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Abstract

Common genetic variants confer substantial risk for chronic lung diseases, including pulmonary
fibrosis (PF). Defining the genetic control of gene expression in a cell-type-specific and context-
dependent manner is critical for understanding the mechanisms through which genetic variation
influences complex traits and disease pathobiology. To this end, we performed single-cell RNA-
sequencing of lung tissue from 67 PF and 49 unaffected donors. Employing a pseudo-bulk
approach, we mapped expression quantitative trait loci (€QTL) across 38 cell types, observing
both shared and cell type-specific regulatory effects. Further, we identified disease-interaction
eQTL and demonstrated that this class of associations is more likely to be cell-type specific and
linked to cellular dysregulation in PF. Finally, we connected PF risk variants to their regulatory
targets in disease-relevant cell types. These results indicate that cellular context determines the
impact of genetic variation on gene expression, and implicates context-specific eQTL as key
regulators of lung homeostasis and disease.
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Introduction

Genomic and functional studies have the potential to reveal the genetic, molecular, and cellular
drivers of clinical phenotypes, laying the groundwork for the development of targeted
interventions. Many disease-associated variants identified in genome-wide association studies
(GWAS) are located in the regulatory regions of the genome and contribute to disease risk and
progression by effecting changes in gene expression.! Combining genotype information with
transcriptional profiles allows for the identification of genetic regulators of gene expression
(expression quantitative trait loci, eQTL). This approach has been widely applied to bulk RNA
sequencing of primary tissues, providing insights into the tissue-specificity of regulatory effects
and contributing to our understanding of the mechanisms underlying complex traits.? However,
cell type and context (e.g., disease-status) specificity of trait-associated single-nucleotide
polymorphisms (SNPs) poses a challenge to understanding the regulatory mechanisms that
modulate disease risk and progression.

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for the transcriptional
profiling of individual cells and cell types, mitigating many limitations of bulk RNA-seq. Capturing
scRNA-seq profiles and genome-wide genotype information for a population of individuals
allows for the unbiased, cell type-specific interrogation of variant effects on gene expression.
This approach can enable the discovery of eQTL that are specific to rare or disease-relevant
cell types and eQTL that have opposing effects in different cell types, all of which could go
undetected with bulk RNA-seq in heterogeneous tissues. These context-specific eQTL are
thought to be more likely to escape the purifying selection that limits mutations impacting
ubiquitous eQTL and are thus more likely to play roles in disease.’*

Interstitial lung diseases (ILDs) are chronic, progressive respiratory disorders characterized by
the scarring of lung tissue accompanied by epithelial remodeling, loss of functional lung alveoli,
and accumulation of extracellular matrix (ECM).® Pulmonary fibrosis (PF) is the end-stage
clinical phenotype of ILD. PF remains incurable, and the most severe form of PF (idiopathic PF,
IPF), leads to death or lung transplant within 3 to 5 years of diagnosis.>® The pathogenesis and
progression of IPF involve a complex interplay of predisposing factors, cell types, and regulatory
pathways.”® GWAS and meta-analyses have identified 20 IPF-associated variants, and
polygenic analyses suggest that a large number of unreported variants contribute to IPF
susceptibility.® Some of these variants are eQTL in bulk-lung tissue; however, their cell type-
specific regulatory consequences have not been explored.

To investigate the genetic control of disease-related gene expression in PF, we generated
scRNA-seq data from lung tissue samples of 116 individuals (67 ILD and 49 unaffected donors).
Combining these data with genome-wide genotype data, we mapped shared, lineage-specific,
and cell type-specific cis-eQTL across 38 cell types (Fig. 1a). We analyzed these data in
conjunction with IPF and other GWAS summary statistics to uncover the regulatory mechanisms
underlying ILD risk and progression. Using interaction models, we reveal disease-specific
regulatory effects that further elucidate the mechanisms underlying disease biology.
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Results

Single-cell RNA-sequencing of 116 lung tissue samples

To enable cell type level eQTL mapping, we generated scRNA-seq and genome-wide genotype
profiles for 116 individuals, including 67 (58%) with ILD and 49 (42%) unaffected donors (Fig.
1a, Supplementary Table 1). The ILD lungs included samples from 40 individuals with IPF and
27 with other forms of PF, including sarcoidosis (n=4), connective tissue disease-associated
interstitial lung disease (CTD-ILD, n=3), idiopathic nonspecific interstitial pneumonia (NSIP,
n=3), coal worker's pneumoconiosis (CWP, n=3), chronic hypersensitivity pneumonitis (cHP,
n=2), interstitial pneumonia with autoimmune features (IPAF, n=2), and unclassifiable ILD
(n=10). The majority (68%) of the lung samples were from individuals with self-reported ethnicity
information of European ancestry, and 55 (47%) reported past or present tobacco use (Fig. 1b).

