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A key role of sensory processing is integrating information

across space. Neuronal responses in the visual system are influ-

enced by both local features in the receptive field center and con-

textual information from the surround. While center-surround

interactions have been extensively studied using simple stimuli

like gratings, investigating these interactions with more com-

plex, ecologically-relevant stimuli is challenging due to the high

dimensionality of the stimulus space. We used large-scale neu-

ronal recordings in mouse primary visual cortex to train con-

volutional neural network (CNN) models that accurately pre-

dicted center-surround interactions for natural stimuli. These

models enabled us to synthesize surround stimuli that strongly

suppressed or enhanced neuronal responses to the optimal cen-

ter stimulus, as confirmed by in vivo experiments. In con-

trast to the common notion that congruent center and surround

stimuli are suppressive, we found that excitatory surrounds

appeared to complete spatial patterns in the center, while in-

hibitory surrounds disrupted them. We quantified this effect

by demonstrating that CNN-optimized excitatory surround im-

ages have strong similarity in neuronal response space with sur-

round images generated by extrapolating the statistical prop-

erties of the center, and with patches of natural scenes, which

are known to exhibit high spatial correlations. Our findings

cannot be explained by theories like redundancy reduction or

predictive coding previously linked to contextual modulation

in visual cortex. Instead, we demonstrated that a hierarchi-

cal probabilistic model incorporating Bayesian inference, and

modulating neuronal responses based on prior knowledge of

natural scene statistics, can explain our empirical results. We

replicated these center-surround effects in the multi-area func-

tional connectomics MICrONS dataset using natural movies as

visual stimuli, which opens the way towards understanding cir-

cuit level mechanism, such as the contributions of lateral and

feedback recurrent connections. Our data-driven modeling ap-

proach provides a new understanding of the role of contextual

interactions in sensory processing and can be adapted across

brain areas, sensory modalities, and species.

Correspondence: astolias@bcm.edu, katrin.franke@bcm.edu

Introduction

Across animal species, sensory information is processed in a

context-dependent manner and, therefore, the perception of

a specific stimulus varies with context. This mechanism al-

lows to flexibly adjust sensory processing to changing envi-

ronments and tasks. In vision, context is provided by global

aspects of the visual scene. For example, reliable object de-

tection not only depends on integrating local object features

like contours or textures, but also on the visual scene sur-

rounding the object (Biederman et al., 1982; Hock et al.,

1974). Physiologically, this is reflected by the fact that re-

sponses of visual neurons to stimuli presented in their recep-

tive field (RF) center (i.e. classical RF) — the region of space

in which visual stimuli evoke responses — are modulated by

stimuli presented in their RF surround (i.e. extra-classical

RF). This center-surround contextual modulation has been

described across several processing levels of the visual sys-

tem, from the retina to visual cortex (Chiao and Masland,

2003; Goldin et al., 2022; Alitto and Usrey, 2008; Knierim

and Van Essen, 1992; Keller et al., 2020b; Jones et al., 2012;

Rossi et al., 2001; Vinje and Gallant, 2000), and is mediated

by both lateral interactions and feedback from higher visual

areas (Nassi et al., 2013; Nurminen et al., 2018; Keller et al.,

2020a; Shen et al., 2022; Adesnik et al., 2012).

How context modulates visual activity has so far largely been

studied in non-ecological settings with well-interpretable

parametric stimuli, like oriented gratings. Studies in non-

human primates, and more recently mice (Keller et al., 2020a;

Self et al., 2014; Samonds et al., 2017; Keller et al., 2020b),

have provided important insights into center-surround mod-

ulations in the primary visual cortex (V1). The most com-

monly observed center-surround modulation is suppression,

where neuronal responses to stimuli presented in the center

RF decrease in the presence of certain surrounding stimuli

(Knierim and Van Essen, 1992; Levitt and Lund, 1997; Ka-

padia et al., 1999; Sceniak et al., 1999; Cavanaugh et al.,

2002b,c; Nassi et al., 2013; Nurminen et al., 2018). The

strength of the suppression tends to be the highest when the

surrounding elements have the same orientation as the stimu-

lus within the center RF (Knierim and Van Essen, 1992; Ca-

vanaugh et al., 2002c; Self et al., 2014). Surround excitation

is less commonly observed and has largely been reported in

cases where the stimulus in the center RF is not salient, such

as low contrast (Levitt and Lund, 1997; Polat et al., 1998;

Keller et al., 2020b).

In general, contextual modulation of visual responses de-

pends on a variety of stimulus features such as contrast and
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size of the grating presented in the RF center (Levitt and

Lund, 1997; Kapadia et al., 1999; Sceniak et al., 1999; Polat

et al., 1998; Cavanaugh et al., 2002b), the difference in ori-

entation between center and surround stimuli (Knierim and

Van Essen, 1992; Cavanaugh et al., 2002c), and the spa-

tial resolution of the surround pattern (Li et al., 2006). Al-

though these stimulus features interact with each other (Ka-

padia et al., 1999), they are usually studied independently

due to limited experimental time. Moreover, parametric stim-

uli such as gratings likely drive visual neurons sub-optimally.

This is because many visual neurons — like in mouse V1

(Walker et al., 2019; Franke et al., 2022; Ustyuzhaninov et al.,

2022) and primate higher visual areas (Pasupathy and Con-

nor, 2001; Bashivan et al., 2019) — exhibit strong selectivity

to complex stimuli like corners, checkerboards or textures.

The dependence of contextual modulation on different stim-

ulus features and the strong neuronal preference for complex

visual stimuli calls for a more systematic and data-driven

way to characterize center-surround interactions using stim-

uli with ecologically relevant statistics. So far, this has been

challenging due to the high dimensionality of natural stimuli

and the difficulty in interpreting neuronal responses to a natu-

ral input. Here, we overcome these challenges and systemat-

ically study center-surround modulations in mouse V1 using

naturalistic stimuli by performing inception loops, a closed-

loop paradigm circling between large-scale neuronal record-

ings, convolutional neural network (CNN) models that accu-

rately predict neuronal responses to arbitrary natural stimuli,

in silico optimization of non-parametric center and surround

images and in vivo verification (Walker et al., 2019; Franke

et al., 2022; Bashivan et al., 2019).

Using our data-driven CNN model, we synthesized non-

parametric surround images that maximally excite and inhibit

the activity of mouse V1 neurons to their optimal visual stim-

ulus in the RF center and subsequently verified their accuracy

in vivo. Synthesized surround images contained complex fea-

tures also present in natural scenes, but were more effective in

modulating neuronal activity than natural surround images.

Interestingly, we found that the excitatory surround stim-

uli appeared congruent, completing the spatial pattern of the

center stimulus, whereas the inhibiting surround stimuli ap-

peared incongruent. We confirmed this qualitative effect by

showing that when we extrapolated the natural image statis-

tics of the center into the surround, the resulting surround

images resembled model-derived optimized excitatory sur-

rounds. In addition, excitatory surround images, compared

to inhibitory ones, exhibited a larger similarity in neuronal

response space to natural scenes, which are known to be spa-

tially correlated and congruent (Geisler et al., 2001; Sigman

et al., 2001). Finally, we showed that excitation and inhi-

bition of visual activity by congruent and incongruent sur-

round stimuli, respectively, emerge within a simple hierar-

chical generative model that encodes an important aspect of

natural scene statistics, which is long-range spatial correla-

tions, thereby supporting a new functional role of contextual

modulation in sensory processing. Our results regarding con-

textual modulation are reproduced in a large-scale functional

connetomics dataset spanning multiple areas of mouse visual

cortex (MICrONS Consortium et al., 2021), which opens the

way to dissect its circuit mechanism, including delineating

the role of lateral and feedback recurrent connections.

Our work is the first data-driven approach to study contex-

tual interactions in the mouse visual system. It can be easily

adapted to other visual areas, animal species and sensory sys-

tems, providing the unique possibility to systematically study

how context shapes neuronal tuning.

Results

Deep neural network model accurately predicts center-sur-

round modulation of visual responses in mouse primary vi-

sual cortex We combined large-scale population imaging

and neural predictive modeling to systematically characterize

contextual modulation in mouse primary visual cortex (V1).

