* = 1) were used for the ordering since females are achiasmatic
489 (*recombination2* = 0). We set a penalty for diverting from the order in the genome assembly with likelihood
490 chain (*usePhysical* = 1 0.1) and *improveOrder* = 0. The ordered linkage maps were visually inspected in R
491 and uninformative markers (extending the map ends) were removed. After manual removal of
492 uninformative markers, *OrderMarkers2* was run again with the same settings (see above) and the final
493 genetic distances were calculated using Kosambi's map function to account for multiple recombination
494 events along the chromosome.

495 Recombination estimation

496 Regional recombination rates were estimated by dividing the genetic distance with the physical interval
497 between each marker pair. Weighted means for 2 Mb windows, per chromosome and per population were
498 obtained by weighting the recombination rate at each interval by the proportion of the physical distance.
499 Interpopulation comparisons of the weighted mean recombination rates were performed with Wilcoxon
500 Signed rank test and potential associations between recombination rate and chromosome length were
501 assessed with Spearman's rank correlation coefficient, as implemented in *cor.test* in R [58]. To compare
502 the observed recombination rate with the expected recombination rate for exactly one or two crossovers per

503 chromosome per meiosis, we calculated the expected rates as 50 cM / chromosome length and 100 cM /
504 chromosome length, respectively.

505 Pairwise reshuffling

506 The probability of total pairwise reshuffling is the probability that two random loci are originating from
507 different parental alleles during gamete formation. The total pairwise reshuffling has two components; the
508 interchromosomal component describing the effects of independent assortment and the intrachromosomal
509 component describing the effect of recombination. The variation in recombination rate along each
510 chromosome is also corrected for. The probability of interchromosomal pairwise reshuffling was estimated
511 by the probability of two loci being located on different chromosomes with independent assortment of the
512 chromosomes during meiosis $(1 - \sum((\text{chromosome length} / \text{assembly length})^2)) * 0.5$ [8]. The
513 intrachromosomal probability of pairwise reshuffling per chromosome was inferred using the genetic and
514 physical distances from the linkage maps. 1,000 pseudomarkers were placed along each chromosome and
515 the number of pairwise differences in origin was calculated based on the probability of recombination
516 between each pair of pseudomarkers [8]. The sum of pairwise differences was divided by the total number
517 of comparisons for each chromosome. The intrachromosomal contribution to the total reshuffling rate was
518 estimated by summing up the contribution of each chromosome, weighted by the probability that two loci
519 are located on the same chromosome $(\text{chromosome length} / \text{assembly length})^2$. The total pairwise
520 reshuffling was calculated as the sum of the interchromosomal and intrachromosomal contribution [8].

521 Population genetic summary statistics

522 Previously available resequencing data from 10 Swedish and 10 Catalan individuals were used for
523 population genetic analysis (Talla et al., 2019). Positions with Phred-score < 33, sequencing adapters and
524 seven bases from the 3'-ends of all reads were trimmed using TrimGalore 0.6.1
525 (<https://github.com/FelixKrueger/TrimGalore>), a wrapper for cutadapt 3.1 [59]. Trimmed reads were

526 mapped to the genome assemblies for each respective population [21] using *bwa mem* [53]. Variant calling
527 was performed using GATK 4.2.0.0 [60]. Base quality score recalibration was performed using an initial
528 variant calling round, keeping a set of variants with good support as recommended by GATK [61].
529 Subsequently, a second variant calling round was performed on recalibrated mapped reads. A final filtering
530 step of all sites (variant and invariant sites) was applied using BCFtools *filter* 1.16-1 [62] to mask genotypes
531 overlapping annotated repeats and genotypes with a coverage < 5 or > 25. The applied options for these
532 filtering steps were *--mask-file \$REPEAT_GFF*, *--soft-filter "REPEAT"*, and *-i FMT/DP > 5 & FMT/DP <*
533 *25' --set-GTs*.

534

535 Nucleotide diversity (π) for intronic, intergenic, 0-fold and 4-fold sites were estimated in 50 kb windows
536 with the software pixy 1.2.5.beta [63]. Coordinates for 0-fold and 4-fold sites were obtained with a custom
537 script (modified from https://github.com/simonhmartin/genomics_general) and genomic features (intron,
538 intergenic) were extracted using BEDTools 2.29.2 *complement* [64]. Potential associations between π and
539 chromosome length were assessed with Spearman's rank correlation, as implemented in *cor.test* in R [58].
540 We used the ratio of π_0 / π_4 as a proxy for selection, reflecting the efficacy in removal of deleterious
541 mutations, since most protein changing mutations are either deleterious or neutral according to the nearly
542 neutral theory [48].