Single-cell suspensions were generated from fresh peripheral lung tissue samples and
sequenced using the 10x Genomics Chromium platform. For 55 ILD lungs, two libraries were
prepared from differentially involved areas of one lung to account for regional heterogeneity.
Genotype data was obtained through low pass whole genome sequencing followed by
imputation (Methods). We performed data integration, dimensionality reduction and
unsupervised clustering of the 475,047 cells passing QC using the Seurat package™
(Methods). Based on marker gene expression (Supplementary Table 2), we identified 43 cell
types with a median of 5,811 cells (min=253, max=94,413, mean=11,048) cells (Fig. 1c).
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Fig.1: Mapping eQTL across cell types in the human lung. a, A schematic illustration of the
present study. b, Percentage proportions of donors by diagnosis, self-reported ethnicity, and
smoking history. ¢, a UMAP dimensionality reduction of 437,618 cells across the 38 cell types
included in the eQTL analysis. Pseudocoloring indicates cell type, primary cell lineages are
labeled. d, Numbers of donors with =5 cells for each cell type included in the analysis.
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Most eQTL are shared between cell types

Out of 43 annotated cell types, we selected 38 that had 240 donors with =5 cells for that cell
type to use for eQTL discovery (Fig. 1d). Pseudo-bulk eQTL mapping was performed on each
cell type using LIMIX following the optimized approach described in Cuomo, Alvari, Azodi et al'".
To maximize precision and overcome varying statistical power across cell types, we used
multivariate adaptive shrinkage, a statistical method for analyzing measures of effect sizes
across many conditions to identify patterns of sharing and specificity'?. After applying
multivariate adaptive shrinkage with mashr (Methods), eQTL were considered significant if they
had a local false sign rate (Ifsr) <0.05 in at least one cell type and <0.1 in any additional cell
types. A gene was considered an eGene for a cell type if any eQTL for that gene was
significant. Of the 6,995 genes tested for eQTL (Methods), 6,637 (94%) were eGenes in at
least one cell type. The number of eGenes found per cell type was greater for more abundant
cell types (Fig. 2a), with a positive correlation (R=0.66, p=6.6x10°) between the number of
eGenes and the number of individuals used for mapping (Fig. 2b).

To summarize the overall pattern of eQTL sharing between cell types and compare this pattern
with the transcriptional similarity, we visualized the top two principal components of the median
pseudo-bulked gene expression levels across all 38 cell types for the 6,995 genes included in
eQTL mapping (Fig. 2¢) and of the mashr estimated effect sizes of top eQTL across all 38 cell
types (Fig. 2d). This demonstrated that the relationships between the regulatory mechanisms
across lung cell types largely reflected the differences in expression patterns across cell types.
We identified a set of top-eQTL by selecting the eQTL with the lowest, significant Ifsr for each
gene in each cell type. Using this criteria, there were 50,389 top eQTL, with a median of 7 top
eQTL per gene (min=1, max=33). Top eQTL are considered shared between two cell types if
they are significant in both cell types and their mashr estimated effect size is within a factor of
0.5. Across all cell types, the median pairwise sharing of top eQTL was 93.5% (min=55%,
max=99.3%; Fig. 3). The epithelial and endothelial lineages had the highest levels of inter-
lineage sharing (median=97.9%), while sharing between cell types within the mesenchymal
lineage (median=96.9%) and the immune lineages (median=95.4%) was slightly lower.
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Fig. 2: sc-eQTL reflect lineage and cell type relationships of expression measurements.
a, Comparison of the number of eGenes per cell type and the median number of cells per
individual of that cell type (Pearson’s correlation). Cell types are colored by sublineage. b,
Comparison of the number of eGenes per cell type and the number of individuals with at least 5
cells of that cell type (Pearson’s correlation). ¢, PCA plot of pseudo-bulk expression across the
6,995 genes included in the eQTL mapping analysis. d, PCA plot of mashr estimated effect

sizes for top eQTL (n=50,389).
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Fig. 3: eQTL are largely shared between lung cell types. Percent of top eQTL (n=50,389)
that are shared between two cell types. Top eQTL are considered shared if they are significant
in both cell types (local false sign rate <0.1) and the mashr estimated effect size is within a
factor of 0.5. Cell types are annotated above by lineage, sublineage, the number of individuals
with 25 cells, and the median number of cells per individual for that cell type. Median pairwise
percent sharing per lineage is shown in black.
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We further classified top-eQTL as global (n=34,030), multi-cell-type (n=14,027), or unique to a
specific cell type (n=2,332) (Methods). Global top-eQTL tended to be found for genes that had
higher average expression and that were more widely expressed across cells (Fig. 4a). Top-
eQTL unique to a single cell type tended to have higher absolute estimated effect sizes, likely
due to limited statistical power to detect cell type-specific effects (Fig. 4a). Finally, these unique
top-eQTL also tended to be located further from the transcription start site (TSS; Fig. 4a) of their
target, consistent with the observation that cell type-specific eQTL typically impact enhancers,
while widely shared eQTL impact promoters.'®'