The experimental and modeling setup was adapted based on

(Walker et al., 2019). Specifically, we used two-photon imag-

ing to record the population calcium activity in L2/3 of V1

(630x630 µm, 10 planes, 7.97 volumes/s) in awake, head-

fixed mice positioned on a treadmill, while presenting the

animal with natural images (Fig. 1a,b). To capture center-

surround interactions, we presented full-field natural images,

which activate both center (classical RF) and surround (extra-

classical RF) of V1 neurons, and local masked images that

predominantly drive the center of the recorded neurons. Nat-

ural images were masked by applying an aperture of 48◦ vi-

sual angle in diameter in the center of the image. For each

functional recording, the center RF across all recorded neu-

rons – estimated as minimal response field (MRF) using a

sparse noise stimulus (Jones and Palmer, 1987) – was cen-

tered on the monitor (Fig. 1c). This ensured that the RF

center of the majority of neurons was within the area of

the presented masked images. Then, we used the recorded

neuronal activity in response to full-field and masked nat-

ural images to train a convolutional neural network (CNN)

model to predict neuronal responses as a function of visual

input. The model also considered eye movements and the

modulatory gain effect of the animal’s behavior on neuronal

responses (Niell and Stryker, 2010), by using the recorded

pupil and running speed traces as input to a shifter and mod-

ulator network (Fig. 1d; Walker et al., 2019). An example

model (architecture shown in Fig. 1e) that was trained on

7,741 neurons and 4,182 trials (i.e. images) yielded a nor-

malized correlation between model predictions and mean ob-

served responses of 0.73±0.20 (mean ± standard deviation;

Fig. 1f). This is comparable to state-of-the-art models of

mouse V1 (Franke et al., 2022; Willeke et al., 2022; Lurz

et al., 2021). Importantly, masking half of the training images

improved the model’s prediction of contextual modulation

(Fig. 1g): The prediction of how neuronal responses differ

between a masked image and its full-field counterpart signif-

icantly increased when using masked natural images during

model training (for statistics, see figure legend). Together,

this shows that our deep neural network approach accurately

captures center-surround modulation of visual responses in

mouse primary visual cortex, allowing us to study contextual
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Fig. 1. Deep neural network approach captures center-surround modulation of visual responses in mouse primary visual cortex. a, Schematic of experimental

setup: Awake, head-fixed mice on a treadmill were presented with full-field and masked natural images from the ImageNet database, while recording the population calcium

activity in V1 using two-photon imaging. b, Example recording field. GCaMP6s expression through cranial window, with the borders of different visual areas indicated in

white. Area borders were identified based on the gradient in the retinotopy (Garrett et al., 2014). The recording site was chosen to be in the center of V1, mostly activated

by the center region of the monitor. The right depicts a stack of imaging fields across V1 depths (10 fields, 5µstep in z, 630x630µ, 7.97 volumes/s). c, Top shows heat

map of aggregated population RF of one experiment, obtained using a sparse noise stimulus. The dotted line indicates the aperture of masked natural images. The bottom

shows RF contour plots of n=4 experiments and mice. d, Raster plot of neuronal responses of 100 example cells to natural images across 6 trials. Trial condition (full-field

vs. masked) indicated below each trial. Each image was presented for 0.5s, indicated by the shaded blocks. e, Schematic of model architecture. The network consists of a

convolutional core, a readout, a shifter network accounting for eye movements by predicting a gaze shift, and a modulator predicting a gain attributed to behavior state of the

animal. Model performance was evaluated by comparing predicted responses to a held-out test set to observed responses. f, Distribution of normalized correlation between

predicted and observed responses averaged over repeats (maximal predictable variability) for an example model trained on data from n=7,741 neurons and n=4,182 trials.

Vertical lines indicate mean performance of other animals. g, Accuracy of model predictions of surround modulation for only full-field versus full-field and masked natural

images. Each test image was presented in both full-field and masked, allowing us to compute a surround modulation index per image per neuron. The modulation indices

across images were averaged per neuron. Left and right shows predicted vs. observed surround modulation indices for a model trained on only full-field images and full-field

and masked images, respectively. The model trained on both full-field and cropped images predicted surround modulation significantly better than the model trained on only

full-field images (p-value<0.001). The total number of training images was the same, and the data was collected from the same animal in the same session.

modulation in the setting of complex and naturalistic visual

stimuli.

CNN model identifies non-parametric excitatory and in-

hibitory surround images of mouse V1 neurons We used

the trained CNN model as a “digital twin” of the mouse vi-

sual cortex to identify non-parametric surround images that

greatly modulate neuronal activity. For that, we focused on

the most exciting and most inhibiting surround image, which

enhances and reduces the response of a single neuron to its

optimal stimulus in the center, respectively. The rationale
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Fig. 2. Modeling approach accurately predicts non-parametric excitatory and inhibitory surround images of single neurons in mouse V1. a, Schematic of the

optimization of surround images. The initial image is Gaussian noise with the center replaced by the MEI. During optimization, the gradient only flows in the region where

the inverse MEI mask is non-zero, leaving the center unchanged. We optimized for the most exciting or the most inhibiting image in the surround. After 1,000 iterations, we

reached the final image of the excitatory or the inhibitory surround. b, Panel shows MEI, excitatory surround with MEI, the difference between the two, inhibitory surround

with MEI, and the difference between the two for 5 example neurons. Since the gradient was set to zero during optimization for the area within the MEI mask, the center

remained the same as the MEI. c, Model predicted responses to the excitatory (left) and inhibitory (right) surround images (y-axis), compared to the predicted responses

to the MEIs (x-axis). Responses are depicted in arbitrary units, corresponding to the output of the model. d, Observed responses to the excitatory (left) and inhibitory

(right) surround (y-axis), compared to the observed responses to the MEIs (x-axis). For each neuron, responses are normalized by the standard deviation of responses to

all images. Across the population, the modulation was significant for both excitatory (p-value=1.15 × 10−75, Wilcoxon signed rank test) and inhibitory surround images

(p-value=8.79 × 10−71). Across stimulus repetitions, 28.4% neurons responded significantly stronger to the excitatory surround image than to the MEI (n=6 animals, 960

cells, two-sided t-test, p-value<0.05) while 2.6% responded weaker. 55.1% neurons responded significantly weaker to the inhibitory surround image than to the MEI while

0.4% responded stronger (n=3 animals, 510 cells). Solid line indicates the regression line across the population, and dotted gray line indicates the diagonal. e, Diameters of

RFs estimated using sparse noise, the MEIs, and the MEIs with excitatory and inhibitory surround. The mean of center RF (gray distribution) sizes across all neurons (n=4,

419 cells) is 23.4 degrees ± 0.34 (mean ± s.e.m.). The mean of the MEI (green distribution) size across all neurons (n=4, 434 cells) is 31.3 degrees ± 0.20. The size of the

MEI is larger than the center RF. The sizes of both the excitatory (red distribution) and inhibitory (blue distribution) surround are much larger than the center RF, measuring

51.4 ± 0.23 and 46.1 ± 0.23 (mean ± s.e.m.) respectively (n=4, 434 cells).

behind this approach was to identify surround images that

maximally modulate the encoding of the neuron’s preferred

visual feature. To identify the optimal center stimulus per

neuron, we first optimized the most exciting input (MEI) us-

ing gradient ascent as previously described (Walker et al.,

2019; Franke et al., 2022). In the following, we use the MEI

as approximation for the RF center and consider all visual

space beyond the MEI as RF surround. To generate excita-

tory and inhibitory surround images, we used a second op-

timization step that started with the MEI and initial Gaus-

sian noise in the surround and during optimization, only pix-

els in the surrounding area of the MEI were updated (Fig.

2a). Thereby, the center (i.e. MEI) of the surround images

remained unchanged while redistributing the contrast in the

surround (Suppl. Fig. 1a and b). This yielded complex sur-

round images of V1 neurons (Fig. 2b), which were predicted

by the model to either enhance or reduce visual responses to

optimal stimuli in the center (Fig. 2c). Interestingly, the ex-

citatory surround images were predicted to be less effective

in modulating the neurons’ activity than the inhibitory ones

(Fig. 2c)..

To verify the efficacy of the synthesized surround images

in vivo, we performed inception loop experiments (Walker

et al., 2019; Bashivan et al., 2019): After model training and

stimulus optimization, we presented MEIs and the respec-

tive surrounds back to the same mouse on the next day while

recording from the same neurons, thereby testing whether

they effectively modulate neuronal responses as predicted by

the model. We found that the in silico predictions (Fig. 2c)

matched the in vivo results (Fig. 2d, Suppl. Fig. 2): The

responses of the neuronal population significantly increased

and decreased by the synthesized excitatory and inhibitory
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surround images, respectively, compared to presenting the

MEI alone. While 55.1% of the neurons verified in vivo dur-

ing inception loop experiments were significantly inhibited

by their inhibitory surround images across stimulus repeti-

tions, only 28.4% were significantly facilitated by their ex-

citatory surround images, in line with the lower modulation

strength of excitatory compared to inhibitory surround im-

ages predicted by the model. Critically, less than 3% were

significantly modulated in the direction opposite to what the

model predicted. These results from the inception loop ex-

periments demonstrate the accuracy of our CNN model in

predicting non-parametric modulatory surround images of

mouse V1 neurons. Notably, we also reproduced the de-

scribed center-surround effects in the large-scale multi-area

functional connectomics MICrONS dataset (MICrONS Con-

sortium et al., 2021) that used natural movies instead of static

images as visual stimuli (Suppl. Fig. 3). This opens the way

to dissect circuit mechanisms underlying contextual modula-

tion in mouse visual cortex, including delineating the role of

lateral and feedback recurrent connections.

We verified that the observed response modulations indeed

originated from activating the surround (i.e. extra-classical

RF) of the neurons. First, we demonstrated that the synthe-

sized surround images extend beyond the center (i.e. classi-

cal RF) of the neurons (Fig. 2e). Specifically, we estimated

each neuron’s center RF as the minimal response field (MRF)

using a sparse noise stimulus (Jones and Palmer, 1987) and

compared its size to the size of the MEI and the excitatory

and inhibitory surround, respectively. The MRF was, on av-

erage, smaller than the MEI, suggesting that the MEI itself

corresponds to an overestimation of the RF center. Impor-

tantly, both the excitatory and inhibitory surround were much

larger than the MRF, indicating that the modulatory effect on

neuronal activity we observed by the surround images was

indeed elicited by activating the surround component of V1

RFs. In line with this, in additional control experiments we

show that the response modulation persisted in silico and in

vivo in a "far" surround region not directly adjacent to the

MEI (Suppl. Fig. 4). In addition, we showed that increasing

the contrast in the center was more effective in driving the

neurons than adding the same amount of contrast in the sur-

round of the image (Suppl. Fig. 5), consistent with the idea

that the enhancement in neuronal response from the surround

is modulatory (Allman et al., 1985; Cavanaugh et al., 2002a;

Jones et al., 2001; Knierim and Van Essen, 1992). Together,

these results demonstrate that the observed response modula-

tion by model-derived surround images originates from acti-

vating the surround RF of V1 neurons.

