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Abstract 

Common genetic variants confer substantial risk for chronic lung diseases, including pulmonary 
fibrosis (PF). Defining the genetic control of gene expression in a cell-type-specific and context-
dependent manner is critical for understanding the mechanisms through which genetic variation 
influences complex traits and disease pathobiology. To this end, we performed single-cell RNA-
sequencing of lung tissue from 67 PF and 49 unaffected donors. Employing a pseudo-bulk 
approach, we mapped expression quantitative trait loci (eQTL) across 38 cell types, observing 
both shared and cell type-specific regulatory effects. Further, we identified disease-interaction 
eQTL and demonstrated that this class of associations is more likely to be cell-type specific and 
linked to cellular dysregulation in PF. Finally, we connected PF risk variants to their regulatory 
targets in disease-relevant cell types. These results indicate that cellular context determines the 
impact of genetic variation on gene expression, and implicates context-specific eQTL as key 
regulators of lung homeostasis and disease.  
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Introduction 

Genomic and functional studies have the potential to reveal the genetic, molecular, and cellular 
drivers of clinical phenotypes, laying the groundwork for the development of targeted 
interventions. Many disease-associated variants identified in genome-wide association studies 
(GWAS) are located in the regulatory regions of the genome and contribute to disease risk and 
progression by effecting changes in gene expression.1 Combining genotype information with 
transcriptional profiles allows for the identification of genetic regulators of gene expression 
(expression quantitative trait loci, eQTL). This approach has been widely applied to bulk RNA 
sequencing of primary tissues, providing insights into the tissue-specificity of regulatory effects 
and contributing to our understanding of the mechanisms underlying complex traits.2 However, 
cell type and context (e.g., disease-status) specificity of trait-associated single-nucleotide 
polymorphisms (SNPs) poses a challenge to understanding the regulatory mechanisms that 
modulate disease risk and progression.  
 
Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for the transcriptional 
profiling of individual cells and cell types, mitigating many limitations of bulk RNA-seq. Capturing 
scRNA-seq profiles and genome-wide genotype information for a population of individuals 
allows for the unbiased, cell type-specific interrogation of variant effects on gene expression. 
This approach can enable the discovery of eQTL that are specific to rare or disease-relevant 
cell types and eQTL that have opposing effects in different cell types, all of which could go 
undetected with bulk RNA-seq in heterogeneous tissues. These context-specific eQTL are 
thought to be more likely to escape the purifying selection that limits mutations impacting 
ubiquitous eQTL and are thus more likely to play roles in disease.3,4  
 
Interstitial lung diseases (ILDs) are chronic, progressive respiratory disorders characterized by 
the scarring of lung tissue accompanied by epithelial remodeling, loss of functional lung alveoli, 
and accumulation of extracellular matrix (ECM).5 Pulmonary fibrosis (PF) is the end-stage 
clinical phenotype of ILD. PF remains incurable, and the most severe form of PF (idiopathic PF, 
IPF), leads to death or lung transplant within 3 to 5 years of diagnosis.5,6 The pathogenesis and 
progression of IPF involve a complex interplay of predisposing factors, cell types, and regulatory 
pathways.7,8 GWAS and meta-analyses have identified 20 IPF-associated variants, and 
polygenic analyses suggest that a large number of unreported variants contribute to IPF 
susceptibility.9 Some of these variants are eQTL in bulk-lung tissue; however, their cell type-
specific regulatory consequences have not been explored. 
 
To investigate the genetic control of disease-related gene expression in PF, we generated 
scRNA-seq data from lung tissue samples of 116 individuals (67 ILD and 49 unaffected donors). 
Combining these data with genome-wide genotype data, we mapped shared, lineage-specific, 
and cell type-specific cis-eQTL across 38 cell types (Fig. 1a). We analyzed these data in 
conjunction with IPF and other GWAS summary statistics to uncover the regulatory mechanisms 
underlying ILD risk and progression. Using interaction models, we reveal disease-specific 
regulatory effects that further elucidate the mechanisms underlying disease biology. 
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Results 

Single-cell RNA-sequencing of 116 lung tissue samples 

To enable cell type level eQTL mapping, we generated scRNA-seq and genome-wide genotype 
profiles for 116 individuals, including 67 (58%) with ILD and 49 (42%) unaffected donors (Fig. 

1a, Supplementary Table 1). The ILD lungs included samples from 40 individuals with IPF and 
27 with other forms of PF, including sarcoidosis (n=4), connective tissue disease-associated 
interstitial lung disease (CTD-ILD, n=3), idiopathic nonspecific interstitial pneumonia (NSIP, 
n=3), coal worker's pneumoconiosis (CWP, n=3), chronic hypersensitivity pneumonitis (cHP, 
n=2), interstitial pneumonia with autoimmune features (IPAF, n=2), and unclassifiable ILD 
(n=10). The majority (68%) of the lung samples were from individuals with self-reported ethnicity 
information of European ancestry, and 55 (47%) reported past or present tobacco use (Fig. 1b).  
 