To explore the pattern of eQTL sharing across cell types more closely we focused on two sets
of top-eQTL: (1) those with known associations to IPF and (2) multi-cell-type top-eQTL. Top-
eQTL were considered to be associated with IPF if the identified eGene was previously reported
(p<1x107?in an IPF GWAS meta-analysis®). We further pruned these top-eQTL to get a
representative sample for plotting (n=3,725) and adjusted the sign of the effect sizes to where
positive indicates the common effect direction and negative indicates an opposite effect
direction; Methods). In an unsupervised clustering of the sign-adjusted effect sizes of these
pruned eQTL, we identify distinct classes of eQTL (Fig. 4b; k1-k7 top to bottom), including
groups of eQTL primarily active in epithelial or immune cell types, or exhibiting opposing effects
between lineages. To connect these eQTL to biological processes, we tested for the enrichment
of their target eGenes among Gene Ontology terms against a set of 6,995 background genes
(Fig. 4c, Methods). The eQTL in cluster 3 were primarily active in the epithelial cell types and
were enriched for genes involved in the regulation of JUN kinase, which has been implicated in
lung fibrosis and is a potential target for interventions for ILD." Epithelial eQTL in cluster 5 were
enriched for genes associated with metabolism and response to bacteria. The eQTL in cluster 4
were primarily significant in the myeloid innate immune cell types, and showed enrichment for
genes involved in, e.g., cholesterol metabolism. Further, eQTL in cluster 1 were mainly
significant in the immune lineage and were enriched for genes contributing to cholesterol
homeostasis, reflecting the central role of cholesterol metabolism in immune functions.'® Cluster
7, also mainly active in the immune lineage, was enriched for genes involved with, e.g., lipid
transport. Lipid mediators are known to have an important role in lung fibrosis."” The eQTL in
cluster 2 showed opposing effects between the epithelial and immune lineages and were
enriched for genes associated with highly lineage-specific functions, such as epithelial cell
morphogenesis.
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Fig. 4: Multi-cell type eQTL act in a highly lineage-specific manner. a, Mean normalized
expression (first panel) and percentage proportion of cells expressing (second panel) the target
eGenes of eQTL unique to a single cell type, shared across multiple cell types, or globally
shared across all cell types, as well as the absolute effect sizes (third panel) and absolute
distances to the target eGene TSS (fourth panel). b, Visualization of a representative subset
(Methods) of multi-cell-type top-eQTL and IPF-GWAS eQTL (n=3,725). eQTL are clustered by
their estimated effect sizes, with non-significant associations set to zero. The most common
effect direction for each eQTL is shown in red and cell types with opposite effect directions are
shown in blue. ¢, Top three most significantly enriched gene ontology terms for each cluster in
b, excluding terms with support from <2 genes.
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Disease-specific eQTL are highly cell type-specific

To identify eQTL that are specific to healthy or affected individuals or that show a different
direction or degree of effect in the two groups, we performed disease-state interaction eQTL
(int-eQTL) mapping (Methods). Testing across 33 cell types with =5 ILD and =5 unaffected
donors and a MAF 25% in each group, we detect 83,596 int-eQTL. Compared to the non-
interaction-eQTL, there was substantially less lineage and cell type sharing of int-eQTL (Fig. 5a,
Supplementary Fig. 5): for each gene, there was a median of 21 top int-eQTL (min=2,
max=28), resulting in a total of 75,482 top int-eQTL. Compared to the top non-interaction sc-
eQTL, int-eQTL were further from the TSS (mean absolute distance, sc-eQTL=43.1Mb, int-
eQTL=52.9Mb, t-test p=2.22x107"%) and had larger effect sizes (mean absolute mashr posterior
beta, sc-eQTL=0.10, int-eQTL=0.66, t-test p=2.22x107"°, Fig. 5b). Some disease int-eQTL were
linked to overall expression differences between groups (Fig. 5¢): 43% of int-eGenes were
differentially expressed (adj. p<0.1) between ILD and unaffected samples in the particular cell
type. Out of these genes, 50.8% were expressed at a higher level in ILD. However, 21% of int-
eGenes were widely expressed (>30% of cells) in both groups in the particular cell type and did
not exhibit notable differences in expression levels (|logFC|<0.2), indicating that these eGenes
are equally expressed but are differentially affected by cis-regulatory loci. These include DSP
with 3 top int-eQTL, including rs2003916, which showed differential effects between ILD and
unaffected donors in four of the tested epithelial cell types (Fig. 5d).

To further interrogate the mechanisms underlying these int-eQTL, we analyzed the int-eQTL
associated with eGenes expressed equally between ILD and unaffected donors for the
enrichment of known transcription factor binding sites (TFBS, Methods). We identified 42
significantly enriched TF motifs (q<0.05), including WT1, several SOX, HOX, and PAX family
members, ERG, and NF1 (Fig. 5e, Supplementary Table 4). Several of these have known
importance in lung fibrosis. WT1 functions as a positive regulator of fibroblast proliferation,
myofibroblast transformation, and ECM production.'® A number of SOX TFs are known to be
upregulated in IPF and are associated with fibroblast activation.’®?° Out of the 37 genes
encoding TFs disrupted by int-eQTL that were also tested for differential expression, 30 were
DE between ILD and unaffected samples in at least one cell type. When examined across all
cell types with significant DE, 43.0% of these genes were expressed at a higher level in ILD.
The 7 that were equally expressed between cases and controls — including WT1, SOX10,
PAX7, HOXA11, HOXD12, NKX6-1, and SCRT1 — could contribute to ILD pathogenesis through
differences in protein levels or localization, differential binding to cis-regulatory elements, or
chromatin level differences in addition to or instead of differential TF abundance.