Surround images are ecologically relevant and correspond

to the optimal modulating stimulus We next asked the

question whether the center-surround modulation we ob-

served with our non-parametric images exhibits ecological

relevance, meaning that a similar contextual modulation of

V1 neuronal activity can be observed with surround images

present in ecological images. To address this, we compared

the modulation elicited by model-derived surround images to

the modulation by natural images. We focused this analy-

sis on natural image surrounds that contain the neuron’s pre-

ferred center feature, similar to the optimized surround im-

ages that have the MEI in the center. To obtain surrounds

of natural images, we therefore screened a new set of 5,000

masked natural images and identified the most exciting nat-

ural images per neuron (>80 % activation compared to the

MEI activation), matching the size, location and contrast of

its MEI (Fig. 3a). We then replaced the center of these im-

ages by the MEI, and masked the images to match the av-

erage size and contrast of excitatory and inhibitory surround

images. For each neuron, this yielded a set of images with

the same optimal stimulus in the center (i.e. the MEI), but

diverse natural surrounds. To obtain the modulation strength

of these natural surrounds, we presented the natural surround

images to the model and compared the predicted activations

to the activation of the MEI alone.

We found that there are indeed natural surrounds that enhance

and reduce V1 model responses to the preferred visual fea-

ture, similar to our synthesized surround images (Fig. 3b).

We tested this in silico prediction by performing inception

loop experiments with the synthesized surround images and

the most and least activating natural surrounds per neuron,

as predicted by the model. Across the neuronal population,

the most activating natural surrounds significantly enhanced

V1 responses to their optimal center stimulus, while the least

activating natural surround resulted in reduced activity (Fig.

3c). In addition, across the population, the synthesized in-

hibitory surround images were more effective in modulat-

ing V1 neuronal activity than the least activating natural sur-

rounds (Fig. 3d). In contrast, the modulation strength of the

most activating natural surround images was comparable to

the synthesized excitatory surrounds (Fig. 3d). Together,

these findings strongly suggest that the model-derived sur-

round images exhibit ecological relevance, as they modulate

V1 responses to their preferred center feature in a similar way

as surround patches of natural images.

Completion and disruption of center features character-

ize excitatory and inhibitory surround images Center-

surround modulation of visual activity corresponds to a

neuronal implementation for integrating visual information

across space, thereby providing context for visual process-

ing. So far, little is known about the natural image statistics

that drive contextual modulation in vision, due to the lack of

tools that allow unbiased and systematic testing of such high-

dimensional visual inputs. Here, we used our data-driven

model and the optimized surround images to systematically

investigate the rules that determine contextual excitation ver-

sus inhibition in a naturalistic setting.

We observed that the excitatory surround images appeared

more congruent with respect to the MEI in the center com-

pared to the inhibitory surround images (Fig. 4a). Spatial

patterns in the MEI, such as orientation, were mostly main-

tained and completed by the excitatory surround but often

disrupted and opposed by the inhibitory surround. Therefore,

we hypothesized that the excitatory and inhibitory surround

can be characterized by pattern completion and disruption,

respectively, with respect to the preferred feature in the cen-
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Fig. 3. Surround images correspond to the optimal modulating stimulus and are ecologically relevant. a, Schematic illustrating how we obtained natural surround

images for one example neuron. b, Optimized excitatory and inhibitory surround images, most exciting and inhibiting natural surrounds and MEI of two example neurons. The

predicted activation score is indicated in the bottom left of the images. c, Observed responses to the MEI with natural surround images compared to the MEI alone. Across

the population, the least activating natural surround images suppressed neuronal response (p-value=1.84 × 10−8, Wilcoxon signed rank test), and the most activating

natural surround images enhanced neuronal response (p-value=2.44 × 10−9, Wilcoxon signed rank test). Across stimulus repetitions, 23% responded significantly stronger

to the most activating natural images than to the MEI (n=3 animals, 226 cells, two-sided t-test, p-value<0.05) and 25% of the neurons responded significantly weaker to

the least activating natural surround images than to the MEI. Solid line indicates the regression line across the population, and dotted gray line indicates the diagonal.

d, Observed responses to the MEI with natural surround images compared to the MEI with excitatory/inhibitory surround. Across the population, the MEI with inhibitory

surround suppressed neuronal response more than the MEI with the least activating natural surround (p-value=1.98 × 10−20, Wilcoxon signed rank test). The MEI with

excitatory surround enhanced neuronal response more than the MEI with most activating natural surround (p-value=1.05×10−6, Wilcoxon signed rank test). Across stimulus

repetitions, 37% of neurons responded significantly weaker to the MEI with inhibitory surround compared to the MEI with the least activating natural surround and 19% of the

neurons responded significantly stronger to the MEI with excitatory surround compared to the MEI with the most activating natural surround (n=3 animals, 226 cells, two-sided

t-test, p-value<0.05). Solid line indicates the regression line across the population, and dotted gray line indicates the diagonal.

ter. We tested these predictions by performing a set of in

silico experiments. First, we used the MEI in the RF center

to extrapolate its spatial patterns into the surround based on a

bivariate spline approximation, thereby creating a congruent

surround that completes patterns present in the center (Fig.

4b). For most neurons, the extrapolated surround perceptu-

ally looked more similar to the excitatory than the inhibitory

surround (Suppl. Fig. 6). To quantify the perceptual simi-

larity of optimized and extrapolated surrounds, we computed

the "representational similarity" for a given pair of images

in the neuronal response space. We chose to use representa-

tional similarity instead of pixel-wise correlation to quantify

similarity between images because (i) the representational

space more closely mimics perceptual similarity (Kriegesko-

rte et al., 2008) and (ii) this process gets rid of irrelevant im-

age features, such as high spatial frequency noise. Specifi-

cally, we presented the optimized and extrapolated surround

images to the trained CNN model, obtained a vector of neu-

ronal responses per image and estimated the cosine similarity

between the response vectors of an image pair (i.e. extrapo-

lated and excitatory surround; Fig. 4b). We found that the

extrapolated surround images that complete the spatial struc-

ture of the MEI exhibit a high representational similarity to

the MEI with excitatory surround images, while the similar-

ity to the MEI with inhibitory surrounds was much weaker

(Fig. 4c). This suggests that excitatory surround images of

V1 neurons are characterized by pattern completion of the

optimal center stimulus.

We further tested this hypothesis by quantifying the statis-

tics of our model-derived surround images. Specifically, we

took advantage of the well-described fact that natural im-

ages are correlated across space and often contain congruent

structures that form object contours and continuous patterns

(Geisler et al., 2001; Sigman et al., 2001). Therefore, excita-

tory surround images should share statistical properties with

and be perceptually similar to the surrounds of natural image

patches, more so than inhibitory surround images. We com-

pared the spatial correlation structure of optimized MEI with

surround images to the one of natural surrounds that contain

the neuron’s preferred image feature in the center (>80% ac-
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Fig. 4. Pattern completion and disruption characterize excitatory and inhibitory surround images. a, MEI with excitatory and inhibitory surround of four example

neurons, illustrating that excitatory and inhibitory surround images complete and disrupt, respectively, spatial patterns of the MEI. b, MEI of example neuron, with extrapolated

and excitatory and inhibitory surround images. Right shows a schematic illustrating how we compared the similarity of surround images using representational similarity.

In brief, each surround image was presented to the trained CNN model to obtain a response vector. The response vectors for different images were than compared using

Pearson’s correlation coefficient. c, Representational similarity (as Pearson’s correlation coefficient) of extrapolated surround images to excitatory and inhibitory surround

(p-value=2.26×10−36, two-sided Wilcoxon signed rank test, n=3 animals, 219 neurons). d, Left shows auto-correlation function of an example natural surround image, for a

vertical (dotted line) and horizontal (solid line) projection through the center of mass of the image (mean in black). Right shows the mean auto-correlation functions of natural

(black), excitatory (blue) and inhibitory (red) surround images (n=3 animals, 219 neurons; shading: s.d.), with the histograms of correlation coefficients for a spatial shift of 15°

visual angle indicated on the right. For a shift of 15°visual angle, corresponding to the mean radius of MEIs, inhibitory surround images exhibited significantly weaker spatial

correlations than excitatory surround images (p-value=1.8 × 10−15, two-sided Wilcoxon signed rank test). e, Excitatory and inhibitory surround of an example neuron, with

one exciting natural image and surround (left) and representational similarity (as Pearson’s correlation coefficient, right; p-value=5.28 × 10−35, two-sided Wilcoxon signed

rank test, n=3 animals, 219 neurons) of natural surround images with excitatory and inhibitory surround. Each dot represents the mean across natural surrounds per neuron.

tivation compared to the MEI activation). Spatial correlations

were quantified using the auto-correlation function of inten-

sity profiles through the center of the surround images (Fig.

4d). We found that, like natural image patches, the MEI with

excitatory surround displayed significantly higher spatial cor-

relations than the MEI with the inhibitory surround image

(Fig. 4d), at least for spatial shifts of the mean MEI size

across neurons. Next, we used the representational similarity

metric introduced above to quantify the similarity between

optimized and natural center-surround images. This revealed

that natural surround images with the neuron’s preferred cen-

ter feature exhibit a larger similarity with excitatory than in-

hibitory surround images (Fig. 4e). Taken together, our re-

sults demonstrate that surround excitation and inhibition in

mouse primary visual cortex can be characterized by pattern

completion and disruption, respectively, thereby identifying a

clear relationship between natural image statistics and mod-

ulation of neuronal activity.

