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Abstract

Cells communicate with one another through a variety of signaling mecharsims. Exchange of information via
these mechanisms allows cells to coordinate their behaviour and spond to environmental stress and other
stimuli. To facilitate quantitative understanding of complex spati otemporal signaling activity, we developed
Geometric Scattering Trajectory Homology, a general framework that encapsulates time-lapse signals on a
cell adjacency graph in a low-dimensional trajectory. We tested ths framework using computational models
of collective oscillations and calcium signaling in theDrosophila wing imaginal disc, as well as experimental
data, including in vitro ERK signaling in human mammary epithelial cells and in vivo calcium signaling
from the mouse epidermis and visual cortex. We found that the geometry ad topology of the trajectory
are related to the degree of synchrony (over space and time), intertsi speed, and quasi-periodicity of the
signaling pattern. We recovered model parameters and experimentalonditions by training neural networks
on trajectory data, showing that our approach preserves information that daracterizes various cell types,
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tissues and drug treatments. We envisage the applicability of our franework in various biological contexts
to generate new insights into cell communication.

1 Introduction

Cell signaling plays a critical role in orchestrating the complex irteractions and processes necessary for the
proper functioning and survival of organisms. This intricate communication system allows cells to perceive
and respond to their ever-changing environment by transmitting andprocessing information through a series
of biochemical reactions. Cells regulate the timing and location of sigaling activity to coordinate a myriad

of cellular functions, including embryonic development, tissuerepair, and immune responses |1{5]. By ne-
tuning the spatial and temporal characteristics of signaling, cells are ale to communicate e ectively, adapt
to changing environments, and maintain homeostasis. Impairment of sign&g mechanisms is a hallmark of
various diseases, including cancer, developmental disorders, amitgenerative diseases.

Although many signaling molecules and pathways have been identi ed, he dynamics of signaling pro-
cesses, including their initiation, propagation, termination, and adapation, are not yet fully understood.
Cellular signaling networks are highly complex, involving numerous nolecules, pathways, and feedback loops.
This complexity makes it challenging to study individual components and their interactions within the sys-
tem. Moreover, these networks often show emergent properties thatannot be easily determined from the
behavior of their individual components. Signaling dynamics are ofta non-linear and context-dependent,
making it di cult to predict their outcomes based on simple linear m odels or assumptions|[6]. The outcome
of a signaling event may depend on the cellular context, including he presence of other signaling molecules,
the cellular environment, and the history of previous signaling evets. The spatial distribution and temporal
dynamics of signaling molecules can be highly heterogeneous within assue. Heterogeneity can arise from
various factors, such as di erences in the expression and localizatioof signaling molecules in neighboring
cells, as well as variations due to noise, changes in the extracellulangronment or an external stimulus.
This heterogeneity adds another layer of complexity to the study of sjnaling dynamics.

The complexities and current lack of understanding in signaling dyramics necessitates the development
of advanced computational methods for the quantitative analysis of spatiotenporal signaling. Incorporating
cell-cell connectivity at multiple scales and the temporal dynamic of the signal is crucial for a comprehensive
understanding of these intricate processes. By accounting for thenulti-scale nature of cellular interactions
and the temporal uctuations of signaling events, we can elucidate the mderlying mechanisms that govern
cellular communication and coordination. This, in turn, can shed light on various pathological conditions
and inform the development of targeted therapeutic strategies. Furtrermore, a robust computational frame-
work capable of integrating multi-scale connectivity and temporal dynamics would enable researchers to
generate predictive models, fostering a more e cient and e ective approach to understanding the functional
signi cance of various signaling pathways in diverse cellular contexs.

In this paper, we develop a framework for analyzing spatiotemporal pattens in cell signaling, called
Geometric Scattering Trajectory Homology (GSTH), that integrates geometric scattering and topological
data analysis (TDA) to provide a comprehensive understanding of comfex cellular interactions. This com-
bination allows for the e ective capture of both local and global patterns, as well as a robust analysis of
the underlying topology. First we construct a graph from cell positions with the time-lapse signal as node
features. We then apply geometric scattering to quantify the spatioemporal features of signaling dynam-
ics. Geometric scattering employs wavelet-based transformation® extract multiscale representations of the
signaling data, capturing the intricate hierarchical structures present in the spatial organization of cells and
the temporal evolution of signaling events|[7| 8]. These features proge a rich, multiscale characterization of
the spatiotemporal patterns that are essential for understanding the omplex dynamics of cellular processes.
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We obtain a low dimensional trajectory of the signaling dynamics usingPHATE [9], a manifold-geometry
preserving dimensionality reduction technique. The trajectoly is generated by embedding geometric scat-
tering features for each time point. Next, we use TDA to study the higher-order properties of the PHATE
trajectory by computing the persistent homology of the signal embeddiags. TDA is a powerful tool for
investigating the shape and connectivity of data, providing a robust, scale-invariant representation of the
underlying structure. Persistent homology, a key technique wihin TDA, is used to capture the topologi-
cal features of the data across multiple scales, revealing hidden pattns and relationships in cell signaling
dynamics.

We test the proposed framework on simulations of collective oscillatory bhavior and calcium signaling
in the Drosophila wing imaginal disc. First we simulate a system of coupled oscillators avarying coupling
strengths to generate signals with di erent degrees of synchrony. Weshow that the signal embeddings
produced by GSTH converge over time as the oscillators get synchroréd, resulting in shorter, denser
trajectories characterized by Betti numbers in the persistenthomology. We show that PHATE trajectories
preserve spatiotemporal dynamics by predicting the coupling stragth from the PHATE trajectories and
topological features. Next we simulate four di erent patterns of calcium signaling by varying the rate of
production of inositol trisphosphate (IP3) in a mathematical model of intercellular calcium signaling in the
Drosophila wing imaginal disc. We show that intermittent spiking and uncoordinated transient signaling
produce gaps in the PHATE trajectory, which are detected using TDA. On the other hand, spatially and
temporally coordinated signaling produces smooth trajectories whout gaps. We demonstrate that the model
parameters used to generate the simulation can be recovered using &ural network trained on geometric
scattering features, highlighting the predictive capability of our model.

Finally we apply GSTH to three experimental datasets, consisting of (1) calcium signaling in the basal
stem cell layer of the mouse epidermis, (2) ERK signaling in oncogenimammary epithelial cells, and (3)
calcium signaling in the prefrontal visual cortex of mice. We show thatGSTH can accurately classify control
versus perturbations in the rst two datasets, and visual stimuli presented to mice in the third dataset.

