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Abstract

Cells communicate with one another through a variety of signaling mechanisms. Exchange of information via
these mechanisms allows cells to coordinate their behaviour and respond to environmental stress and other
stimuli. To facilitate quantitative understanding of complex spati otemporal signaling activity, we developed
Geometric Scattering Trajectory Homology, a general framework that encapsulates time-lapse signals on a
cell adjacency graph in a low-dimensional trajectory. We tested this framework using computational models
of collective oscillations and calcium signaling in theDrosophila wing imaginal disc, as well as experimental
data, including in vitro ERK signaling in human mammary epithelial cells and in vivo calcium signaling
from the mouse epidermis and visual cortex. We found that the geometry and topology of the trajectory
are related to the degree of synchrony (over space and time), intensity, speed, and quasi-periodicity of the
signaling pattern. We recovered model parameters and experimentalconditions by training neural networks
on trajectory data, showing that our approach preserves information that characterizes various cell types,
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tissues and drug treatments. We envisage the applicability of our framework in various biological contexts
to generate new insights into cell communication.

1 Introduction

Cell signaling plays a critical role in orchestrating the complex interactions and processes necessary for the
proper functioning and survival of organisms. This intricate communication system allows cells to perceive
and respond to their ever-changing environment by transmitting andprocessing information through a series
of biochemical reactions. Cells regulate the timing and location of signaling activity to coordinate a myriad
of cellular functions, including embryonic development, tissuerepair, and immune responses [1{5]. By �ne-
tuning the spatial and temporal characteristics of signaling, cells are able to communicate e�ectively, adapt
to changing environments, and maintain homeostasis. Impairment of signaling mechanisms is a hallmark of
various diseases, including cancer, developmental disorders, anddegenerative diseases.

Although many signaling molecules and pathways have been identi�ed, the dynamics of signaling pro-
cesses, including their initiation, propagation, termination, and adaptation, are not yet fully understood.
Cellular signaling networks are highly complex, involving numerous molecules, pathways, and feedback loops.
This complexity makes it challenging to study individual components and their interactions within the sys-
tem. Moreover, these networks often show emergent properties thatcannot be easily determined from the
behavior of their individual components. Signaling dynamics are often non-linear and context-dependent,
making it di�cult to predict their outcomes based on simple linear m odels or assumptions [6]. The outcome
of a signaling event may depend on the cellular context, including the presence of other signaling molecules,
the cellular environment, and the history of previous signaling events. The spatial distribution and temporal
dynamics of signaling molecules can be highly heterogeneous within a tissue. Heterogeneity can arise from
various factors, such as di�erences in the expression and localizationof signaling molecules in neighboring
cells, as well as variations due to noise, changes in the extracellular environment or an external stimulus.
This heterogeneity adds another layer of complexity to the study of signaling dynamics.

The complexities and current lack of understanding in signaling dynamics necessitates the development
of advanced computational methods for the quantitative analysis of spatiotemporal signaling. Incorporating
cell-cell connectivity at multiple scales and the temporal dynamics of the signal is crucial for a comprehensive
understanding of these intricate processes. By accounting for themulti-scale nature of cellular interactions
and the temporal 
uctuations of signaling events, we can elucidate the underlying mechanisms that govern
cellular communication and coordination. This, in turn, can shed light on various pathological conditions
and inform the development of targeted therapeutic strategies. Furthermore, a robust computational frame-
work capable of integrating multi-scale connectivity and temporal dynamics would enable researchers to
generate predictive models, fostering a more e�cient and e�ective approach to understanding the functional
signi�cance of various signaling pathways in diverse cellular contexts.

In this paper, we develop a framework for analyzing spatiotemporal patterns in cell signaling, called
Geometric Scattering Trajectory Homology (GSTH), that integrates geometric scattering and topological
data analysis (TDA) to provide a comprehensive understanding of complex cellular interactions. This com-
bination allows for the e�ective capture of both local and global patterns, as well as a robust analysis of
the underlying topology. First we construct a graph from cell positions with the time-lapse signal as node
features. We then apply geometric scattering to quantify the spatiotemporal features of signaling dynam-
ics. Geometric scattering employs wavelet-based transformationsto extract multiscale representations of the
signaling data, capturing the intricate hierarchical structures present in the spatial organization of cells and
the temporal evolution of signaling events [7, 8]. These features provide a rich, multiscale characterization of
the spatiotemporal patterns that are essential for understanding the complex dynamics of cellular processes.
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We obtain a low dimensional trajectory of the signaling dynamics usingPHATE [9], a manifold-geometry
preserving dimensionality reduction technique. The trajectory is generated by embedding geometric scat-
tering features for each time point. Next, we use TDA to study the higher-order properties of the PHATE
trajectory by computing the persistent homology of the signal embeddings. TDA is a powerful tool for
investigating the shape and connectivity of data, providing a robust, scale-invariant representation of the
underlying structure. Persistent homology, a key technique within TDA, is used to capture the topologi-
cal features of the data across multiple scales, revealing hidden patterns and relationships in cell signaling
dynamics.

We test the proposed framework on simulations of collective oscillatory behavior and calcium signaling
in the Drosophila wing imaginal disc. First we simulate a system of coupled oscillators atvarying coupling
strengths to generate signals with di�erent degrees of synchrony. Weshow that the signal embeddings
produced by GSTH converge over time as the oscillators get synchronized, resulting in shorter, denser
trajectories characterized by Betti numbers in the persistenthomology. We show that PHATE trajectories
preserve spatiotemporal dynamics by predicting the coupling strength from the PHATE trajectories and
topological features. Next we simulate four di�erent patterns of calcium signaling by varying the rate of
production of inositol trisphosphate (IP 3) in a mathematical model of intercellular calcium signaling in the
Drosophila wing imaginal disc. We show that intermittent spiking and uncoordinated transient signaling
produce gaps in the PHATE trajectory, which are detected using TDA. On the other hand, spatially and
temporally coordinated signaling produces smooth trajectories without gaps. We demonstrate that the model
parameters used to generate the simulation can be recovered using a neural network trained on geometric
scattering features, highlighting the predictive capability of our model.

Finally we apply GSTH to three experimental datasets, consisting of: (1) calcium signaling in the basal
stem cell layer of the mouse epidermis, (2) ERK signaling in oncogenicmammary epithelial cells, and (3)
calcium signaling in the prefrontal visual cortex of mice. We show thatGSTH can accurately classify control
versus perturbations in the �rst two datasets, and visual stimuli p resented to mice in the third dataset.

Geometrical and topological analysis of spatiotemporal signaling can be used tounderstand the complex
dynamics of biological systems, such as how cells process information and coordinate their behavior. By
combining geometric scattering and topological data analysis, our frameworkis able to integrate local and
global information, as well as geometrical and topological properties, to provide a more comprehensive
understanding of spatiotemporal patterns in cell signaling. This innovative approach paves the way for
the development of predictive models, improved therapeutic strategies, and a deeper understanding of the
complex processes governing cellular communication and coordination.

2 Results

2.1 The GSTH architecture

GSTH comprises of three steps: (1) spatial embedding of the signal using geometric scattering, (2) temporal
embedding of the multiscale geometric features using PHATE to obtainlow-dimensional trajectories, and
(3) computation of topological features of the trajectory using persistent homology. Next, we describe these
steps in detail.
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2.1.1 Spatial embedding

First, we encode spatial variations in the signaling pattern at a given timepoint, t i , using geometric scattering,
an unsupervised method for generating embeddings for graph-structured data [7]. This involves multiscale
di�usion of the signal, X (t i ), by performing random walks on a cell neighborhood graph,G(V; E), constructed
from cell position data. The graph consists of vertices,V = f v1; v2; � � � ; vM g, represent individual cells and
edges connecting cells that lie within some prede�ned neighborhood distance. We represent the graph using
the adjacency matrix, A , and the degree matrix, D . We use the notation x(vl ; t i ) to denote the signaling
activity at cell vl at time t i .

The geometric scattering transform applies a cascade of graph wavelet transforms followed by a nonlinear
modulus operation [7, 8]. The design of graph wavelets is based on the di�usion operator constructed from
lazy random walks, R = 1

2

�
I + AD � 1

�
, over a graph, i.e.,

	 0 = I � R ; 	 j = R 2j � 1
� R 2j

= R 2j � 1
(I � R 2j � 1

) ; j � 1 : (1)

The multi-scale nature of graph wavelets allows the geometric scattering transform to traverse the entire
graph in one layer, which provides both local and global graph features. Summation of the signal responses
is used to obtain invariant graph-level features. Since the summationoperation could suppress the high
frequency information, it could be complemented by using higher order summary statistics of signalx. Due
to the iteration of applying graph wavelets followed by a nonlinear modulus operation, geometric scattering
transforms can be constructed as in a multi layer (or multi order) architecture. Speci�cally, the zeroth-order
scattering coe�cients are calculated by taking statistical moments of the summation of signals, and the �rst
order features are obtained by applying a graph wavelet, which aggregates multiscale information of the
graph. Second-order geometric scattering features can further augment�rst order features by iterating the
graph wavelet and absolute value transforms. The collection of graph scattering features provides a rich set
of multiscale invariants of the graph G and can be used under both supervised and unsupervised settings for
graph embedding.