Probabilistic perception via Bayesian inference can explain

observed center-surround effects Finally, we linked our

observed center-surround effects to normative, first-principle

theories of perceptual inference. In general, the goal of per-

ception is to infer useful features from the world, but given

that ambiguous, noisy sensory stimuli often conceal these

features, it is beneficial to combine information from the in-

coming sensory stimulus with prior knowledge of the envi-

ronment (Von Helmholtz, 1867). One principled way how the

brain could accomplish this is to perform Bayesian inference

over relevant latent variables (features) underlying the stim-

ulus using a statistical generative model of the world (Knill

and Richards, 1996; Kersten et al., 2004; Lochmann and Den-

eve, 2011; Fiser et al., 2010). Here, we demonstrate that sur-

round excitation and inhibition by congruent and incongruent
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Fig. 5. Explaining observed center-surround effects via Bayesian inference and neural sampling. a, Assumed hierarchical generative model of the stimulus as

maintained by the brain. G represents a higher visual area, encoding a global orientation variable, X represents sensory neuronal responses, which are activations of local

Gabor filters, and I represents the visual input. The idea is that when visual input I is presented, the (simplified model of the) brain probabilistically infers a global orientation

and the activations of the Gabor filters from the visual input via posterior inference, i.e., computes p(G,X|I) and samples from it. Posterior samples of X, i.e., of sensory

neurons depend on the visual input I (likelihood, feedforward) as well as on G (prior, feedback). b, Gabor filters corresponding to the 6 model neurons as activated only

by the prior, i.e., by G. In our model, we have 3 neurons with vertical Gabor filters and 3 others with horizontal Gabor filters. Gabor filters that have orientations similar to

the global orientations have higher activations, as opposed to those that have orientations dissimilar to the global orientation. These activations are interpreted as sensory

neuronal responses. We consider the neuron with a horizontal Gabor at the center as the "center neuron". c, Collection of visual stimuli we present to the model. All stimuli,

i.e., MEI, MEI & congruent surround, and MEI & incongruent surround are defined w.r.t the center neuron. d-f, Scatterplot of posterior samples from the center neuron under

various stimulus presentations, reproducing the key experimental observations of surround-based excitation and inhibition.

surround patterns, respectively, is consistent with this theory

by using a simple hierarchical generative model of the stim-

ulus that encodes long-range spatial correlations of natural

image statistics in its prior.

Our hierarchical generative model is similar to ones previ-

ously proposed (Haefner et al., 2016; Bányai et al., 2019).

Specifically, in our model we assume that a set of oriented

Gabor-shaped filters located in the center and surround of vi-

sual space are linearly combined to generate the observed im-

age I (Fig. 5a). We further assume that the activation of each

of these filters depends on a global orientation variable, G,

which boosts the activity of compatible filters, and suppresses

those of incompatible filters (Fig. 5b). Upon observing a

stimulus, i.e. during perception, the brain inverts the gener-

ative model to compute the posterior distribution p(G,X|I).

Specifically, the brain combines the latent global orientation

G which is provided by feedback from higher areas and the

feedforward sensory information given the image I . As a re-

sult of this inference process, the neuronal responses X to a

given stimulus are influenced by both the stimulus I and the

global orientation G.

To quantify the center-surround interactions in this model, we

presented three stimuli tailored to an example sensory neuron

whose RF is located in the center of visual space (Fig. 5c):

(1) the MEI of the example neuron, (2) the MEI with a spa-

tially congruent stimulus in the surround, (3) the MEI with a

spatially incongruent stimulus in the surround. These three

conditions match the pattern completion and disruption that

characterize the contextual modulations we found in mouse

V1. For each stimulus condition, we computed the posterior

p(G,X|I) in our hierarchical model to obtain a distribution

of global orientations and responses given the stimulus condi-

tion. The model responses reproduced our key experimental

results (Fig. 5d): (1) the example neuron is driven strongly

by the MEI alone, (2) the spatially congruent stimulus drives

the example neuron in the center stronger than its MEI, (3)

the spatially incongruent stimulus inhibits the responses of

the neuron, despite the MEI being present in the center.

In summary, our probabilistic inference model reproduced

the main experimental findings of our study, with congruent

surround stimuli being excitatory and incongruent surround

stimuli being inhibitory with respect to the neuron’s preferred

feature. The key driver of this behavior in our model is the

higher certainty about the global orientation induced by con-

gruency of center and surround and, as a result, a stronger

prior on the lower level features of similar orientation. As a

result, even neurons with RFs in the center are more strongly

activated.

Discussion

Our study discovered a novel rule of surround modulation in

mouse V1: Completion (or extension) of visual features in

the RF center governed surround excitation, whereas disrup-
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tion (or termination) of RF center features produced inhibi-

tion. Non-linearity and high dimensionality in the neuronal

responses to natural images have so far made it challenging

to accurately define the RF center properties and to model the

interactions with the RF surround. Our accurate digital twin

models allowed us to model the non-linearity both within

and beyond the RF center, and to predict the best modulat-

ing stimuli in the surround without any parametric assump-

tions about their underlying statistical structure. We verified

the predictions from the model experimentally in a closed-

loop manner, and found that combining an optimal stimulus

in the RF center with an excitatory surround yielded images

that were more similar to natural scenes than images consist-

ing of optimal center stimulus and inhibitory surround. This

type of surround facilitation by congruent structures emerged

within a simple hierarchical model that modulates neuronal

responses based on prior knowledge of natural scene statis-

tics, and may potentially enhance the encoding of prominent

features in the visual scene, such as contours and edges, es-

pecially when the sensory input is noisy and ambiguous.

Relationship between surround modulation and stimulus

statistics Classical studies in monkeys have investigated

the spatial patterns driving contextual modulation in primary

visual cortex using oriented stimuli such as gratings and bars

(Knierim and Van Essen, 1992; Levitt and Lund, 1997; Ka-

padia et al., 1999; Sceniak et al., 1999; Cavanaugh et al.,

2002b,c; Nassi et al., 2013; Nurminen et al., 2018). This

revealed that suppression is the dominant form of surround

modulation and that surround stimuli congruent with the cen-

ter stimulus tend to be the most suppressive (Knierim and Van

Essen, 1992; Levitt and Lund, 1997; Kapadia et al., 1999;

Sceniak et al., 1999; Cavanaugh et al., 2002b,c; Nassi et al.,

2013; Nurminen et al., 2018). The suppression strength de-

creased as the surrounding stimulus becomes less congruent

(Knierim and Van Essen, 1992; Kapadia et al., 1999). In con-

trast, surround facilitation has been much more rarely ob-

served, and it requires more specific configurations of the

center stimulus such as low contrast or even absence of stim-

ulation (Polat et al., 1998; Lee and Nguyen, 2001). This is

in line with our finding that excitatory surround images are

less effective in modulating visual responses than inhibitory

surround images.

However, our results based on naturalistic stimuli and a data-

driven approach, which does not make any assumptions about

stimulus selectivity, reveal a different principle of surround

modulation in mouse primary visual cortex. We find that

the most excitatory surround stimulus is congruent with re-

spect to the center stimulus, while the most inhibiting sur-

round stimulus is incongruent. So far, the spatial patterns

driving surround excitation versus inhibition in mouse V1 are

less conclusive compared to primates. Some previous stud-

ies have reported suppression and facilitation of mouse V1

neurons by congruent and incongruent parametric surround

stimuli (Keller et al., 2020a; Self et al., 2014), respectively,

consistent with the results in primates. However, there seems

to be a large variability across neurons, where surround stim-

uli that have the same orientation as the center stimulus can

be either excitatory or inhibitory (Samonds et al., 2017) and

different orientations of the surround relative to the center

can be excitatory (Keller et al., 2020b). In part, this variabil-

ity across neurons might be related to the fact that parametric

stimuli like gratings and bars drive mouse V1 neurons sub-

optimally, due to the neurons’ selectivity for more complex

visual features (Walker et al., 2019). It is well established

that contextual modulation depends on the center stimulus

(Knierim and Van Essen, 1992; Kapadia et al., 1999) and,

therefore, it might be critical to condition surround stimuli

on the optimal stimulus in the RF center, corresponding to

the MEI (Walker et al., 2019).

The inconsistencies in surround patterns eliciting excitation

and inhibition reported in studies on mouse and primate V1

might partially be due to differences in stimulus design. For

example, the complex naturalistic stimuli we used vary from

parametric stimuli with respect to image statistics and likely

result in different neuronal responses (Froudarakis et al.,

2014; David et al., 2004), which may influence the modu-

latory effect of the surround on the RF center. Other critical

stimulus parameters that impact neuronal responses are stim-

ulus contrast and luminance. It has been previously shown

that at lower contrast, congruent surround stimuli facilitate

responses in monkey V1 neurons to the preferred center stim-

ulus (Polat et al., 1998), similar to the pattern of surround ex-

citation we describe here. In monkeys, surround facilitation

turned into suppression as the contrast of the center stimulus

increased (Polat et al., 1998). We optimized the MEIs and

surround images to minimize clipping of pixel values outside

the 8-bit range, even for the contrast-matched MEIs that had

higher contrast in the center (cf. Suppl Fig. 4), and presented

them at mesopic light levels. Without further experiments,

it is challenging to compare our non-parametric MEIs and

surround stimuli to previous results using parametric grating

stimuli presented at varying contrasts and light levels (Po-

lat et al., 1998; Adesnik et al., 2012; Keller et al., 2020b,a).

