bioRxiv preprint doi: https://doi.org/10.1101/2023.03.01.530570; this version posted March 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Probabilistic inference of epigenetic age
acceleration from cellular dynamics

Jan. K. Dabrowski*, Emma. J. Yang*, Samuel. J. C. Crofts, Robert. F. Hillary, Daniel. J. Simpson,
Daniel. L. Mccartney, Riccardo. E. Marioni, Eric Latorre-Crespo ', Tamir Chandra "

Abstract

The emergence of epigenetic predictors was a pivotal moment in geroscience, propelling the
measurement and concept of biological ageing into a quantitative era. However, while current
epigenetic clocks have shown strong predictive power, they do not reflect the underlying
biological mechanisms driving methylation changes with age. Consequently, biological
interpretation of their estimates is limited. Furthermore, our findings suggest that clocks
trained on chronological age are confounded by non-age-related phenomena.

To address these limitations, we developed a probabilistic model that describes methylation
transitions at the cellular level. Our approach reveals two measurable components,
acceleration and bias, that directly relate to perturbations of the underlying cellular dynamics.
Acceleration is the proportional increase in the speed of methylation transitions across CpG
sites, whereas bias is the degree of global change in methylation affecting all CpG sites
uniformly. Using data from 7,028 participants from the Generation Scotland study, we found
the age acceleration parameter to be associated with physiological traits known to impact
healthy ageing. Furthermore, a genome-wide association study of age acceleration identified
four genomic loci previously linked with ageing.

Introduction

The role of age as the predominant risk factor for cancer, neurodegenerative disease, and
cardiovascular disease has motivated research into its underlying cellular mechanisms. Until
recently, a major challenge in this field was the lack of a reliable method for accurately
measuring biological age. A tipping point was the development of the first comprehensive
epigenetic age predictors'™. These models quantified biological age based on the presence
of age-related changes in the DNA methylome of individuals. This development naturally led
to the concept of age acceleration, which is commonly defined, for an individual within a
cohort, as the residual from the epigenetic clock’s predicted age and their chronological age
5 The use of epigenetic clocks to measure the rate of biological ageing is now widely
employed as they have been shown to capture the impact of various diseases and
environmental factors in a single metric **.

In recent years, advances in the field have led to numerous improvements. First,
population-based cohorts used for training have increased from modest sizes to include and
combine large cross-sectional studies with thousands of participants®*’8. Second, the
complexity of models has advanced in parallel on two fronts. Machine learning techniques
are now used increasingly to develop epigenetic clocks that capture non-linear and
interaction dynamics®'°. Furthermore, “composite” or “second generation” clocks have been
directly trained on measures of health and longevity. As a result, these clocks have increased
associations with a number of diseases as well as overall mortality "3,
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While more sophisticated algorithms and larger cohort sizes have improved the accuracy of
epigenetic clocks in predicting chronological age, they do so at the cost of not fully capturing
biological information (Zhang et al. 2019). On the other hand, integration of physiological
parameters, such as inflammatory markers, into epigenetic clocks shifted their focus from
epigenetic ageing toward the prediction of age-related diseases.

Lastly, a common criticism of most commonly applied epigenetic clocks is that the statistical
learning approaches used to predict methylation patterns do not necessarily reflect
underlying molecular processes. This limitation complicates the interpretation of their
biological underpinnings .

In this study, we systematically identify and evaluate design issues with current epigenetic
predictors of chronological age. We show that the amount of biological variability captured by
these models decreases as the size of cohorts or the complexity of algorithms increases.
Further, we highlight how confounding epigenetic processes, such as global change in
methylation, can substantially bias predictions of age acceleration.

To overcome these technical limitations and the lack of biological interpretation, we
developed a new model of epigenetic age acceleration based on a mathematical
representation of the cellular dynamics of methylation change '>'°. This model allows
mechanistic interpretation of methylation change at CpG sites. Its application predicts two
distinct processes that modify the natural progression of epigenetic change over the human
lifespan: age acceleration and bias (global change in methylation levels). We provide an
efficient method to infer these parameters for each individual using blood-based
methylome-wide array data from the Generation Scotland cohort and develop a novel batch
correction algorithm to enhance transferability of our model to other cohorts.

We also describe associations between our acceleration parameter and lifestyle factors,
prevalent disease outcomes, and risk of all-cause mortality. Further, a genome-wide
association study revealed four genomic regions significantly associated with age
acceleration.

Results

Limitations of clocks trained on chronological age

We first sought to understand why CpGs that do not correlate with chronological age are
included in epigenetic age predictors . Our findings revealed that inclusion of
non-age-correlated CpGs (naCpGs, R2<0.1) improves chronological age prediction at the
expense of capturing variability from disease-related lifestyle factors, as we demonstrate
below.

First, we showed the extent to which naCpGs are incorporated in commonly used clocks
trained on chronological age (Fig. 1a). We excluded composite epigenetic clocks from our
analysis because they are expected to include naCpGs that predict phenotypes other than
chronological age ''2. Note that the high number of naCpG sites present in the multi-tissue
predictors - Horvath ' and Skin and Blood ° - might be explained in part by the presence of
tissue-specific sites. Second, we plotted the age association of all clock CpGs against their
association with smoking, which has widespread associations with blood-based DNAm '7:8
(Fig. 1b). This revealed naCpGs with methylation levels associated with smoking being
included in several clocks. In Fig. 1c, we showed an example of a smoking-correlated CpG
site included in the Zhang et al clock ’. Similarly, in Fig. 1d, we showed a site included in the
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DeepMAge clock that is highly correlated with alcohol consumption, a correlate of epigenetic
age predictors *'7. As DeepMAge is a non-linear neural network predictor, this suggests that
incorporation of naCpGs persists even when more complex algorithms are applied.