Single-cell suspensions were generated from fresh peripheral lung tissue samples and 
sequenced using the 10x Genomics Chromium platform. For 55 ILD lungs, two libraries were 
prepared from differentially involved areas of one lung to account for regional heterogeneity. 
Genotype data was obtained through low pass whole genome sequencing followed by 
imputation (Methods). We performed data integration, dimensionality reduction and 
unsupervised clustering of the 475,047 cells passing QC using the Seurat package10 
(Methods). Based on marker gene expression (Supplementary Table 2), we identified 43 cell 

types with `a median of 5,811 cells (min=253, max=94,413, mean=11,048) cells (Fig. 1c).  
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Fig.1: Mapping eQTL across cell types in the human lung. a, A schematic illustration of the 
present study. b, Percentage proportions of donors by diagnosis, self-reported ethnicity, and 
smoking history. c, a UMAP dimensionality reduction of 437,618 cells across the 38 cell types 
included in the eQTL analysis. Pseudocoloring indicates cell type, primary cell lineages are 
labeled. d, Numbers of donors with g5 cells for each cell type included in the analysis. 
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Most eQTL are shared between cell types 

Out of 43 annotated cell types, we selected 38 that had g40 donors with g5 cells for that cell 
type to use for eQTL discovery (Fig. 1d). Pseudo-bulk eQTL mapping was performed on each 
cell type using LIMIX following the optimized approach described in Cuomo, Alvari, Azodi et al11. 
To maximize precision and overcome varying statistical power across cell types, we used 
multivariate adaptive shrinkage, a statistical method for analyzing measures of effect sizes 
across many conditions to identify patterns of sharing and specificity12. After applying 
multivariate adaptive shrinkage with mashr (Methods), eQTL were considered significant if they 
had a local false sign rate (lfsr) f0.05 in at least one cell type and f0.1 in any additional cell 
types. A gene was considered an eGene for a cell type if any eQTL for that gene was 
significant. Of the 6,995 genes tested for eQTL (Methods), 6,637 (94%) were eGenes in at 
least one cell type. The number of eGenes found per cell type was greater for more abundant 
cell types (Fig. 2a), with a positive correlation (R=0.66, p=6.6×10-6) between the number of 
eGenes and the number of individuals used for mapping (Fig. 2b). 
 
To summarize the overall pattern of eQTL sharing between cell types and compare this pattern 
with the transcriptional similarity, we visualized the top two principal components of the median 
pseudo-bulked gene expression levels across all 38 cell types for the 6,995 genes included in 
eQTL mapping (Fig. 2c) and of the mashr estimated effect sizes of top eQTL across all 38 cell 
types (Fig. 2d). This demonstrated that the relationships between the regulatory mechanisms 
across lung cell types largely reflected the differences in expression patterns across cell types. 
We identified a set of top-eQTL by selecting the eQTL with the lowest, significant lfsr for each 
gene in each cell type. Using this criteria, there were 50,389 top eQTL, with a median of 7 top 
eQTL per gene (min=1, max=33). Top eQTL are considered shared between two cell types if 
they are significant in both cell types and their mashr estimated effect size is within a factor of 
0.5. Across all cell types, the median pairwise sharing of top eQTL was 93.5% (min=55%, 
max=99.3%; Fig. 3). The epithelial and endothelial lineages had the highest levels of inter-
lineage sharing (median=97.9%), while sharing between cell types within the mesenchymal 
lineage (median=96.9%) and the immune lineages (median=95.4%) was slightly lower.  
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Fig. 2: sc-eQTL reflect lineage and cell type relationships of expression measurements. 

a, Comparison of the number of eGenes per cell type and the median number of cells per 
individual of that cell type (Pearson9s correlation). Cell types are colored by sublineage. b, 

Comparison of the number of eGenes per cell type and the number of individuals with at least 5 
cells of that cell type (Pearson9s correlation). c, PCA plot of pseudo-bulk expression across the 
6,995 genes included in the eQTL mapping analysis. d, PCA plot of mashr estimated effect 
sizes for top eQTL (n=50,389). 
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Fig. 3: eQTL are largely shared between lung cell types. Percent of top eQTL (n=50,389) 
that are shared between two cell types. Top eQTL are considered shared if they are significant 
in both cell types (local false sign rate f0.1) and the mashr estimated effect size is within a 
factor of 0.5. Cell types are annotated above by lineage, sublineage, the number of individuals 
with g5 cells, and the median number of cells per individual for that cell type. Median pairwise 
percent sharing per lineage is shown in black. 
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We further classified top-eQTL as global (n=34,030), multi-cell-type (n=14,027), or unique to a 
specific cell type (n=2,332) (Methods). Global top-eQTL tended to be found for genes that had 
higher average expression and that were more widely expressed across cells (Fig. 4a). Top-
eQTL unique to a single cell type tended to have higher absolute estimated effect sizes, likely 
due to limited statistical power to detect cell type-specific effects (Fig. 4a). Finally, these unique 
top-eQTL also tended to be located further from the transcription start site (TSS; Fig. 4a) of their 
target, consistent with the observation that cell type-specific eQTL typically impact enhancers, 
while widely shared eQTL impact promoters.13,14  
 