We assessed the level at which sc-eQTL and int-eQTL are replicated in bulk analyses by
overlapping the eQTL detected here with lung eQTL from GTEx.? All classes of sc-eQTL as well
as int-eQTL were enriched among GTEx lung eQTL (Fisher’s exact test, p<2.2x107'¢). Out of
the globally shared and multi-cell type top-eQTL, 19.1% and 21.9% were also eQTL in GTEx
lung with a nominal p<1x107 (Fig. 5f). However, only 11.7% of sc-eQTL unique to a single cell
type and 13.4% of int-eQTL were GTEX significant. This finding demonstrates the power of cell
type and context-specific analyses in uncovering regulatory effects concealed by less granular
approaches.
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Fig. 5: Disease-interaction eQTL converge in pathways relevant to lung fibrosis. a,
Histogram of the cell type sharing of top int-eQTL and top non-interaction sc-eQTL. b,
Comparison of absolute distances to the eGene TSS and absolute effect sizes of top sc-eQTL
and int-eQTL. t-test p-values are indicated. ¢, Numbers of int-eGenes, DEGs between fibrotic
and unaffected samples, and the proportion of their overlap for each cell type included in the int-
eQTL analysis. d, An example of an int-eQTL for DSP. e, Top TF motifs enriched among int-
eSNPs associated with eGenes that were equally expressed between ILD and unaffected
donors but exhibited differences in eQTL effect sizes. TFs are grouped by family on the x-axis.
f, Percentage of int-eQTL, sc-eQTL unique to a single cell type, multi-cell type sc-eQTL, and
globally shared sc-eQTL that are also eQTL in GTEx lung (p<1x10).
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Cell type-specific patterns of colocalization at GWAS loci

To connect the shared and cell type-specific regulatory variants to IPF risk, we compared our
results to a recent IPF GWAS meta-analysis.? All major classes of eQTL were enriched among
loci implicated (nominal p<1x10°, Supplementary Table 5) by the IPF GWAS meta-analysis
(Fisher’s exact test, globally shared p<5.09x10%, multi-cell type p<1.83x10"°, unique to a
single cell type p=0.0525), while a null set of non-significant eQTL with a matched distribution of
distances to TSS was not (p=1). GTEx bulk lung-eQTL were similarly highly enriched
(p=2.22x10""") among IPF GWAS loci. Disease-interaction eQTL, however, were not more
enriched among IPF GWAS loci than a null set of non-significant eQTL.

In addition to the intersection analysis described above, we colocalized eQTL signals for 2,092
genes — including the target genes of the multi-state eQTL in Fig. 4 and 103 GWAS implicated
genes — with the IPF GWAS meta-analysis,® the UK BioBank (UKBB) IPF GWAS,?' and an East
Asian IPF GWAS?? (Methods). Here we identified 5 loci with evidence of colocalization
(posterior probability for a single shared causal variant >0.6) between risk loci and eQTL in at
least one cell type. These patterns largely overlapped between the IPF GWAS meta-analysis
and UKBB (Fig. 6, Supplementary Table 6). Three of these loci were eQTL for genes that
have previously been implicated in GWAS, MUC5B, DSP, and KANSL1 according to the NHGRI
EBI GWAS Catalog.?® The loci associated with KANSLT in both the GWAS and eQTL analysis
was also associated with the expression of KANSL1-AS1 across a number of cell types in our
dataset. Additionally, we found an eQTL for the gene JAML was significantly colocalized with a
locus from the GWAS analysis. This variant did not meet the criterion for genome-wide
significance in the GWAS analysis, but was an eQTL across a number of myeloid lineage cell
types (Supplementary Fig. 10). MUC5B was robustly expressed and colocalized with the IPF
GWAS meta-analysis and the UKBB IPF GWAS in SCGB1A1+/MUC5B+ and SCGB3A2+
secretory cells, implicating these as the most likely cell types in which the risk variant functions
(Supplementary Fig. 7-9). In contrast to the mostly European IPF GWAS meta-analysis and
UKBB, MUC5B eQTL did not significantly colocalize with the East Asian IPF GWAS in any cell
type, likely due to the low frequency of the risk allele in Asian populations.?* The pattern of
population sharing was different for DSP eQTL, which was colocalized with the IPF GWAS
meta-analysis in AT2, transitional AT2, and AT1 cells, and with UKBB and the East Asian IPF
GWAS in AT2 cells (Supplementary Fig. 11). eQTL for KANSL1 colocalized with the meta-
analysis and UKBB in ciliated epithelial cells. Additionally, eQTL for KANSL1-AS1 antisense
RNA was widely colocalized with the meta-analysis and UKBB across epithelial, immune, and
endothelial cell types. However, expression levels and eQTL effect sizes of KANSL1 and
KANSL1-AS1 were highly correlated (Supplementary Fig. 12—-14) and both genes are
ubiquitous but lowly expressed across cell types, impeding an exact evaluation of the cell type
specificity of these effects.

When examining how these signals were colocalized in bulk eQTL analyses, we found
colocalization patterns of MUC5B and DSP between GTEXx lung and IPF GWAS reflect those of
the cell type-level analysis (Supplementary Fig. 6, Supplementary Table 6): MUC5B was
significantly colocalized with the IPF GWAS meta-analysis and UKBB, but not with the East
Asian IPF GWAS. DSP was colocalized in all three IPF GWAS. KANSL1, however, did not
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colocalize between GTEXx lung and any IPF GWAS. To assess to what extent the genetic and
cell type-specific regulatory architecture of IPF risk may be shared with other lung diseases, we
colocalized the cell type-eQTL signals with child and adult-onset asthma GWAS.?* The
childhood-onset asthma colocalization revealed a regulatory architecture distinct from IPF, with
a lack of colocalizations in epithelial cells and most of the significant colocalizations being
specific to immune cells, particularly monocytes and monocyte-derived macrophages, which
may shape some of the clinical and inflammatory features of asthma.?®?” These results highlight
the broader utility of this dataset in the investigation of other lung traits and diseases.
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Fig. 6: Cell type-eQTL colocalize with lung trait GWAS. Heatmaps presenting the numbers
of eQTL that are nominally significant (p<1x10°) in the IPF GWAS meta-analysis (blue),
numbers of significant colocalizations between cell type and bulk-eQTL and three IPF GWASSs,
as well as child and adult-onset asthma GWAS (red), the proportion of cells expressing the
gene (orange) and posterior probabilities for a single shared causal variant between the tested
cell types and GWAS for selected top IPF associated genes (MUC5B, DSP, KANSL1, KANSL1-
AS1, green) across 27 cell types with at least one colocalized gene.
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Discussion