For a signal X (t i ) = [ x(v1; t i ); x(v2; t i ); : : : ; x(vM ; t i )] we compute the zeroth-order scattering coe�cients
for each vertex/cell for timepoint t i as follows:

S0(X (v` ; t i )) = R 2J
x(v` ; t i ): (2)

The di�usion operator (lazy random walks) R here works as a low pass �lter that performs local averag-
ing of signal in neighboring cells[7, 10]. Unlike the summation operator thataverages all vertex information
and suppresses the high frequency information and hence has to be retrieved by higher order statistical
moments, this retains �ner description of cell/vertex embeddings. Then, by concatenating the wavelet coef-
�cients for each cell/vertex at timepoint t i , we can obtain the corresponding timepoint embeddingS0(X (t i ))
for timepoint t i . Finally, the timepoint embedding for N timepoints can be calculated and the resulting
S0(X (t)) = f S0(X (t0)) ; S0(X (t1)) ; : : : ; S0(X (tn ))g is a feature matrix of dimensionN � M , where N is the
number of timepoints and M is the number of cells. We hence obtain the zeroth-order scatteringcoe�cients
for the N timepoints. The scattering transform here is a result of local averaging of wavelet coe�cients.

The zeroth-order scattering features can be augmented by �rst-orderscattering features by applying
graph wavelets and extracting �ner description of high frequency response of a signalX (t i ) [7]. Speci�cally,
the �rst-order scattering coe�cients for each time point at each ver tex/cell are calculated as:

S1(x(j; v ` ; t i )) = R 2J
j	 j x(v` ; t i )j; 1 � j � J; (3)

The value 	 j x(v` ; t i ) aggregates the signal informationx(vm ; t i ) from the vertices vm that are within
2j steps ofv` . It responds to sharp transitions or oscillations of the signalx within the neighborhood of v`
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with radius 2 j (in terms of the graph path distance). By concatenating all the vertex/cell embeddings, we
can obtain the �rst order scattering coe�cients S1(X (t i )) for timepoint t i .

Finally, the second-order scattering coe�cients can be obtained byfurther applying graph wavelets and
extract even �ner description of high frequency response of the signal X (t i ):

S2(X (j; j 0; v` ; t i )) = R 2J
j	 j 0j	 j x(v` ; t i )jj ; 1 � j < j 0 � J (4)

The above calculations are conducted for each timepoint and a total ofN timepoints. The �rst-order and
second-order scattering transform will generate a feature matrix of shapeN � (M � J ) and N � (M � J � (J � 1)

2 )),
respectively, as timepoint embeddings for theN timepoints. Finally, the zeroth-order, �rst-order and second-
order scattering coe�cients were combined together as the embeddings for each time point S(X (t i )). The
scale of the waveletJ was selected based on the diameter of graphs, and the number of scattering coe�cients
generated depended on the graph sizes.

2.1.2 PHATE trajectories

The signal embeddingsS(X (t i )) from geometric scattering form a matrix of dimensionsT � M , where T is
the number of time points in the data and M is the number of scattering coe�cients for each time point.
We can visualize these embeddings by applying PHATE. Following our previous description of PHATE, we
calculated a distance matrix D = kS(X (t i )) � S(X (t j )k2 based on the Euclidean distance between time
point embeddings and applied an� -decaying kernelK with a locally-adaptive bandwidth � k;i corresponding
to the k-NN distance of the i -th data point to generate an a�nity matrix W as well as the di�usion operator
P. The elements ofW are given by:

W i;j = K k;� (i; j ) =
1
2

exp
�

�
�

D i;j

� k;i

� � �
+

1
2

exp
�

�
�

D i;j

� k;j

� � �
(5)

The decaying factor � regulates the decay rate of the kernel (smaller� ) kernel with lighter tails), � = 2
corresponding to the Gaussian. The di�usion operatorP can then be obtained by calculating the row-sum of
the a�nity matrix W with element P i;j giving the probability of moving from the i -th to the j -th data point
in one time step. The global structure of the data can be further learned through calculating the tth power of
the di�usion operator P, which propagates a�nity of the data through di�usion up to a scale of t. The optimal
value t for di�usion is automatically chosen to be the knee point of the von Neumannentropy of P t . This
di�usion operator is then log scale transformed and converted to a potential distance matrix ID( X ) which is
embedded by MDS to result in 3-D PHATE embedding coordinatesE(t) = ( E1(X (t)) ; E2(X (t)) ; E3(X (t)))
for each time point t, and point cloud E = f E(t1); E (t2); : : : E (tn )g.

The 3D coordinates enable visualization of the trajectory, which re
ects the time-varying patterns of
Ca2+ 
uorescence data. Thus neighbors in the PHATE embedded trajectories indicate similar signaling
patterns even if they occur at distal timepoints. In fact, many of the dynamics we notice have loop-like
structure, which motivates the computation of topological features described in the next section.

2.1.3 Persistent homology analysis of PHATE trajectories

To obtain a topologically invariant characterization of a given PHATE traject ory, denotedE, we calculated its
persistent homology. Speci�cally, we calculated the persistent homology of E via a Vietoris{Rips �ltration
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VRs(E ). The Vietoris{Rips complex of E is de�ned as the �ltered simplicial complex that contains a
subset ofE as a simplex if and only if all pairwise distances in the subset are less than or equal to s, i.e.,
VRs(E ) = ff n0; :::; nm g j 8i; j d (i; j ) � sg: We noted here that we could also use the potential distanceID
from PHATE, however we directly used the PHATE coordinates and the Euclidean distance for simplicity.

As described above, from VRs(E ), we obtain a set of persistence diagramsQ consisting of birth-death-
dimension triples [b; d; q] that describe multiscale topological features ofE . Each such point corresponds
to a topological feature in the trajectory, which appears at a certain birth time and disappears at a death
time. Note that the times are supposed to be understood with respect to the parameter s from above. A
point's distance from the diagonal therefore represents the prominence or the eponymouspersistenceof the
associated topological feature; higher values indicate that the feature occurs over a large scale, thus increasing
its signi�cance. We further calculated the associated Betti curves for eachQ, resulting in a simple summary
curve B (Q; q) for the qth dimension consisting of the number of points (bi ; di ) in Q such that bi � s < d i .
The Betti curve characterizes the connectivity of V Rs(E ) and, by extension, of the Ca2+ 
uorescence data.

In addition, we computed pairwise Wasserstein distances between persistence diagrams for unsupervised
classi�cation of various experimental conditions. The Wasserstein distance between two persistence diagrams
Q1 and Q2 is calculated as follows:

Wm (Q1; Q2) =
�

inf
� :Q 1 ! Q 2

X

q1 2 Q 1

jjq1 � � (q1)jjm
1

� 1
m

(6)

where� is a bijection from Q1 to Q2. Speci�cally, we consider the diagonal � of persistence diagrams to have
in�nite multiplicity, i.e. points can be matched to the diagonal. We used Eirene to compute Wasserstein
distances, which utilizes the Hungarian algorithm to �nd the optimal mat ching. It has been shown that
persistence diagrams are stable [11]. Hence by calculating the Wasserstein distances between two persistence
diagrams, we can quantify the di�erences of persistence diagrams.

2.2 GSTH quanti�es synchrony in coupled oscillators

Oscillations commonly occur in many organisms ranging from unicellular bacteria to mammalian cells. Tem-
poral oscillations are thought to regulate metabolism, cell cycle, circadian rhythms, and rhythmic beating
of the heart among many other physiological processes. We �rst validatedGSTH by using it to quantify
spatiotemporal patterns in the Kuramoto coupled oscillator model. This mathematical model is used to
describe collective behavior in oscillating elements, such as the �ring of neurons in the brain or activity
of pacemaker cells in the heart [12{14]. The model consists of a group of oscillators, each with its own
natural frequency, ! , that are coupled together and can in
uence each other's oscillations. The degree of
synchronization among the oscillators is determined by a parameter called the coupling strength, R, which
represents the strength of the interaction between the oscillators.