To understand why naCpGs are incorporated in linear predictors of chronological age, we
investigated how an increase in cohort size impacts age prediction accuracy and association
with tobacco smoking (Fig. 1e-f). We used a subset of the Generation Scotland cohort
(GSeetr; N=4450 unrelated individuals with blood-based lllumina EPIC array DNAm) and
bootstrapping techniques to train LASSO regression models on training sets of increasing
sizes (see Methods). We found that an increased size of the training cohort results in more
accurate chronological age prediction, as previously reported (Fig. 1€) ’. In contrast, the
strength of association between smoking and age acceleration estimated by the
bootstrapped models showed a sharp decline for training sets exceeding 1000 individuals.
This drop in association correlates with an increasing fraction of naCpG sites being
considered, some of which correlate strongly with smoking (Extended Data Fig. 1a). In Fig.
1f, we showed a naCpG strongly associated with smoking (R?=0.59, p<0.001) that becomes
incorporated in all models trained with 2000 individuals. Next we tested the effect of
increasing the prevalence of smokers in training cohorts of fixed size (n=700, see Methods).
This test produced analogous results: the strength of association between smoking and age
acceleration decreases as the prevalence of smokers increases (Extended Data Fig. 1b-c).
Similarly, the naCpG illustrated in Fig. 1f is incorporated in every clock trained with more than
30% of smokers.

Taken together, this analysis showed that incorporation of lifestyle-associated naCpGs helps
to improve the predictive performance of epigenetic clocks for chronological age at the
expense of reducing the captured biological variability.

We next considered global biases in methylation levels. These may occur due to incomplete
bisulfite conversion or as the result of an underlying biological process. The imbalanced
contribution of hyper- and hypomethylating CpGs in epigenetic predictors results in over- or
underestimation of the inferred acceleration (Supplementary Information Methods 2.1). To
test this hypothesis we offset GS,., global methylation levels both positively and negatively
and applied several published epigenetic clocks to the modified data (Fig. 1g). This showed
that while the degree of sensitivity to global changes in methylation varies across clocks, all
displayed shifts in acceleration predictions.

Finally, acceleration is commonly defined, uniformly for all ages, as the residual between
clock predictions and chronological age. However, we estimated the time-evolution of the
variance of methylation levels, in all sites showing a correlation with age (R®>0.2), and
observed an overall increase with age (Fig. 1h), as seen in other studies '°. This discrepancy
results in an increased variance of acceleration values for older individuals (Fig 1h).

These limitations of epigenetic age predictors (summarised in Fig. 1) and the absence of a
mechanistic biological foundation necessary for interpreting their outcomes motivated us to
devise an alternative approach for measuring epigenetic age acceleration (Fig. 2a).
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Figure 1. Limitations of current epigenetic predictors

a. Proportion of CpGs included in various epigenetic clocks that are not associated with
age. For each CpG site included in these epigenetic clocks, we fitted linear regression
models of the form: methylation ~ age. naCPGs were defined as sites below an
age-association threshold of R?=0.1.

b. Comparison between the association of methylation levels with smoking and age on
each CpG site included in various epigenetic clocks. Each point corresponds to a site
included in a clock. Age association displayed as adjusted R? from linear regressions
for each CpG of the form: methylation ~ age. Smoking association shown as the
absolute value of the coefficient of smoking (dichotomised as a weighted smoking
value of greater than 0.25) from linear regressions for each CpG of the form:
methylation ~ smoking + age + sex. Weighted smoking defined in Methods.

c. Methylation beta values vs age for a single CpG that is included in the epigenetic
clock of Zhang et al. 7. Each point represents an individual and is coloured by their
level of smoking (defined in Methods).

d. Methylation beta values vs age for a single CpG that is included in the DeepMAge
clock. Each point represents an individual and is coloured by their level of alcohol
intake in the last week.

e. Acceleration obtained from bootstrapped lasso linear regressions trained on
chronological age for a range of training cohort sizes. Training cohorts were randomly
sampled from the GS,, dataset. The results were computed on random test sets
(n=2000). The red line, associated to the left y-axis, shows the average, and 95%
confidence interval, association between the predicted age accelerations with
smoking, given training cohort size. The blue line, associated to the right y-axis,
shows the average, and 95% confidence interval, mean squared error in the
prediction of chronological age.

f. Methylation beta values vs age for a single CpG that is included in all lasso models of
chronological age trained with 2000 individuals. Each point represents an individual
and is coloured by their level of smoking (defined in Methods).

g. Impact of global offsets on the inferred accelerations using Horvath, Skin and Blood
and Hannum clocks. Global offsets in methylation were increasingly applied to all
sites in GS,, and accelerations were computed as the residual from the predicted
age to the chronological age of individuals. Further, accelerations have been shifted
for each clock so that the predictions with zero offset are centred at 0. Boxplots show
the median and exclusive interquartile range

h. Effect of the increase in variance of methylation levels as a function of time in
epigenetic predictors. Each point corresponds to the acceleration predicted by
Horvath’s clock for every individual in the GS,; cohort. In blue, we show a linear
regression of the mean and 2 standard deviations of the predicted accelerations,
computed using age bins reflected by the change in colour of points. The right
marginal box plot shows the median and exclusive interquartile range of the predicted
accelerations by bin. The top marginal plot shows the evolution of the variance across
the highest 1000 sites correlating with age in GS,..
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A biological model of methylation change

Mechanism-based mathematical models offer a tangible interpretation of biological processes
driving methylation patterns change over time. At a single cell level, methylation change at
each genomic locus can be interpreted as a transition between unmethylated and methylated
states, with rates v, and v, respectively (Fig. 2b). This parsimonious model was first

proposed in 1990 to study the clonal inheritance of CpG patterns'. The dynamics of
methylation change over time at each site can be described with three interpretable
parameters. The initial and terminal proportions of methylated cells, p and n, determine the
directionality of the mechanism of ageing at each locus. In contrast, the total rate of
transitions between cell states, w, equates to the biological notion of speed of ageing at a
single CpG site (Fig. 2a-b and Methods). This formulation allows derivation of a biologically
informed notion of age acceleration, «. The dynamics associated with an accelerated ageing
phenotype are described by a uniform increase in the rate of transitions, v, and v between

methylation states across CpG sites (Fig. 2a). Further, this model allows inference of global
hypo- or hypermethylating changes affecting the whole methylome of an individual, termed
bias or B (Fig. 2a).

The linear approximation of this biological model provides a familiar interpretation of
epigenetic acceleration and bias. An increase « in the speed of ageing at a single CpG site
corresponds to a proportional increase of the slope in methylation trajectories. Similarly, bias
corresponds to a uniform shift of the intercepts (Fig. 2a and Supplementary Information
Methods).