To explore the pattern of eQTL sharing across cell types more closely we focused on two sets 
of top-eQTL: (1) those with known associations to IPF and (2) multi-cell-type top-eQTL. Top-
eQTL were considered to be associated with IPF if the identified eGene was previously reported 
(p<1×10-12 in an IPF GWAS meta-analysis9). We further pruned these top-eQTL to get a 
representative sample for plotting (n=3,725) and adjusted the sign of the effect sizes to where 
positive indicates the common effect direction and negative indicates an opposite effect 
direction; Methods). In an unsupervised clustering of the sign-adjusted effect sizes of these 
pruned eQTL, we identify distinct classes of eQTL (Fig. 4b; k1-k7 top to bottom), including 
groups of eQTL primarily active in epithelial or immune cell types, or exhibiting opposing effects 
between lineages. To connect these eQTL to biological processes, we tested for the enrichment 
of their target eGenes among Gene Ontology terms against a set of 6,995 background genes 
(Fig. 4c, Methods). The eQTL in cluster 3 were primarily active in the epithelial cell types and 
were enriched for genes involved in the regulation of JUN kinase, which has been implicated in 
lung fibrosis and is a potential target for interventions for ILD.15 Epithelial eQTL in cluster 5 were 
enriched for genes associated with metabolism and response to bacteria. The eQTL in cluster 4 
were primarily significant in the myeloid innate immune cell types, and showed enrichment for 
genes involved in, e.g., cholesterol metabolism. Further, eQTL in cluster 1 were mainly 
significant in the immune lineage and were enriched for genes contributing to cholesterol 
homeostasis, reflecting the central role of cholesterol metabolism in immune functions.16 Cluster 
7, also mainly active in the immune lineage, was enriched for genes involved with, e.g., lipid 
transport. Lipid mediators are known to have an important role in lung fibrosis.17 The eQTL in 
cluster 2 showed opposing effects between the epithelial and immune lineages and were 
enriched for genes associated with highly lineage-specific functions, such as epithelial cell 
morphogenesis. 
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Fig. 4: Multi-cell type eQTL act in a highly lineage-specific manner. a, Mean normalized 
expression (first panel) and percentage proportion of cells expressing (second panel) the target 
eGenes of eQTL unique to a single cell type, shared across multiple cell types, or globally 
shared across all cell types, as well as the absolute effect sizes (third panel) and absolute 
distances to the target eGene TSS (fourth panel). b, Visualization of a representative subset 
(Methods) of multi-cell-type top-eQTL and IPF-GWAS eQTL (n=3,725). eQTL are clustered by 
their estimated effect sizes, with non-significant associations set to zero. The most common 
effect direction for each eQTL is shown in red and cell types with opposite effect directions are 
shown in blue. c, Top three most significantly enriched gene ontology terms for each cluster in 
b, excluding terms with support from <2 genes. 
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Disease-specific eQTL are highly cell type-specific 

To identify eQTL that are specific to healthy or affected individuals or that show a different 
direction or degree of effect in the two groups, we performed disease-state interaction eQTL 
(int-eQTL) mapping (Methods). Testing across 33 cell types with g5 ILD and g5 unaffected 
donors and a MAF g5% in each group, we detect 83,596 int-eQTL. Compared to the non-
interaction-eQTL, there was substantially less lineage and cell type sharing of int-eQTL (Fig. 5a, 
Supplementary Fig. 5): for each gene, there was a median of 21 top int-eQTL (min=2, 
max=28), resulting in a total of 75,482 top int-eQTL. Compared to the top non-interaction sc-
eQTL, int-eQTL were further from the TSS (mean absolute distance, sc-eQTL=43.1Mb, int-
eQTL=52.9Mb, t-test p=2.22×10-16) and had larger effect sizes (mean absolute mashr posterior 
beta, sc-eQTL=0.10, int-eQTL=0.66, t-test p=2.22×10-16, Fig. 5b). Some disease int-eQTL were 
linked to overall expression differences between groups (Fig. 5c): 43% of int-eGenes were 
differentially expressed (adj. p<0.1) between ILD and unaffected samples in the particular cell 
type. Out of these genes, 50.8% were expressed at a higher level in ILD. However, 21% of int-
eGenes were widely expressed (>30% of cells) in both groups in the particular cell type and did 
not exhibit notable differences in expression levels (|logFC|<0.2), indicating that these eGenes 
are equally expressed but are differentially affected by cis-regulatory loci. These include DSP 
with 3 top int-eQTL, including rs2003916, which showed differential effects between ILD and 
unaffected donors in four of the tested epithelial cell types (Fig. 5d). 
 
To further interrogate the mechanisms underlying these int-eQTL, we analyzed the int-eQTL 
associated with eGenes expressed equally between ILD and unaffected donors for the 
enrichment of known transcription factor binding sites (TFBS, Methods). We identified 42 
significantly enriched TF motifs (q<0.05), including WT1, several SOX, HOX, and PAX family 
members, ERG, and NF1 (Fig. 5e, Supplementary Table 4). Several of these have known 
importance in lung fibrosis. WT1 functions as a positive regulator of fibroblast proliferation, 
myofibroblast transformation, and ECM production.18 A number of SOX TFs are known to be 
upregulated in IPF and are associated with fibroblast activation.19,20 Out of the 37 genes 
encoding TFs disrupted by int-eQTL that were also tested for differential expression, 30 were 
DE between ILD and unaffected samples in at least one cell type. When examined across all 
cell types with significant DE, 43.0% of these genes were expressed at a higher level in ILD. 
The 7 that were equally expressed between cases and controls 3 including WT1, SOX10, 
PAX7, HOXA11, HOXD12, NKX6-1, and SCRT1 3 could contribute to ILD pathogenesis through 
differences in protein levels or localization, differential binding to cis-regulatory elements, or 
chromatin level differences in addition to or instead of differential TF abundance.  
 