Geometrical and topological analysis of spatiotemporal signaling can be used tanderstand the complex
dynamics of biological systems, such as how cells process information dicoordinate their behavior. By
combining geometric scattering and topological data analysis, our frameworks able to integrate local and
global information, as well as geometrical and topological properties, to prode a more comprehensive
understanding of spatiotemporal patterns in cell signaling. This innoative approach paves the way for
the development of predictive models, improved therapeutic stategies, and a deeper understanding of the
complex processes governing cellular communication and coordination

2 Results

2.1 The GSTH architecture

GSTH comprises of three steps: (1) spatial embedding of the signal usj geometric sattering, (2) temporal
embedding of the multiscale geometric features using PHATE to obtainlow-dimensional trajectories, and
(3) computation of topological features of the trajectory using persistem homology. Next, we describe these
steps in detail.
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2.1.1 Spatial embedding

First, we encode spatial variations in the signaling pattern at a given imepoint, t;, using geometric scattering,
an unsupervised method for generating embeddings for graph-structed data [7]. This involves multiscale
di usion of the signal, X (t;), by performing random walks on a cell neighborhood graphG(V; E), constructed

from cell position data. The graph consists of verticesV = fvy; vy; ;Vm 0, represent individual cells and
edges connecting cells that lie within some prede ned neighborhabdistance. We represent the graph using
the adjacency matrix, A, and the degree matrix, D. We use the notation x(v;t;) to denote the signaling

activity at cell v, at time t;.

The geometric scattering transform applies a cascade of graph waveletansforms followed by a nonlinear
modulus operation [7, 8]. The design of graph wavelets is based on the dision operator constructed from
lazy random walks,R = 2 | + AD !, over a graph, i.e.,

o=l R; ;=R?" RZ=R? ' R?"); | 1. (1)
The multi-scale nature of graph wavelets allows the geometric scatténg transform to traverse the entire
graph in one layer, which provides both local and global graph features. Sumation of the signal responses
is used to obtain invariant graph-level features. Since the summationoperation could suppress the high
frequency information, it could be complemented by using higher ordr summary statistics of signalx. Due
to the iteration of applying graph wavelets followed by a nonlinear modulus operation, geometric scattering
transforms can be constructed as in a multi layer (or multi order) architecture. Speci cally, the zeroth-order
scattering coe cients are calculated by taking statistical moments of the summation of signals, and the rst
order features are obtained by applying a graph wavelet, which aggregates uitiscale information of the
graph. Second-order geometric scattering features can further augmentst order features by iterating the
graph wavelet and absolute value transforms. The collection of graph scatténg features provides a rich set
of multiscale invariants of the graph G and can be used under both supersgied and unsupervised settings for
graph embedding.

For a signal X (t;) = [ x(va;ti); x(v2; ti); :::; X(vm ; ti)] we compute the zeroth-order scattering coe cients
for each vertex/cell for timepoint t; as follows:
So(X (v;ti)) = RZ x(v-;t;): @)

The di usion operator (lazy random walks) R here works as a low pass Iter that performs local averag-
ing of signal in neighboring cells[7| 10]. Unlike the summation operator thataverages all vertex information
and suppresses the high frequency information and hence has to be rigtved by higher order statistical
moments, this retains ner description of cell/vertex embeddings Then, by concatenating the wavelet coef-
cients for each cell/vertex at timepoint t;, we can obtain the corresponding timepoint embeddingSy(X (ti))
for timepoint t;. Finally, the timepoint embedding for N timepoints can be calculated and the resulting
So(X (1)) = FSo(X (t0)); So(X (t1));:::;Se(X (th))g is a feature matrix of dimensionN M, whereN is the
number of timepoints and M is the number of cells. We hence obtain the zeroth-order scatteringoe cients
for the N timepoints. The scattering transform here is a result of local aveaging of wavelet coe cients.

The zeroth-order scattering features can be augmented by rst-orderscattering features by applying
graph wavelets and extracting ner description of high frequency response of a signaK (t;) [7]. Speci cally,
the rst-order scattering coe cients for each time point at each ver tex/cell are calculated as:

SixGvt) = RTj x(vit)i 1§ 3 3)

~ The value jx(v-;ti) aggregates the signal informationx(vm;ti) from the vertices vy, that are within
2 steps ofv-. It responds to sharp transitions or oscillations of the signalx within the neighborhood of v-
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with radius 2! (in terms of the graph path distance). By concatenating all the vertex/cell embeddings, we
can obtain the rst order scattering coe cients S;(X (t;)) for timepoint t;.

Finally, the second-order scattering coe cients can be obtained byfurther applying graph wavelets and
extract even ner description of high frequency response of the sigal X (t;):

Sp(X (3] %vit)) = RZ] jof jx(vit)iil j<j O (@)

The above calculations are conducted for each timepoint and a total oN timepoints. The rst-order and
second-order scattering transform will generate a feature matrix of sapeN (M J)and N (M J (; 1) N,
respectively, as timepoint embeddings for theN timepoints. Finally, the zeroth-order, rst-order and second-
order scattering coe cients were combined together as the embeddaigs for each time point S(X (tj)). The
scale of the wavelet] was selected based on the diameter of graphs, and the number of scattegitoe cients

generated depended on the graph sizes.

2.1.2 PHATE trajectories

The signal embeddingsS(X (tj)) from geometric scattering form a matrix of dimensionsT M, whereT is
the number of time points in the data and M is the number of scattering coe cients for each time point.
We can visualize these embeddings by applying PHATE. Following our pevious description of PHATE, we
calculated a distance matrix D = kS(X (tj)) S(X(tj;)k. based on the Euclidean distance between time
point embeddings and applied an -decaying kernelK with a locally-adaptive bandwidth . corresponding
to the k-NN distance of thei-th data point to generate an a nity matrix W as well as the di usion operator
P. The elements of W are given by:

- 1 D 1 D
Wij = Ky ()= 5exp - tsep (5)
k;i K;j
The decaying factor regulates the decay rate of the kernel (smaller ) kernel with lighter tails), =2

corresponding to the Gaussian. The di usion operatorP can then be obtained by calculating the row-sum of
the a nity matrix W with element P;; giving the probability of moving from the i-th to the j -th data point
in one time step. The global structure of the data can be further learné through calculating the tth power of
the di usion operator P, which propagates a nity of the data through di usion up to a scale of t. The optimal
value t for di usion is automatically chosen to be the knee point of the von Neumannentropy of Pt. This
di usion operator is then log scale transformed and converted to a potenal distance matrix ID( X ) which is
embedded by MDS to result in 3-D PHATE embedding coordinatesk (t) = ( E1(X (t)); E2(X (1)) ; Es(X (1))
for each time point t, and point cloud E = fE(t;); E(t2);:::E(tn)0.

The 3D coordinates enable visualization of the trajectory, which re ects the time-varying patterns of
Ca?" uorescence data. Thus neighbors in the PHATE embedded trajectorie indicate similar signaling
patterns even if they occur at distal timepoints. In fact, many of the dynamics we notice have loop-like
structure, which motivates the computation of topological features desdbed in the next section.

2.1.3 Persistent homology analysis of PHATE trajectories

To obtain a topologically invariant characterization of a given PHATE traject ory, denotedE, we calculated its
persistent homology. Speci cally, we calculated the persistent horology of E via a Vietoris{Rips lItration
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VRs(E). The Vietoris{Rips complex of E is de ned as the Itered simplicial complex that contains a
subset of E as a simplex if and only if all pairwise distances in the subset are Iasthan or equal tos, i.e.,
VRs(E) = ff ng;:ii;nmgj8i;jd(i;j) sg: We noted here that we could also use the potential distancéD
from PHATE, however we directly used the PHATE coordinates and the Euclidean distance for simplicity.