Here, we present the first characterization of regulatory variants across major cell types in the
human lung, employing scRNA-seq to identify eQTL at cell type resolution. In total, we
characterized eQTL across 38 different cell types identifying cis eQTLs in over 6,000 genes.
Building upon bulk eQTL studies, such as GTEX, which sought to characterize differences in
gene regulatory architecture across tissues, we employed a multivariate adaptive shrinkage
approach to robustly identify shared and specific eQTL across cell types.? In addition to, the
maijority of eQTL which were shared across cell types, we identified thousands of eQTL that
were limited to a subset or single cell type. These eQTL classes were enriched among chronic
lung disease GWAS loci and differentially-expressed genes in PF lungs, suggesting that
context-specific gene regulatory mechanisms are important yet to-date largely unrecognized
contributors to the mechanisms underlying chronic lung diseases.

Highlighting the power of this approach, we demonstrate that many of the eQTL identified here
were not eQTL in bulk data from primary lung tissue (Fig. 5f). This was particularly true of eQTL
limited to a single cell type (11.7% significant in bulk) and disease-interaction eQTL, which are
far less likely to be shared across cell types (13.4% significant in bulk). Both of these classes of
eQTL tend to be further away from the TSS than global and multi-state eQTL suggesting these
loci may be disrupting enhancers rather than promoters (Fig. 4a, Fig. 5b). This observation
would be consistent with the cell type specificity of these eQTL and would distinguish them from
eQTL identified in bulk studies, which are strongly enriched for disrupting promoter regions.
Indeed, some work suggests that common eQTL (enriched near promoters) are less likely to
have functional relevance'?2°, In addition to being more distal from the TSS, these eQTL also
tend to have larger effect sizes (Fig. 4a, Fig. 5b). At present, it is uncertain whether the
difference in effect size is due to statistical power to identify these associations or if cell type
specific eQTL inherently exhibit larger effect sizes. Since this class of eQTL is the least likely to
benefit from the mashr'? approach, it seems plausible that we only have statistical power to
identify those with large effects. If this is the case, future single cell eQTL studies with increased
sample number and cell type representation from rare cell populations are likely to identify a
significant number of additional cell type and context specific eQTL.

Over the past ten years, there has been an increased appreciation for the degree to which
eQTL may be context specific, starting first with tissue type, then to functional/environmental
context, and finally to cell type®*=". The results of this study suggest single cell eQTL studies
have the power to more robustly elucidate this context specificity, and that they will better
recover eQTL associated with disease states or environmental perturbations as these effects
are less likely to be shared across cell type within a tissue.

In addition to a general characterization of eQTL in the lung, this study is uniquely positioned to
explore the interplay between genetic variation and the molecular underpinnings of chronic lung
diseases including PF. Focusing first on the known risk loci identified in various GWAS studies,
we found eQTL to be enriched among GWAS risk loci regardless of class (Fig. 6). These
enrichments were similar to those found in bulk eQTL analysis from the human lung (Fig. 6),
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however using the cell type level associations, we are able to partition the function of these risk
variants into discrete cell types. Indeed, we find risk variants are most likely to be eQTLs in AT2
cells, followed by a number of cells from the myeloid lineage — including both resident and
recruited macrophages (Fig. 6, Supplementary Table 5). Using a more formal colocalization
analysis we found four GWAS loci with strong support for a shared causal variant with an eQTL
(compared to seven colocalizations in the bulk eQTL data), for which we were able to identify
the likely cell type in which these risk variants are acting (Fig. 6). Our findings align with recent
insights into the cellular and regulatory drivers of ILD. Epithelial cell types are suggested to have
a central role in driving alveolar remodeling in IPF.* Indeed, in a GWAS colocalization analysis,
we find that the top IPF risk variants flanking MUC5B and DSP regulate the expression levels of
their targets in specific epithelial cell types.

In addition to assessing the effect of known risk loci on gene expression traits, we were also
able to more directly examine how genetic variation may alter key regulatory processes involved
in disease. Turning back to the disease-interaction eQTL analysis, enabled by the collection of a
cohort composed of both diseased and unaffected individuals, we were able to assess how
these context specific eQTL may further drive disease processes. Roughly half of the interaction
eQTLs are driven by differences in overall mean expression between the diseased and control
samples. In the case of disease emergent expression difference (expression increases in
diseased sample), loci which further upregulate gene expression may propagate additional
molecular dysfunction. Focusing on the set of interaction eQTL with similar mean expression
across disease and control samples, we found the loci to be enriched for TFBS that are
associated with key biological processes related to ILD. For example, we found enrichment for
WT1'® and SOX family members'®?°, which previous experimental evidence connects to
fibroblast activation and proliferation in the lung. The eQTL which disrupt key binding sites likely
further propagate the molecular dysregulation observed in ILD by modulating binding efficiency
of TFs and altering expression of their direct and downstream target genes. Of note, interaction
eQTL were not enriched for overlaps with risk variants, as anticipated based on the presumed
requirement for disease-associated contextual cues for these variants to manifest their
effects.We postulate these context-specific eQTL may play a role in disease progression rather
than initiation. Again, these results highlight the importance of identifying context specific eQTL
which are best captured using single cell approaches.