543

544 Potential associations between the recombination rate and π were assessed by binning data into 2 Mb
545 genomic windows for each population separately. Population genetic summary statistics were also
546 estimated in ancestry blocks (ancestral chromosomal units), i.e. previously identified homologous regions
547 of chromosomes in which no rearrangements have occurred between the populations [21]. We included
548 ancestral chromosomal units involved in fissions/fusions after the split from the closest sister species
549 (*Leptidea reali*), or where incomplete lineage sorting or reuse of breakpoints have resulted in a fission in
550 one population or a fusion in the other. To investigate if observed changes in recombination rate between
551 populations has resulted in a corresponding change in π , we compared the ratio of the Catalan and the

552 Swedish π with the observed recombination rate ratio between the populations within each ancestral
553 chromosomal unit. Both the recombination rate and the π estimates are random variables, so we applied a
554 model II linear regression using ordinary least squares (OLS) and a permutation test with 1,000
555 permutations to determine the significance of the slopes, as implemented in the R-package lmodel2 [65].

556 Acknowledgements

557 This work was funded by the Swedish Research Council (VR research grant #019-04791 to N.B.). The
558 authors acknowledge support from the National Genomics Infrastructure in Stockholm funded by Science
559 for Life Laboratory, the Knut and Alice Wallenberg Foundation and the Swedish Research Council, and
560 SNIC/Uppsala Multidisciplinary Center for Advanced Computational Science for assistance with massively
561 parallel sequencing and access to the UPPMAX computational infrastructure. The project was also
562 supported by NBIS/SciLifeLab long-term bioinformatics support (WABI).

563 Data availability statement

564 The data used in this article are from public repositories. The genome and linkage map data for *L. sinapis*
565 are available at the European Nucleotide Archive (ENA) under accession number: PRJEB58697 (genome
566 assemblies) and PRJEB58905 (pedigree RADseq data). The population data are available at ENA under
567 accession number: PRJEB21838. All in-house developed scripts are available on GitHub
568 (<https://github.com/EBC-butterfly-genomics-team>).

569 Supplementary information

570 Link to supplementary information document (Supplementary Information provided as a separate file).

571 References

- 572 1. Charlesworth B, Morgan MT, Charlesworth D. The effect of deleterious mutations on neutral
573 molecular variation. *Genetics*. 1993;134: 1289–1303. doi:10.1093/genetics/134.4.1289
- 574 2. Maynard Smith J, Haigh J. The hitch-hiking effect of a favourable gene. *Genet Res*. 1974;23: 23–35.
575 doi:10.1017/S0016672300014634
- 576 3. Begun DJ, Aquadro CF. Levels of naturally occurring DNA polymorphism correlate with
577 recombination rates in *D. melanogaster*. *Nature*. 1992;356: 519–520. doi:10.1038/356519a0
- 578 4. Burri R, Nater A, Kawakami T, Mugal CF, Olason PI, Smeds L, et al. Linked selection and
579 recombination rate variation drive the evolution of the genomic landscape of differentiation across
580 the speciation continuum of *Ficedula* flycatchers. *Genome Res*. 2015;25: 1656–1665.
581 doi:10.1101/gr.196485.115
- 582 5. Cutter AD, Baird SE, Charlesworth D. High nucleotide polymorphism and rapid decay of linkage
583 disequilibrium in wild populations of *Caenorhabditis remanei*. *Genetics*. 2006;174: 901–913.
584 doi:10.1534/genetics.106.061879
- 585 6. Hill WG, Robertson A. Linkage disequilibrium in finite populations. *Theoret Appl Genetics*. 1968;38:
586 226–231. doi:10.1007/BF01245622
- 587 7. Rodgers-Melnick E, Bradbury PJ, Elshire RJ, Glaubitz JC, Acharya CB, Mitchell SE, et al. Recombination in diverse maize is stable, predictable, and associated with genetic load. *PNAS*.
588 2015;112: 3823–3828. doi:10.1073/pnas.1413864112
- 589 8. Veller C, Kleckner N, Nowak MA. A rigorous measure of genome-wide genetic shuffling that takes
590 into account crossover positions and Mendel's second law. *Proc Natl Acad Sci U S A*. 2019;116:
591 1659–1668. doi:10.1073/pnas.1817482116
- 592 9. Haenel Q, Laurentino TG, Roesti M, Berner D. Meta-analysis of chromosome-scale crossover rate
593 variation in eukaryotes and its significance to evolutionary genomics. *Mol Ecol*. 2018;27: 2477–2497.
594 doi:10.1111/mec.14699
- 595 10. Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. Variation in recombination
596 frequency and distribution across eukaryotes: patterns and processes. *Philos Trans R Soc Lond B Biol
597 Sci*. 2017;372: 20160455. doi:10.1098/rstb.2016.0455
- 598 11. Wilfert L, Gadau J, Schmid-Hempel P. Variation in genomic recombination rates among animal taxa
599 and the case of social insects. *Heredity*. 2007;98: 189–197. doi:10.1038/sj.hdy.6800950
- 600 12. Morgan TH. Complete linkage in the second chromosome of the male of *Drosophila*. *Science*.
601 1912;36: 719–720. doi:10.1126/science.36.934.719
- 602 13. Suomalainen E, Cook LM, Turner JRG. Achiasmatic oogenesis in the Heliconiine butterflies.
603 *Hereditas*. 1973;1973: 302–304. doi:doi/10.1111/j.1601-5223.1973.tb01134.x
- 604 14. Turner JRG, Sheppard PM. Absence of crossing-over in female butterflies (*Heliconius*). *Heredity*.
605 1975;1975: 265–269.