As described above, from VR(E), we obtain a set of persistence diagram® consisting of birth-death-
dimension triples |b; d; q that describe multiscale topological features ofE. Each such point corresponds
to a topological feature in the trajectory, which appears at a certain birth time and disappears at a death
time. Note that the times are supposed to be understood with respdcto the parameter s from above. A
point's distance from the diagonal therefore represents the prominece or the eponymouspersistenceof the
associated topological feature; higher values indicate that the featureacurs over a large scale, thus increasing
its signi cance. We further calculated the associated Betti curves for eachQ, resulting in a simple summary
curve B(Q; q) for the gth dimension consisting of the number of points §;d;) in Q such thatb s <d;.
The Betti curve characterizes the connectivity of V Rg(E) and, by extension, of the C&* uorescence data.

In addition, we computed pairwise Wasserstein distances betweengpsistence diagrams for unsupervised
classi cation of various experimental conditions. The Wasserstein ditance between two persistence diagrams
Q1 and Q5 is calculated as follows:

X ¥
Wn (Q1;Q2) = ,Qin,f o, ja ()it (6)
o 12Q1

where is a bijection from Q; to Q,. Speci cally, we consider the diagonal of persistence diagrams to hae
in nite multiplicity, i.e. points can be matched to the diagonal. We used Eirene to compute Wasserstein
distances, which utilizes the Hungarian algorithm to nd the optimal mat ching. It has been shown that
persistence diagrams are stable [11]. Hence by calculating the Wassegst distances between two persistence
diagrams, we can quantify the di erences of persistence diagrams.

2.2 GSTH quanti es synchrony in coupled oscillators

Oscillations commonly occur in many organisms ranging from unicellular lacteria to mammalian cells. Tem-
poral oscillations are thought to regulate metabolism, cell cycle, circathn rhythms, and rhythmic beating
of the heart among many other physiological processes. We rst validatedGSTH by using it to quantify
spatiotemporal patterns in the Kuramoto coupled oscillator model. This mathematical model is used to
describe collective behavior in oscillating elements, such as ¢ ring of neurons in the brain or activity
of pacemaker cells in the heart|[12{14]. The model consists of a group of oseilbrs, each with its own
natural frequency, ! , that are coupled together and can in uence each other's oscillations. Tk degree of
synchronization among the oscillators is determined by a parameter ca#ld the coupling strength, R, which
represents the strength of the interaction between the oscillators

We simulated a network of 64 coupled oscillators with natural frequenaés sampled from a normal distri-
bution, !'i N (1; ), and initial phase o sets sampled from a uniform distribution, ; U (0;2 ) for 200
timepoints with  t = 0:05. We systematically varied the coupling strength,R, from 0 to 1 in our simula-
tions. At low coupling strength, the oscillators act independently according to their natural frequency (Fig.
[1A). The Kuramoto potential, a measure of synchrony in the system, remais close to 10 for the duration
of the simulation, indicating the absence of synchronous behavior. Te GSTH embeddings are temporally
organized into continuous 1-D PHATE trajectories. The spacing betwea points in the trajectory is uni-
form and equal to the simulation time-step, as evident from the sharp &crease in the number of connected
components at t=2 in the Hq Betti curve.
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At intermediate coupling strength the oscillators exhibit entrain ment, characterized by decrease in phase
variance and increase in phase-locking over time (Fig[ ]1B). AR = 0:5, the Kuramoto potential decreases
from 1:0 and stabilizes at 03, indicating increase in synchrony over time. The spacing betwee points in
the PHATE trajectory decreasing over time. Time points towards the end of the simulation are embedded
close to each other, which indicates that the input signal, i.e. the fhase of the oscillators, is converging
over time. The rate of entrainment is measured by theH, Betti curve, where the number of connected
components decreases rapidly at low values of the lItration parameter, 0, due to increase in nearest
neighbor proximity between GSTH embeddings over time. AtR = 1:0, the oscillators synchronize within
20 simulation time-steps, resulting in a “shorter' PHATE trajectory where the majority of time points are
embedded in close proximity (Fig. BC). Compared toR = 0:5, the Hy Betti curve for R = 1:0 decreases
more rapidly, con rming a faster rate of entrainment at higher coupling strength. We are able to recovery
of the coupling strength parameter from the PHATE embeddings with clos to perfect accuracy. Although
information is lost in the computation of Betti curves, coupling strength can still be recovered with a high
accuracy using a supervised neural network (TablE]l).

2.3 GSTH recovers parameters in intercellular Ca 2* signaling model

We used a 2D computational model of theDrosophila wing imaginal disc to demonstrate that GSTH can
distinguish between intermittent and continuous patterns of Ca?* signaling activity and recover model
parameters from signaling data. This model accounts for the formation and dgradation of IP3, Ca®*

dynamics across the endoplasmic reticulum (ER), and IBR activation dynamics using a system of ordinary
di erential equations that model the dynamics of cytosolic IP3, cytosolic C&*, ER Ca?* concentration, and
the fraction of IP 3 receptors that have not been inactivated by C&* [15].

To reproduce the spiking, transient, travelling wave and utte ring like activity observed in experiments,
we systematically varied theVp ¢ parameter, which governs the maximal production rate of IR, in individual
cells of the simulated tissue. The type of signaling pattern was dep&lent on the number of cells in the tissue
having a Vp ¢ value below, above, or equal to the Hopf bifurcation threshold for singlecells (Vp.c = 0:774).
Simulated cells that have aVp ¢ value above the Hopf threshold, in the absence of agonist stimulation, are
termed \initiator cells" and are poised to exhibit high levels of IP 3 production. Neighboring simulated cells
with Vp ¢ values below the Hopf threshold are termed \standby cells" that rece¥e a signal from initiator
cells to propagate a signal. For instance, if a majority of standby cells hve Vp ¢ values signi cantly below
the critical Hopf bifurcation threshold, and standby cell Vp ¢ is randomly uniformly distributed between
0:1 0:5, single-cell C&* spikes occur only where initiator cells oscillate (Fig.DZA,i—iii). When we increased
standby cell Vp.c values close to the lower end of the Hopf bifurcation point (Fig.[2B,i-ii), and standby
cell Vp ¢ is randomly uniformly distributed between 0:25 0:60, we noticed the formation of inter-cellular
transients (ICTs). Finally, we observed the formation of inter-cellular calcium waves (ICWs) when standby
cell Vp ¢ is randomly uniformly distributed between 0:4 0:8, and uttering phenotypes when standby cell
VpLc is randomly uniformly distributed between 1:4{1:5 (Fig. [2| C-D,i-iii), in cases where the majority of
cells in the system were assigned &p.c close to or above the bifurcation threshold, thereby placing more
cells in an initiator state. In the absence of initiator cells, C&* activity was not observed.