We assessed the level at which sc-eQTL and int-eQTL are replicated in bulk analyses by 
overlapping the eQTL detected here with lung eQTL from GTEx.2 All classes of sc-eQTL as well 
as int-eQTL were enriched among GTEx lung eQTL (Fisher9s exact test, p<2.2×10-16). Out of 
the globally shared and multi-cell type top-eQTL, 19.1% and 21.9% were also eQTL in GTEx 
lung with a nominal p<1×10-6 (Fig. 5f). However, only 11.7% of sc-eQTL unique to a single cell 
type and 13.4% of int-eQTL were GTEx significant. This finding demonstrates the power of cell 
type and context-specific analyses in uncovering regulatory effects concealed by less granular 
approaches. 
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Fig. 5: Disease-interaction eQTL converge in pathways relevant to lung fibrosis. a, 

Histogram of the cell type sharing of top int-eQTL and top non-interaction sc-eQTL. b, 

Comparison of absolute distances to the eGene TSS and absolute effect sizes of top sc-eQTL 
and int-eQTL. t-test p-values are indicated. c, Numbers of int-eGenes, DEGs between fibrotic 
and unaffected samples, and the proportion of their overlap for each cell type included in the int-
eQTL analysis. d, An example of an int-eQTL for DSP. e, Top TF motifs enriched among int-
eSNPs associated with eGenes that were equally expressed between ILD and unaffected 
donors but exhibited differences in eQTL effect sizes. TFs are grouped by family on the x-axis. 
f, Percentage of int-eQTL, sc-eQTL unique to a single cell type, multi-cell type sc-eQTL, and 
globally shared sc-eQTL that are also eQTL in GTEx lung (p<1×10-6). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.17.533161doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.17.533161
http://creativecommons.org/licenses/by/4.0/


 

Cell type-specific patterns of colocalization at GWAS loci 

To connect the shared and cell type-specific regulatory variants to IPF risk, we compared our 
results to a recent IPF GWAS meta-analysis.9 All major classes of eQTL were enriched among 
loci implicated (nominal p<1×10-6, Supplementary Table 5) by the IPF GWAS meta-analysis 
(Fisher9s exact test, globally shared p<5.09×10-64, multi-cell type p<1.83×10-98, unique to a 
single cell type p=0.0525), while a null set of non-significant eQTL with a matched distribution of 
distances to TSS was not (p=1). GTEx bulk lung-eQTL were similarly highly enriched 
(p=2.22×10-111) among IPF GWAS loci. Disease-interaction eQTL, however, were not more 
enriched among IPF GWAS loci than a null set of non-significant eQTL. 
 
In addition to the intersection analysis described above, we colocalized eQTL signals for 2,092 
genes 3 including the target genes of the multi-state eQTL in Fig. 4 and 103 GWAS implicated 
genes 3 with the IPF GWAS meta-analysis,9 the UK BioBank (UKBB) IPF GWAS,21 and an East 
Asian IPF GWAS22 (Methods). Here we identified 5 loci with evidence of colocalization 
(posterior probability for a single shared causal variant >0.6) between risk loci and eQTL in at 
least one cell type. These patterns largely overlapped between the IPF GWAS meta-analysis 
and UKBB (Fig. 6, Supplementary Table 6). Three of these loci were eQTL for genes that 
have previously been implicated in GWAS, MUC5B, DSP, and KANSL1 according to the NHGRI 
EBI GWAS Catalog.23 The loci associated with KANSL1 in both the GWAS and eQTL analysis 
was also associated with the expression of KANSL1-AS1 across a number of cell types in our 
dataset. Additionally, we found an eQTL for the gene JAML was significantly colocalized with a 
locus from the GWAS analysis. This variant did not meet the criterion for genome-wide 
significance in the GWAS analysis, but was an eQTL across a number of myeloid lineage cell 
types (Supplementary Fig. 10). MUC5B was robustly expressed and colocalized with the IPF 
GWAS meta-analysis and the UKBB IPF GWAS in SCGB1A1+/MUC5B+ and SCGB3A2+ 
secretory cells, implicating these as the most likely cell types in which the risk variant functions 
(Supplementary Fig. 739). In contrast to the mostly European IPF GWAS meta-analysis and 
UKBB, MUC5B eQTL did not significantly colocalize with the East Asian IPF GWAS in any cell 
type, likely due to the low frequency of the risk allele in Asian populations.24 The pattern of 
population sharing was different for DSP eQTL, which was colocalized with the IPF GWAS 
meta-analysis in AT2, transitional AT2, and AT1 cells, and with UKBB and the East Asian IPF 
GWAS in AT2 cells (Supplementary Fig. 11). eQTL for KANSL1 colocalized with the meta-
analysis and UKBB in ciliated epithelial cells. Additionally, eQTL for KANSL1-AS1 antisense 
RNA was widely colocalized with the meta-analysis and UKBB across epithelial, immune, and 
endothelial cell types. However, expression levels and eQTL effect sizes of KANSL1 and 
KANSL1-AS1 were highly correlated (Supplementary Fig. 12314) and both genes are 
ubiquitous but lowly expressed across cell types, impeding an exact evaluation of the cell type 
specificity of these effects.  
 
When examining how these signals were colocalized in bulk eQTL analyses, we found 
colocalization patterns of MUC5B and DSP between GTEx lung and IPF GWAS reflect those of 
the cell type-level analysis (Supplementary Fig. 6, Supplementary Table 6): MUC5B was 
significantly colocalized with the IPF GWAS meta-analysis and UKBB, but not with the East 
Asian IPF GWAS. DSP was colocalized in all three IPF GWAS. KANSL1, however, did not 
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colocalize between GTEx lung and any IPF GWAS. To assess to what extent the genetic and 
cell type-specific regulatory architecture of IPF risk may be shared with other lung diseases, we 
colocalized the cell type-eQTL signals with child and adult-onset asthma GWAS.25 The 
childhood-onset asthma colocalization revealed a regulatory architecture distinct from IPF, with 
a lack of colocalizations in epithelial cells and most of the significant colocalizations being 
specific to immune cells, particularly monocytes and monocyte-derived macrophages, which 
may shape some of the clinical and inflammatory features of asthma.26,27 These results highlight 
the broader utility of this dataset in the investigation of other lung traits and diseases. 
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Fig. 6: Cell type-eQTL colocalize with lung trait GWAS. Heatmaps presenting the numbers 
of eQTL that are nominally significant (p<1×10-6) in the IPF GWAS meta-analysis (blue), 
numbers of significant colocalizations between cell type and bulk-eQTL and three IPF GWASs, 
as well as child and adult-onset asthma GWAS (red), the proportion of cells expressing the 
gene (orange) and posterior probabilities for a single shared causal variant between the tested 
cell types and GWAS for selected top IPF associated genes (MUC5B, DSP, KANSL1, KANSL1-