We simulated a network of 64 coupled oscillators with natural frequencies sampled from a normal distri-
bution, ! i � N (1; � ), and initial phase o�sets sampled from a uniform distribution, � i � U (0; 2� ) for 200
timepoints with � t = 0 :05. We systematically varied the coupling strength,R, from 0 to 1 in our simula-
tions. At low coupling strength, the oscillators act independently according to their natural frequency (Fig.
1A). The Kuramoto potential, a measure of synchrony in the system, remains close to 1:0 for the duration
of the simulation, indicating the absence of synchronous behavior. The GSTH embeddings are temporally
organized into continuous 1-D PHATE trajectories. The spacing between points in the trajectory is uni-
form and equal to the simulation time-step, as evident from the sharp decrease in the number of connected
components at � � � t=2 in the H0 Betti curve.
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At intermediate coupling strength the oscillators exhibit entrain ment, characterized by decrease in phase
variance and increase in phase-locking over time (Fig. 1B). AtR = 0 :5, the Kuramoto potential decreases
from 1:0 and stabilizes at 0:3, indicating increase in synchrony over time. The spacing between points in
the PHATE trajectory decreasing over time. Time points towards the end of the simulation are embedded
close to each other, which indicates that the input signal, i.e. the phase of the oscillators, is converging
over time. The rate of entrainment is measured by theH0 Betti curve, where the number of connected
components decreases rapidly at low values of the �ltration parameter,� � 0, due to increase in nearest
neighbor proximity between GSTH embeddings over time. At R = 1 :0, the oscillators synchronize within
20 simulation time-steps, resulting in a `shorter' PHATE traject ory where the majority of time points are
embedded in close proximity (Fig. 1C). Compared toR = 0 :5, the H0 Betti curve for R = 1 :0 decreases
more rapidly, con�rming a faster rate of entrainment at higher coupling strength. We are able to recovery
of the coupling strength parameter from the PHATE embeddings with close to perfect accuracy. Although
information is lost in the computation of Betti curves, coupling strength can still be recovered with a high
accuracy using a supervised neural network (Table 1).

2.3 GSTH recovers parameters in intercellular Ca 2+ signaling model

We used a 2D computational model of theDrosophila wing imaginal disc to demonstrate that GSTH can
distinguish between intermittent and continuous patterns of Ca2+ signaling activity and recover model
parameters from signaling data. This model accounts for the formation and degradation of IP3, Ca2+

dynamics across the endoplasmic reticulum (ER), and IP3R activation dynamics using a system of ordinary
di�erential equations that model the dynamics of cytosolic IP3, cytosolic Ca2+ , ER Ca2+ concentration, and
the fraction of IP 3 receptors that have not been inactivated by Ca2+ [15].

To reproduce the spiking, transient, travelling wave and 
utte ring like activity observed in experiments,
we systematically varied theVPLC parameter, which governs the maximal production rate of IP3, in individual
cells of the simulated tissue. The type of signaling pattern was dependent on the number of cells in the tissue
having a VPLC value below, above, or equal to the Hopf bifurcation threshold for single-cells (VPLC = 0 :774).
Simulated cells that have aVPLC value above the Hopf threshold, in the absence of agonist stimulation, are
termed \initiator cells" and are poised to exhibit high levels of IP 3 production. Neighboring simulated cells
with VPLC values below the Hopf threshold are termed \standby cells" that receive a signal from initiator
cells to propagate a signal. For instance, if a majority of standby cells have VPLC values signi�cantly below
the critical Hopf bifurcation threshold, and standby cell VPLC is randomly uniformly distributed between
0:1 � 0:5, single-cell Ca2+ spikes occur only where initiator cells oscillate (Fig. 2A,i-iii). When we increased
standby cell VPLC values close to the lower end of the Hopf bifurcation point (Fig. 2B,i-iii), and standby
cell VPLC is randomly uniformly distributed between 0:25 � 0:60, we noticed the formation of inter-cellular
transients (ICTs). Finally, we observed the formation of inter-cellular calcium waves (ICWs) when standby
cell VPLC is randomly uniformly distributed between 0:4 � 0:8, and 
uttering phenotypes when standby cell
VPLC is randomly uniformly distributed between 1:4{1:5 (Fig. 2 C-D,i-iii), in cases where the majority of
cells in the system were assigned aVPLC close to or above the bifurcation threshold, thereby placing more
cells in an initiator state. In the absence of initiator cells, Ca2+ activity was not observed.

GSTH analysis of the model simulations reveals two major trends. First, the GSTH embeddings generate
1-D PHATE trajectories that are organized by time. Gaps between successive time points in these trajectories
indicate intermittent signaling behavior. A large number of gaps are present in the trajectories of spiking
and ICT simulations, where a handful of initiator cells signal sporadically and the Ca2+ signal does not
propagate via standby cells across the tissue (Fig. 2A-B,iv). By comparison, the trajectories of ICW and

uttering simulations are continuous and smooth, re
ecting consistent and recurring signaling activity over
time in the simulation (Fig. 2C-D,iv). Gaps in these trajectories are quanti�ed by the persistent homology
of connected components and visualized in theH0 Betti curves. Gaps between points results in longer
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persistence intervals. These intervals persist over large values of the �ltration parameter, which is evident
by the smaller slope of theH0 Betti curves in simulations with intermittent signaling activit y (Fig. 2A-
D,iv). Another trend we observe is the presence of near circular, loop-like sections in the PHATE trajectory.
These segments of the trajectory are indicative of quasi-periodicity in the input, i.e. returning close to a
previously encountered state. For example, the 
uttering simulations exhibit coordinated tissue-wide waves
of Ca2+ activity that repeat over time (Fig. 2D). These repeating patterns of activity create persistent
topological loops in the PHATE trajectory which are quantifed in the H1 Betti curve. Note that similar,
albeit discontinuous, loop-like structure is present in the spiking and ICT trajectories where there is no
signaling activity in the tissue at multiple timepoints resultin g in the creation of trivial loops.

2.4 GSTH identi�es drug treatments using mouse epidermal Ca 2+ signaling
data

Having validated our method with computational models of cell signaling,we sought to understand signaling
dynamics in an in vivo context. With the advent of genetically encoded calcium indicators (GECIs) [16]
and innovations in live imaging techniques, investigators have begunto observe diverse patterns of Ca2+

signaling in many tissues types, however sophisticated analysis of Ca2+ signaling across broad spatial and
temporal scalesin vivo has been mainly limited to excitable tissues.

We explored the basal stem cell layer of the mouse epidermis as anin vivo model to study the spatiotem-
poral dynamics of Ca2+ signaling across a highly regenerative, non-excitable tissue. The mouse epidermis
is a unique model system to study signaling dynamics, as it can be imaged without invasive surgery and
signaling pathways can be manipulated via topical drug treatment. Thedataset consisted of perturbations
to various components of the Ca2+ signaling pathway to manipulate spatiotemporal Ca2+ dynamics, in com-
parison to homeostatic dynamics in the control condition [17]. We used GSTH to analyze signaling dynamics
obtained from perturbations at two points of the Ca2+ signaling pathway via drug treatment. In order to
block sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA) activity and activate store operated Ca2+ entry
(SOCE), mice were treated topically with thapsigargin dissolved in DMSO. We noticed an immediate in-
crease in Ca2+ transients due to upregulation of SOCE. Conversely, we inhibited IP3R activity by treating
mice with 2-Aminoethoxydiphenyl borate (2-APB), leading to a global decrease in Ca2+ transients.

GSTH analysis based on image segmentation of the timelapse microscopy data revealed signi�cant dif-
ferences between the homeostatic dynamics in the control mice and the perturbed signaling dynamics in the
drug-treated mice (Fig. 3). We consistently obtained smooth trajectories in the control condition indicating
that Ca2+ activity steadily di�uses to neighboring cells in a directed and coordinated manner, similar to
the intercellular calcium waves in simulations of the drosophila wing imaginal disc. TDA of these smooth
trajectories revealed a few large scale loops appearing at high values of the spatial parameter, � , suggesting
quasi-periodic signaling activity over time. By comparison, we obtained noisy and discontinuous trajectories
in the drug treatment conditions. Increase in transient activity d ue to thapsigargin treatment produces
a tortuous trajectory with gaps and dense segments (Fig. 3A). The gaps indicate periods of low to zero
activity followed by bursts of synchronous signaling. Decrease in transient activity due to 2-APB treatment
generates a more disorganized and scattered signal embedding, similar tospiking behavior in the drosophila
wing imaginal disc (Fig. 3B). A feed-forward neural network trained on PHATE trajectories as input fea-
tures classi�ed the control condition and drug treatments with an accuracy of 88%, beating the performance
of the same network trained using features obtained from kymographs, CROCKERs and zig-zag persistent
homology (Table 2).
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2.5 GSTH reconstructs sinusoidal patterns shown to mice from visual cortex
recordings

Using publicly available two-photon microscopy data [18], we showed thatGSTH can recover sinusoidal
grating patterns presented to mice from calcium imaging of layer 4 regions of the prefrontal visual cortex.
Sinusoidal grating patterns are a type of visual stimulus consisting ofparallel stripes that vary in brightness
according to a sinusoidal function. These patterns are commonly used in vision research because they are
simple, well-de�ned stimuli that can evoke robust responses in the visual cortex.

Moving striped patterns on a computer screen with varying spatial and temporal frequencies and orien-
tations were shown to mice, �tted with head-plates and a cranial window. Each pattern was shown for 3
seconds with a 2-second break in between, and this was repeated 8 times for each pattern. The monitor was
positioned in front of the mouse's eye and the images were collected fromthe layer 4 region in the visual
cortex, at a rate of approximately 30 images per second.