GSTH analysis of the model simulations reveals two major trends. Fist, the GSTH embeddings generate
1-D PHATE trajectories that are organized by time. Gaps between succesive time points in these trajectories
indicate intermittent signaling behavior. A large number of gaps are pesent in the trajectories of spiking
and ICT simulations, where a handful of initiator cells signal sporadicaly and the Ca?* signal does not
propagate via standby cells across the tissue (Fig[]ZA-B,iv). By comparien, the trajectories of ICW and
uttering simulations are continuous and smooth, re ecting consistent and recurring signaling activity over
time in the simulation (Fig. @:-D,iv). Gaps in these trajectories are quanti ed by the persistent homology
of connected components and visualized in theHy Betti curves. Gaps between points results in longer
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persistence intervals. These intervals persist over large valigeof the Itration parameter, which is evident
by the smaller slope of theH, Betti curves in simulations with intermittent signaling activit y (Fig. PA-
D.,iv). Another trend we observe is the presence of near circular, lop-like sections in the PHATE trajectory.
These segments of the trajectory are indicative of quasi-periodity in the input, i.e. returning close to a
previously encountered state. For example, the uttering simulations exhibit coordinated tissue-wide waves
of Ca?* activity that repeat over time (Fig. @)). These repeating patterns of activity create persistent
topological loops in the PHATE trajectory which are quantifed in the H; Betti curve. Note that similar,
albeit discontinuous, loop-like structure is present in the spking and ICT trajectories where there is no
signaling activity in the tissue at multiple timepoints resultin g in the creation of trivial loops.

2.4 GSTH identi es drug treatments using mouse epidermal Ca 2* signaling
data

Having validated our method with computational models of cell signaling,we sought to understand signaling
dynamics in anin vivo context. With the advent of genetically encoded calcium indicators GECIS) [16]
and innovations in live imaging techniques, investigators have begurio observe diverse patterns of C&"
signaling in many tissues types, however sophisticated analysis of&* signaling across broad spatial and
temporal scalesin vivo has been mainly limited to excitable tissues.

We explored the basal stem cell layer of the mouse epidermis as amvivo model to study the spatiotem-
poral dynamics of C&* signaling across a highly regenerative, non-excitable tissue. The mea epidermis
is a unique model system to study signaling dynamics, as it can be iaged without invasive surgery and
signaling pathways can be manipulated via topical drug treatment. Thedataset consisted of perturbations
to various components of the C&* signaling pathway to manipulate spatiotemporal C&* dynamics, in com-
parison to homeostatic dynamics in the control condition [17]. We used GSH to analyze signaling dynamics
obtained from perturbations at two points of the Ca?* signaling pathway via drug treatment. In order to
block sarco/endoplasmic reticulum C&* -ATPase (SERCA) activity and activate store operated Ca?* entry
(SOCE), mice were treated topically with thapsigargin dissolved in DMSO. We noticed an immediate in-
crease in C&" transients due to upregulation of SOCE. Conversely, we inhibited P3R activity by treating
mice with 2-Aminoethoxydiphenyl borate (2-APB), leading to a global decrease in C&* transients.

GSTH analysis based on image segmentation of the timelapse microscopy datavealed signi cant dif-
ferences between the homeostatic dynamics in the control mice and éhperturbed signaling dynamics in the
drug-treated mice (Fig. @ We consistently obtained smooth trajecbries in the control condition indicating
that Ca?* activity steadily di uses to neighboring cells in a directed and coordinated manner, similar to
the intercellular calcium waves in simulations of the drosophila whg imaginal disc. TDA of these smooth
trajectories revealed a few large scale loops appearing at high values dfe spatial parameter, , suggesting
guasi-periodic signaling activity over time. By comparison, we obtaned noisy and discontinuous trajectories
in the drug treatment conditions. Increase in transient activity d ue to thapsigargin treatment produces
a tortuous trajectory with gaps and dense segments (Fig.[]3A). The gaps indiate periods of low to zero
activity followed by bursts of synchronous signaling. Decrease in tragient activity due to 2-APB treatment
generates a more disorganized and scattered signal embedding, similar $piking behavior in the drosophila
wing imaginal disc (Fig. [3B). A feed-forward neural network trained on PHATE trajectories as input fea-
tures classi ed the control condition and drug treatments with an accuracy of 88%, beating the performance
of the same network trained using features obtained from kymographs, CROKERs and zig-zag persistent
homology (Table[2).
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2.5 GSTH reconstructs sinusoidal patterns shown to mice from visual cortex
recordings

Using publicly available two-photon microscopy data [18], we showed thatGSTH can recover sinusoidal
grating patterns presented to mice from calcium imaging of layer 4 regins of the prefrontal visual cortex.
Sinusoidal grating patterns are a type of visual stimulus consisting oparallel stripes that vary in brightness
according to a sinusoidal function. These patterns are commonly usechivision research because they are
simple, well-de ned stimuli that can evoke robust responses in tle visual cortex.

Moving striped patterns on a computer screen with varying spatial ard temporal frequencies and orien-
tations were shown to mice, tted with head-plates and a cranial window. Each pattern was shown for 3
seconds with a 2-second break in between, and this was repeated 8 tim#or each pattern. The monitor was
positioned in front of the mouse's eye and the images were collected fromine layer 4 region in the visual
cortex, at a rate of approximately 30 images per second.

We trained a 5-layer feed-forward neural network classi er to predct the ground-truth visual stimuli
presented to the mice from GSTH trajectories of signaling in the vsual cortex. We separately trained the
classi er to predict variations in spatial frequency (SF), temporal frequency (TF) and orientation of the
pattern (Table P). In experiments involving variation in SF, we were able to predict the visual stimulus with
72% classi cation accuracy using 5-fold cross-validation. We performed kiger than a random classi er at
predicting the orientation of the sinusoidal pattern, although the accuracy was signi cantly lower. Finally,
we were unable to predict the temporal frequency of the sinusoidal @ttern using GSTH trajectories, since
our classi er was unable to perform better than random guessing. One pos#isle explanation is that temporal
frequency information is not represented in the layer 4 region of thevisual cortex which was imaged in this
study. Importantly, GSTH outperformed other methods of quantifyin g the signaling dynamics in all cases.

2.6 GSTH identi es oncogenic ERK signaling in epithelial breast cells in vitro

Having shown the utility of GSTH in analyzing large Ca?* signaling datasets, we next investigated the
dynamics of other signaling pathway proteins such as extracellular sigal-regulated kinase (ERK), part of

the Mitogen Activated Protein Kinase (MAPK) signaling network [19]} We to ok advantage of previously
published data, where oncogenic epithelial cells induced ERK wawein wildtype neighboring cells [20]. We
analyzed four datasets, in which cells from the chromosomally-normal human breast epithelial line, MCF10A,

expressed the ERK Kinase Translocation Reporter (ERK KTR) [21] and a ruclear reporter H2B-iRFP, al-

lowing for cell segmentation and measurement of ERK activity over time. Oncogenic doxycycline-inducible
BRAF-V600E overexpression was achieved through lentiviral infection incells (H2B-mClover nuclear marker)
that were then cocultured with wild-type cells at a low fraction (1:100). When induced with Doxycycline,
these mutant BRAF-V600E cells initiated ERK signaling in neighboring wildtype cells. Media-treated cocul-
tures were included as a control. Aikin et al. have shown that ERK sigraling in neighboring wildtype cells

is dependent on expression of the membrane-tethered sheddase ADAM17T oncogenic initiator cells [20].
Cocultures with doxycycline-induced and media-treated BRAF-V600E ADAM17 KO cells were therefore
included as additional controls.