We used the GS; cohort (n=4,450, age range 18 to 94 years) to fit our biological model and
infer the parameters for each CpG site with a high age correlation (R?>>0.2, n=1870).

To compare the fit of our approach with the linear model, we used Bayesian techniques to
approximate the predictive power, expected log-predictive density, of both models in CpG
sites (see Methods). Our proposed biological model outperforms linear modelling in 97% of
all considered CpG sites (Fig. 2c-d) and globally across all CpG sites considered (Fig. 2c).
Since the biological model predicts nonlinear dynamics, it is capable of capturing complex
changes in both mean and variance that linear models fail to explain (Fig. 2d).

The model parameters inferred from the GS,, cohort enabled us to quantify the extent to
which each person's methylation pattern deviates from the cohort average. This difference
was explained and quantified in terms of acceleration and bias, inferred across sites for each
individual separately (Fig. 3a-b and Methods). Critical for the success of this model is the
capacity to disentangle the effects of both cellular mechanisms. The effects of acceleration
and bias, however, can be separated because global changes in methylation vary in the
same direction, acceleration is linked to the direction of methylation changes at each
genomic locus (Fig. 3a). Bayesian analysis of the posterior distribution of the inferred
acceleration and bias for all individuals verifies that these parameters are not correlated (Fig.
3b). We then showed that similar acceleration and bias estimates can be obtained when we
consider only the top 250 CpGs with the strongest associations with age (Extended Data Fig.
2a-b and Methods).

The distributions of acceleration and bias inferred from all individuals in the GS,., cohort is
shown in Fig. 3c. This highlights that individuals can exhibit increased acceleration or bias, or
a combination of both. We then showed that the predictions of acceleration are constant in
variance across age ranges and that they are robust against global changes in methylation
(Extended Data Fig 2c-d).
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Batch correction

We designed a batch correction algorithm to allow comparisons across cohorts. This enables
the transferability of our model to an external cohort without the need to retrain. We do this by
applying a site-specific offset to all individuals in the new cohort (see Methods) (Fig 3d). We
tested the validity of our batch correction algorithm on the Hannum et al. cohort 2. In Fig. 3e
(and Extended Data Fig. 2e) we provide a visual comparison of the effect of our batch
correction algorithm on the site showing the largest offset. We showed minimal differences in
predictions between our batch-corrected model and a fully retrained model on the external
dataset (Fig 3f and Extended Data Fig 2f).

To further validate our batch correction algorithm, we investigated its applicability to datasets
with limited sample sizes. We used publicly available data of a Down syndrome cohort (n=58
control, n=29 disease) %. Despite the dataset's small number of participants, Down syndrome
was associated with an increase of 0.7 standard deviations in epigenetic age acceleration
(p=0.002, see Methods).
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Figure 2. Workflow and modelling methylation on CpG sites

a. Overview of the study workflow showing how site-specific parameters are derived
across the cohort and then used to calculate bias and acceleration values for each
individual. There is a separate pipeline for the external datasets which does not
involve training. Created with BioRender.com.

b. Schematic showing the biological model’s underlying stochastic mechanics. For a single
cell, multiple CpG sites can over time either methylate or demethylate with rates v, and

v, respectively. Created with BioRender.com.

c. Comparison between the linear and biological model in CpG sites. Sites are compared
using the expected log-predictive density (ELPD), approximated using Pareto-smoothed
importance sampling. This measure penalises the model for a higher number of
parameters and gives a higher value for a model that better explains the data. For each
comparison we show the mean and 2 standard deviations of the ELPD. Top plot shows
the model comparison across all 1870 used for model training. The bottom plot shows
the model comparison for the top 20 sites correlating with age. In the bottom plot, ELPD
of each comparison has been centred at the value of zero to facilitate the display of
many sites.

d. Predicted dynamics of methylation levels in CpG 16867657 by the biological and linear
model. Grey dots show the methylation and age of individuals in the GS,,, cohort. Red
lines show the biological model's mean and 95% confidence interval predictions. Blue
lines show the linear model’'s mean and 95% confidence interval predictions.
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Figure 3. Acceleration and Bias

a. Differences between acceleration and bias in model predictions. Predicted evolution
of both an accelerated but not biassed (red) individual, and of a biased but not
accelerated individual (blue) in GS4,. The trajectories for the same individuals are
shown for both sites with decreasing and increasing methylation levels with time in
separate panels. Acceleration increases the slope of, whereas bias globally offsets,
the predicted evolution of methylation levels. In grey we show the methylation and
age values for the rest of individuals in GS,; and the predicted mean evolution of
methylation levels.

b. Confidence around the inference of acceleration and bias. Joint posterior distribution
of the acceleration and bias for 6 individuals in GS,,. Each individual is identified by
a unique colour. The Maximum A Posteriori (MAP) value is also highlighted. The
marginal posterior distribution of the acceleration and bias are shown in marginal
plots for each individual.

c. Inference results of acceleration and bias for all individuals in the GS,.s cohort.
Marginal plots show the Kernel density estimate (KDE) of the distribution of inferred
MAP values of acceleration and bias for all individuals in GSg..

d. Schematic illustrating how batch correction is applied on each site in an external
dataset. An offset is inferred for each CpG site as the uniform shift in the predicted
dynamics of our biological model that maximises the probability of observing all
individuals in the external dataset. Created with BioRender.com.

e. Schematic table of models used to validate the batch correction algorithm. The
corrected external model denotes the model trained on GS,; applied on an external
dataset after batch-correction (reference parameters and offset). The uncorrected
model refers to applying the trained model on GS,; without batch correction on the
external dataset (only reference parameters). Finally, the retrained model denotes a
completely new model with parameters inferred using exclusively the external
dataset.

f. Visual interpretation of the effect of batch correction between GS; and the Hannum
external dataset on a single CpG site. Blue dots show the methylation levels and ages
of individuals in the reference GS,, cohort are plotted in blue. Red dots show the
methylation levels and ages of individuals in the external Hannum cohort. Blue dots
show the optimal offset inferred by our batch-correction algorithm.