We trained a 5-layer feed-forward neural network classi�er to predict the ground-truth visual stimuli
presented to the mice from GSTH trajectories of signaling in the visual cortex. We separately trained the
classi�er to predict variations in spatial frequency (SF), temporal frequency (TF) and orientation of the
pattern (Table 2). In experiments involving variation in SF, we were able to predict the visual stimulus with
72% classi�cation accuracy using 5-fold cross-validation. We performed better than a random classi�er at
predicting the orientation of the sinusoidal pattern, although the accuracy was signi�cantly lower. Finally,
we were unable to predict the temporal frequency of the sinusoidal pattern using GSTH trajectories, since
our classi�er was unable to perform better than random guessing. One possible explanation is that temporal
frequency information is not represented in the layer 4 region of thevisual cortex which was imaged in this
study. Importantly, GSTH outperformed other methods of quantifyin g the signaling dynamics in all cases.

2.6 GSTH identi�es oncogenic ERK signaling in epithelial breast cells in vitro

Having shown the utility of GSTH in analyzing large Ca2+ signaling datasets, we next investigated the
dynamics of other signaling pathway proteins such as extracellular signal-regulated kinase (ERK), part of
the Mitogen Activated Protein Kinase (MAPK) signaling network [19]. We to ok advantage of previously
published data, where oncogenic epithelial cells induced ERK waves in wildtype neighboring cells [20]. We
analyzed four datasets, in which cells from the chromosomally-normal human breast epithelial line, MCF10A,
expressed the ERK Kinase Translocation Reporter (ERK KTR) [21] and a nuclear reporter H2B-iRFP, al-
lowing for cell segmentation and measurement of ERK activity over time. Oncogenic doxycycline-inducible
BRAF-V600E overexpression was achieved through lentiviral infection incells (H2B-mClover nuclear marker)
that were then cocultured with wild-type cells at a low fraction ( 1:100). When induced with Doxycycline,
these mutant BRAF-V600E cells initiated ERK signaling in neighboring wi ldtype cells. Media-treated cocul-
tures were included as a control. Aikin et al. have shown that ERK signaling in neighboring wildtype cells
is dependent on expression of the membrane-tethered sheddase ADAM17in oncogenic initiator cells [20].
Cocultures with doxycycline-induced and media-treated BRAF-V600E ADAM17 KO cells were therefore
included as additional controls.

GSTH analysis of the ERK signaling data revealed similar trajectoriesfor the No Dox, Dox-ADAM17
KO, ADAM17 KO control conditions (Fig. 4). No signi�cant signaling activity w as observed in these data,
which resulted in scattered and discontinuous trajectories akin to spiking behaviour in the Drosophila wing
imaginal disc model. The trajectory of Dox induced mutant BRAF-V600E cells, co-cultured with wildtype
cells, was smooth in contrast.
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2.7 Comparison to other methods

2.7.1 Time-delay embedding of cell signals and CROCKER

While kymographs can be useful summaries of spatiotemporal patterns in data, they are typically designed
in a problem-speci�c manner and with some knowledge of the expecteddynamics. A more agnostic and less
application-speci�c is to quantify the shape of the underlying data manifold using topological data analysis.
Speci�cally, we encode the persistent homology of cell signals by constructing a point cloud using Taken's
time-delay embeddings, and transforming the point cloud into a Vietoris-Rips simplicial complex.

We encode the signaling activity at each cell using a 2D time-delay positional embedding, (X (vl ; t i �
� ); X (vl ; t i )). Given a population of cells with signaling activity changing over time, we then construct a Betti
curve from the 2D point cloud of the time-delay embeddings of cells at each timepoint t i , and concatenate
these into a matrix. We discretize time, t, along the columns and the �ltration parameter, � , along the rows.
Entries in the matrix are the kth dimensional Betti number, � k , for speci�c values of (t; � ). The matrix is
a topological signature of the time-varying data and it can be vectorized forinput into machine learning
algorithms. The matrix often visualized as a contour plot, lending to its name, the Contour Realization Of
Computed k-dimensional hole Evolution in the Rips complex, or CROCKER [22].

2.7.2 Zig-zag persistent homology

Despite the utility of \ordinary" persistent homology in machine learn ing and data analysis contexts (see
e.g. Hensel et al. [23] for a recent survey), the expressivity of suchmethods is limited by the requirement
of data being nested along the �ltration, i.e., along the �ltering pro cess. In some applications, the use
of zig-zag persistent homologymay thus be preferred. This notion of topological features is permits more
general relations between the individual parts of the data. More precisely, given a data set, zig-zag persistent
homology can calculate topological features along general sequences of nested data sets of the form

K1 $ K2 � � � Kn � 1 $ Kn ; (7)

where \$ " may either denote subset or superset inclusions, i.e., inclusions of the form \  -" or \ ,! ."
In particular, the types of inclusions are allowed to vary; ordinary persistent homology with sublevel set
inclusions is thus a special case of such a zig-zag �ltration according to Equation 7. The name \zig-zag"
denotes the common use case in which both types of inclusions alternate. This can be achieved by inserting
the union of data sets, leading to

K1 ,! K1;2  - K2 ,! � � � ,! Kn � 1;n  - Kn ; (8)

where Ki � 1;i := K i � 1 [ K i . It is possible, in complete analogy to ordinary persistent homology, to track
topological features along such a zig-zag �ltration, making this formulation suitable particularly for time-
varying data.

2.7.3 Kymographs

Kymographs are often used to graphically illustrate changes in the intensity of a signal over time in some
spatial region. This plot is commonly used in the study of cell signaling,as it allows researchers to visualize
and quantitatively analyze the dynamics of signaling pathways within cells.
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The kymograph plot is typically constructed by dividing the tissue sample into a series of horizontal
lines, or \stripes," that represent di�erent time points. The in tensity of the signal is then plotted along the
vertical axis, with higher intensities representing stronger signaling activity.

By examining the kymograph plot, researchers can identify key characteristics of the signaling process,
such as the rate at which the signal is transmitted, the strength of thesignal at di�erent time points, and
the overall pattern of signaling activity within the tissue. This i nformation can be used to better understand
the role of signaling pathways in cell behavior and can provide insights into potential therapeutic targets for
diseases related to aberrant signaling.

2.8 Ablation Study

2.8.1 PHATE trajectory ablation

We compare application of the proposed GSTH method on the three synthetic datasets with approaches
that ablate or replace steps in the GSTH method. In particular, we test:

ˆ Applying PHATE directly on the raw input signals to obtain time-traj ectories, without the use of the
geometric scattering transform.

ˆ Applying PCA on the generated scattering coe�cients instead of PHATE .

ˆ Applying t-SNE on the generated scattering coe�cients instead of PHAT E.

ˆ Applying UMAP on the generated scattering coe�cients instead of PHATE.

For the synthetic testcase 1, we aim to compare the approaches for their stability to small perturbations
as well as their ability to retrieve signal di�usion dynamics on the graph. As shown in Fig. 5A, after
applying GSTH, time points with perturbed signals overlapped with time points with original signals, showing
scattering transform and PHATE are invariant to small degrees of noise. The smooth trajectory also re
ects
that the scattering transform and PHATE of GSTH can e�ectively capture the signal propagation on the
graph. By contrast, directly using PHATE on the raw input signals will result in the condensed timepoints
in Fig. 5C, thus failing to retrieve the dynamics. While applying PCA (Fig. 5D) and t-SNE (Fig. 5E) on the
generated scattering coe�cients can retrieve the dynamics to someextent, Fig. 5D shows a more disrupted
trajectory and the trajectory from Fig. 5E overlaps with itself. Sim ilarly, applying UMAP (Fig. 5F) on the
generated scattering coe�cients also led to overlapping timepoints. All these methods thus failed to re
ect
the propagation of signals on the graph.