GSTH analysis of the ERK signaling data revealed similar trajectoriesfor the No Dox, Dox-ADAM17
KO, ADAM17 KO control conditions (Fig. No signi cant signaling activity w as observed in these data,
which resulted in scattered and discontinuous trajectories akin b spiking behaviour in the Drosophila wing
imaginal disc model. The trajectory of Dox induced mutant BRAF-V600E cells, co-cultured with wildtype
cells, was smooth in contrast.
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2.7 Comparison to other methods
2.7.1 Time-delay embedding of cell signals and CROCKER

While kymographs can be useful summaries of spatiotemporal patterns inata, they are typically designed
in a problem-speci ¢ manner and with some knowledge of the expectedynamics. A more agnostic and less
application-speci c is to quantify the shape of the underlying data manifold using topological data analysis.
Speci cally, we encode the persistent homology of cell signals by cotracting a point cloud using Taken's
time-delay embeddings, and transforming the point cloud into a Viebris-Rips simplicial complex.

We encode the signaling activity at each cell using a 2D time-delay gsitional embedding, X (vi;t;

); X (vi;t;)). Given a population of cells with signaling activity changing over time, we then construct a Betti
curve from the 2D point cloud of the time-delay embeddings of cells at &h timepoint t;, and concatenate
these into a matrix. We discretize time, t, along the columns and the ltration parameter, , along the rows.
Entries in the matrix are the kth dimensional Betti number, , for specic values of ; ). The matrix is
a topological signature of the time-varying data and it can be vectorized forinput into machine learning
algorithms. The matrix often visualized as a contour plot, lending to its name, the Contour Realization Of
Computed k-dimensional hole Evolution in the Rips complex, or CROCKER [22].

2.7.2 Zig-zag persistent homology

Despite the utility of \ordinary" persistent homology in machine learn ing and data analysis contexts (see
e.g. Hensel et al.|[28] for a recent survey), the expressivity of sucmethods is limited by the requirement
of data being nested along the ltration, i.e., along the Itering pro cess. In some applications, the use
of zig-zag persistent homologymay thus be preferred. This notion of topological features is permits rore
general relations between the individual parts of the data. More precisly, given a data set, zig-zag persistent
homology can calculate topological features along general sequences of nestedadsets of the form

Ki$ Kz Kjp1$ Ky; (7)

where \$ " may either denote subset or superset inclusions, i.e., inclusns of the form \ -" or \ ]
In particular, the types of inclusions are allowed to vary; ordinary persistent homology with sublevel set
inclusions is thus a special case of such a zig-zag lItration accordingot[Equation 7. The name \zig-zag"
denotes the common use case in which both types of inclusions alternat&his can be achieved by inserting
the union of data sets, leading to

Kla! K1;2 -Kz,! r! Kn 1n 'Kn; (8)

where K 15 = K; 1[ Kj. Itis possible, in complete analogy to ordinary persistent homology, to tack
topological features along such a zig-zag lItration, making this formulation suitable particularly for time-
varying data.

2.7.3 Kymographs

Kymographs are often used to graphically illustrate changes in the intesity of a signal over time in some
spatial region. This plot is commonly used in the study of cell signaling,as it allows researchers to visualize
and quantitatively analyze the dynamics of signaling pathways within cells.

10



bioRxiv preprint doi: https://doi.org/10.1101/2023.03.22.533807; this version posted March 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

The kymograph plot is typically constructed by dividing the tissue sample into a series of horizontal
lines, or \stripes," that represent di erent time points. The in tensity of the signal is then plotted along the
vertical axis, with higher intensities representing stronger sgnaling activity.

By examining the kymograph plot, researchers can identify key charadaristics of the signaling process,
such as the rate at which the signal is transmitted, the strength of thesignal at di erent time points, and
the overall pattern of signaling activity within the tissue. This i nformation can be used to better understand
the role of signaling pathways in cell behavior and can provide insigtt into potential therapeutic targets for
diseases related to aberrant signaling.

2.8 Ablation Study
2.8.1 PHATE trajectory ablation

We compare application of the proposed GSTH method on the three synthet datasets with approaches
that ablate or replace steps in the GSTH method. In particular, we teg:

Applying PHATE directly on the raw input signals to obtain time-traj ectories, without the use of the
geometric scattering transform.

" Applying PCA on the generated scattering coe cients instead of PHATE .
~ Applying t-SNE on the generated scattering coe cients instead of PHATE.

" Applying UMAP on the generated scattering coe cients instead of PHATE.

For the synthetic testcase 1, we aim to compare the approaches for theittability to small perturbations
as well as their ability to retrieve signal diusion dynamics on the graph. As shown in Fig. [3A, after
applying GSTH, time points with perturbed signals overlapped with time points with original signals, showing
scattering transform and PHATE are invariant to small degrees of noise. The smooth trajectory also re ects
that the scattering transform and PHATE of GSTH can e ectively capture the signal propagation on the
graph. By contrast, directly using PHATE on the raw input signals will result in the condensed timepoints
in Fig. BIC, thus failing to retrieve the dynamics. While applying P CA (Fig. 5P) and t-SNE (Fig. $E) on the
generated scattering coe cients can retrieve the dynamics to someextent, Fig. BD shows a more disrupted
trajectory and the trajectory from Fig. $E overlaps with itself. Sim ilarly, applying UMAP (Fig. §F) on the
generated scattering coe cients also led to overlapping timepoins. All these methods thus failed to re ect
the propagation of signals on the graph.

For the second synthetic dataset, we further compare the ability of dierent approaches to retrieve signal
di usion dynamics on the graph under a more complex scenario. For GSTH (fg. [5H) time points from two
signal sources formed two branches with their starting points near edcother in PHATE coordinates. Thus
from one end to the next this is akin to a signal condensing and then diusing again. As expected, this
creates a loop-like structure in the PHATE graph. However, directly applying PHATE on the raw signals
(Fig. E]J) results in multiple scattered points separated from the man trajectory, demonstrating that using
PHATE only is not able to fully capture and distinguish the signals. Furthermore, although applying PCA
on the scattering coe cients (Fig. §K) generates two separate trajedories, they fail to form the loop-like
structure as with using GSTH. Applying t-SNE (Fig. @.) and UMAP (Fig. 5@) ont he generated scattering
coe cients also failed to form loop-like structures.
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Finally, for the third synthetic dataset, we aim to simulate the prop agation of signals similar to that
observed in epithelial cells. This will help us to better undestand what types of signals GSTH can capture.
The propagation of signals among cells can re ect the communication within goups of cells (corresponding to
the clusters of C&* transients among epithelial cells using C&* -sensor imaging), while each cell itself can also
generate independent signals without communicating with other cel (corresponding to single cells spiking
using C&* uorescence imaging). As in FigureE$O for GSTH, the time points formed smath trajectories at
rst simulating the propagation of signals on the graph, then disrupted tr ajectories corresponding to random
spiking of single cells. In comparison, using PHATE directly on the aw input signals (Fig. [5Q) results in
more dense clustering (for the initial stage when the signal is just dusing on the graph) and using t-SNE on
the scattering coe cients generates more scattered clustering, raking it hard to identify the inner dynamics
(Fig. BiS). Although applying PCA (Fig. $R) and UMAP (Fig. 5T)) on the scattering coe cients can re ect
part of the dynamics, they also generate very condensed trajectoriefor the early stage, when the signal is
simply di using on the graph.