607 15. Brazier T, Glémén S. Diversity and determinants of recombination landscapes in flowering plants.
608 PLOS Genetics. 2022;18: e1010141. doi:10.1371/journal.pgen.1010141

609 16. Storey AJ, Wang H-P, Protacio RU, Davidson MK, Tackett AJ, Wahls WP. Chromatin-mediated
610 regulators of meiotic recombination revealed by proteomics of a recombination hotspot. Epigenetics
611 Chromatin. 2018;11: 64. doi:10.1186/s13072-018-0233-x

612 17. Wang Y, Zhai B, Tan T, Yang X, Zhang J, Song M, et al. ESA1 regulates meiotic chromosome axis
613 and crossover frequency via acetylating histone H4. Nucleic Acids Research. 2021;49: 9353–9373.
614 doi:10.1093/nar/gkab722

615 18. de Vos JM, Augustijnen H, Bätscher L, Lucek K. Speciation through chromosomal fusion and fission
616 in Lepidoptera. Phil Trans R Soc B. 2020;375: 20190539. doi:10.1098/rstb.2019.0539

617 19. Lukhtanov VA, Dincă V, Talavera G, Vila R. Unprecedented within-species chromosome number
618 cline in the Wood White butterfly *Leptidea sinapis* and its significance for karyotype evolution and
619 speciation. BMC Evol Biol. 2011;11: 109. doi:10.1186/1471-2148-11-109

620 20. Šíchová J, Ohno M, Dincă V, Watanabe M, Sahara K, Marec F. Fissions, fusions, and translocations
621 shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood white
622 butterfly, *Leptidea amurensis*. Biol J Linn Soc. 2016;118: 457–471. doi:10.1111/bij.12756

623 21. Höök L, Näsvall K, Vila R, Wiklund C, Backström N. High-density linkage maps and chromosome
624 level genome assemblies unveil direction and frequency of extensive structural rearrangements in
625 wood white butterflies (Leptidea spp.). Chromosome Res. 2023;31: 2. doi:10.1007/s10577-023-
626 09713-z

627 22. Shipilina D, Näsvall K, Höök L, Vila R, Talavera G, Backström N. Linkage mapping and genome
628 annotation give novel insights into gene family expansions and regional recombination rate variation
629 in the painted lady (*Vanessa cardui*) butterfly. Genomics. 2022;114: 110481.
630 doi:10.1016/j.ygeno.2022.110481

631 23. Mackintosh A, Laetsch DR, Hayward A, Charlesworth B, Waterfall M, Vila R, et al. The determinants
632 of genetic diversity in butterflies. Nat Commun. 2019;10: 3466. doi:10.1038/s41467-019-11308-4

633 24. Martin SH, Davey JW, Salazar C, Jiggins CD. Recombination rate variation shapes barriers to
634 introgression across butterfly genomes. Moyle L, editor. PLoS Biol. 2019;17: e2006288.
635 doi:10.1371/journal.pbio.2006288

636 25. Cicconardi F, Lewis JJ, Martin SH, Reed RD, Danko CG, Montgomery SH. Chromosome fusion
637 affects genetic diversity and evolutionary turnover of functional loci but consistently depends on
638 chromosome size. Mol Biol Evol. 2021;38: 4449–4462. doi:10.1093/molbev/msab185