AS1, green) across 27 cell types with at least one colocalized gene. 
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Discussion 

Here, we present the first characterization of regulatory variants across major cell types in the 
human lung, employing scRNA-seq to identify eQTL at cell type resolution. In total, we 
characterized eQTL across 38 different cell types identifying cis eQTLs in over 6,000 genes. 
Building upon bulk eQTL studies, such as GTEx, which sought to characterize differences in 
gene regulatory architecture across tissues, we employed a multivariate adaptive shrinkage 
approach to robustly identify shared and specific eQTL across cell types.2 In addition to, the 
majority of eQTL which were shared across cell types, we identified thousands of eQTL that 
were limited to a subset or single cell type. These eQTL classes were enriched among chronic 
lung disease GWAS loci and differentially-expressed genes in PF lungs, suggesting that 
context-specific gene regulatory mechanisms are important yet to-date largely unrecognized 
contributors to the mechanisms underlying chronic lung diseases.  
 
Highlighting the power of this approach, we demonstrate that many of the eQTL identified here 
were not eQTL in bulk data from primary lung tissue (Fig. 5f). This was particularly true of eQTL 
limited to a single cell type (11.7% significant in bulk) and disease-interaction eQTL, which are 
far less likely to be shared across cell types (13.4% significant in bulk). Both of these classes of 
eQTL tend to be further away from the TSS than global and multi-state eQTL suggesting these 
loci may be disrupting enhancers rather than promoters (Fig. 4a, Fig. 5b). This observation 
would be consistent with the cell type specificity of these eQTL and would distinguish them from 
eQTL identified in bulk studies, which are strongly enriched for disrupting promoter regions. 
Indeed, some work suggests that common eQTL (enriched near promoters) are less likely to 
have functional relevance1,28,29. In addition to being more distal from the TSS, these eQTL also 
tend to have larger effect sizes (Fig. 4a, Fig. 5b). At present, it is uncertain whether the 
difference in effect size is due to statistical power to identify these associations or if cell type 
specific eQTL inherently exhibit larger effect sizes. Since this class of eQTL is the least likely to 
benefit from the mashr12 approach, it seems plausible that we only have statistical power to 
identify those with large effects. If this is the case, future single cell eQTL studies with increased 
sample number and cell type representation from rare cell populations are likely to identify a 
significant number of additional cell type and context specific eQTL.  
 
Over the past ten years, there has been an increased appreciation for the degree to which 
eQTL may be context specific, starting first with tissue type, then to functional/environmental 
context, and finally to cell type30337. The results of this study suggest single cell eQTL studies 
have the power to more robustly elucidate this context specificity, and that they will better 
recover eQTL associated with disease states or environmental perturbations as these effects 
are less likely to be shared across cell type within a tissue.  
 
In addition to a general characterization of eQTL in the lung, this study is uniquely positioned to 
explore the interplay between genetic variation and the molecular underpinnings of chronic lung 
diseases including PF. Focusing first on the known risk loci identified in various GWAS studies, 
we found eQTL to be enriched among GWAS risk loci regardless of class (Fig. 6). These 
enrichments were similar to those found in bulk eQTL analysis from the human lung (Fig. 6), 
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however using the cell type level associations, we are able to partition the function of these risk 
variants into discrete cell types. Indeed, we find risk variants are most likely to be eQTLs in AT2 
cells, followed by a number of cells from the myeloid lineage 3 including both resident and 
recruited macrophages (Fig. 6, Supplementary Table 5). Using a more formal colocalization 
analysis we found four GWAS loci with strong support for a shared causal variant with an eQTL 
(compared to seven colocalizations in the bulk eQTL data), for which we were able to identify 
the likely cell type in which these risk variants are acting (Fig. 6). Our findings align with recent 
insights into the cellular and regulatory drivers of ILD. Epithelial cell types are suggested to have 
a central role in driving alveolar remodeling in IPF.38 Indeed, in a GWAS colocalization analysis, 
we find that the top IPF risk variants flanking MUC5B and DSP regulate the expression levels of 
their targets in specific epithelial cell types.  
 
In addition to assessing the effect of known risk loci on gene expression traits, we were also 
able to more directly examine how genetic variation may alter key regulatory processes involved 
in disease. Turning back to the disease-interaction eQTL analysis, enabled by the collection of a 
cohort composed of both diseased and unaffected individuals, we were able to assess how 
these context specific eQTL may further drive disease processes. Roughly half of the interaction 
eQTLs are driven by differences in overall mean expression between the diseased and control 
samples. In the case of disease emergent expression difference (expression increases in 
diseased sample), loci which further upregulate gene expression may propagate additional 
molecular dysfunction. Focusing on the set of interaction eQTL with similar mean expression 
across disease and control samples, we found the loci to be enriched for TFBS that are 
associated with key biological processes related to ILD. For example, we found enrichment for 
WT118 and SOX family members19,20, which previous experimental evidence connects to 
fibroblast activation and proliferation in the lung. The eQTL which disrupt key binding sites likely 
further propagate the molecular dysregulation observed in ILD by modulating binding efficiency 
of TFs and altering expression of their direct and downstream target genes. Of note, interaction 
eQTL were not enriched for overlaps with risk variants, as anticipated based on the presumed 
requirement for disease-associated contextual cues for these variants to manifest their 
effects.We postulate these context-specific eQTL may play a role in disease progression rather 
than initiation. Again, these results highlight the importance of identifying context specific eQTL 
which are best captured using single cell approaches.  
 