In addition, we computed the Wasserstein distances between the psistence diagram from our GSTH
method and persistence diagrams from other methods using the thregynthetic datasets (Fig.@G,@N,@U).
We showed that the persistence diagrams from our GSTH method are di eent from persistence diagrams
produced using other methods ablating di erent parts of GSTH and visualized the distances with heatmaps

(Fig. BIG, BN, [BU).

3 Methods

3.0.1 Cellular Graphs and Graph Signals

We represent the imaged tissue as a grapls = fV; Eg, consisting of nodesv; 2 V and edges {;;vx) 2 E,
where each nodev; represents a cell and a pair of nodes; and vy is connected with an edge based on a
prede ned criterion. For epithelial cells, we connect nodes thatare spatially adjacent (within 2 m of each
other), as the ow of signals is thought to be between spatially proximal cells. On the other hand, neurons
can have long processes that are often hard to image, and therefore we userrelation between neurons'
Ca?* signals to connect the neuronal graph. Finally, the connectivity of graphG can be described by its
adjacency matrix A, where Ay = 1if v; and v;are connected and O otherwise. The degree of each vertex

is de ned as a diagonal matrix D, whereD; = }:1 Aj .

Graph signals can associate with each node or edge in a graph. In the €asignaling data, the signals
associated with cellv; is the normalized C&* uorescence intensity at each timestept. Since every cell has
a related C&* signal, this signal X (v;;t) is de ned over the whole graph for timestept.

3.0.2 Diusion Geometry

A useful assumption in representation learning is that high dimensbnal data originates from an intrinsic low
dimensional manifold that is mapped via nonlinear functions to observake high dimensional measurements;
this is commonly referred to as the manifold assumption. Formally, letM ¢ be a hidden d-dimensional

manifold that is only observable via a collection ofn  d nonlinear functionsfq;:::;f, : M 91 R that enable
its immersion in a high dimensional ambient space a& (M 9) = ff(z) = (f1(2);:::;fn(2)T :z22M 9g R"
from which data is collected. Conversely, given a dataseX = fx;;:::;xyg R" of high dimensional

observations, manifold learning methods assume data points originate &m a samplingZ = fzg\, 2

12
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M ¢ of the underlying manifold via x; = f(z), i = 1;:::;n, and aim to learn a low dimensional intrinsic
representation that approximates the manifold geometry ofM ¢.

To learn a manifold geometry from collected data, scientists often usehe di usion maps construction
of |24] that uses diusion coordinates to provide a natural global coordinae system derived from eigen-
functions of the heat kernel, or equivalently the Laplace-Beltrami ope&ator, over manifold geometries. This
construction starts by considering local similarities de ned via a kernel K(x;y), x;y 2 F(M 9), that captures
local neighborhoods in the data. We note that a popular choice foK is the Gaussian kernel expk x yk®=),
where > 0 is interpreted as a user-con gurable neighborhood size. Howeveguch neighborhoods encode
sampling density information together with local geometric information. To construct a di usion geometry
that is robust to sampling density variations, we use an anisotropic kenel:

&(xy) kx_yk?
K(x;y) = . where G(x;y)= e : 9)
KG(x; )k kG(y; )k;
as proposed in|[24], where O 1 controls the separation of geometry from density, with = 0 yielding

the classic Gaussian kernel, and =1 completely removing density and providing a geometric equivaént to
uniform sampling of the underlying manifold. Next, the similaritie s encoded byK are normalized to de ne
transition probabilities p(x;y) = M that are organized in anN N row stochastic matrix:

Pij = p(xi;xj) (10)

that describes a Markovian di usion process over the intrinsic g@metry of the data. Finally, a di usion map
[24] is de ned by taking the eigenvalues 1 = ; 2 n and (corresponding) eigenvectord jg]-'\‘:l

coordinates can be used for dimensionality reduction [24].

3.0.3 PHATE

PHATE is a dimensionality reduction method that captures both local and global nonlinear structure through
constructing a di usion geometry [9]. It computes the di usion operator as in Equation. However, rather
than eigendecomposing this operator to nd new coordinates, PHATE creaés a new distance matrix from
P by de ning an M-divergence between datapoints, calledpotential distanceasID j; = klog P};: log P}; Ko
between corresponding-step di usion probability distributions of the two points.

The advantage of this step is that the information theoretic distance betveen probabilities emphasizes
di erences in lower probabilities (corresponding to distant points) as well as high probabilities (corresponding
to neighbors), and therefore globally contextualizes the point. The rsulting information distance matrix
ID is nally embedded into a low dimensional (2D or 3D) space by metric mdtidimensional scaling (MDS),
and makes it possible to visualize intrinsic geometric information fom data. In [9], authors demonstrate
that PHATE performs better than all compared methods including di u sion maps and UMAP in preserving
denoised manifold a nity (DeMAP) in low dimensions and, in particular, excels at preserving trajetory
structures without shattering.
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3.0.4 Persistent homology and topological data analysis

Topological data analysis (TDA) refers to techniques for understandingcomplex datasets by their topological
features, i.e., their connectivity [25]. Here we focus on the topologal features of a data graph where the
simplest set of topological features are given by the number of connectecbmponentshy and the number of
cyclesby, respectively. Such counts, also known as the Betti numbers, areoarse graph descriptors that are
invariant under graph isomorphisms. Their expressivity is increagd by considering a functionf : V. V! R
on the vertices of a graph,G = (V; E), with vertex set V and edge setE. SinceV has nite cardinality, so
does the image infi, i.e., imf = fwy;wy;:::;whQ.

Without loss of generality, we assume thatw; wn. We write G; for the subgraph induced by
ltering according to w;, such that the edges satisfyE; := f(u;v) 2 E jku vk3 wg. The subgraphs
G; satisfy a nesting property, asG; G Gn. When analyzing a point cloud, the vertices of each

G; arise from spatial coordinates for the data andw; constitutes a distance threshold between points, such
that G, is a fully-connected graph, containing all the vertices fromV. This is commonly known as the
Vietoris-Rips (VR) ltration.

It is then possible to calculate topological features alongside thisltration of graphs, tracking their
appearance and disappearance as the graph grows. If a topological feature is ated in G;, but destroyed
in G; (it might be destroyed because two connected components merge, fongtance), we represent this by
storing the point (w;;w;) in the persistence diagramD; associated toG. Another simple descriptor is given
by the Betti curve of dimension d of a diagram D, which refers to the sequence of Betti numbers of dimension
din D, evaluated for each thresholdw;.

3.1 Mathematical models and synthetic data
3.1.1 Kuramoto model of weakly coupled oscillators

The Kuramoto model |26] describes a weakly coupled system of oscillaterwith dynamics governed by:

X\l .
«=letgosin(y okt oK) (11)
j=1
where! ¢ are the natural frequencies and  are the phase shift parameters.