Importantly, it is worth noting that, in addition to the ex-

perimental and technical differences described above, there

likely exist species-specific differences in the stimulus statis-

tics that drive surround modulation. Primates and mice may

have distinct strategies in visual processing due to ethologi-

cal differences, and, therefore, surround modulation of visual

responses might serve a different computational goal. Fu-

ture experiments are required to further understand possible

species-specific roles of contextual modulation in vision.

Circuit-level mechanism of contextual modulation in visual

cortex Mechanistically, surround suppression in V1 can be

partially accounted for by feedback projections from higher

visual areas. In monkeys, inactivation of feedback from V2

and V3 reduces surround suppression induced by large grat-

ing stimuli (Nassi et al., 2013; Nurminen et al., 2018) and

also results in an increase in RF size (Sceniak et al., 1999;

Nurminen et al., 2018). In mice, feedback from higher visual

areas also strongly modulates V1 responses to center stimuli

and even elicits strong responses without any stimulation of

the center RF, thereby creating a feedback RF (Keller et al.,

2020b; Shen et al., 2022). The cellular substrate of surround

Fu et al. | Pattern completion and disruption characterize contextual modulation in mouse visual cortex bioRχiv | 9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2023. ; https://doi.org/10.1101/2023.03.13.532473doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.13.532473
http://creativecommons.org/licenses/by-nc-nd/4.0/


modulation has been predominantly studied in mice, due to

available genetic tools for cell-type specific circuit manipula-

tions. Different types of inhibitory neurons have been iden-

tified as key players of surround modulation, including so-

matostatin (SOM)- and vasoactive intestinal peptide (VIP)-

expressing cells, which inhibit each other as well as exci-

tatory V1 neurons and are further modulated by feedback

(Adesnik et al., 2012; Keller et al., 2020a; Shen et al., 2022).

Based on these results, surround suppression in mouse V1,

and likely primate V1, is dependent on the exact balance be-

tween the excitatory input from feedforward and feedback

projections and the inhibitory inputs from locally present in-

hibitory neuron types.

To further explain surround modulation of individual vi-

sual neurons as a function of local and long-range network

connectivity, one can take advantage of recent advances

in functional connectomics, combining large-scale neuronal

recordings with detailed anatomical information at the scale

of single synapses. Here, we demonstrated that the ob-

served center-surround effects of mouse V1 neurons were

reproduced in a recently published functional connectomics

dataset (MICrons dataset) spanning V1 and multiple higher

areas of mouse visual cortex (MICrONS Consortium et al.,

2021). Specifically, this dataset includes responses of >75k

neurons to natural movies and the reconstructed sub-cellular

connectivity of the same cells from electron microscopy data.

A dynamic recurrent neural network (RNN) model of this

mouse’s visual cortex exhibits not only a high predictive per-

formance for natural movies, but also accurate out-of-domain

performance on other stimulus classes such as drifting Gabor

filters, directional pink noise, and random dot kinematograms

(Wang et al., 2023). We took advantage of the model’s

ability to generalize to other visual stimulus domains and

showed that MEIs and surround images optimized using the

RNN model trained on the same natural movies used in the

MICrons dataset closely resemble those obtained from our

model. The MICrons dataset provides ample resources to

link connectivity among neurons within V1 and across areas

to the functional properties observed with regard to contex-

tual modulation, thereby further delineating the role of local

and feedback recurrent connections.

Theoretical implications of surround facilitation We dis-

covered that surround facilitation is a prominent feature

of contextual modulation in mouse primary visual cortex,

thereby highlighting that center-surround interactions cannot

simply be explained by suppression of sensory responses.

Importantly, excitatory surround images with the optimal

center stimulus exhibited a high representational similarity

with natural images, indicating that congruent patterns fre-

quently present in natural scenes (Geisler et al., 2001; Sig-

man et al., 2001) are associated with high neuronal activa-

tions. Excitation by congruent surround structures relative to

the center may be explained by preferential long-range con-

nections between neurons with co-linearly aligned RFs de-

scribed in mice (Iacaruso et al., 2017) and higher mammals

(Bosking et al., 1997; Schmidt et al., 1997; Sincich and Blas-

del, 2001) and might serve perceptual phenomena like edge

detection, contour integration and object grouping observed

in humans and primates (Kapadia et al., 1995; Geisler et al.,

2001).

Our empirical results of surround facilitation are surprising

in the light of a long line of theoretical work that explains

sensory responses using principles like redundancy reduction

(Barlow et al., 1967) or predictive coding (Rao and Ballard,

1999). The idea that neurons should minimize redundancy

has given rise to contrast normalization models (Schwartz

and Simoncelli, 2001) that were recently expanded to a

flexibly-gated center-surround normalization model (Coen-

Cagli et al., 2015) most relevant to our data. The key idea

behind the latter model is to only normalize (typically reduce)

center activation when the surround is similar, and otherwise

ignore the surround. This proposal cannot explain our empir-

ical findings. Analogously, predictive coding proposes that

neuronal activity reflects prediction errors, and that therefore

the center activation should be lower when it can be well

predicted from the surround (Rao and Ballard, 1999; Keller

and Mrsic-Flogel, 2018) – again in contradiction to our find-

ing that excitatory surrounds appear to ‘complete’ the center

stimulus, and frequently occuring in natural scenes.

In contrast, our results are expected within an alterna-

tive framework for understanding sensory neurons: percep-

tual (Bayesian) inference (Von Helmholtz, 1867; Knill and

Richards, 1996). Here, sensory responses compute beliefs

about latents in a hierarchical model with higher level latents

both representing larger, more complex features of the im-

age and acting as priors on lower level latents that represent

localized parts of the image via feedback signals (Lee and

Mumford, 2003). In such a model, global image structure

can increase or decrease responses of neurons with localized

RFs, depending on whether the global structure increases or

decreases the probability of the local feature being present in

the image (Haefner et al., 2016; Bányai et al., 2019). In fact,

our toy-model which qualitatively reproduces our empirical

findings is an example of such a model. Our approach of

characterizing contextual modulation in a data-driven way for

arbitrary stimuli, without any assumptions about neuronal se-

lectivity, have revealed a novel relationship between surround

modulation and natural image statistics, providing evidence

for a role of contextual modulation in hierarchical inference,

rather than only minimizing redundancy or prediction errors.

Materials and Methods

Animals and surgical preparation All experimental pro-

cedures complied with guidelines of the NIH and were ap-

proved by the Baylor College of Medicine Institutional An-

imal Care and Use Committee (permit number: AN-4703),

expressing GCaMP6s in cortical excitatory neurons. Mice

used in this study (n=7, 3 males and 4 female, aged 2.5 to

3.5 month) were heterozygous crosses between Ai162 and

Slc7a7-Cre transgenic lines (JAX #031562 and #023527, re-

spectively). To expose V1 for optical imaging, we performed

a craniotomy and installed a window that was 4mm in diam-

eter and centered at 3mm lateral to midline and 2mm ante-

rior to lambda (Reimer et al., 2014; Froudarakis et al., 2014).
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Mice were housed in a facility with reverse light/dark cycle

to ensure optimal alertness during the day when experiments

were performed.

Neurophysiological experiments and data processing We

recorded calcium signals using 2-photon imaging with a

mesoscope (Sofroniew et al., 2016) which was equipped with

a custom objective (0.6 numerical aperture, 21 mm focal

length). The imaging fields of each recording were 630×630
µm2 per frame at 0.4 pixels µm-1 xy resolution and were po-

sitioned in the center of V1 according to the retinotopic map

(Fig. 1b). Z resolution was 5 µm with a total of ten planes

from −200µm to −245µm relative to cortical surface. The

laser power increased exponentially as imaging plane moved

farther from the surface according to:

P = P0 ez/Lz

Here P is the laser power used at target depth z, P0 is the

power used at the surface (19.71 mW ± 4.68, mean ± stan-

dard deviation), and Lz is the depth constant (220 µm). The

highest laser output was of 54.79 mW ± 13.67 and was used

at approximately 240 µm from the surface. Most scans did

not require more than 50 mW at maximal depth, except for

one mouse where the average laser power at the deepest scan-

ning field was 82.03 mW.

For each animal, we first performed retinotopic mapping

across the whole cranial window to identify the border of V1

(Fig. 1b and c; Schuett et al., 2002). At the beginning of

each imaging session, we measured the aggregated popula-

tion RF to ensure precise placement of the monitor with re-

gard to the imaging site. We used stimuli consisting of dark

(pixel value=0) square dots of size 6 degrees in visual an-

gle on a white background (pixel value=255). The dots were

randomly displayed at locations on a 10 by 10 grid covering

the central region of the monitor and at each location the dot

was shown for 200 ms and repeated 10 times over the whole

duration of dot mapping. The mean calcium signal was de-

convolved and averaged across repeated trials to produce the

population RF. The monitor was placed such that the popula-

tion RF was centered on the monitor.

The full two-photon imaging processing pipeline is available

at (https://github.com/cajal/pipeline). Briefly, raster correc-

tion for bidirectional scanning phase row misalignment was

performed by iterative greedy search at increasing resolu-

tion for the raster phase resulting in the maximum cross-

correlation between odd and even rows. Motion correction

for global tissue movement was performed by shifting each

frame in x and y to maximize the correlation between the

cross-power spectra of a single scan frame and a template

image, generated from the Gaussian-smoothed average of

the Anscombe transform from the middle 2000 frames of

the scan. Neurons were automatically segmented using con-

strained non-negative matrix factorization, then traces were

deconvolved to extract estimates of spiking activity, within

the CalmAn pipeline (Giovannucci et al., 2019). Cells were

further selected by a classifier trained to separate somata ver-

sus artifacts based on segmented cell masks, resulting in ex-

clusion of 8.1% of the masks.