For the second synthetic dataset, we further compare the ability of di�erent approaches to retrieve signal
di�usion dynamics on the graph under a more complex scenario. For GSTH (Fig. 5H) time points from two
signal sources formed two branches with their starting points near each other in PHATE coordinates. Thus
from one end to the next this is akin to a signal condensing and then di�using again. As expected, this
creates a loop-like structure in the PHATE graph. However, directly applying PHATE on the raw signals
(Fig. 5J) results in multiple scattered points separated from the main trajectory, demonstrating that using
PHATE only is not able to fully capture and distinguish the signals. Fur thermore, although applying PCA
on the scattering coe�cients (Fig. 5K) generates two separate trajectories, they fail to form the loop-like
structure as with using GSTH. Applying t-SNE (Fig. 5L) and UMAP (Fig. 5M) on t he generated scattering
coe�cients also failed to form loop-like structures.
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Finally, for the third synthetic dataset, we aim to simulate the prop agation of signals similar to that
observed in epithelial cells. This will help us to better understand what types of signals GSTH can capture.
The propagation of signals among cells can re
ect the communication within groups of cells (corresponding to
the clusters of Ca2+ transients among epithelial cells using Ca2+ -sensor imaging), while each cell itself can also
generate independent signals without communicating with other cells (corresponding to single cells spiking
using Ca2+ 
uorescence imaging). As in Figure 5O for GSTH, the time points formed smooth trajectories at
�rst simulating the propagation of signals on the graph, then disrupted tr ajectories corresponding to random
spiking of single cells. In comparison, using PHATE directly on the raw input signals (Fig. 5Q) results in
more dense clustering (for the initial stage when the signal is just di�using on the graph) and using t-SNE on
the scattering coe�cients generates more scattered clustering, making it hard to identify the inner dynamics
(Fig. 5S). Although applying PCA (Fig. 5R) and UMAP (Fig. 5T) on the scattering coe�cients can re
ect
part of the dynamics, they also generate very condensed trajectoriesfor the early stage, when the signal is
simply di�using on the graph.

In addition, we computed the Wasserstein distances between the persistence diagram from our GSTH
method and persistence diagrams from other methods using the threesynthetic datasets (Fig. 5G, 5N, 5U).
We showed that the persistence diagrams from our GSTH method are di�erent from persistence diagrams
produced using other methods ablating di�erent parts of GSTH and visualized the distances with heatmaps
(Fig. 5G, 5N, 5U).

3 Methods

3.0.1 Cellular Graphs and Graph Signals

We represent the imaged tissue as a graphG = f V; Eg, consisting of nodesvi 2 V and edges (vj ; vk ) 2 E ,
where each nodevi represents a cell and a pair of nodesvj and vk is connected with an edge based on a
prede�ned criterion. For epithelial cells, we connect nodes thatare spatially adjacent (within 2 �m of each
other), as the 
ow of signals is thought to be between spatially proximal cells. On the other hand, neurons
can have long processes that are often hard to image, and therefore we usecorrelation between neurons'
Ca2+ signals to connect the neuronal graph. Finally, the connectivity of graphG can be described by its
adjacency matrix A , where A ij = 1 if vi and vj are connected and 0 otherwise. The degree of each vertex
is de�ned as a diagonal matrix D , where D ii =

P i
j =1 A ij .

Graph signals can associate with each node or edge in a graph. In the Ca2+ signaling data, the signals
associated with cellvi is the normalized Ca2+ 
uorescence intensity at each timestept. Since every cell has
a related Ca2+ signal, this signal X (vi ; t) is de�ned over the whole graph for timestep t.

3.0.2 Di�usion Geometry

A useful assumption in representation learning is that high dimensional data originates from an intrinsic low
dimensional manifold that is mapped via nonlinear functions to observable high dimensional measurements;
this is commonly referred to as the manifold assumption. Formally, let M d be a hidden d-dimensional
manifold that is only observable via a collection ofn � d nonlinear functions f 1; : : : ; f n : M d ! R that enable
its immersion in a high dimensional ambient space asF (M d) = f f (z) = ( f 1(z); : : : ; f n (z))T : z 2 M dg � R n

from which data is collected. Conversely, given a datasetX = f x1; : : : ; xN g � R n of high dimensional
observations, manifold learning methods assume data points originate from a sampling Z = f zi gN

i =1 2
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M d of the underlying manifold via x i = f (zi ), i = 1 ; : : : ; n, and aim to learn a low dimensional intrinsic
representation that approximates the manifold geometry ofM d.

To learn a manifold geometry from collected data, scientists often use the di�usion maps construction
of [24] that uses di�usion coordinates to provide a natural global coordinate system derived from eigen-
functions of the heat kernel, or equivalently the Laplace-Beltrami operator, over manifold geometries. This
construction starts by considering local similarities de�ned via a kernel K(x; y), x; y 2 F (M d), that captures
local neighborhoods in the data. We note that a popular choice forK is the Gaussian kernel exp(�k x� yk2=� ),
where � > 0 is interpreted as a user-con�gurable neighborhood size. However,such neighborhoods encode
sampling density information together with local geometric information. To construct a di�usion geometry
that is robust to sampling density variations, we use an anisotropic kernel:

K(x; y) =
G(x; y)

kG(x; �)k�
1 kG(y; �)k�

1
; where G(x; y) = e� k x � y k 2

� ; (9)

as proposed in [24], where 0� � � 1 controls the separation of geometry from density, with� = 0 yielding
the classic Gaussian kernel, and� = 1 completely removing density and providing a geometric equivalent to
uniform sampling of the underlying manifold. Next, the similaritie s encoded byK are normalized to de�ne
transition probabilities p(x; y) = K (x;y )

kK (x; �)k1
that are organized in an N � N row stochastic matrix:

P ij = p(x i ; x j ) (10)

that describes a Markovian di�usion process over the intrinsic geometry of the data. Finally, a di�usion map
[24] is de�ned by taking the eigenvalues 1 =� 1 � � 2 � � � � � � N and (corresponding) eigenvectorsf � j gN

j =1

of P, and mapping each data pointx i 2 X to an N dimensional vector � t (x i ) = [ � t
1� 1(x i ); : : : ; � t

N � N (x i )]T ,
wheret represents a di�usion-time (i.e., number of transitions considered in the di�usion process). In general,
as t increases, most of the eigenvalues� t

j , j = 1 ; : : : ; N , become negligible, and thus truncated di�usion map
coordinates can be used for dimensionality reduction [24].

3.0.3 PHATE

PHATE is a dimensionality reduction method that captures both local and global nonlinear structure through
constructing a di�usion geometry [9]. It computes the di�usion operat or as in Equation 10. However, rather
than eigendecomposing this operator to �nd new coordinates, PHATE creates a new distance matrix from
P by de�ning an M-divergence between datapoints, calledpotential distanceas ID i;j = k logP t

i; : � logP t
j; :k2

between correspondingt-step di�usion probability distributions of the two points.

The advantage of this step is that the information theoretic distance between probabilities emphasizes
di�erences in lower probabilities (corresponding to distant points) as well as high probabilities (corresponding
to neighbors), and therefore globally contextualizes the point. The resulting information distance matrix
ID is �nally embedded into a low dimensional (2D or 3D) space by metric multidimensional scaling (MDS),
and makes it possible to visualize intrinsic geometric information from data. In [9], authors demonstrate
that PHATE performs better than all compared methods including di�u sion maps and UMAP in preserving
denoised manifold a�nity (DeMAP) in low dimensions and, in particular, excels at preserving trajectory
structures without shattering.
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3.0.4 Persistent homology and topological data analysis

Topological data analysis (TDA) refers to techniques for understandingcomplex datasets by their topological
features, i.e., their connectivity [25]. Here we focus on the topological features of a data graph where the
simplest set of topological features are given by the number of connectedcomponentsb0 and the number of
cyclesb1, respectively. Such counts, also known as the Betti numbers, arecoarse graph descriptors that are
invariant under graph isomorphisms. Their expressivity is increased by considering a functionf : V � V ! R
on the vertices of a graph,G = ( V; E), with vertex set V and edge setE . SinceV has �nite cardinality, so
does the image imf , i.e., imf = f w1; w2; : : : ; wn g.

Without loss of generality, we assume thatw1 � � � � � wn . We write Gi for the subgraph induced by
�ltering according to wi , such that the edges satisfyE i := f (u; v) 2 E j ku � vk2

2 � wi g. The subgraphs
Gi satisfy a nesting property, asG1 � G2 � � � � � Gn . When analyzing a point cloud, the vertices of each
Gi arise from spatial coordinates for the data andwi constitutes a distance threshold between points, such
that Gn is a fully-connected graph, containing all the vertices fromV. This is commonly known as the
Vietoris-Rips (VR) �ltration.

It is then possible to calculate topological features alongside this�ltration of graphs, tracking their
appearance and disappearance as the graph grows. If a topological feature is created in Gi , but destroyed
in Gj (it might be destroyed because two connected components merge, for instance), we represent this by
storing the point ( wi ; wj ) in the persistence diagramDf associated toG. Another simple descriptor is given
by the Betti curve of dimension d of a diagramD, which refers to the sequence of Betti numbers of dimension
d in D, evaluated for each thresholdwi .

3.1 Mathematical models and synthetic data

3.1.1 Kuramoto model of weakly coupled oscillators

The Kuramoto model [26] describes a weakly coupled system of oscillators, with dynamics governed by:

_� k = ! k +
�
N

NX

j =1

sin(� j � � k + � k ) (11)

where ! k are the natural frequencies and� k are the phase shift parameters.

By using the complex mean-�eld, Z = Rei� = 1=N
P

j ei� j , the system can be reduced to:

_� k = ! k + �R sin(� � � k + � k ) (12)

The order parameter R describes the degree of synchrony,R = 1 denotes full synchronization and at
R = 0 each oscillator acts independently.