By using the complex mean-eld, Z = Re' = 1=y € 1, the system can be reduced to:

j
%= !+ Rsin( K+ k) (12)

The order parameter R describes the degree of synchronyR = 1 denotes full synchronization and at
R = 0 each oscillator acts independently.

3.1.2 Intercellular Ca ?* signaling model

Ca?* signaling has been implicated as a key molecular pathway in developingnd wounded epithelial tissues
[27{30]. The Drosophila wing imaginal disc is a classic system in which to explore intercéllar communi-

14



bioRxiv preprint doi: https://doi.org/10.1101/2023.03.22.533807; this version posted March 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

cation in a developmental context where cells must highly coordinatetheir behaviors (27,28, 31, 32]. We
ran simulations of a generalized multicellular model of C&*, developed by [15], that captures all the key
categories of C&* activity in nonexcitable tissues. The model simulates two di erent populations of cells,
initiator and standby cells, within tissues that are connected by gap jnction proteins. The initiator cells
have elevated levels of Phospholipase C (PLC) activity, and standby dés exhibit baseline activity. The
model reproduced single-cell C& spikes upon insulin stimulation and intercellular Ca?* waves dependent
on G g activity.

3.2 Experimental datasets
3.2.1 Epidermal Ca 2* signaling dataset

In vivo imaging was performed on mice with a C&" sensor expressed in all epidermal cell&(4-Cre; Rosa26-
CAG-LSL-GCaMP6s). In order to block SERCA (sarco/endoplasmic reticulum Ca?* -ATPase) activity and
activate store operated C&* entry (SOCE), mice were treated with thapsigargin or DMSO vehicle ontrol
(see Biological Methods for details). Conversely, mice were treateavith 2-Aminoethoxydiphenyl borate
(2-APB) to inhibit IP 3R. In order to segment all cells in the eld of view, including non- ashing cells, we
used part of the MATLAB (version R2018b) package from Romano et al. |[33], a watersh&t segmentation
method. We normalized the uorescence intensity of each cell at eactimepoint to the minimum uorescence
intensity of that cell as a baseline.

3.2.2 Prefrontal visual cortex dataset

Image data generated in|[34] were downloaded from the Collaborative Researéch Computational Neuro-
science (CRCNS) data sharing website. The image data were acquiredsing a two-photon microscope and
images were collected at approximately 30 Hz with 512 lines per frame. Adulmice were tted with head
plates and a cranial window and allowed to run on a freely rotating disc vhile visual stimuli were presented
to the eye contralateral to the imaged region (layer 4 cells of the primay visual cortex). Drifting sinusoidal
gratings were shown in random order for all combinations of 5 spatial frequeties, 5 temporal frequencies,
and 8 orientations (0 to 315 degrees in 45 degree steps). These stimulere presented 8 times each for 3
seconds.

3.2.3 ERK signaling dataset

Raw data from [20] were shared by the authors. In all conditions, a cell rgorter line derived from the
chromosomally-normal human breast epithelial line, MCF10A, expressedhe ERK Kinase Translocation
Reporter (ERK KTR) [21]|and a nuclear reporter H2B-iRFP, allowing for cell segmentation and measurement
of ERK activity over time. Oncogenic doxycycline-inducible BRAF-V600E overexpression was achieved
through lentiviral infection in cells (H2B-mClover nuclear marker) that were then cocultured with wild-type
cells at a low fraction (1:100). When induced with Doxycycline, thege mutant BRAF-V600E cells initiated
ERK signaling in neighboring wildtype cells. Media-treated cocutures were included as a control. Aikin
et al. have shown that ERK signaling in neighboring wildtype cells s dependent on expression of the
membrane-tethered sheddase ADAM17 in oncogenic initiator cells. Codtures with doxycycline-induced
and media-treated BRAF-V600E ADAM17 KO cells were therefore included as addional controls. This
constituted four di erent experimental conditions that we were able to compare using GSTH. Images were
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acquired every 5 minutes for 181 timepoints. 10 positions were imaged peondition and > 1500 cells were
quanti ed per position.

3.3 Biological Methods
3.3.1 Experimental setup for epidermal dataset

K14-Cre [35] mice were obtained from E. Fuchs (Rockefeller Universj). K14-H2BmCherry mice were gen-
erated in the laboratory and described previously[35]. Rosa26-CAG-LSL-GCaM6s [37] mice were obtained
from The Jackson Laboratory. Mice with a Ca?* sensor expressed in all epidermal cell(4-Cre; Rosa26-
CAG-LSL-GCaMP6s) were treated with thapsigargin, 2-Aminoethoxydiphenyl borate (2-APB), or DMSO
vehicle control. Thapsigargin was dissolved in a 25 mg mi stock solution in dimethyl sulfoxide (DMSO)
and then diluted 100 times in 100% petroleum jelly (Vaseline; nal concetration is 250 mg ml *!). One
hundred micrograms of the mixture of thapsigargin and petroleum jelly wasspread evenly on the ear of the
anesthetized mouse 1 hour before imaging. 2-APB was dissolved in a 25 mg-tnétock solution in dimethyl
sulfoxide (DMSO) and then diluted 100 times in 100% petroleum jelly aseline; nal concentration is 250
mg ml 1). A mixture of 100% DMSO in petroleum jelly (1:100) was used as a vehicle cdrol. Mice from
experimental and control groups were randomly selected from either sefor live imaging experiments. No
blinding was done. All procedures involving animal subjects were prformed under the approval of the
Institutional Animal Care and Use Committee (IACUC) of the Yale School of Medicine.

Imaging procedures were adapted from those previously described [389]. All imaging was performed in
distal regions of the ear skin during prolonged telogen, with hair remove using depilatory cream (Nair) at
least 2 days before the start of each experiment. Mice were anaesthe¢d using an iso urane chamber and
then transferred to the imaging stage and maintained on anesthesia thraghout the course of the experiment
with vaporized iso urane delivered by a nose cone (5% in oxygen and air). Mice were placed on a
warming pad during imaging. The ear was mounted on a custom-made stage and a gkgoverslip was
placed directly against it. Image stacks were acquired with a LaVision TrM Scope Il (LaVision Biotec) laser
scanning microscope equipped with a tunable Two-photon Vision Il Ti:&pphire (Coherent) Ti:Sapphire laser
and tunable Two-photon Chameleon Discovery Ti:Sapphire laser (Cohema) and Imspector Pro (LaVision
Biotec, v.7.0.129.0). To acquire serial optical sections, a laser beam (940 nrhi120 nm for mice and whole-
mount staining) was focused through a 20x or 40x water-immersion lens (NA 1.0 ahl.1 respectively; Zeiss)
and scanned with a eld of view of 500 m 2 or 304 m 2, respectively at 800 Hz or through a 25x water-
immersion lens (NA 1.0; Nikon) and scanned with a eld of view of 486 m 2 at 800 Hz. Visualization of
collagen was achieved via the second harmonic signal at 940 nm. For all timegse movies, the live mouse
remained anesthetized for the length of the experiment and serial ofital sections were captured at intervals
of 2 seconds.