g. Effect of batch correction on the inference of acceleration and bias values. Dots show
the acceleration and bias inferred by the retrained (green), not corrected (red), and
corrected (blue) models. Marginal plots show the KDE of each parameter’s
distributions.

h. Distribution of acceleration and bias inferred in a cohort of individuals with Down
syndrome. Our model was batch corrected using the control group, and acceleration
and bias were computed for both control and disease groups. Each dot represents an
individual in the external cohort and is coloured according to their disease status.
Marginal plots show the KDE distributions of acceleration and bias as well as the
group mean.
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Acceleration is associated with lifestyle factors and health outcomes

Next, we tested for association of age acceleration or bias with disease phenotypes and
genetic variants. The following analyses were conducted on the combined subsets of
Generation Scotland (n=7028) - GS,.; and the batch corrected subset GS,.,, (n=2578,
unrelated to each other and to GS,., ,and processed in separate experimental batches).

We performed linear regression analyses to quantify associations between acceleration and
disease phenotypes while controlling for age and sex (Fig. 4a-c, Supplementary Table 1). All
of the significant results have passed the false discovery rate (FDR) adjusted value
threshold. This revealed significant (FDR-adjusted P<0.05, see Methods) associations
between age acceleration and four phenotypes. Increased acceleration was associated with
higher levels of tobacco smoking and with greater deprivation (as measured by the Scottish
Index of Multiple Deprivation) (Fig. 4a). Increased acceleration was also associated with a
number of self-reported prevalent disease outcomes, namely diabetes and chronic
obstructive pulmonary diseases (Fig. 4b). Further, a Cox proportional hazards regression
analysis showed an association between acceleration and all-cause mortality (Fig. 4c, hazard
ratio =1.158 per standard deviation increase of acceleration; 95% confidence interval 1.048,
1.280; FDR-adjusted P=1.34x10?). Similarly, increased bias was shown to be associated
with two phenotypes, namely lower alcohol consumption and HDL cholesterol levels. These
associations were also recapitulated to a large extent when computed separately on both
cohorts GS,,; and GS,,, (Extended Data Figure 3a-c, Supplementary Table 1).

These results highlight that our measure of increased speed of ageing captures biologically
meaningful age-related traits. Additionally, the lack of overlap between associations found
with acceleration and bias suggests that these two parameters capture distinct biological
phenomena (Fig. 4a).

GWAS of acceleration implicates age-related genomic loci

We then conducted a genome-wide association analysis to identify genetic variants that are
associated with acceleration. We found 218 SNPs at genome-wide significance (p<5x10%)
clustered in four genomic regions on chromosomes 2, 3, 10 and 17 (Fig. 4d).
Acceleration-associated SNPs clustered into two main categories of interest: age- and
blood-related traits (Fig 4e). All four genomic regions contain SNPs associated with age
acceleration as measured by other ageing clocks?' (Horvath, PhenoAge, or GrimAge), and
SNPs within the chromosome 10 region (chr10: 101271789 - 101589328) are genome-wide
associated with telomere length. All regions also contain SNPs associated with numerous
blood-related traits.

We then performed downstream functional analysis to link SNPs with genes by overlapping
the genomic regions with PBMC promoter capture Hi-C data?? and PBMC ChlIP-seq data
from the ENCODE project® (Extended Data Fig 3d). The strongest association was found for
a locus in chromosome 2 with a distal interaction with the MYCN promoter region. MYC, a
paralogue MYCN, has been convincingly shown to play a crucial role in determining lifespan
and shaping various aspects of health and well-being in mammals?*. We validated this
long-range interaction in several datasets, including in situ HiC data from primary cancer cell
lines of MYCN-driven neuroblastoma , in which we can see a pronounced interaction (Fig.
4f). Furthermore, the found promoter-interacting region overlaps with H3K27ac and
H3K4me1 histone marks, suggestive of enhancer activity. A SMC1 Chromatin Interaction
Analysis with Paired-End Tag (ChlA-PET) experiment showed that SMC1 sites located at the
enhancer/snp and MYCN promoter are interacting?® (Extended Data Fig 3e). Once again, this
strengthens the case for a physical promoter-enhancer intersection. This link was reinforced
by the association of this locus with various cleft lip/palate traits (Extended Data Fig. 3e), for
which MYCN deficiency is a known risk factor?®. 2’
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Figure 4. Phenotypic and genome-wide association studies

a. Associations between acceleration, bias and continuous traits. Forest plot of
significant associations (FDR-adjusted P<0.05) between continuous phenotypes and
age acceleration (red) and bias (purple). Results shown as standardised beta values
with 95% CI from linear regressions of the form: phenotype ~ acceleration + bias +
age + sex. SIMD (Scottish Index of Multiple Deprivation)

b. Associations between acceleration, bias and categorical traits. Forest plot of
significant associations (FDR-adjusted P<0.05) between disease phenotypes and age
acceleration (red) and bias (purple). Results shown as odds ratio with 95% CI from
logistic regressions of the form: disease ~ acceleration + bias + age + sex. COPD
(chronic obstructive pulmonary disease).

c. Associations between acceleration and all-cause mortality. Forest plot of the
association between acceleration and all cause mortality (FDR-adjusted P<0.05).
Result shown as hazard ratio and 95% CI from a Cox proportional hazards model of
the form hazard ~ acceleration + bias + age + sex. The associations reflect an
elevation of one standard deviation in the relevant measure of biological ageing.

d. Manhattan plot of results from the genome-wide association analysis of age
acceleration. Red dotted line indicates the genome-wide significance threshold
(5x10%).

e. Presence of GWASCatalog trait associations of any SNPs in LD (R?>>0.1) with the
lead SNP in the four genome-wide significant genomic loci. Traits are grouped into
two categories of interest — age-related and blood-related traits.

f. A zoomed-out view of chromatin interactions and chromatin features in and around
the genomic risk loci chr2:15841100-17142797 (highlighted in orange). Significant
SNPs are shown as red vertical lines. SNPs identified by published GWAS collected
in the NHGRI-EBI GWAS Catalog are shown as green vertical lines. ChiP-seq for
H3K27ac and H3K4me1 in NBL-S cells and NGP cells are shown as purple
histograms and orange histograms, respectively. Coloured arcs depicting In situ HiC
chromatin contacts in SH-SYSY cells and NB69 cells. Demonstrating interaction of
the genomic risk loci with the MYCN gene locus.
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Discussion

The emergence of epigenetic age predictors was a watershed moment in geroscience,
propelling the measurement and concept of biological ageing into a quantitative era.