3.1.2 Intercellular Ca 2+ signaling model

Ca2+ signaling has been implicated as a key molecular pathway in developingand wounded epithelial tissues
[27{30]. The Drosophila wing imaginal disc is a classic system in which to explore intercellular communi-

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.22.533807doi: bioRxiv preprint 



cation in a developmental context where cells must highly coordinatetheir behaviors [27, 28, 31, 32]. We
ran simulations of a generalized multicellular model of Ca2+ , developed by [15], that captures all the key
categories of Ca2+ activity in nonexcitable tissues. The model simulates two di�erent populations of cells,
initiator and standby cells, within tissues that are connected by gap junction proteins. The initiator cells
have elevated levels of Phospholipase C (PLC) activity, and standby cells exhibit baseline activity. The
model reproduced single-cell Ca2+ spikes upon insulin stimulation and intercellular Ca2+ waves dependent
on G� q activity.

3.2 Experimental datasets

3.2.1 Epidermal Ca 2+ signaling dataset

In vivo imaging was performed on mice with a Ca2+ sensor expressed in all epidermal cells (K14-Cre; Rosa26-
CAG-LSL-GCaMP6s). In order to block SERCA (sarco/endoplasmic reticulum Ca2+ -ATPase) activity and
activate store operated Ca2+ entry (SOCE), mice were treated with thapsigargin or DMSO vehicle control
(see Biological Methods for details). Conversely, mice were treatedwith 2-Aminoethoxydiphenyl borate
(2-APB) to inhibit IP 3R. In order to segment all cells in the �eld of view, including non-
 ashing cells, we
used part of the MATLAB (version R2018b) package from Romano et al. [33], a watershed segmentation
method. We normalized the 
uorescence intensity of each cell at eachtimepoint to the minimum 
uorescence
intensity of that cell as a baseline.

3.2.2 Prefrontal visual cortex dataset

Image data generated in [34] were downloaded from the Collaborative Researchin Computational Neuro-
science (CRCNS) data sharing website. The image data were acquired using a two-photon microscope and
images were collected at approximately 30 Hz with 512 lines per frame. Adult mice were �tted with head
plates and a cranial window and allowed to run on a freely rotating disc while visual stimuli were presented
to the eye contralateral to the imaged region (layer 4 cells of the primary visual cortex). Drifting sinusoidal
gratings were shown in random order for all combinations of 5 spatial frequencies, 5 temporal frequencies,
and 8 orientations (0 to 315 degrees in 45 degree steps). These stimuli were presented 8 times each for 3
seconds.

3.2.3 ERK signaling dataset

Raw data from [20] were shared by the authors. In all conditions, a cell reporter line derived from the
chromosomally-normal human breast epithelial line, MCF10A, expressedthe ERK Kinase Translocation
Reporter (ERK KTR) [21] and a nuclear reporter H2B-iRFP, allowing for cell segmentation and measurement
of ERK activity over time. Oncogenic doxycycline-inducible BRAF -V600E overexpression was achieved
through lentiviral infection in cells (H2B-mClover nuclear marker) that were then cocultured with wild-type
cells at a low fraction (1:100). When induced with Doxycycline, these mutant BRAF-V600E cells initiated
ERK signaling in neighboring wildtype cells. Media-treated cocultures were included as a control. Aikin
et al. have shown that ERK signaling in neighboring wildtype cells is dependent on expression of the
membrane-tethered sheddase ADAM17 in oncogenic initiator cells. Cocultures with doxycycline-induced
and media-treated BRAF-V600E ADAM17 KO cells were therefore included as additional controls. This
constituted four di�erent experimental conditions that we were abl e to compare using GSTH. Images were
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acquired every 5 minutes for 181 timepoints. 10 positions were imaged per condition and > 1500 cells were
quanti�ed per position.

3.3 Biological Methods

3.3.1 Experimental setup for epidermal dataset

K14-Cre [35] mice were obtained from E. Fuchs (Rockefeller University). K14-H2BmCherry mice were gen-
erated in the laboratory and described previously[36]. Rosa26-CAG-LSL-GCaMP6s [37] mice were obtained
from The Jackson Laboratory. Mice with a Ca2+ sensor expressed in all epidermal cells (K14-Cre; Rosa26-
CAG-LSL-GCaMP6s) were treated with thapsigargin, 2-Aminoethoxydiphenyl borate (2-APB), or DMSO
vehicle control. Thapsigargin was dissolved in a 25 mg ml-1 stock solution in dimethyl sulfoxide (DMSO)
and then diluted 100 times in 100% petroleum jelly (Vaseline; �nal concentration is 250 mg ml -1). One
hundred micrograms of the mixture of thapsigargin and petroleum jelly wasspread evenly on the ear of the
anesthetized mouse 1 hour before imaging. 2-APB was dissolved in a 25 mg ml-1 stock solution in dimethyl
sulfoxide (DMSO) and then diluted 100 times in 100% petroleum jelly (Vaseline; �nal concentration is 250
mg ml -1). A mixture of 100% DMSO in petroleum jelly (1:100) was used as a vehicle control. Mice from
experimental and control groups were randomly selected from either sex for live imaging experiments. No
blinding was done. All procedures involving animal subjects were performed under the approval of the
Institutional Animal Care and Use Committee (IACUC) of the Yale School of Medicine.

Imaging procedures were adapted from those previously described [38,39]. All imaging was performed in
distal regions of the ear skin during prolonged telogen, with hair removed using depilatory cream (Nair) at
least 2 days before the start of each experiment. Mice were anaesthetized using an iso
urane chamber and
then transferred to the imaging stage and maintained on anesthesia throughout the course of the experiment
with vaporized iso
urane delivered by a nose cone (1:25% in oxygen and air). Mice were placed on a
warming pad during imaging. The ear was mounted on a custom-made stage and a glass coverslip was
placed directly against it. Image stacks were acquired with a LaVision TriM Scope II (LaVision Biotec) laser
scanning microscope equipped with a tunable Two-photon Vision II Ti:Sapphire (Coherent) Ti:Sapphire laser
and tunable Two-photon Chameleon Discovery Ti:Sapphire laser (Coherent) and Imspector Pro (LaVision
Biotec, v.7.0.129.0). To acquire serial optical sections, a laser beam (940 nm, 1120 nm for mice and whole-
mount staining) was focused through a 20x or 40x water-immersion lens (NA 1.0 and 1.1 respectively; Zeiss)
and scanned with a �eld of view of 500�m 2 or 304 �m 2, respectively at 800 Hz or through a 25x water-
immersion lens (NA 1.0; Nikon) and scanned with a �eld of view of 486�m 2 at 800 Hz. Visualization of
collagen was achieved via the second harmonic signal at 940 nm. For all time-lapse movies, the live mouse
remained anesthetized for the length of the experiment and serial optical sections were captured at intervals
of 2 seconds.

3.3.2 Experimental setup for prefrontal visual cortex dataset

On postnatal day 36, the mouse was injected with AAV1.Syn.Flex.GCaMP6s.WPRE lot CS0215 produced
by the University of Pennsylvania Vector Core and designed by the GENIE Project at Janelia Farms. At
postnatal day 59, the mouse underwent surgery for head-plate implantationand craniotomy for glass window
placement over the visual cortex. During the experiment, the mouse was habituated to head-�xation and
the imaging rig for 3 weeks before visual stimuli were presented. The visual stimuli consisted of drifting
sinusoidal gratings presented at di�erent frequencies and orientations on an LCD monitor. The mouse's eye
was positioned 22 cm away from the center of the monitor. Image data were collected using a custom-built
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two-photon microscope, and images were acquired at approximately 30 Hz with512 lines per frame. The
image area corresponds to layer 4 in the windowed adult mice, and the experiment was designed to track
eye and motion movements while visual stimuli were presented.

4 Conclusion

In conclusion, this study demonstrates the remarkable potential of combining geometric scattering and per-
sistent homology for the quanti�cation and analysis of spatiotemporal signaling in various biological systems.
Through the successful prediction of synchrony in coupled oscillators and the recovery of model parameters
from simulations of calcium signaling in the Drosophila wing imaginal disc, the proposed framework has
showcased its capability to capture intricate patterns and reveal hidden information within complex cellular
processes.

Furthermore, GSTH's ability to classify drug treatments by analyzi ng calcium signals in the mouse
epidermis and identify oncogenic ERK signaling in epithelial breastcells highlights the framework's potential
for practical applications, such as drug discovery and personalized medicine. Additionally, the recovery of
sinusoidal visual stimuli presented to mice from calcium imaging of the visual cortex signi�es the framework's
capacity to bridge the gap between cellular-level events and organism-level responses, a crucial aspect for
understanding the intricate interplay between cellular signaling and organism behavior.