3.3.2 Experimental setup for prefrontal visual cortex dataset

On postnatal day 36, the mouse was injected with AAV1.Syn.Flex.GCaMP6s.WPRE lot CS0215 produced
by the University of Pennsylvania Vector Core and designed by the GENE Project at Janelia Farms. At
postnatal day 59, the mouse underwent surgery for head-plate implantatiorand craniotomy for glass window
placement over the visual cortex. During the experiment, the mowge was habituated to head- xation and
the imaging rig for 3 weeks before visual stimuli were presented. fie visual stimuli consisted of drifting
sinusoidal gratings presented at di erent frequencies and orientatbns on an LCD monitor. The mouse's eye
was positioned 22 cm away from the center of the monitor. Image data were delcted using a custom-built
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two-photon microscope, and images were acquired at approximately 30 Hz witts12 lines per frame. The
image area corresponds to layer 4 in the windowed adult mice, and thexperiment was designed to track
eye and motion movements while visual stimuli were presented.

4 Conclusion

In conclusion, this study demonstrates the remarkable potential of corhining geometric scattering and per-
sistent homology for the quanti cation and analysis of spatiotemporal signaling in various biological systems.
Through the successful prediction of synchrony in coupled oscillata and the recovery of model parameters
from simulations of calcium signaling in the Drosophila wing imaginal di, the proposed framework has
showcased its capability to capture intricate patterns and reveal hilden information within complex cellular
processes.

Furthermore, GSTH's ability to classify drug treatments by analyzing calcium signals in the mouse
epidermis and identify oncogenic ERK signaling in epithelial breastcells highlights the framework's potential
for practical applications, such as drug discovery and personalized naécine. Additionally, the recovery of
sinusoidal visual stimuli presented to mice from calcium imaging of he visual cortex signi es the framework's
capacity to bridge the gap between cellular-level events and organisrevel responses, a crucial aspect for
understanding the intricate interplay between cellular signaling and organism behavior.

Overall, the integration of geometric scattering and persistent homologywithin a single framework o ers
a powerful and versatile tool for studying spatiotemporal patterns in cell signaling. The demonstrated
success across various biological systems and applications underscorbs potential of this framework in
advancing our understanding of cellular communication, coordination, aml regulation. By unlocking new
insights into the complex dynamics of cellular communication, this hnovative approach holds great promise
for advancing our understanding of diverse biological systems and has thgotential to transform the elds
of systems biology, drug development, and neuroscience, among others.

Data and code availability

The source code is available ahttps://github.com/krishnaswamylab/GSTH
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Figure 1. GSTH captures synchrony and phase locking in the Kuramoto mo del at varying coupling
strengths.  Phase plot (i), potential function (ii), kymograph (iii), PHA TE trajectory and betti curves (iv) of the
Kuramoto model at di erent coupling strengths. ( (A) ), Independent oscillations at low coupling strength ( R = 0:1)
(B) PHATE trajectories and betti curves at R = 0:5 (partial synchrony). (C) PHATE trajectories and betti curves
at R =0:01 (no synchrony).
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Table 1: Comparison of GSTH with other methods based on MSE for model paranter recovery, lower is better. 10 simulations were performed

for each parameter value. 5 parameter values were sampled linearly fronhé range provided.

Model Parameter Range MSE
GSTH Kymograph CROCKER Zigzag
Kuramoto R 01 1.0 0.0081 N/A 0:0174 00193
K serca 0:09 0:15 M 0.0146 0:0384 00476 00515
ICW Vserca 0:675 0:99 Ms ! 0.0646 0:0187 00639 00582
max 400 1200s ? 24:81 19.72 30:12 3271
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Table 2: Comparison of GSTH with other methods based on classi cation accuacy on experimental datasets, higher is better.

€c

Exp. Num. Range Classi cation Accuracy
Dataset Classes GSTH Kymograph CROCKER Zigzag PH
Epidermal 3 DMSO (control), thapsigargin, 2-APB 0.88 0:76 a71 064
ERK 4 WT, ADAM17 KO (w/wo Dox treatment) 0.65 0:49 042 038

5 (SF) 0:02 0:32 Hz 0.72 N/A 0:68 059
PVC-7 5(TF) 1;2;4;8;15 Hz 0.23 N/A 0:19 017

8 (orient.) 0 315 deg 0.45 N/A 0:36 028
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Table 3: Performance of GSTH model ablations on model parameter recoverfMSE) and classi cation of experimental conditions.

Mathematical Model* Experimental Data?

Kuramoto Intercellular Ca?* Waves Epidermal ERK PVC
Model Ablation R K serca Vserca max Signaling Signaling Signaling
GSTH None 00063 00372 00646 2481 089 065 044
GST PH 0.0016 0.0189 0.0232 9.74 0.95 0:73 0.62
GST-RNN PH 0:0058 00417 00722 2694 086 058 037
GST- PH 0:0347 N/A 0:1953 N/A N/A N/A N/A
GS-PCA-H PHATE 0:0125 00506 01103 5163 Q77 057 044
GS-tSNE-H PHATE 0:0118 00438 01078 3829 081 073 051
Graph PH GST 0:0124 00397 00859 1132 091 0.76

2Mean squared error (MSE) for regression, lower is better.

bClassi cation accuracy, higher is better.
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Figure 2: GSTH captures four distinct patterns of Ca 2 signaling activity in developing Drosophila

wing imaginal discs. Spatiotemporal patterns in simulations recapitulating the ke y classes of multicellular Ca®

activity are analyzed using GSTH. A dashed line through the A/P  direction (red) demonstrates where the kymograph
line is drawn that produces the simulated tissue's corresponding kymograph. When the majority of cells have Vp.c

values below the Hopf bifurcation threshold, single-cell Ca?* spikes are seen(A) . Intercellular Ca ?* transients (ICT)

are observed(B) as the distribution of VPLC in cells is increased. Periodic inte rcellular Ca?* waves (ICW) emerge
as Vp c is increased further (C) . \Fluttering" occurs when Vp c levels in all of the cells in the disc is above Hopf
bifurcation threshold (D) .
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Figure 3: GSTH analysis of various drug treatments in epidermal signa ling. PHATE visualization and

Betti curves of dimension 1 homology computed using GSTH from th e cell adjacency graph of the epidermal C&*
signaling dataset.
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Figure 4. GSTH analysis of various experimental conditions in the ERK signaling dataset. PHATE
visualization and Betti curves of dimension 1 homology computed using GSTH from the cell adjacency graph of the
epidermal Ca?* signaling dataset.
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Figure 5: Validation of GSTH using synthetic datasets. PHATE visualization (A, H, O) and persistence
homology (B, I, P) on synthetic data using GSTH and comparison with (1) directly a pplying PHATE on the input
signals (C, J, Q) ; (2) PCA on generated scattering coe cients (D, K, R) ; (3) t-SNE on generated scattering
coecients (E, L, S) ; (4) UMAP on generated scattering coe cients (F, M, T) . Finally, Wasserstein distances from
the persistence diagrams of each methodology for each of the 3 sythetic datasets (G, N, and U)
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