Our study attempts to integrate biological mechanisms and quantitative principles to measure
biological age. Firstly, we identify and address technical limitations in current epigenetic
predictors trained on chronological age. Secondly, we provide a biologically tangible
interpretation of our outputs. This has been a long-held criticism inherent to previous clocks
that has hindered the progress in accurately defining the concept of epigenetic speed of
ageing and in studying the functional mechanisms underlying this process. This study
provides a biological interpretation of the speed of ageing, at a single-CpG level, defined as
the total rate of chemical reactions occurring in cells that result in changes between their
methylation states. Two notions central to methylation dynamics naturally emerge in this
model: age acceleration, defined as the proportional increase in the speed of ageing across
sites, and bias, global changes in methylation. Our study showed that both acceleration and
bias are associated with distinct disease phenotypes. Additionally, we used a novel
batch-correction algorithm, which can be used to improve comparison between cohorts or to
explore smaller datasets.

We consider our model to be parsimonious, in that it uses the minimal set of parameters
required to accurately recapitulate the observed methylation dynamics. However, a limitation
that arises from this approach is the simplification of the mechanism by which cells can gain
or lose methylation. Inclusion of enzymatic processes in a more complex model could offer
an alternative interpretation of ageing on an enzymatic level (also discussed in
Supplementary Information Methods 1.3).

Additionally, our model does not account for cell count compositions. However, our analysis
of the methylation dynamics observed in CpG sites challenges the widespread hypothesis
that methylation changes with age are predominantly influenced by variations in cell-type
composition. If this were the case, we should observe clustered patterns of speed of ageing
across different sites corresponding to different cell types, whereas we observe a continuum.
Further, the genomic locus that correlated strongest with age in Generation Scotland and
other studies® “cg16867657” (ELOVL2), shows a dynamic range in methylation that is
inconsistent with cell-type composition changes at old age. Although these remarks are not
conclusive, the hypothesis that changes in cell-type composition cannot account for the
observed trends in methylation changes at clock CpG sites has already been convincingly
argued in previous studies %.

The biological relevance of acceleration measured by our model was substantiated using
both phenotype association analysis (in combined and independent subsets of GS) and
GWAS. Acceleration demonstrated significant correlations with various phenotypes and
disease burdens, including diabetes and COPD. These are leading causes of death in
high-income countries?®, and is reflected in our analysis by showing increased risk of
mortality associated with increased acceleration. Interestingly, we see the strongest overlap
of our GWAS associations not with the outcomes of first generation clocks, but with those
reported by the composite clock PhenoAge. Although replication in other cohorts should be
sought, this highlights that our proposed model captures biologically relevant information.

Downstream functional analysis of the SNPs associated with age acceleration found genetic
variants inside a distal enhancer region for the MYCN gene. MYC, the paralogue to MYCN,
has been associated with ageing in a comprehensive study suggesting that the activity of
MYC plays a crucial role in determining lifespan and affecting various aspects of health and
well-being in mammals®. MYCN as a general cell proliferator in development and the
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contrasting role in age acceleration make it a candidate gene for antagonistically pleiotropic
effects™®.

Methods

Generation Scotland

Overview: Generation Scotland (GS) is a family-based cohort consisting of individuals, aged
18 to 99 years, living across Scotland. Recruitment took place between 2006 and 2011. The
cohort encompasses 5,573 families with a median family size of 3 (interquartile range=2-5
members; excluding 1,400 singletons without any relatives in the study). Full details on the
cohort and baseline data collection have been described previously ¥,

DNA methylation: Genome-wide DNA methylation was measured from blood samples using
the lllumina Infinium HumanMethylationEPIC BeadChip at >850,000 CpG sites. The
methylation profiling was carried out in two sets, here referred to as Set 1 and Set 2. Set 1
consisted of 4,450 unrelated individuals, who were also unrelated to individuals in Set 2. Set 2
consisted of 2,578 individuals who were genetically unrelated to each other at a relatedness
threshold of < 0.025. Poor performing probes, X/Y chromosome probes and participants with
unreliable self-report data or potential XXY genotype were excluded. Full details of DNA
methylation quality control steps are detailed under Supplementary Information Methods 6.1.

Genotyping: Generation Scotland samples were genotyped using the Illlumina Human
OmniExpressExome-8v1.0 and 8v1.2 BeadChips, and processed using the lllumina Genome
Studio software v2011 (lllumina, San Diego, CA, USA). Quality control steps are outlined in full
under Supplementary Information. Duplicate samples, samples with genotype call rate < 0.98 or
outlier values on PCA of genotype data were excluded. SNPs with a call rate < 0.98, minor
allele frequency < 0.01 and Hardy-Weinberg equilibrium test with p < 1 x 10-6 were also
removed. Genotype data were imputed using the Haplotype Research Consortium (HRC)
dataset and ~24 million variants were available for analyses **34. There were 7023 individuals
with genotype and methylation data. Full details of genotyping quality control steps are detailed
under Supplementary Information Methods 6.2.

Phenotyping and health record linkage: GS participants self-reported health and lifestyle
data at the study baseline, including lifetime and family history of approximately 20 disease
states. Over 98% of GS participants consented to allow access to electronic health records via
primary and secondary care records (i.e. Readv2 and ICD codes). Data are available
prospectively from the time of blood draw, yielding up-to-15 years of linkage. Information on
mortality and cause of death are updated via linkage to the National Health Service Central
Register, which is provided by the National Records of Scotland (data correct as of March
2022).

Ethics: All components of GS received ethical approval from the NHS Tayside Committee on
Medical Research Ethics (REC Reference Number: 05/S1401/89). GS has also been granted
Research Tissue Bank status by the East of Scotland Research Ethics Service (REC Reference
Number: 20-ES-0021), providing generic ethical approval for a wide range of uses within
medical research.