Taken together, our study demonstrates the powerful application of single-cell genomics to
study genetic regulation of gene expression in complex, solid, primary human tissues.
Integrating scRNA-seq data from control and diseased lung samples with genetic data provides
new insights into the cell-type specific function of risk variants for interstitial lung disease, and
highlights a new class of regulatory variants (interaction eQTL) that contribute to disease
pathobiology. Future work combining single-cell ‘omic assays, healthy and disease samples,
and context-specific analysis methods will be important to understanding the interplay of
dysfunctional genetic regulation and cellular contexts in complex human disease.
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Methods

Subjects, samples, and tissue processing

The data presented here include 82 previously published® samples from 56 individuals and 83
previously unpublished samples (Supplementary Table 1). In addition to previously published
data, lung tissue samples were collected from 60 individuals, including 33 ILD cases and 27
nonfibrotic controls, and processed as previously described by Habermann et al.® Briefly, ILD
tissue samples were obtained from lungs removed at the time of lung transplantation at either
Vanderbilt University Medical Center (VUMC) or the National Thoracic Institute (NTI). Control
tissue samples were obtained from lungs declined for organ donation either at the Donor
Network of Arizona (DNA) or VUMC. Tissue sections were taken from multiple peripheral (within
~2 cm of the pleural surface) regions in each lung. For ILD lungs, representatively diseased
areas were selected on the basis of preoperative chest CT, while for control lungs, the most
normal-appearing region was identified by gross inspection and selected for biopsy. For ILD
lungs, diagnoses were determined according to the American Thoracic Society/European
Respiratory Society consensus criteria®®. Studies were approved by the local Institutional
Review Boards (Vanderbilt IRB nos. 060165 and 171657 and Western IRB no. 20181836).

Tissue samples were digested in either collagenase I/dispase Il (1 ug/ml) or Miltenyi Multi-
Tissue Dissociation Kit using a gentleMACS Octo Dissociator (Miltenyi Inc.). Tissue lysates
were serially filtered through sterile gauze, 100- and 40-um sterile filters (Fischer). The resulting
suspensions then underwent cell sorting using serial columns (Miltenyi Microbeads, CD235a
and CD45) or fluorescence-activated cell-sorting (FACS) at VUMC or FACS at the Translational
Genomics Research Institute (TGen). CD45™ and C45" populations were mixed 2:1 in samples
processed at VUMC and used to generate the scRNA-seq libraries. At TGen, calcein
acetoxymethyl was used to stain live cells, and 10,000 to 15,000 live cells were sorted directly
into the 10x reaction buffer and transferred to the 10x 5' chip A (10x Genomics).

scRNA-seq library preparation and next-generation sequencing

scRNA-seq libraries were generated using the 10x Chromium platform &' library preparation kits
(10x Genomics) according to the manufacturer's recommendations and targeting 5000 to
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10,000 cells per sample. From 12 donors, multiple tissue samples were processed and libraries
were generated from separate biopsies taken from the same lung to account for regional
heterogeneity (Supplementary Table 1). Next-generation sequencing was carried out on an
lllumina NovaSeq 6000 or HiSeq 4000. The resulting sequence data were filtered to retain
reads with a read quality >3, and CellRanger Count v3.0.2 (10x Genomics) was used to align
reads onto the GRCh38 reference genome.

Data integration, clustering, and cell type annotation

scRNA-seq data were processed and analyzed using Seurat v4.'° CellRanger Count outputs
were imported to create a Seurat object for each sample. The sample-specific objects were
merged and the proportions of reads arising from mitochondrial genes were calculated for each
sample. The merged object was filtered to retain samples with more than 1,000 identified
features or less than 25% of mitochondrial reads.

Samples sequenced across 24 batches were integrated using reciprocal principal component
analysis (rPCA) as follows: The merged object was split by flowcell and the count data in each
batch-specific object was normalized. Variable features were identified for each object, and
integration features across objects were selected with SelectintegrationFeatures(). Data in each
batch-specific object was scaled and underwent PCA dimensionality reduction using 2,000
variable features. rPCA integration was carried out using 3,000 integration anchors and four
reference batches (6, 12, 18, 24). PCA dimensionality reduction on the integrated data was
performed using 3,000 variable features. To determine the optimal number of PCs to identify
neighbors and to construct the UMAP, we determined the difference between the variation
explained by each PC and the subsequent PC and identified the last point where the
percentage change was more than 0.1%. A Shared Nearest Neighbor graph was constructed
with k=20, and clusters of cells were identified using the modularity optimization-based
clustering algorithm*' implemented in Seurat v4.

The resulting clusters were divided into four major cell subgroups based on marker gene
expression: PTPRC" for immune cells, EPCAM" for epithelial cells, PECAM1*/PTPRC" for
endothelial cells, and PTPRC/EPCAM /PECAM1~ for mesenchymal cells. Each subgroup-
specific object underwent the same dimensionality reduction and clustering approach as
described above. Clusters containing doublets were removed by identifying clusters of cells that
expressed markers specific to multiple cell lineages. After doublet removal and reclustering, the
subgroup-specific objects were further annotated for specific cell types based on known marker
genes (Supplementary Table 2).