A 3D stack of the volume imaged was collected at the end

of each day to allow registration of the imaging plane and

identification of unique neurons. The stack was composed of

two volumes of 150 planes spanning from 50 µm above the

most superficial scanning field to 50 µm below the deepest

scanning field. Each plane was 500 × 800 µm, together tiling

a 800 × 800 µm field of view (300 µm total overlap), and

repeated 100 times per plane.

Visual stimulation Visual stimuli were displayed on a 31.8

× 56.5 cm (height × width) HD widescreen LCD monitor

with a refresh rate of 60 Hz at a resolution of 1080 × 1920

pixels. When the monitor was centered on and perpendicular

to the surface of the eye at the closest point, this corresponded

to a visual angle of 2.2◦/cm on the monitor. We recorded

the voltage of a photodiode (TAOS TSL253) taped to the top

left corner of the monitor to measure the gamma curve and

luminance of the monitor before each experimental session.

The voltage of the photodiode is linearly correlated with the

luminance of the monitor. To convert from photodiode volt-

age to monitor luminance, we used a luminance meter (LS-

100 Konica Minolta) to measure monitor luminance for 16

equidistant pixel values from 0-255 while recording the pho-

todiode voltage. The gamma value for experiments in this

paper ranged from 1.751 to 1.768 (mean = 1.759, standard

deviation = 0.005). The minimum luminance ranged from

0.23 cd/m2 to 0.97 cd/m2 (0.49 ± 0.25, mean ± standard de-

viation), and the maximum ranged from 84.11 cd/m2 to 86.04

cd/m2 (85.07 ± 0.72, mean ± standard deviation).

ImageNet stimulus. Natural images were randomly selected

from the ImageNet database (Deng et al., 2009), converted to

gray scale, and cropped to the monitor aspect ratio of 16:9. To

probe center-surround interactions, we modified the images

using a circular mask that was approx. 48 degrees in visual

angle in diameter with smoothed edges. The mask radius was

defined as fraction of monitor width, i.e. raperture = 1 means

a full-field mask. We used raperture = 0.2

r =
rpixel − raperture

α
+1

M =











1+cos(πr)
2 0 < r < 1

1 r ≤ 0

0 otherwise

where M is the mask, r is the radius, and α is the width of the

transition. We presented 5,000 unique natural images with-

out repetition during each scan, half of which were masked.

We also presented the same 100 images repeated 10 times

as full-field and 10 times as masked. The 100 images that

were repeated were conserved across experiments, while the

unique images varied across scans. Each trial consisted of

one image presented for 500 ms with a preceding blanking

period of 300 - 500 ms (randomly determined per trial).

Eye tracking A movie of the animal’s eye and face was

captured throughout the experiment. A hot mirror (Thorlabs
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FM02) positioned between the animal’s left eye and the stim-

ulus monitor was used to reflect an IR image onto a camera

(Genie Nano C1920M, Teledyne Dalsa) without obscuring

the visual stimulus. The position of the mirror relative to the

camera was manually adjusted if necessary per session to en-

sure that the camera focuses on the pupil. The field of view

was manually cropped for each session. The field of view

contained the left eye in its entirety, 282-300 pixels height

× 378-444 pixels width at 20 Hz. Frame times were time

stamped in the behavioral clock for alignment to the stimulus

and scan frame times.

Light diffusing from the laser during scanning through the

pupil was used to capture pupil diameter and eye movements.

A DeepLabCut model (Mathis et al., 2018) was trained on

17 manually labeled samples from 11 animals to label each

frame of the compressed eye video with 8 eyelid points and

8 pupil points at cardinal and intercardinal positions. Pupil

points with likelihood >0.9 (all 8 in 93% ± 8% of frames)

were fit with the smallest enclosing circle, and the radius and

center of this circle was extracted. Frames with <3 pupil

points with likelihood >0.9 (0.7% ± 3% frames per scan),

or producing a circle fit with outlier >5.5 standard deviations

from the mean in any of the three parameters (center x, center

y, radius, <1.3% frames per scan) were discarded (total <3%

frames per scan). Trials affected by gaps in the frames were

discarded (<2% trials for all animals except one, where the

animal’s eye appeared irritated).

Registrations of neurons in 3D stack We densely sampled

the imaging volume to avoid losing cells due to tissue defor-

mation from day to day. Therefore, some cells were recorded

in more than one plane. To select unique cells, we sub-

sampled our recorded cells based on proximity in 3D space.

Each functional scan plane was independently registered to

the same 3D structural stack. Specifically, we used an affine

transformation matrix with 9 parameters estimated via gradi-

ent ascent on the correlation between the sharpened average

scanning plane and the extracted plane from the sharpened

stack. Using the 3D centroids of all segmented cells, we it-

eratively grouped the closest two cells from different scans

until all pairs of cells are at least 10 µm apart or a further join

produces an unrealistically tall mask (20 µm in z). Sequential

registration of sections of each functional scan into the struc-

tural stack was performed to assess the level of drift in the

z dimension. The drift over the 2 to 2.5 hour recording was

4.70 ± 2.64, and for most of them the drift was limited to <5

µm.

Model architecture and training The convolutional neural

network used in this study consisted of two parts: a core and

a readout. The core captured the nonlinear image representa-

tions and was shared among all neurons. The readout mapped

the features of the core into neuronal responses and contained

all neuron specific parameters.

Core. To get a rich set of nonlinear features, we used a deep

CNN as our core. We used a CNN with 3 layers and 32 fea-

ture channels per layer as previously described in (Walker

et al., 2019). These architectures were chosen with a hyper-

parameter search, with the objective of maximizing a valida-

tion score (see Training and evaluation). Each of the 2D

convolutional layers was followed by a batch normalization

layer and an ELU non-linearity.

Readouts. The goal of the readout was to find a linear-

nonlinear mapping from the output of the last core layer Φ(x)
to a single scalar firing rate for every neuron. We used a pyra-

mid readout, as described in Sinz et al. (2018). We computed

a linear combination of the feature activations at a spatial po-

sition, parameterized as (x,y) relative coordinates (the mid-

dle of the feature map being (0,0)). Training this readout

poses the challenge of maintaining gradient flow when opti-

mizing the objective function. We tackled this challenge by

recreating multiple sub-sampled versions of the feature maps

and learning a common relative location for all of them. We

then passed these features through a linear regression and a

non-linearity to obtain the final neuronal responses.

Training and evaluation. Natural images in the training, val-

idation and test sets were all Z-scored using the mean and

standard deviation of the training set. The mean and standard

deviation for the cropped natural images were weighted by

the mask used to crop the images to avoid artificially lower-

ing the mean and standard deviation due to large gray areas

in the cropped images.

The networks were trained to minimize Poisson loss
1
m

∑m
i=1

(

r̂(i) − r(i) log r̂(i)
)

where m denotes the number

of neurons, r̂ the predicted neuronal response and r the ob-

served response. We implemented early stopping on the cor-

relation between predicted and measured neuronal responses

on the validation set: if the correlation failed to increase dur-

ing 10 consecutive epochs through the entire training set, we

stopped the training and restored the best performing model

over the course of training. After each stopping, we either

decreased the learning rate or stopped training altogether if

the number of learning-rate decay steps was reached. Net-

work parameters were optimized via stochastic gradient de-

scent using the Adam optimizer. Once training completed,

the trained network was evaluated on the validation set to

yield the score used for hyper-parameter selection.

MEI and surround image generation Because our neuronal

recordings were performed with dense sampling (Z spacing

= 5µm), we first needed to select unique neurons. We regis-

tered the planes of the functional experiments to the stack of

the volume (see Registration of neurons in 3D stack) and

identified unique neurons.

Then, we optimized the MEIs and the surround images in two

steps.

MEI generation. We used regularized gradient ascent by solv-

ing the optimization problem defined as

x∗ = argmax
x

fi(x)

on our trained deep neural network models to obtain a maxi-

mally exciting input image for each neuron, given by x

x ∈ R
n×m
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(Walker et al., 2019). We initialized with a Gaussian white

noise image. In each iteration of gradient ascent, we showed

the image to the model and calculated the gradients of the

image w.r.t. the model activation of a single neuron. We then

blurred the obtained gradient with Gaussian blurring, with a

Gaussian sigma of 1 pixel. Following this, we stepped our

optimizer to change the image as given by the gradients. Fi-

nally, we calculated the standard deviation of the resulting

image and compared it to a fixed budget of 0.05 for the MEI.

The standard deviation budget can be effectively thought of

as a contrast constraint. The contrast budget was chosen to

minimize the number of pixels with values exceeding those

corresponding to 0 and 255, which are the lower and upper

bound for pixel values displayed on the monitor. We used

the Stochastic Gradient Descent (SGD) optimizer with step

size=0.1 and ran each optimization for 1,000 iterations.

Surround image generation. A tight mask (ranging between

0 and 1) around the MEI was computed by thresholding (see

below) which we used to define the ’center’ and set it apart

from the ’surround’ during the next step of optimization. By

applying the inverse MEI mask to the target image x, we op-

timized the surrounding area in the image by allowing more

contrast (RMS contrast = 0.1) outside of the MEI mask.