Taken together, our study demonstrates the powerful application of single-cell genomics to 
study genetic regulation of gene expression in complex, solid, primary human tissues. 
Integrating scRNA-seq data from control and diseased lung samples with genetic data provides 
new insights into the cell-type specific function of risk variants for interstitial lung disease, and 
highlights a new class of regulatory variants (interaction eQTL) that contribute to disease 
pathobiology. Future work combining single-cell 8omic assays, healthy and disease samples, 
and context-specific analysis methods will be important to understanding the interplay of 
dysfunctional genetic regulation and cellular contexts in complex human disease. 
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Methods 

Subjects, samples, and tissue processing 

The data presented here include 82 previously published39 samples from 56 individuals and 83 
previously unpublished samples (Supplementary Table 1). In addition to previously published 
data, lung tissue samples were collected from 60 individuals, including 33 ILD cases and 27 
nonfibrotic controls, and processed as previously described by Habermann et al.8 Briefly, ILD 
tissue samples were obtained from lungs removed at the time of lung transplantation at either 
Vanderbilt University Medical Center (VUMC) or the National Thoracic Institute (NTI). Control 
tissue samples were obtained from lungs declined for organ donation either at the Donor 
Network of Arizona (DNA) or VUMC. Tissue sections were taken from multiple peripheral (within 
~2 cm of the pleural surface) regions in each lung. For ILD lungs, representatively diseased 
areas were selected on the basis of preoperative chest CT, while for control lungs, the most 
normal-appearing region was identified by gross inspection and selected for biopsy. For ILD 
lungs, diagnoses were determined according to the American Thoracic Society/European 
Respiratory Society consensus criteria40. Studies were approved by the local Institutional 
Review Boards (Vanderbilt IRB nos. 060165 and 171657 and Western IRB no. 20181836). 
 
Tissue samples were digested in either collagenase I/dispase II (1 ¿g/ml) or Miltenyi Multi-
Tissue Dissociation Kit using a gentleMACS Octo Dissociator (Miltenyi Inc.). Tissue lysates 
were serially filtered through sterile gauze, 100- and 40-¿m sterile filters (Fischer). The resulting 
suspensions then underwent cell sorting using serial columns (Miltenyi Microbeads, CD235a 
and CD45) or fluorescence-activated cell-sorting (FACS) at VUMC or FACS at the Translational 
Genomics Research Institute (TGen). CD452 and C45+ populations were mixed 2:1 in samples 
processed at VUMC and used to generate the scRNA-seq libraries. At TGen, calcein 
acetoxymethyl was used to stain live cells, and 10,000 to 15,000 live cells were sorted directly 
into the 10x reaction buffer and transferred to the 10x 52 chip A (10x Genomics). 

scRNA-seq library preparation and next-generation sequencing 

scRNA-seq libraries were generated using the 10x Chromium platform 52 library preparation kits 
(10x Genomics) according to the manufacturer9s recommendations and targeting 5000 to 
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10,000 cells per sample. From 12 donors, multiple tissue samples were processed and libraries 
were generated from separate biopsies taken from the same lung to account for regional 
heterogeneity (Supplementary Table 1). Next-generation sequencing was carried out on an 
Illumina NovaSeq 6000 or HiSeq 4000. The resulting sequence data were filtered to retain 
reads with a read quality >3, and CellRanger Count v3.0.2 (10x Genomics) was used to align 
reads onto the GRCh38 reference genome. 

Data integration, clustering, and cell type annotation 

scRNA-seq data were processed and analyzed using Seurat v4.10 CellRanger Count outputs 
were imported to create a Seurat object for each sample. The sample-specific objects were 
merged and the proportions of reads arising from mitochondrial genes were calculated for each 
sample. The merged object was filtered to retain samples with more than 1,000 identified 
features or less than 25% of mitochondrial reads. 
 
Samples sequenced across 24 batches were integrated using reciprocal principal component 
analysis (rPCA) as follows: The merged object was split by flowcell and the count data in each 
batch-specific object was normalized. Variable features were identified for each object, and 
integration features across objects were selected with SelectIntegrationFeatures(). Data in each 
batch-specific object was scaled and underwent PCA dimensionality reduction using 2,000 
variable features. rPCA integration was carried out using 3,000 integration anchors and four 
reference batches (6, 12, 18, 24). PCA dimensionality reduction on the integrated data was 
performed using 3,000 variable features. To determine the optimal number of PCs to identify 
neighbors and to construct the UMAP, we determined the difference between the variation 
explained by each PC and the subsequent PC and identified the last point where the 
percentage change was more than 0.1%. A Shared Nearest Neighbor graph was constructed 
with k=20, and clusters of cells were identified using the modularity optimization-based 
clustering algorithm41 implemented in Seurat v4. 
 
The resulting clusters were divided into four major cell subgroups based on marker gene 
expression: PTPRC+ for immune cells, EPCAM+ for epithelial cells, PECAM1+/PTPRC2 for 
endothelial cells, and PTPRC2/EPCAM2/PECAM12 for mesenchymal cells. Each subgroup-
specific object underwent the same dimensionality reduction and clustering approach as 
described above. Clusters containing doublets were removed by identifying clusters of cells that 
expressed markers specific to multiple cell lineages. After doublet removal and reclustering, the 
subgroup-specific objects were further annotated for specific cell types based on known marker 
genes (Supplementary Table 2). 