Associations of other epigenetic clock CpGs with age and smoking

CpG sites were considered naCpGs linear regressions of the form meth ~ age showed a
coefficient of determination R?<0.1. To compute associations between methylation levels and
smoking, we created the “weighted smoking” variable which combined information on both
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how much a participant smoked at any point of in its life, norm_smoke = (1 + packs/year)

, and the current smoking status, curr_smoke, categorically defined by: 1-currently smoking,
2-stopped within 12 months, 3-stopped more than 12 months ago, 4-never smoked. More
precisely we assumed that the effect of smoking is proportional to norm_smoke and fades
exponentially with their smoking status, that is
weighted_smoke = norm_smoke/exp(curr_smoke). In binary definitions of smoking, we
used a weighted_smoke cutoff of 0.25 based on the observation from the cohort-wide
histogram that the vast majority of people clustered below 0.25, with a long tail of heavier
smokers above 0.25. When calculating smoking associations for the figures, we used this
binary definition of smoking and reported the coefficient of smoking from linear regressions
for each CpG of the form: meth ~ weighted_smoke + age + sex.

Bootstrapping linear regression models

To show the decline in associations with increasing training size cohorts, we selected random
training cohorts with set sizes and test sets (n=890, or 20% of GS) from GS,.;. We trained
Lasso models with 5-fold cross validation to allow optimisation of the selected CpG sites and
regularisation levels.

We then computed acceleration as the residual from the model prediction and chronological
age and inferred its association with weight_smoke on the test set.

We bootstrapped linear regression models with increasing proportions of smokers
(categorically defined as weight_smoke > 0.25) similarly. Here training sets had a fixed size
(n=700) limited by the amount of smokers.

R? filter of CpG sites

To avoid numerical errors during model fitting in GS,.; we discarded CpG sites with NaN
methylation values (n=6) and replaced methylation levels of 0 and 1 by 0.0001 and 0.9999,
respectively. Next, we fitted linear regression.

We then fitted linear regression models of the form meth ~ age on the remaining sites
(n=773854) .To maximise the age correlation of sites with ageing used for model training,
and to avoid the presence of naCpG sites in our model, we filtered all CpG sites showing a
low coefficient of determination, R? <0.2. The remaining sites (n=1870) were taken forward
for model comparison.

Biological modelling of methylation dynamics at a single CpG site level

We now present an overview of the key results necessary to understand the derivation and
interpretation of the proposed mathematical model of methylation dynamics. An exhaustive
description and precise mathematical derivations can be found in the Supplementary
Information.

To model the evolution of methylation dynamics with time, in a single CpG site, we
considered a minimal model of transitions between two states. The proposed model directly
relates to the early work of Markov in 1905 and was used for the first time to model the
dynamics of methylation in ', and more recently in the context of ageing in . In this model
cells can be in either an unmethylated or methylated state, U and M respectively, and can
transition from one state to the other at rates v, and v, (Fig. 2B).

The mean evolution of this system as a function of time, ¢, is given by
—wt
m(t) =n+e (p—m)

where w = v, tv, corresponds to the total rate of transitions, p the proportion of
methylation cells at initial time t = 0, and n = vu/m to the proportion transitions associated
with a gain in methylation (Fig. 1A). Notice that the definition of speed of ageing at a single
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CpG site, w, emerges naturally, while the directionality of these changes is independent from
the speed, given by the initial state of the system p and the final state 1.

The evolution of the variance of this system can be similarly described as a function of time,

nn n, (A=p)+pn, ‘=0 0 n, (A-p)+pn,”
2 v'm —wt My 17 v 'y —2wt, ¢ y M

where S corresponds to the system size and c the initial variance at the cell level.

Although the distribution for the evolution in time of this system is not analytically solvable, it
is well approximated by a beta function conditional on the mean and variance derived above.
We can therefore model the probability of seeing a methylation level m, in site i in an

individual aged t by
P(mi|t) = Betapdf(mi,m(t), Gz(t)).

We use this probability definition to find the optimal parameters for each site using all cohort
methylation observations. That is the parameters that maximise

P(M) = T Beta , (m', m@) o' (),

(m )em.
where M = (mij, tj) corresponds to the pair of methylation value and age of each individual

in the cohort. We approximated the full posterior distribution, using a Markov chain Monte
Carlo algorithm, and extracted the maximum a posteriori values of the parameters for each
site using the PyMC python package.

To ease interpretation of our results, we take the log2 transformation of the original
acceleration parameter, centering the cohort average at 0, and report the maximum a
posteriori (MAP) estimates for both acceleration and bias.

Model comparison
Similarly, we fitted a probabilistic linear model of the form

P(Mi) = 1 Normpdf(mi,at + b, ct + d),
! Hem, e

and inferred the posterior distribution and performed a model comparison using the PYMC
python package. Model comparison approximated the expected log-predictive density
(ELPD) of both models on each site using an approximation of leave-one-out cross validation
(LOO-CV) based on the Pareto-smoothed importance sampling (PSIS). The higher ELPD
value on each site highlights the favoured model to explain the observed dynamics. Since the
evolution of methylation across CpG sites is assumed to be independent of each other, we
compute the overall ELPD for either model by summing the reported value on all fitted sites.

Saturation filtering

Further quality control measures were taken to ensure that only sites that capture the full
expected dynamics of methylation changes with time are retained for further modelling
(Extended Data Fig. 2a).

We observed that the methylation dynamics are constrained between 0 and 1. This reduces
the possibility to observe deviations from the mean in sites approaching these boundaries.
We therefore dropped sites for which the 95% confidence interval predicted by our model
reached a threshold of either 0.005 and 0.95, at either birth or 90 years. 204 sites were
observed to display this phenomenon.

Further, we noticed that the above mentioned phenomenon might occur at different
thresholds, due to different batch correction processes. However, in these sites, we should
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see a plateau in the evolution of the methylation dynamics. We therefore computed the

derivative of the mean methylation dynamics for each site, m'(t) = me_mt(n — p), and
valued it at t = 90. This value is a measure of our distance to steady state at old age,
ds = m'(90), at old age. We then filtered all sites with low distances to steady state,
ds < 0.001 (n=654).