Differential gene expression and cell type proportion testing

We tested for differences in cell type abundances between groups using the propeller.anova()
function of R/speckle.*? For differential gene expression, we used the R/presto implementation
of the Wilcoxon rank sum test (wilcoxauc).*® For overlapping with disease-interaction eGenes, a
relaxed significance threshold of adj. p <0.1 was employed.


https://doi.org/10.1101/2023.03.17.533161
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.17.533161; this version posted March 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Low-pass Whole Genome Sequencing, genotyping, and imputation

Flash-frozen tissue in DNA/RNA Shield was homogenized via a bullet blender. Genomic DNA
was extracted using Zymo Quick DNA/RNA microprep plus kit. Library preparation and low-pass
Whole Genome Sequencing were carried out at TGen or by Gencove (Supplementary Table
7), Inc. At TGen, libraries were prepared using PCR-free Watchmaker kits (Watchmaker
Genomics) with 200 ng input. Genomes were sequenced on NovaSeq at low coverage (typically
0.4-1x). The resulting sequence data were processed and imputed using Gencove’s imputation
platform.

Pseudo-bulk cell type eQTL mapping

For eQTL mapping, cells with >20% of reads mapping to the mitochondrial genes were removed
(466,989 cells remain). Mapping was only performed on cell types with at least 40 donors with
at least 5 cells of that cell type (38 cell types meet these criteria). Donor VUILD65 was removed
due to inconsistencies in metadata suggesting mislabeling. Mitochondrial genes, genes
encoding ribosomal proteins (downloaded from HGNC: https://www.genenames.org/cgi-
bin/genegroup/download?id=1054&type=branch), genes expressed in fewer than 10% of cells in
the study, and genes with a mean count across all cells < 0.1 were excluded, resulting in 6,995
genes for eQTL mapping.

Pseudobulk cis-eQTL mapping was performed following guidelines from Cuomo, Alvari, Azodi et
al. 2021"". For each cell type, raw counts were normalized and log. transformed using scran**
and mean aggregated to get a single value for each gene for each donor for each cell type.
Donors with <5 cells for a cell type were excluded from eQTL mapping for that cell type and only
cell types with at least 40 donors matching this criteria were included (max donors=113).
Biallelic, autosomal SNPs were filtered to include SNPs with a minor allele frequency > 5%,
Hardy-Weinberg equilibrium p>1x10°, and further pruned to remove highly correlated SNPs (-
indep-pairwise 250 50 0.9) using plink2,*® resulting in ~1.9 million SNPs. We tested for
associations for SNPs within 1Gb up and downstream of the gene body.

Linear mixed models were used to map cis-eQTL using the LIMIX_qtl framework
(https://github.com/single-cell-genetics/LIMIX_qtl).*® Expression levels for each gene were
quantile-normalized to fit a normal distribution (--gaussianize_method). To control for unwanted
technical effects, the first 20 cell type expression principal components (PCs) were regressed
out before model fitting (--regress_covariates). To account for variance due to population
structure, we included the identity-by-descent (IBD) relationship matrix generated by applying
plink2 --make-rel on the filtered SNP data as a random effect. To account for differences in cell
type abundance across donors, we included the number of cells aggregated (1/nCells) as a
second random effect, using the random effect weighting approach described by Cuomo, Alvari,
Azodi, et al''. Random effects were marginalized from the model using the low-rank
optimization method (--low_rank_random_effect) described by Cuomo et al.*’
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Joint cell type eQTL analysis

Joint analysis of the LIMIX estimated effect sizes and their corresponding standard errors
across all 38 cell types was performed using multivariate adaptive shrinkage in R (mashr v0.2
12) following the approach outlined in the ‘eQTL analysis outline’ vignette from the authors
(https://stephenslab.github.io/mashr/articles/eQTL_outline.html). In this approach, a weighted
combination of learned and canonical covariance matrices that describe patterns of eQTL
sparsity and sharing across cell types is used as a prior for generating adjusted summary
statistics. The data-driven covariance matrices were estimated from a subset of strong
associations with a local false sign rate < 0.1 in at least one cell type (n=487), calculated using
adaptive shrinkage in R (ashr v2.2*%). The default canonical covariance matrices were used,
representing equal effect sharing across cell types, the top 5 PCs from the strong associations,
and extreme deconvolution matrices obtained from those PCs. The model was fit to a random
subset of 10,000 SNP-gene associations and then applied to all associations tested.

Assessing significance, sharing, and eQTL classification

The local false sign rate (Ifsr) calculated by mashr was used to assess significance. To further
reduce the impact of differential power on assessing sharing of eQTL across cell types, if an
eQTL was significant in one cell type (Ifsr <0.05), then it would be considered significant in other
cell types at a less stringent threshold (Ifsr <0.1). An eQTL was considered shared in a pairwise
comparison between two cell types if the eQTL was significant in both cell types and the
estimated effect size was within a factor of 0.5. An eQTL was classified as global if it was
significant in at least 36 of the 38 cell types (31 of 33 cell types for interaction eQTL). This two-
cell-type buffer was included to reduce the impact of low-powered cell types on our
categorization. eQTL that were significant in only one cell type were classified as unique, and
eQTL significant in 2-36 cell types (2-31 for interaction eQTL) were considered multi-cell type
eQTL.