Differential gene expression and cell type proportion testing 

We tested for differences in cell type abundances between groups using the propeller.anova() 
function of R/speckle.42 For differential gene expression, we used the R/presto implementation 
of the Wilcoxon rank sum test (wilcoxauc).43 For overlapping with disease-interaction eGenes, a 
relaxed significance threshold of adj. p <0.1 was employed. 
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Low-pass Whole Genome Sequencing, genotyping, and imputation 

Flash-frozen tissue in DNA/RNA Shield was homogenized via a bullet blender. Genomic DNA 
was extracted using Zymo Quick DNA/RNA microprep plus kit. Library preparation and low-pass 
Whole Genome Sequencing were carried out at TGen or by Gencove (Supplementary Table 

7), Inc. At TGen, libraries were prepared using PCR-free Watchmaker kits (Watchmaker 
Genomics) with 200 ng input. Genomes were sequenced on NovaSeq at low coverage (typically 
0.431x). The resulting sequence data were processed and imputed using Gencove9s imputation 
platform. 

Pseudo-bulk cell type eQTL mapping 

For eQTL mapping, cells with >20% of reads mapping to the mitochondrial genes were removed 
(466,989 cells remain). Mapping was only performed on cell types with at least 40 donors with 
at least 5 cells of that cell type (38 cell types meet these criteria). Donor VUILD65 was removed 
due to inconsistencies in metadata suggesting mislabeling. Mitochondrial genes, genes 
encoding ribosomal proteins (downloaded from HGNC: https://www.genenames.org/cgi-
bin/genegroup/download?id=1054&type=branch), genes expressed in fewer than 10% of cells in 
the study, and genes with a mean count across all cells < 0.1 were excluded, resulting in 6,995 
genes for eQTL mapping. 
 
Pseudobulk cis-eQTL mapping was performed following guidelines from Cuomo, Alvari, Azodi et 
al. 202111. For each cell type, raw counts were normalized and log2 transformed using scran44 
and mean aggregated to get a single value for each gene for each donor for each cell type. 
Donors with <5 cells for a cell type were excluded from eQTL mapping for that cell type and only 
cell types with at least 40 donors matching this criteria were included (max donors=113). 
Biallelic, autosomal SNPs were filtered to include SNPs with a minor allele frequency > 5%, 
Hardy-Weinberg equilibrium p>1×10-6, and further pruned to remove highly correlated SNPs (--
indep-pairwise 250 50 0.9) using plink2,45 resulting in ~1.9 million SNPs. We tested for 
associations for SNPs within 1Gb up and downstream of the gene body.  
 
Linear mixed models were used to map cis-eQTL using the LIMIX_qtl framework 
(https://github.com/single-cell-genetics/LIMIX_qtl).46 Expression levels for each gene were 
quantile-normalized to fit a normal distribution (--gaussianize_method). To control for unwanted 
technical effects, the first 20 cell type expression principal components (PCs) were regressed 
out before model fitting (--regress_covariates). To account for variance due to population 
structure, we included the identity-by-descent (IBD) relationship matrix generated by applying 
plink2 --make-rel on the filtered SNP data as a random effect. To account for differences in cell 
type abundance across donors, we included the number of cells aggregated (1/nCells) as a 
second random effect, using the random effect weighting approach described by Cuomo, Alvari, 
Azodi, et al11. Random effects were marginalized from the model using the low-rank 
optimization method (--low_rank_random_effect) described by Cuomo et al.47 
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Joint cell type eQTL analysis  

Joint analysis of the LIMIX estimated effect sizes and their corresponding standard errors 
across all 38 cell types was performed using multivariate adaptive shrinkage in R (mashr v0.2 
12) following the approach outlined in the 8eQTL analysis outline9 vignette from the authors 
(https://stephenslab.github.io/mashr/articles/eQTL_outline.html). In this approach, a weighted 
combination of learned and canonical covariance matrices that describe patterns of eQTL 
sparsity and sharing across cell types is used as a prior for generating adjusted summary 
statistics. The data-driven covariance matrices were estimated from a subset of strong 
associations with a local false sign rate < 0.1 in at least one cell type (n=487), calculated using 
adaptive shrinkage in R (ashr v2.248). The default canonical covariance matrices were used, 
representing equal effect sharing across cell types, the top 5 PCs from the strong associations, 
and extreme deconvolution matrices obtained from those PCs. The model was fit to a random 
subset of 10,000 SNP-gene associations and then applied to all associations tested.  

Assessing significance, sharing, and eQTL classification 

The local false sign rate (lfsr) calculated by mashr was used to assess significance. To further 
reduce the impact of differential power on assessing sharing of eQTL across cell types, if an 
eQTL was significant in one cell type (lfsr f0.05), then it would be considered significant in other 
cell types at a less stringent threshold (lfsr f0.1). An eQTL was considered shared in a pairwise 
comparison between two cell types if the eQTL was significant in both cell types and the 
estimated effect size was within a factor of 0.5. An eQTL was classified as global if it was 
significant in at least 36 of the 38 cell types (31 of 33 cell types for interaction eQTL). This two-
cell-type buffer was included to reduce the impact of low-powered cell types on our 
categorization. eQTL that were significant in only one cell type were classified as unique, and 
eQTL significant in 2-36 cell types (2-31 for interaction eQTL) were considered multi-cell type 
eQTL. 
 