Overall, the integration of geometric scattering and persistent homologywithin a single framework o�ers
a powerful and versatile tool for studying spatiotemporal patterns in cell signaling. The demonstrated
success across various biological systems and applications underscores the potential of this framework in
advancing our understanding of cellular communication, coordination, and regulation. By unlocking new
insights into the complex dynamics of cellular communication, this innovative approach holds great promise
for advancing our understanding of diverse biological systems and has thepotential to transform the �elds
of systems biology, drug development, and neuroscience, among others.

Data and code availability

The source code is available athttps://github.com/krishnaswamylab/GSTH .

References

1. Basson, M. A. Signaling in Cell Di�erentiation and Morphogenesis.Cold Spring Harbor Perspectives in
Biology 4, a008151.issn: 1943-0264.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367549/
(2023) (June 2012).

2. Perrimon, N., Pitsouli, C. & Shilo, B.-Z. Signaling Mechanisms Controlling Cell Fate and Embry-
onic Patterning. en. Cold Spring Harbor Perspectives in Biology4. Company: Cold Spring Harbor
Laboratory Press Distributor: Cold Spring Harbor Laboratory Press Institut ion: Cold Spring Harbor
Laboratory Press Label: Cold Spring Harbor Laboratory Press Publisher: Cold Spring Harbor Lab,
a005975.issn: , 1943-0264.http: / /cshperspectives.cshlp.org/content /4/8/a005975 (2023)
(Aug. 2012).

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.22.533807doi: bioRxiv preprint 

https://github.com/krishnaswamylab/GSTH
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367549/
http://cshperspectives.cshlp.org/content/4/8/a005975


3. Eming, S. A., Martin, P. & Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling,
and translation. Science translational medicine6, 265sr6. issn: 1946-6234.https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC4973620/ (2023) (Dec. 2014).

4. Ghilardi, S. J., O'Reilly, B. M. & Sgro, A. E. Intracellular signalin g dynamics and their role in coor-
dinating tissue repair. eng.Wiley Interdisciplinary Reviews. Systems Biology and Medicine12, e1479.
issn: 1939-005X (May 2020).

5. Hotamisligil, G. S. & Davis, R. J. Cell Signaling and Stress Responses. en. Cold Spring Harbor Per-
spectives in Biology8. Publisher: Cold Spring Harbor Laboratory Press.https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC5046695/ (2023) (Oct. 2016).

6. Sung, M.-H. & Hager, G. L. Nonlinear Dependencies of Biochemical Reactions for Context-speci�c
Signaling Dynamics. en.Scienti�c Reports 2. Number: 1 Publisher: Nature Publishing Group, 616.
issn: 2045-2322.https://www.nature.com/articles/srep00616 (2023) (Aug. 2012).

7. Gao, F., Wolf, G. & Hirn, M. Geometric Scattering for Graph Data Analysis in Proceedings of the 36th
International Conference on Machine Learning (eds Chaudhuri, K. & Salakhutdinov, R.) 97 (PMLR,
Sept. 2019), 2122{2131.http://proceedings.mlr.press/v97/gao19e.html .

8. Gama, F., Ribeiro, A. & Bruna, J. Di�usion Scattering Transforms on Graphs 2018.https://arxiv.
org/abs/1806.08829 .

9. Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nature
Biotechnology 37, 1482{1492 (Dec. 2019).

10. Perlmutter, M., Gao, F., Wolf, G. & Hirn, M. Geometric Wavelet Scattering Networks on Compact
Riemannian Manifolds in Proceedings of The First Mathematical and Scienti�c Machine Learning
Conference (eds Lu, J. & Ward, R.) 107 (PMLR, 20{24 Jul 2020), 570{604. https://proceedings.
mlr.press/v107/perlmutter20a.html .

11. Cohen-Steiner, D., Edelsbrunner, H. & Harer, J. Stability of persistence diagrams.Discrete & compu-
tational geometry 37, 103{120 (2007).

12. Kuramoto, Y. International symposium on mathematical problems in theoretical physics.Lecture notes
in Physics 30, 420 (1975).

13. Acebr�on, J. A., Bonilla, L. L., P�erez Vicente, C. J., Ritort, F. & Spi gler, R. The Kuramoto model: A
simple paradigm for synchronization phenomena.Reviews of Modern Physics77. Publisher: American
Physical Society, 137{185.https://link.aps.org/doi/10.1103/RevModPhys.77.137 (2022) (Apr.
2005).

14. Strogatz, S. H. From Kuramoto to Crawford: exploring the onset of synchronization in populations of
coupled oscillators. en.Physica D: Nonlinear Phenomena143, 1{20. issn: 0167-2789.https://www.
sciencedirect.com/science/article/pii/S0167278900000944 (2022) (Sept. 2000).

15. Soundarrajan, D. K., Huizar, F. J., Paravitorghabeh, R., Robinett, T. & Zartman, J. J. From spikes
to intercellular waves: Tuning intercellular calcium signaling dynamics modulates organ size control.
en. PLOS Computational Biology 17. Publisher: Public Library of Science, e1009543.issn: 1553-7358.
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009543 (2022)
(Nov. 2021).

16. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green 
uorescent proteins and calmodulin.
Nature 388, 882{887. issn: 00280836.https://www.nature.com/articles/42264 (1997).

17. Moore, J. L. et al. Tissue-wide coordination of calcium signaling regulates the epithelial stem cell pool
during homeostasis en. Pages: 2021.10.12.464066 Section: New Results. Oct. 2021.https : / / www .
biorxiv.org/content/10.1101/2021.10.12.464066v2 (2023).

18. Garner, A. In vivo calcium imaging of layer 4 cells in the mouse using sinusoidal grating stimuli 2014.

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.22.533807doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973620/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973620/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5046695/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5046695/
https://www.nature.com/articles/srep00616
http://proceedings.mlr.press/v97/gao19e.html
https://arxiv.org/abs/1806.08829
https://arxiv.org/abs/1806.08829
https://proceedings.mlr.press/v107/perlmutter20a.html
https://proceedings.mlr.press/v107/perlmutter20a.html
https://link.aps.org/doi/10.1103/RevModPhys.77.137
https://www.sciencedirect.com/science/article/pii/S0167278900000944
https://www.sciencedirect.com/science/article/pii/S0167278900000944
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009543
https://www.nature.com/articles/42264
https://www.biorxiv.org/content/10.1101/2021.10.12.464066v2
https://www.biorxiv.org/content/10.1101/2021.10.12.464066v2


19. Lavoie, H., Gagnon, J. & Therrien, M. ERK signalling: a master regulator of cell behaviour, life and
fate. Nature reviews. Molecular cell biology21, 607{632. issn: 1471-0072.https://doi.org/10.1038/
s41580-020-0255-7 (Oct. 2020).

20. Aikin, T. J., Peterson, A. F., Pokrass, M. J., Clark, H. R. & Regot, S. MAP K activity dynamics
regulate non-cell autonomous e�ects of oncogene expression.eLife 9 (eds Rosenblatt, J., Cooper, J. A.
& Rosenblatt, J.) Publisher: eLife Sciences Publications, Ltd, e60541.issn: 2050-084X.https://doi.
org/10.7554/eLife.60541 (2022) (Sept. 2020).

21. Regot, S., Hughey, J. J., Bajar, B. T., Carrasco, S. & Covert, M. W. High-Sensitivity Measurements of
Multiple Kinase Activities in Live Single Cells. Cell 157, 1724{1734.issn: 0092-8674.https://www.
sciencedirect.com/science/article/pii/S0092867414006552 (2014).

22. Topaz, C. M., Ziegelmeier, L. & Halverson, T. Topological Data Analysis of Biological Aggregation
Models. en.PLOS ONE 10. Publisher: Public Library of Science, e0126383.issn: 1932-6203.https:
//journals.plos.org/plosone/article?id=10.1371/journal.pone.0126383 (2022) (May 2015).

23. Hensel, F., Moor, M. & Rieck, B. A Survey of Topological Machine LearningMethods. Frontiers in
Arti�cial Intelligence 4. issn: 2624-8212 (2021).

24. Coifman, R. R. & Maggioni, M. Di�usion wavelets. Applied and Computational Harmonic Analysis 21,
53{94 (2006).

25. Carlsson, G. Topology and data.Bulletin of the American Mathematical Society 46, 255{308 (2009).

26. Pikovsky, A. & Rosenblum, M. Dynamics of globally coupled oscillators:Progress and perspectives.
Chaos: An Interdisciplinary Journal of Nonlinear Science 25. Publisher: American Institute of Physics,
097616.issn: 1054-1500.https://aip.scitation.org/doi/10.1063/1.4922971 (2022) (Sept. 2015).

27. Restrepo, S. & Basler, K. Drosophila wing imaginal discs respond to mechanical injury via slow InsP3R-
mediated intercellular calcium waves.Nature Communications 7, 1{9. issn: 20411723.www.nature.
com/naturecommunications (Aug. 2016).

28. Balaji, R. et al. Calcium spikes, waves and oscillations in a large, patterned epithelial tissue. Scienti�c
Reports 7, 42786.issn: 2045-2322.http://www.nature.com/articles/srep42786 (Feb. 2017).