To simplify plotting of top-eQTL, a pruning step is included, where for each gene, if there is a
single top-eQTL, that eQTL is retained. If there are two top-eQTL, the Euclidean distance
between the centered absolute values of the estimated effect sizes across cell types for the two
eQTL are compared. If the distance is greater than the set threshold (dist=0.2), both are
retained. If the distance is less than the threshold then the one that is significant in more cell
types is retained. Finally, if there are more than three top-eQTL, the pairwise Euclidean distance
between the centered absolute values of the estimated effect sizes for each pair of top-eQTL is
calculated. If all pairwise distances are above the threshold, all are retained. Otherwise,
hierarchical clustering is performed and the tree is cut using cutree at k between 2 and 5 that
maximizes the Silhouette width. For each cluster, the top-eQTL that is significant in most cell
types is retained.

Disease-interaction cell type-eQTL mapping

To test for disease-interaction eQTL effects, cell types were required to have at least 10 control
and 10 ILD donors with at least 5 cells of that cell type, resulting in KRT5-/KRT17+, pDC, cDC1,
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alveolar FB, and mesothelial cell types being excluded from the interaction eQTL analysis.
SNPs were further filtered to remove those with a MAF < 5% in either the control or ILD donor
populations (1.77 million SNPs remained). Interaction effects were tested using the
run_interaction_QTL_analysis from LIMIX_qtl. Random effects were handled as described
above for the eQTL mapping analysis. In the interaction term with SNP effect, we included the
binary disease status (ILD vs. unaffected). Fix effects (to 20 PCs) were included, but not
regressed out before modeling, as disease status was strongly correlated with some PCs. The
results from this analysis were processed using mashr, with significance calling, as described
above for the eQTL analysis. For each cell type, we further pruned the int-eQTL to retain
associations where the observed eSNP MAF for ILD and unaffected donors for the given cell
type was >0.05.

Colocalization with GWAS and GTEx

Colocalization analysis was carried out between the cell type eQTL, GTEx lung eQTL, and three
IPF genome-wide association studies (GWAS). UK Biobank (UKBB)?' and East Asian®? IPF
GWAS summary statistics were downloaded from GWAS Catalog.?® The discovery samples of
these studies comprised 1,369 IPF cases, 14,103 COPD cases and 435,866 controls, and
1,046 East Asian ancestry cases and 176,974 controls, respectively. Summary statistics from
an IPF GWAS meta-analysis® leveraging data from three studies***" were downloaded after
gaining access through submitting a request (https://github.com/genomicsITER/PFgenetics).
The meta-analysis comprised 2,668 European ancestry IPF cases and 8,591 controls.

Additionally, GWAS on adult and child-onset asthma® (26,582 adult European ancestry cases,
13,962 child cases, 300,671 controls) were downloaded from GWAS Catalog and included for
comparison. For comparative analyses with bulk-eQTL, GTEx lung, whole blood, and brain
cortex eQTL summary statistics were downloaded from the GTEx Google Cloud bucket
(https://console.cloud.google.com/storage/browser/gtex-resources).

Bayesian colocalization analysis was performed using R/coloc v5.%? For the pseudo-bulk cell
type-eQTL, mashr posteriors were used in place of nominal eQTL summary statistics. 2,092
genes, including the multi-cell type eQTL presented in Fig. 4 and 103 IPF GWAS variant
flanking genes, were selected for the colocalization analysis, and for each gene, colocalization
testing was carried out between datasets that shared =100 variable (MAF >0, <1) SNPs.
Significantly colocalized loci were selected based on the posterior probability for a single shared
causal variant 20.6.

Enrichment testing

We tested for the enrichment of the clusters of eQTL in Fig. 4 among Gene Ontology terms
using R/TopGO v2.46.0.%% All genes included in the eQTL analysis were used as a background
set. A p-value threshold of 0.01 was used to select significant terms. For the GO
overrepresentation testing of the GTEx colocalizing genes, we used R/gprofiler2®* and p<0.05.
Both are implementations of Fisher’s test.
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We used Fisher’s exact test to test for the enrichment of the various classes of sc-eQTL (all
eQTL, globally shared, multi-state, unique to a single cell type, k1-k7 in Fig. 4) among IPF
GWAS risk variants. From the 1,617,891 SNPs tested for in the eQTL analysis and included in
the IPF GWAS meta-analysis, a set of 473 GWAS variants was selected with a relaxed
genome-wide nominal p-value threshold of 1x10°. A null distribution of non-significant eQTL
was generated using the default rejection method of R/nullranges® to match the observed
distribution of absolute distances to TSS among the significant eQTL.

To test whether the various classes of regulatory variants detected in the sc-eQTL analyses
disrupt the binding of known transcription factors (TFs), we used HOMER® to analyze eQTL
positions for the enrichment of TF binding site motifs. findMotifsGenome.pl with the default
region size of 200bp was used to detect enriched motifs. In each analysis, a null set of non-
significant eQTL with a matched distribution of distances to the transcription start site (TSS) was
used as a background. In the TFBS enrichment analysis of the int-eQTL, the non-interaction sc-
eQTL were used as a background set. A g-value threshold of 0.05 was used to select significant
motifs.

Data and code availability

Raw and processed 10x Genomics data, Seurat objects, mean-aggregated expression
matrices, and genome-wide LIMIX and mashr eQTL statistics can be found on GEO with the
accession number GSE227136. Genotype data are being made available on dbGaP. Custom
scripts to reproduce the result presented here are available on GitHub at
https://github.com/tgen/banovichlab/tree/master/ILD_eQTL.
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