639 26. Davey JW, Barker SL, Rastas PM, Pinharanda A, Martin SH, Durbin R, et al. No evidence for
640 maintenance of a sympatric *Heliconius* species barrier by chromosomal inversions. Evol Lett. 2017;1:
641 138–154. doi:10.1002/evl3.12

642 27. Yasukochi Y, Ashakumary LA, Baba K, Yoshido A, Sahara K. A second-generation integrated map
643 of the silkworm reveals synteny and conserved gene order between lepidopteran insects. Genetics.
644 2006;173: 1319–1328. doi:10.1534/genetics.106.055541

645 28. Lohse K, Höök L, Näsvall K, Backström N, Programme WSIT of L, Collective WSISODP, et al. The
646 genome sequence of the wood white butterfly, *Leptidea sinapis* (Linnaeus, 1758). Wellcome Open
647 Research; 2022. doi:10.12688/wellcomeopenres.18118.1

648 29. Barnes TM, Kohara Y, Coulson A, Hekimi S. Meiotic recombination, noncoding DNA and genomic
649 organization in *Caenorhabditis elegans*. Genetics. 1995;141: 159–179.
650 doi:10.1093/genetics/141.1.159

651 30. Nokkala S, Kuznetsova VG, Maryanska-Nadachowska A, Nokkala C. Holo-centric chromosomes in
652 meiosis. I. Restriction of the number of chiasmata in bivalents. Chromosome Res. 2004;12: 733–739.
653 doi:10.1023/B:CHRO.0000045797.74375.70

654 31. Lukhtanov VA, Dincă V, Friberg M, Šíchová J, Olofsson M, Vila R, et al. Versatility of multivalent
655 orientation, inverted meiosis, and rescued fitness in holo-centric chromosomal hybrids. Proc Natl Acad
656 Sci U S A. 2018;115: E9610–E9619. doi:10.1073/pnas.1802610115

657 32. Palahí i Torres A, Höök L, Näsvall K, Shipilina D, Wiklund C, Vila R, et al. The fine-scale
658 recombination rate variation and associations with genomic features in a butterfly. bioRxiv (preprint).
659 2022 [cited 21 Nov 2022]. doi:10.1101/2022.11.02.514807

660 33. Rockman MV, Kruglyak L. Recombinational landscape and population genomics of *Caenorhabditis*
661 *elegans*. PLoS Genet. 2009;5: e1000419. doi:10.1371/journal.pgen.1000419

662 34. Bishop DK, Zickler D. Early decision: meiotic crossover interference prior to stable strand exchange
663 and synapsis. Cell. 2004;117: 9–15. doi:10.1016/S0092-8674(04)00297-1

664 35. Otto SP, Payseur BA. Crossover interference: Shedding light on the evolution of recombination. Annu
665 Rev Genet. 2019;53: 19–44. doi:10.1146/annurev-genet-040119-093957

666 36. Maynard Smith J. A short-term advantage for sex and recombination through sib-competition. J Theor
667 Biol. 1976;63: 245–258. doi:10.1016/0022-5193(76)90033-3

668 37. Burt A. Perspective: Sex, recombination, and the efficacy of selection—Was Weismann right? Evolution.
669 2000;54: 337–351. doi:10.1111/j.0014-3820.2000.tb00038.x

670 38. Davey JW, Chouteau M, Barker SL, Maroja L, Baxter SW, Simpson F, et al. Major improvements to
671 the *Heliconius melpomene* genome assembly used to confirm 10 chromosome fusion events in 6-
672 Million years of butterfly evolution. 2016; 14. doi:doi: 10.1534/g3.115.023655

673 39. Friberg M, Bergman M, Kullberg J, Wahlberg N, Wiklund C. Niche separation in space and time
674 between two sympatric sister species—a case of ecological pleiotropy. Evol Ecol. 2008;22: 1–18.
675 doi:10.1007/s10682-007-9155-y

676 40. Kimura M. Evolutionary rate at the molecular level. Nature. 1968;217: 624–626.
677 doi:10.1038/217624a0

678 41. Talla V, Soler L, Kawakami T, Dincă V, Vila R, Friberg M, et al. Dissecting the effects of selection
679 and mutation on genetic diversity in three wood white (*Leptidea*) butterfly species. Gonzalez J, editor.
680 Genome Biol Evol. 2019;11: 2875–2886. doi:10.1093/gbe/evz212

681 42. Booker TR, Payseur BA, Tigano A. Background selection under evolving recombination rates. Proc
682 R Soc B. 2022;289: 20220782. doi:10.1098/rspb.2022.0782