29. Ohno, Y. & Otaki, J. M. Spontaneous long-range calcium waves in developing butter
y wings. BMC
Developmental Biology15, 17. issn: 1471213X.http://www.biomedcentral.com/1471-213X/15/17
(Mar. 2015).

30. Peters, M. A., Teramoto, T., White, J. Q., Iwasaki, K. & Jorgensen, E. M. A Calcium Wave Mediated
by Gap Junctions Coordinates a Rhythmic Behavior in C. elegans.Current Biology 17, 1601{1608.
issn: 09609822 (2007).

31. Buchmann, A., Alber, M. & Zartman, J. J. Sizing it up: The mechanical feedback hypothesis of organ
growth regulation. Seminars in Cell & Developmental Biology 35. Regulated Necrosis & Modeling
developmental signaling pathways & Development of connective maps inthe brain, 73{81. issn: 1084-
9521.https://www.sciencedirect.com/science/article/pii/S1084952114001918 (2014).

32. Restrepo, S., Zartman, J. J. & Basler, K. Coordination of Patterning and Growth by the Morphogen
DPP. Current Biology 24, R245{R255. issn: 0960-9822.https://www.sciencedirect.com/science/
article/pii/S0960982214001201 (2014).

33. Romano, S. A.et al. An integrated calcium imaging processing toolbox for the analysis of neuronal
population dynamics. PLoS Computational Biology 13. issn: 15537358.https://pubmed.ncbi.nlm.
nih.gov/28591182/ (June 2017).

34. Garner, A. In vivo calcium imaging of layer 4 cells in the mouse usingsinusoidal grating stimuli. (2014).

35. Vasioukhin, V., Degenstein, L., Wise, B. & Fuchs, E. The magical touch: Genome targeting in epidermal
stem cells induced by tamoxifen application to mouse skin.Proceedings of the National Academy of
Sciences of the United States of America96, 8551{8556.issn: 00278424.www.pnas.org. (July 1999).

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.22.533807doi: bioRxiv preprint 

https://doi.org/10.1038/s41580-020-0255-7
https://doi.org/10.1038/s41580-020-0255-7
https://doi.org/10.7554/eLife.60541
https://doi.org/10.7554/eLife.60541
https://www.sciencedirect.com/science/article/pii/S0092867414006552
https://www.sciencedirect.com/science/article/pii/S0092867414006552
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126383
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126383
https://aip.scitation.org/doi/10.1063/1.4922971
www.nature.com/naturecommunications
www.nature.com/naturecommunications
http://www.nature.com/articles/srep42786
http://www.biomedcentral.com/1471-213X/15/17
https://www.sciencedirect.com/science/article/pii/S1084952114001918
https://www.sciencedirect.com/science/article/pii/S0960982214001201
https://www.sciencedirect.com/science/article/pii/S0960982214001201
https://pubmed.ncbi.nlm.nih.gov/28591182/
https://pubmed.ncbi.nlm.nih.gov/28591182/
www.pnas.org.


36. Mesa, K. R. et al. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell
pool. Nature 522, 94{97. issn: 1476-4687.http://www.nature.com/nature/journal/v522/n7554/
fp/nature14306_ja.html (2015).

37. Madisen, L.et al. Transgenic mice for intersectional targeting of neural sensors and e�ectors with high
speci�city and performance. Neuron 85, 942{958. issn: 10974199 (Mar. 2015).

38. Pineda, C. M. et al. Intravital imaging of hair follicle regeneration in the mouse. Nature Protocols 10,
1116{1130.issn: 1754-2189.http://www.nature.com/doifinder/10.1038/nprot.2015.070 (June
2015).

39. Rompolas, P.et al. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regen-
eration. Nature 487, 496{499. issn: 0028-0836 (2012).

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.22.533807doi: bioRxiv preprint 

http://www.nature.com/nature/journal/v522/n7554/fp/nature14306_ja.html
http://www.nature.com/nature/journal/v522/n7554/fp/nature14306_ja.html
http://www.nature.com/doifinder/10.1038/nprot.2015.070


Figure 1: GSTH captures synchrony and phase locking in the Kuramoto mo del at varying coupling
strengths. Phase plot (i), potential function (ii), kymograph (iii), PHA TE trajectory and betti curves (iv) of the
Kuramoto model at di�erent coupling strengths. ( (A) ), Independent oscillations at low coupling strength ( R = 0 :1)
(B) PHATE trajectories and betti curves at R = 0 :5 (partial synchrony). (C) PHATE trajectories and betti curves
at R = 0 :01 (no synchrony).
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Table 1: Comparison of GSTH with other methods based on MSE for model parameter recovery, lower is better. 10 simulations were performed
for each parameter value. 5 parameter values were sampled linearly from the range provided.

Model Parameter Range MSE
GSTH Kymograph CROCKER Zigzag

Kuramoto R 0:1 � 1:0 0.0081 N/A 0 :0174 0:0193

ICW
K SERCA 0:09� 0:15 �M 0.0146 0:0384 0:0476 0:0515
VSERCA 0:675� 0:99 �Ms � 1 0.0646 0:0187 0:0639 0:0582
� max 400� 1200s� 1 24:81 19.72 30:12 32:71
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Table 2: Comparison of GSTH with other methods based on classi�cation accuracy on experimental datasets, higher is better.

Exp. Num. Range Classi�cation Accuracy
Dataset Classes GSTH Kymograph CROCKER Zigzag PH

Epidermal 3 DMSO (control), thapsigargin, 2-APB 0.88 0:76 0:71 0:64
ERK 4 WT, ADAM17 KO (w/wo Dox treatment) 0.65 0:49 0:42 0:38

PVC-7
5 (SF) 0:02� 0:32 Hz 0.72 N/A 0 :68 0:59
5 (TF) 1 ; 2; 4; 8; 15 Hz 0.23 N/A 0 :19 0:17
8 (orient.) 0 � 315 deg 0.45 N/A 0 :36 0:28
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Table 3: Performance of GSTH model ablations on model parameter recovery(MSE) and classi�cation of experimental conditions.

Mathematical Model1 Experimental Data2

Kuramoto Intercellular Ca 2+ Waves Epidermal ERK PVC
Model Ablation R K SERCA VSERCA � max Signaling Signaling Signaling

GSTH None 0:0063 0:0372 0:0646 24:81 0:89 0:65 0:44

GST PH 0.0016 0.0189 0.0232 9.74 0.95 0:73 0.62
GST-RNN PH 0:0058 0:0417 0:0722 26:94 0:86 0:58 0:37
GST-� PH 0:0347 N/A 0:1953 N/A N/A N/A N/A

GS-PCA-H PHATE 0 :0125 0:0506 0:1103 51:63 0:77 0:57 0:44
GS-tSNE-H PHATE 0 :0118 0:0438 0:1078 38:29 0:81 0:73 0:51

Graph PH GST 0:0124 0:0397 0:0859 11:32 0:91 0.76

aMean squared error (MSE) for regression, lower is better.
bClassi�cation accuracy, higher is better.
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Figure 2: GSTH captures four distinct patterns of Ca 2+ signaling activity in developing Drosophila
wing imaginal discs. Spatiotemporal patterns in simulations recapitulating the ke y classes of multicellular Ca2+

activity are analyzed using GSTH. A dashed line through the A/P direction (red) demonstrates where the kymograph
line is drawn that produces the simulated tissue's corresponding kymograph. When the majority of cells have VPLC

values below the Hopf bifurcation threshold, single-cell Ca 2+ spikes are seen(A) . Intercellular Ca 2+ transients (ICT)
are observed(B) as the distribution of VPLC in cells is increased. Periodic inte rcellular Ca 2+ waves (ICW) emerge
as VPLC is increased further (C) . \Fluttering" occurs when VPLC levels in all of the cells in the disc is above Hopf
bifurcation threshold (D) .
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Figure 3: GSTH analysis of various drug treatments in epidermal signa ling. PHATE visualization and
Betti curves of dimension 1 homology computed using GSTH from th e cell adjacency graph of the epidermal Ca2+

signaling dataset.
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Figure 4: GSTH analysis of various experimental conditions in the ERK signaling dataset. PHATE
visualization and Betti curves of dimension 1 homology compu ted using GSTH from the cell adjacency graph of the
epidermal Ca2+ signaling dataset.
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Figure 5: Validation of GSTH using synthetic datasets. PHATE visualization (A, H, O) and persistence
homology (B, I, P) on synthetic data using GSTH and comparison with (1) directly a pplying PHATE on the input
signals (C, J, Q) ; (2) PCA on generated scattering coe�cients (D, K, R) ; (3) t-SNE on generated scattering
coe�cients (E, L, S) ; (4) UMAP on generated scattering coe�cients (F, M, T) . Finally, Wasserstein distances from
the persistence diagrams of each methodology for each of the 3 synthetic datasets (G, N, and U)
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