Overall a total of 1160 sites were taken forward for acceleration and bias modelling.
Acceleration and bias model

First, we define the probability of observing a methylation pattern in an individual by
comparing its methylation levels to those obtained from cohort fitting on each CpG site. That
is, if an individual of age t has methylation levels {mi}iel on a set of CpG sites I, we define its

probability of observation as

2
P({mi}iel, t) = E]'[IBetap.d.f.(mi,m(t), o (1)),
where m(t) and oz(t) are defined as above, using the MAP values for all site parameters in
the model obtained from the cohort fitting. We then consider two extra parameters a and B in
our model. Mathematically, we multiply the speed of reactions v, and v, uniformly across all

sites by a factor a. Notice that this translates in a proportional increase of the total speed of
reaction, that becomes aw, for each CpG site i. Parameter a therefore represents a uniform

increase in the average speed of ageing across all measured sites. Analogously, parameter 3
modifies uniformly all sites shifting the mean intercept, but not disturbing the expected speed
of change. These two parameters modify the mean evolution of methylation on for each site

as follows:

m, o B)=n+e “(p-—m + B
Details on how these parameters modify the evolution of the variance can be found in the
Supplementary Information Methods Section 4. We can then compute the probability of

observing an individual conditional on a given acceleration and bias

2
P({mi}iel,tla, B) = iEHIBetap.d.f.(mi,m(t, a, B), o (¢t, a,B)).
We then infer the posterior distribution of parameters a and 3 and compute the maximum a
posteriori values that maximise the probability of observing the methylation levels in an
individual across sites using the PYMC python package.

Downsampling

To determine the optimal amount of CpG sites included for the inference of the acceleration
and bias of each individual we conducted a downsampling experiment. We inferred
acceleration and bias using increasing numbers of CpG sites, ordered decreasingly
according to their absolute correlation with age. We then computed the absolute difference
between the inferred values for each fit to infer the stability of our predictions as a function of
the sites included in the model. We found that there are no benefits in including more than
250 sites (Extended Data Fig. 1b).

Global hypo-hyper methylation test

We tested the robustness of our accelerated person model by transforming the training GS,
cohort, by applying a global hypo or hyper methylation to all the data points. Then we inferred
the acceleration and bias values on this transformed dataset using the site parameters
inferred from the not transformed dataset (Extended Data Fig. 1d). As a benchmark, we also
predicted the age acceleration using the Horvath epigenetic clock which shows little
robustness against these type of methylation transformations.
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Site batch correction

When applying our model to external datasets, we do not retrain the biological model on the
new data. Instead, we applied an offset to the evolution of the mean m(t), for each site,
inferred using our reference dataset GS,.;;. Mathematically, for each site we find the offset, 0,

that maximises the probability of observing

P(M) = I Beta , (m,m) +o, o ().
! em, o

The full mathematical description of our algorithm can be found in Supplementary Information
Methods section 5. We benchmarked our results on the Hannum dataset by comparing a fully
retrained model on this dataset and the model trained on GS,.; applied both with and without
batch correction. We found that offset does not have a clear directionality across sites and
should therefore be applied separately for each CpG site considered in the model.

Down Syndrome analysis

We used the control group in the Down syndrome dataset % to fit our batch correction
algorithm and inferred acceleration and bias parameters for the control (n=58) and disease
(n=29) groups. We then fitted a logistic regression model of the form
disease ~ scale(acceleration).

Association Analysis

We utilised GS, and GSg4's linked health data records (n=7028) to perform association
studies grouped into three categories associated with the nature of the studied traits:
continuous, categorical and survival.

For each continuous phenotype, outlier values that were more than 3.5 standard deviations
away from the mean were removed prior to analyses. We also applied a log transformation to
the body mass index to normalise the data. Finally, we used log transformations on the
alcohol consumption to reduce skewness in their distributions. This was done by applying a
log(units+1) transformation. We quantified the continuous trait of smoking using our
developed weighted_smoke parameter (described above).

Statistical analysis:

Linear regression models of the form phenotype ~ scaled(a) + scaled(B) + age + sex
were used to examine the association between continuous traits and the acceleration and
bias measurement. Scaling is performed to standardise the data to a mean of zero and a
variance of one. Logistic regression was used to test the association between categorical
disease phenotypes and acceleration and bias. We fitted a Cox proportional hazards
regression to examine whether our measures of biological ageing were associated with
incidences of all-cause mortality. All of the results were corrected using the FDR method.

GWAS and functional analysis

Genotype—phenotype association analyses were performed using a linear mixed model
GWAS implemented in fastGWA GCTA **. 7023 overlapping individuals with non-missing
genotype and phenotype data were included. Variants with MAF < 0.01 or missingness rate >
0.1 were excluded from the analysis. Preliminary functional annotation and was performed
using FUMA 3. Genomic risk loci were defined around significant variants (p<5 x 10-8) and
included all variants correlated (R2>0.6) with the lead variant. We used LDtrait * to search
for phenotypes associated with SNPs in linkage disequilibrium with the four lead SNPs
(R2>0.1) and within 1Mb. LDtrait reports association data from the GWASCatalog . All
coordinates in this study were based on human reference genome assembly GRCh37/hg19
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(see URL in Framework Implementation). Gene annotations were based on gencode
annotation release 39 (see URL in Framework Implementation).

Framework Implementation

The inference of the posterior distribution of model parameters was implemented in Python
version 3.9 with dependencies on PyMC 5.0.2 *°, Numpy 1.24.1 “°, Anndata 0.8.0 *' and Pandas
version 1.5.3 #2. Cox proportional hazards regression was done using the survival package
version 3.4.0 “, while linear and logistic regression were done using the stats base package
under R base version 4.2.2. GWAS summary statistics was generated using GCTA version
1.93.2. Functional analysis of the GWAS results was done using FUMA version 1.5.1.

Human reference genome assembly used for GWAS:
http://www.ncbi.nlm.nih.gov/assembly/2758]/. Gencode annotation researle 39:
https://www.gencodegenes.ora/human/release 39.html.