To define the center stimuli, we computed a mask around the

MEI for each neuron by thresholding at 1.5 standard devia-

tions above the mean. We then blurred the mask with Gaus-

sian sigma = 1 pixel. We initialized an image with Gaussian

noise and cropped out the center of this image using the MEI

mask and added the MEI at a fixed contrast = 0.05. At the

same time, we used the inverse of the MEI mask to set the

contrast for the area outside of the mask to 0.1. A gradient

was computed on the modified image and we blurred the gra-

dient with a Gaussian sigma = 1. We used the same SGD

optimizer to update the image at each iteration, and due to

the inverse of the mask being applied to the image, only pix-

els outside of the MEI mask could be changed (illustrated

in Fig. 2a). We set the full-field image contrast to an arbi-

trary value within the training image regime (0.1) to prevent

the pixel values from getting out of range and this step was

not differentiable. At the end of each iteration, we normal-

ized the contrast in the center and the surround again to reach

the optimal stimulus with correct contrast (MEI=0.05, sur-

round=0.1). We repeated these steps for 1,000 iterations. To

generated the extend mask for the MEI used in Suppl. Fig.

4, we set the value between 1 and 0.001, i.e. in the blurred

area, in the original mask to 1 and blurred the new mask with

the same Gaussian filter that was applied to the MEI mask.

We applied the extended mask to the surround images to pro-

duced a new set of masked surround images that were slightly

smaller than the original ones, and tested surround modula-

tion restricted only to the ‘near’ surround region.

Probabilistic model

Hierarchical generative model. We simulated inference us-

ing a simple probabilistic generative model of the stimulus

as would be learned by the brain as an attempt to explain

our center-surround results. In our model, G is represented

in a higher visual area, encoding a global orientation vari-

able, X represents our model sensory neurons, each with an

oriented Gabor filter as its projective field (PF), and I repre-

sents the visual input. We assume the existence of a single

G ∼ U (0,π). We model sensory neurons as X = {xi}
nx

i ,

where nx is the number of sensory neurons (nx = 6 in our

case), conditioned on G as xi|G ∼ 1
λ(i) exp

(

− xi

λ(i)

)

H (xi)

where λ(i) is the firing rate function of the ith neuron defined

by a von Mises function around the global orientation G as

λ(i) = exp
(

κ
cos(θi−G)

2πI0(κ)

)

, where θi is the preferred orienta-

tion of the ith neuron. In other words, the closer the preferred

orientation of a neuron to the global orientation, the higher is

its firing rate. This way, we induce a positive (prior) correla-

tion among neurons that prefer similar orientations, i.e. neu-

rons with vertical PFs have high correlation with each other,

as do neurons with horizontal PFs. Finally, the visual input

in our model is assumed to be a noisy, linear combination

of the Gabor PFs of neurons with neuronal activations, i.e.

I ∼ N
(

I|
∑nx

i PFixi,σ
2
)

, where PFi is the PF and xi is the

activation (spike count) of the ith neuron.

Inference. Our assumption is that when presented with a vi-

sual input, the brain computes the posterior over variables X

and G using the (learned) generative model, i.e. computes

p(G,X|I). We sampled from this posterior for various stim-

uli via No-U-Turn-Sampler (NUTS) using python’s PyMC

package. For each stimulus, we sampled 4,000 samples of G

and each neuron xi after a burn-in period of 1,000 samples.

We then visualized the samples of the center neuron across

different stimuli in Fig. 5d. We computed the mean of the

samples of the center neuron for a given stimulus in order to

quantify the effect that the particular stimulus had. The mean

of the center neuron for the different stimuli reproduced our

key experimental results: (1) the example neuron’s mean was

driven strongly by the MEI alone, (2) the spatially congru-

ent stimulus drove the example neuron’s mean in the center

stronger than its MEI, (3) the spatially incongruent stimulus

inhibited the mean of the samples of the neuron, despite the

MEI being present in the center.

Closed-loop experiments

Selection of neurons for closed-loop. We ranked the neurons

recorded in one experiment based on the reliability and model

performance (test correlation). Specifically, we correlated the

leave-one-out mean response with the remaining single-trial

response across repeated images in the test set to obtain a

measurement of neuronal response reliability. We then com-

puted an averaged rank score of each neuron from its reliabil-

ity rank and model test correlation rank. After removing du-

plicate neurons following the procedure described above, we

selected the top 150 neurons according to the averaged rank

of the correlation between predicted response and observed

response averaged over repeats and the correlation between

the leave-one-out mean response of repeated test trials to the

left-out test trial response for closed-loop experiments.
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Stimulus presentation. We converted the images generated

by the model back to pixel space by reversing the Z-score step

with the stats of the training set. Each image was repeated 40

times. We shuffled all the images with repeats across dif-

ferent classes (MEI, excitatory and inhibitory surrounds and

contrast-matched MEI, masked surround controls) and pre-

sented them at random orders. Each trial consisted of one

image presented for 500 ms with a preceding blanking pe-

riod of 300 - 500 ms (randomly determined per trial).

Matching neurons across experiments. We matched neurons

from different experiments according to the spatial proximity

in the volume of the same anatomical 3D stack. Each func-

tional scan plane was registered to the 3D stacks collected af-

ter each day’s experiment. We chose the neurons that had the

highest matching frequency across all stacks, and included

them as a valid neuron in the closed-loop analysis.

Estimation of center RF size To measure to size of the min-

imum response field (MRF) for each neuron, we presented

stimuli consisting of circular bright (pixel value=255) and

dark (pixel value=0) dots of size 7 degrees in visual angle

on a gray background (pixel value=128) in conjunction with

natural image stimuli. The dots were randomly shown at lo-

cations on a 9 by 9 grid covering 40% of the monitor in the

center along the horizontal edge, and at each location, the dot

was shown for 250 ms and repeated 16 times. The responses

were averaged across repeats, and a 2D Gaussian was fitted

to the On and Off response maps, respectively. The size of

the MRF was measured as the largest distance between points

on the border of the 2D Gaussian at 1.5 standard deviations

away for both On and Off responses.

To estimate the size of the MEIs and the excitatory and in-

hibitory surround, we first computed the mask for each im-

age as described in section MEI and surround image gen-

eration. The size was computed in pixels as the longest dis-

tance between points on the border of the mask. The size was

converted to degrees in visual angle according to the ratio

between pixel and degrees in visual angle.

Exciting natural image patches and natural surrounds All

natural images in the ImageNet dataset were first Z-scored

with the mean and standard deviation of the training dataset.

We then cropped the images with the MEI masks and nor-

malized to match the contrast of the MEI within the mask.

The images were presented to the model to get the predicted

response. Images that elicited activations above 80% of MEI

activation were chosen as the maximally exciting natural im-

age patches. Images used to train the specific model were

removed from this collection. For neurons with more than 10

maximally exciting natural image patches, we replaced the

center of the natural image with the MEI and included the

surround region of the natural image to the same extend as

the average size of the excitatory and the inhibitory surround.

Representational similarity The maximally exciting natu-

ral image patches of a neuron plus the surround of the same

image were normalized to the same contrast as the excitatory

and the inhibitory surround images and were presented to the

model. The excitatory and the inhibitory surround images

were cropped with the average mask of the two to match the

size, contrast-adjusted and presented to the model. The acti-

vation of all neurons in the model were taken as an approx-

imation of the given image in ’representational space’. We

computed Pearson correlation between a natural image patch

with surround and an image of the MEI with either excitatory

or inhibitory surround. The Pearson correlation is an estima-

tion of ’representational similarity’.

Auto-correlation function To quantify correlations across

space of optimized and natural center-surround images,

we computed the auto-correlation function of each image

(Rikhye and Sur, 2014). For each neuron, we first identi-

fied exciting natural images (>80 % activation relative to the

MEI) with the preferred feature in the center as described

above. We then cropped the optimized and exciting natural

images based on the average mask of the excitatory and in-

hibitory surrounds, extracted horizontal and vertical intensity

profiles through the center of mass of each image and com-

puted the mean auto-correlation function of these intensity

projections for excitatory and inhibitory center-surround im-

ages, as well as for all exciting natural images per cell. We

shifted the intensity projections in steps of 2 degrees visual

angle and for maximally 20 degrees visual angle, thereby ex-

tending beyond the MEI (radius approx. 15 degrees visual

angle) into the surround.

Extrapolated surround images We generated extrapolated

surround images based on the spatial pattern of the MEI

using a bivariate spline interpolation method on a rectan-

gular grid (RectBivariateSpline function of scipy pack-

age). Specifically, we first cropped out the MEI using a 95%

threshold of the MEI mask and fit the cropped MEI with the

RectBivariateSpline function. Then, we used the fit to ex-

trapolate from the MEI into the surround and cropped the ex-

trapolated surround based on the mask of optimized surround

images.

Replication of center-surround modulation in functional

connectomics dataset Recently, we and others released a

large-scale functional connectomics dataset of mouse visual

cortex ("MICrONS dataset"), including responses of >75k

neurons to full-field natural movies and the reconstructed

sub-cellular connectivity of the same cells from electron mi-

croscopy data (MICrONS Consortium et al., 2021). A dy-

namic recurrent neural network (RNN) model of this mouse’s

visual cortex—digital twin—exhibits not only a high predic-

tive performance for natural movies, but also accurate out-

of-domain performance on other stimulus classes such as

drifting Gabor filters, directional pink noise, and random dot

kinematograms (Wang et al., 2023). Here, we took advan-

tage of the model’s ability to generalize to other visual stim-

ulus domains and presented our full-field and masked images

to this digital twin model in order to relate specific func-

tional properties to the neurons’ connectivity and anatomi-

cal properties. Specifically, we recorded the visual activity

of the same neuronal population to static natural images as

well as to the identical natural movies that were used in the
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MICrONS dataset. Neurons were matched anatomically as

described for the closed loop experiments. Based on the re-

sponses to static natural images we trained a static model as

described above, and from the responses to natural movies we

trained a dynamic model using a RNN architecture described

in (Wang et al., 2023). We then presented the same static

natural image set that we showed to the mice also to their dy-

namic model counterparts and trained a second static model

using these predicted in silico responses. This enabled us to

compare the MEIs and surround images for the same neu-

rons generated from two different static models: one trained

directly on responses from real neurons, and another trained

on synthetic responses to static images from dynamic mod-

els (D-MEI and D-surround). To quantify similarity, we pre-

sented both versions of MEIs and surround images to an in-

dependent static model trained on the same natural images

and responses but initialized with a different random seed,

thereby avoiding model-specific biases.