683 43. Castellano D, Coronado-Zamora M, Campos JL, Barbadilla A, Eyre-Walker A. Adaptive evolution
684 is substantially impeded by Hill–Robertson interference in *Drosophila*. Mol Biol Evol. 2016;33: 442–
685 455. doi:10.1093/molbev/msv236

686 44. Cutter AD, Payseur BA. Genomic signatures of selection at linked sites: unifying the disparity among
687 species. Nat Rev Genet. 2013;14: 262–274. doi:10.1038/nrg3425

688 45. Martin SH, Möst M, Palmer WJ, Salazar C, McMillan WO, Jiggins FM, et al. Natural selection and
689 genetic diversity in the butterfly *Heliconius melpomene*. Genetics. 2016;203: 525–541.
690 doi:10.1534/genetics.115.183285

691 46. Mongue AJ, Hansen ME, Walters JR. Support for faster and more adaptive Z chromosome evolution
692 in two divergent lepidopteran lineages. Evolution. 2022;76: 332–345. doi:10.1111/evo.14341

693 47. Yoshido A, Šíchová J, Pospíšilová K, Nguyen P, Voleníková A, Šafář J, et al. Evolution of multiple
694 sex-chromosomes associated with dynamic genome reshuffling in *Leptidea* wood-white butterflies.
695 Heredity. 2020;125: 138–154. doi:10.1038/s41437-020-0325-9

696 48. Ohta T. Role of very slightly deleterious mutations in molecular evolution and polymorphism. Theor
697 Popul Biol. 1976;10: 254–275. doi:10.1016/0040-5809(76)90019-8

698 49. Galtier N. Adaptive protein evolution in animals and the effective population size hypothesis.
699 Schierup MH, editor. PLoS Genet. 2016;12: e1005774. doi:10.1371/journal.pgen.1005774

700 50. Haddrill PR, Halligan DL, Tomaras D, Charlesworth B. Reduced efficacy of selection in regions of
701 the *Drosophila* genome that lack crossing over. Genome Biol. 2007;8: R18. doi:10.1186/gb-2007-8-
702 2-r18

703 51. Talla V, Johansson A, Dineă V, Vila R, Friberg M, Wiklund C, et al. Lack of gene flow: Narrow and
704 dispersed differentiation islands in a triplet of *Leptidea* butterfly species. Mol Ecol. 2019;28: 3756–
705 3770. doi:10.1111/mec.15188

706 52. Smukowski CS, Noor M a. F. Recombination rate variation in closely related species. Heredity.
707 2011;107: 496–508. doi:10.1038/hdy.2011.44

708 53. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013 [cited
709 23 Mar 2022]. doi:10.48550/arXiv.1303.3997

710 54. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map
711 format and SAMtools. Bioinformatics. 2009;25: 2078–2079. doi:10.1093/bioinformatics/btp352

712 55. Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control
713 for high-throughput sequencing data. Bioinformatics. 2015; btv566.
714 doi:10.1093/bioinformatics/btv566

715 56. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and
716 population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27: 2987–
717 2993. doi:10.1093/bioinformatics/btr509

718 57. Rastas P. Lep-MAP3: robust linkage mapping even for low-coverage whole genome sequencing data.
719 Berger B, editor. *Bioinformatics*. 2017;33: 3726–3732. doi:10.1093/bioinformatics/btx494

720 58. R Core Team. R: A language and environment for statistical computing. In: R Foundation for
721 Statistical Computing, Vienna, Austria. [Internet]. 2021 [cited 23 Mar 2022]. Available:
722 <http://www.r-project.org/index.html>

723 59. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet j.*
724 2011;17: 10. doi:10.14806/ej.17.1.200

725 60. Auwera G van der, O'Connor BD. Genomics in the cloud: using Docker, GATK, and WDL in Terra.
726 First edition. Sebastopol, CA: O'Reilly Media; 2020.

727 61. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for
728 variation discovery and genotyping using next-generation DNA sequencing data. *Nat Genet*. 2011;43:
729 491–498. doi:10.1038/ng.806

730 62. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools
731 and BCFtools. *Gigascience*. 2021;10: giab008. doi:10.1093/gigascience/giab008

732 63. Korunes KL, Samuk K. pixy: Unbiased estimation of nucleotide diversity and divergence in the
733 presence of missing data. *Mol Ecol Resour*. 2021;21: 1359–1368. doi:10.1111/1755-0998.13326

734 64. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features.
735 *Bioinformatics*. 2010;26: 841–842. doi:10.1093/bioinformatics/btq033

736 65. Legendre P. lmodel2: Model II Regression. In: CRAN.R-project.org [Internet]. 2018. Available:
737 <https://CRAN.R-project.org/package=lmodel2>

738