Data and code availability
All code used in this manuscript is available at https://github.com/zuberek/NSEA

According to the terms of consent for Generation Scotland participants, access to data must
be reviewed by the Generation Scotland Access Committee. Applications should be made to
access@generationscotland.org
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Extended Data Figure 1

a.

Comparison between the association of methylation levels with smoking and age on
each CpG site included in a training size bootstrap experiment. Each point
corresponds to a site included in a clock, coloured by the size of the dataset used to
train the epigenetic predictor and sized proportionally to the smoking coefficient value.
Age association displayed as adjusted R? from linear regressions for each CpG of the
form: methylation ~ age. Smoking association shown as the absolute value of the
coefficient of smoking (dichotomised as a weighted smoking value of greater than
0.25) from regressions for each CpG of the form: methylation ~ smoking + age + sex.
Weighted smoking is defined as log(1 + pack years)/exp(ever smoke). Points are
displayed with a random jitter to avoid overlap.

Acceleration obtained from bootstrapped lasso linear regressions trained on
chronological age trained on datasets of increasing proportions of smokers and a
fixed size (n=700). Training cohorts were randomly sampled from the GS,., dataset.
The results were computed on random test sets (n=2000). The red line, associated to
the left y-axis, shows the average, and 95% confidence interval, association between
the predicted age accelerations with smoking, given training cohort size. The blue
line, associated to the right y-axis, shows the average, and 95% confidence interval,
mean squared error in the prediction of chronological age.

Comparison between the association of methylation levels with smoking and age on
each CpG site included in a bootstrap experiment of the effect of the proportion of
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smokers. Each point corresponds to a site included in a clock, coloured by the size of
the dataset used to train the epigenetic predictor and sized proportionally to the
smoking coefficient value. Age association displayed as adjusted R? from linear
regressions for each CpG of the form: methylation ~ age. Smoking association shown
as the absolute value of the coefficient of smoking (dichotomised as a weighted
smoking value of greater than 0.25) from regressions for each CpG of the form:
methylation ~ smoking + age + sex. Weighted smoking is defined as log(1 + pack
years)/exp(ever smoke). Points are displayed with a random jitter to avoid overlap.
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Extended Data Figure 2

a. Filter of saturating sites showing increasing (left panel) and decreasing (right panel)
methylation trends. Each line shows the predicted time-evolution of the mean
methylation level of a single CpG site. Red lines represent sites saturating based on
the mean value at the age of 90, orange lines represent sites saturating based on the
derivative value of our model prediction at the age of 90. Blue lines indicate sites that
have not been filtered and are taken forward for acceleration and bias fitting.
Horizontal dashed lines at values 0.05 and 0.95 are included, to show the threshold
for the mean saturation filter.

b. Effect of increasing the number of CpG sites on the inferred acceleration (left) and
bias (right) for all participants in the GS,; cohort. Acceleration and bias were fitted
using exponentially increasing numbers of CpG sites decreasingly ordered in terms of
the coefficient of determination, R?, between the methylation levels and age of
participants in each site. Boxplots show mean and exclusive interquartile range of the
absolute difference in consecutive inferences of acceleration and bias. Additionally, a
the lowest R? value included in each model is shown in red for each iteration, with
values shown on the second Y-axis

c. Effect of batch correction on the inference of acceleration and bias values in the
Hannum dataset. Dots show the difference from the acceleration and bias using the
corrected (blue) and not corrected (red) models to that inferred using the retrained
model. Marginal plots show the KDE of each parameter’s distributions.

d. Impact of different global offsets, affecting all CpG sites uniformly, on the
accelerations inferred by our model and Horvath’s epigenetic predictor. Accelerations
are computed without applying the batch correction. Box plots show the median and
exclusive interquartile range of the accelerations inferred for all individuals in the
GS..1- Acceleration values are scaled by the standard deviation observed in GS,; to
facilitate a direct comparison. In the biological model, bias absorbs the effect of global
changes in methylation and results in a stable acceleration measure.

e. Age-stability of the inferred accelerations in individuals of GS.. Each dot
corresponds to the acceleration and age of individuals in the GS, cohort. In blue, we
show a linear regression of the mean and 2 standard deviations of the predicted
accelerations, computed using age bins reflected by the change in colour of points.
The right marginal box plot shows the median and exclusive interquartile range of the
predicted accelerations by bin.


https://doi.org/10.1101/2023.03.01.530570
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.01.530570; this version posted March 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC 4.0 International license.

Extended Data Figure 3
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Extended data figure 3

a. Associations between GS,., acceleration, GS,. acceleration and continuous traits.
Forest plot of associations between continuous phenotypes and age acceleration
from GS,., (orange) and GS,,; (purple). Results shown as standardised beta values
with 95% CI from linear regressions of the form: phenotype ~ acceleration + bias +
age + sex. Significant associations (FDR-adjusted P<0.05) are highlighted with
asterisks.

b. Associations between GS,,, acceleration, GS W3 acceleration and categorical traits.
Forest plot of significant associations (p<0.1 for GS,,, and p<0.05 for GS,.) between
disease phenotypes and age acceleration from GS,, (orange) and GS,., (purple).
Results shown as odds ratio with 95% CI from logistic regressions of the form:
disease ~ acceleration + bias + age + sex. Significant associations (FDR-adjusted
P<0.05) are highlighted with asterisks.

c. Associations between acceleration and all-cause mortality. Forest plot of the
association between acceleration and all-cause mortality (p<0.05). Result shown as
hazard ratio and 95% CI from a Cox proportional hazards model of the form hazard ~
acceleration + bias + age + sex. The associations reflect an elevation of one standard
deviation in the relevant measure of biological ageing. Significant associations
(FDR-adjusted P<0.05) are highlighted with asterisks.

d. A WashU genome browser showing genetic and epigenetic information within and
around the genomic risk loci chr2:15841100-17142797 (highlighted in orange). Blue
histograms indicate PBMC ChIP-seq data, while top purple arcs depict SMC1
ChlIA-PET data in T-ALL Jurkat cells, and bottom purple arcs represent promoter
capture HiC data in PBMC cells.

e. Presence of GWASCatalog cleft lip/palate trait associations of any SNPs in LD
(R*>0.1) with the lead SNP in the four genome-wide significant genomic loci.
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