To simplify plotting of top-eQTL, a pruning step is included, where for each gene, if there is a 
single top-eQTL, that eQTL is retained. If there are two top-eQTL, the Euclidean distance 
between the centered absolute values of the estimated effect sizes across cell types for the two 
eQTL are compared. If the distance is greater than the set threshold (dist=0.2), both are 
retained. If the distance is less than the threshold then the one that is significant in more cell 
types is retained. Finally, if there are more than three top-eQTL, the pairwise Euclidean distance 
between the centered absolute values of the estimated effect sizes for each pair of top-eQTL is 
calculated. If all pairwise distances are above the threshold, all are retained. Otherwise, 
hierarchical clustering is performed and the tree is cut using cutree at k between 2 and 5 that 
maximizes the Silhouette width. For each cluster, the top-eQTL that is significant in most cell 
types is retained.  

Disease-interaction cell type-eQTL mapping 

To test for disease-interaction eQTL effects, cell types were required to have at least 10 control 
and 10 ILD donors with at least 5 cells of that cell type, resulting in KRT5-/KRT17+, pDC, cDC1, 
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alveolar FB, and mesothelial cell types being excluded from the interaction eQTL analysis. 
SNPs were further filtered to remove those with a MAF < 5% in either the control or ILD donor 
populations (1.77 million SNPs remained). Interaction effects were tested using the 
run_interaction_QTL_analysis from LIMIX_qtl. Random effects were handled as described 
above for the eQTL mapping analysis. In the interaction term with SNP effect, we included the 
binary disease status (ILD vs. unaffected). Fix effects (to 20 PCs) were included, but not 
regressed out before modeling, as disease status was strongly correlated with some PCs. The 
results from this analysis were processed using mashr, with significance calling, as described 
above for the eQTL analysis. For each cell type, we further pruned the int-eQTL to retain 
associations where the observed eSNP MAF for ILD and unaffected donors for the given cell 
type was >0.05. 

Colocalization with GWAS and GTEx 

Colocalization analysis was carried out between the cell type eQTL, GTEx lung eQTL, and three 
IPF genome-wide association studies (GWAS). UK Biobank (UKBB)21 and East Asian22 IPF 
GWAS summary statistics were downloaded from GWAS Catalog.23 The discovery samples of 
these studies comprised 1,369 IPF cases, 14,103 COPD cases and 435,866 controls, and 
1,046 East Asian ancestry cases and 176,974 controls, respectively. Summary statistics from 
an IPF GWAS meta-analysis9 leveraging data from three studies49351 were downloaded after 
gaining access through submitting a request (https://github.com/genomicsITER/PFgenetics). 
The meta-analysis comprised 2,668 European ancestry IPF cases and 8,591 controls. 
 
Additionally, GWAS on adult and child-onset asthma25 (26,582 adult European ancestry cases, 
13,962 child cases, 300,671 controls) were downloaded from GWAS Catalog and included for 
comparison. For comparative analyses with bulk-eQTL, GTEx lung, whole blood, and brain 
cortex eQTL summary statistics were downloaded from the GTEx Google Cloud bucket 
(https://console.cloud.google.com/storage/browser/gtex-resources). 
 
Bayesian colocalization analysis was performed using R/coloc v5.52 For the pseudo-bulk cell 
type-eQTL, mashr posteriors were used in place of nominal eQTL summary statistics. 2,092 
genes, including the multi-cell type eQTL presented in Fig. 4 and 103 IPF GWAS variant 
flanking genes, were selected for the colocalization analysis, and for each gene, colocalization 
testing was carried out between datasets that shared g100 variable (MAF >0, <1) SNPs. 
Significantly colocalized loci were selected based on the posterior probability for a single shared 
causal variant g0.6. 

Enrichment testing 

We tested for the enrichment of the clusters of eQTL in Fig. 4 among Gene Ontology terms 
using R/TopGO v2.46.0.53 All genes included in the eQTL analysis were used as a background 
set. A p-value threshold of 0.01 was used to select significant terms. For the GO 
overrepresentation testing of the GTEx colocalizing genes, we used R/gprofiler254 and p<0.05. 
Both are implementations of Fisher9s test. 
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We used Fisher9s exact test to test for the enrichment of the various classes of sc-eQTL (all 
eQTL, globally shared, multi-state, unique to a single cell type, k1-k7 in Fig. 4) among IPF 
GWAS risk variants. From the 1,617,891 SNPs tested for in the eQTL analysis and included in 
the IPF GWAS meta-analysis, a set of 473 GWAS variants was selected with a relaxed 
genome-wide nominal p-value threshold of 1×10-6. A null distribution of non-significant eQTL 
was generated using the default rejection method of R/nullranges55 to match the observed 
distribution of absolute distances to TSS among the significant eQTL. 
 
To test whether the various classes of regulatory variants detected in the sc-eQTL analyses 
disrupt the binding of known transcription factors (TFs), we used HOMER56 to analyze eQTL 
positions for the enrichment of TF binding site motifs. findMotifsGenome.pl with the default 
region size of 200bp was used to detect enriched motifs. In each analysis, a null set of non-
significant eQTL with a matched distribution of distances to the transcription start site (TSS) was 
used as a background. In the TFBS enrichment analysis of the int-eQTL, the non-interaction sc-
eQTL were used as a background set. A q-value threshold of 0.05 was used to select significant 
motifs. 

Data and code availability 

Raw and processed 10x Genomics data, Seurat objects, mean-aggregated expression 
matrices, and genome-wide LIMIX and mashr eQTL statistics can be found on GEO with the 
accession number GSE227136. Genotype data are being made available on dbGaP. Custom 
scripts to reproduce the result presented here are available on GitHub at 
https://github.com/tgen/banovichlab/tree/master/ILD_eQTL. 
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