Code and data availability The analysis code and all data

will be publicly available in an online repository latest upon

journal publication. Please contact us if you would like ac-

cess before that time.
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Supplementary Information

Supplemental Fig. 1 - Comparison of stimulus contrast of MEIs and excitatory and inhibitory surround

Supplemental Fig. 2 - Neuronal responses to MEIs and surround images recorded during inception loop experiments

Supplemental Fig. 3 - Contextual modulation is reproduced in digital twin of large-scale functional connectomics dataset

Supplemental Fig. 4 - Images restricted to the far surround still result in surround modulation

Supplemental Fig. 5 - Contrast-matched MEIs result in higher activation than MEIs with excitatory surround

Supplemental Fig. 6 - Surround images extrapolated from the spatial pattern of the MEI
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Supplemental Fig. 1. Comparison of stimulus contrast of MEIs and excitatory and inhibitory surround. a, Full-field RMS contrast comparison between the MEI (x-axis)

and the excitatory surround images (y-axis) (n=6 animals, 960 cells total). b, Full-field RMS contrast comparison between the MEI (x-axis) and the inhibitory surround images

(y-axis) (n=3 animals, 510 cells total). c, Full-field RMS contrast comparison between the excitatory surround image (x-axis) and the contrast-matched MEI (y-axis) (n=3

animals, 560 cells total).
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Supplemental Fig. 2. Neuronal responses to MEIs and surround imaged recorded during inception loop experiments. a, Comparing observed responses to the MEI

(x-axis) and the excitatory surround (y-axis) per experiment (n=6 mice, 960 cells total). Dark dots indicate neurons where the response to the surround images is significantly

higher than to the MEI (Wilcoxon rank-sum test, p-value<0.05). Across the population, the modulation was significant for all animals (p-value<0.05, Wilcoxon signed rank

test). b, Comparing observed responses to the MEI (x-axis) and the inhibitory surround (y-axis) per experiment (n=3 mice, 510 cells total). Dark dots indicate neurons where

the response to the surround images is significantly lower than to the MEI (Wilcoxon rank-sum test, p-value<0.05). Across the population, the modulation was significant

for all animals (p-value<0.05, Wilcoxon signed rank test). c, Comparing observed responses to the excitatory surround (x-axis) and the contrast-matched MEI (y-axis) per

experiment (n=3 mice, 560 cells total). Dark dots indicate neurons where the response to the contrast-matched MEIs is significantly higher than to the MEI (Wilcoxon rank-sum

test, p-value<0.05). Across the population, the modulation was significant for all animals (p-value<0.05, Wilcoxon signed rank test).
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Supplemental Fig. 3. Contextual modulation is reproduced in digital twin of large-scale functional connectomics dataset. a, Circuit-level mechanistic explanations

of neuronal function require the combination of functional recordings and anatomical analyses. This panel shows a schematic illustrating how we reproduced our findings

regarding contextual modulation in a functional connectomic dataset, which includes responses of >75k neurons to full-field natural movies and the reconstructed sub-cellular

connectivity of the same cells from electron microscopy data ("MICrONS" dataset (MICrONS Consortium et al., 2021)). Importantly, a dynamic model of this mouse visual

cortex—digital twin—exhibits not only a high predictive performance for natural movies, but also accurate out-of-domain performance on other stimulus classes such as

drifting Gabor filters, directional pink noise, and random dot kinematograms, allowing to present new stimuli to this digital twin model in order to relate specific functional

properties to the neurons’ connectivity and anatomical properties. To this end, we recorded the visual activity of the same neuronal population to static natural images as well

as to the identical natural movies that were used in the MICrONS dataset. Based on the responses to static natural images we trained a static model as described above, and

from the responses to natural movies we trained a dynamic model using a recurrent neural network architecture described in REF. We then presented the same static natural

image set that we showed to the mice also to their dynamic model counterparts and trained a second static model using these predicted in silico responses. This enabled

us to compare the MEIs and surround images for the same neurons generated from two different static models: one trained directly on responses from real neurons, and

another trained on synthetic responses to static images from dynamic models (D-MEI and D-surround). b, Static and dynamic MEIs and surround images of four example

neurons, matched across recordings using their anatomical position in a structural stack. Importantly, the MEIs and surround images optimized from these two models were

perceptually very similar. c, To quantify this similarity, we presented both versions of MEIs and surround images to an independent static model trained on the same natural

images and responses but initialized with a different random seed, thereby avoiding model-specific biases. The panel shows neuronal activation to natural image crops,

normalized with respect to MEI activation. Gray lines show the fraction out of 5,000 images that elicit a given activation or higher for n=x example model neurons (mean in

black). For a representative cell (red), we show MEI, D-MEI and image crops with different activations. d, Fraction of natural images that activate the neurons stronger than

the D-MEIs. On the population level, the fraction of natural image crops with activations higher than the D-MEI was very small, demonstrating that D-MEIs strongly activate

their corresponding neurons. e, D-MEI responses plotted versus responses to excitatory and inhibitory D-surround images predicted by an independent static model. This

shows that the excitatory and inhibitory D-surround stimuli modulated V1 responses in the direction as predicted by the model. e, Finally, we used the above pipeline to

optimize MEIs and surround images from example neurons of the MICrONS dataset itself. Schematic shows the MICrONS dataset (left) and MEIs with surround images of

four example neurons of the MICrONS dataset are shown on the right. This allows future circuit dissections towards understanding the mechanism underlying center-surround

interaction in mouse visual cortex.
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Supplemental Fig. 4. Images restricted to the far surround still result in surround modulation. a, Examples of the MEI, the excitatory surround and cropped excitatory

surround. b, Examples of the MEI, the inhibitory surround and cropped inhibitory surround. c, Comparing predicted response to the MEI, the excitatory surround and

the cropped surround image (n=3, 560 cells). d, Comparing predicted response to the MEI, the inhibitory surround and the cropped surround image (n=3, 560 cells). e,

Comparing observed response to the MEI, the excitatory surround and the cropped surround image (n=3, 560 cells). Black dots indicate neurons with significantly higher

response under the condition on the y-axis (one-sided Wilcoxon rank-sum test, p<0.05, 33.6%, 20.2% and 13.4% significant cells for each pair). Modulation is significant on

population level for each pair (p-value=1.83 × 10−45, 9.98 × 10−45, 6.89 × 10−19, Wilcoxon signed rank test). f, Comparing observed response to the MEI, the inhibitory

surround and the cropped surround image (n=3, 560 cells). Black dots indicate neurons with significantly higher response under the condition on the y-axis (one-sided

Wilcoxon rank-sum test, p<0.05, 55.9%, 40.3% and 19.6% significant cells for each pair). Modulation is significant on population level for each pair (p-value=8.05 × 10−73,

9.03 × 10−66, 2.42 × 10−24, Wilcoxon signed rank test).
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Supplemental Fig. 5. Contrast-matched MEIs result in higher activation than MEIs with excitatory surround. a, Panel shows MEI, excitatory surround with MEI,

the contrast-matched MEI, and the difference between the original MEI and the contrast-matched MEI for 4 example neurons. Note that the contrast-matched MEI is a

scaled-up version of the original MEI with same features. b, Diameters of RFs estimated using sparse noise, the MEIs, the MEIs with excitatory and inhibitory surround, and

the contrast-matched MEI. Same data shown in Fig. 2e except for the contrast-matched MEI. The mean of the contrast-matched MEI (magenta distribution) size across all

neurons (n=4, 434 cells) is 33.2 degrees ± 0.23 (mean ± s.e.m.). The size of the contrast-matched MEI is slightly larger than the original MEI (31.3 degrees ± 0.20). c, Model

predicted responses to the MEI and excitatory surround (x-axis) and contrast-matched MEI (y-axis). Responses are depicted in arbitrary units, corresponding to the output

of the model. d, Observed responses to the the MEI and excitatory surround (x-axis) and contrast-matched MEI (y-axis). For each neuron, responses are normalized by the

standard deviation of responses to all images. Across the population, the neuronal responses to the contrast-matched MEI was significantly higher (p-value=7.35 × 10−80,

Wilcoxon signed rank test, slope of linear regression line=1.58). Across stimulus repetitions, 58.9% of the neurons responded stronger to the contrast-matched MEI (n=3

animals, 560 cells, two-sided t-test, p-value<0.05). Solid line indicates the regression line across the population, and dotted gray line indicates the diagonal. e, Contrast

comparison between the MEI and excitatory surround (x-axis) and the contrast-matched MEI. By definition, the full-field contrast of each pair of images are matched.
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Supplemental Fig. 6. Surround images extrapolated from the spatial pattern of the MEI. a, MEIs, surround images extrapolated from the spatial pattern of the MEI and

optimized excitatory and inhibitory surround images of example neurons.
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