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Abstract 

The Xenium In Situ platform is a new spatial transcriptomics product commercialized by 10X Genomics 

capable of mapping hundreds of transcripts in situ at a subcellular resolution. Given the multitude of 

commercially available spatial transcriptomics technologies, recommendations in choice of platform 

and analysis guidelines are increasingly important. Herein, we explore eight preview Xenium datasets of 

the mouse brain and two of human breast cancer by comparing scalability, resolution, data quality, 

capacities and limitations with eight other spatially resolved transcriptomics technologies. In addition, 

we benchmarked the performance of multiple open source computational tools when applied to Xenium 

datasets in tasks including cell segmentation, segmentation-free analysis, selection of spatially variable 

genes and domain identification, among others. This study serves as the first independent analysis of 

the performance of Xenium, and provides best-practices and recommendations for analysis of such 

datasets. 

 

Introduction 

Spatially-resolved transcriptomics (SRT) methods 

have been crucial for generating molecular atlases in 

health and disease by placing individual RNA 

transcripts in the context of tissues1. A plethora of SRT 

methods that leave the tissue intact have been 

developed in recent years2. These methods can be 

divided into different groups. On the one hand, 

sequencing-based methods (e.g. ST3, Slide-seq4) rely 

on the addition of spatial barcodes to the RNA 

fragments sequenced later by next generation 

sequencing, detecting the entire transcriptome with a 

supracellular (10-100 μm) to subcellular (220 nm) 

resolution5. On the other hand, imaging-based 

methods rely on the detection of individual RNA 

molecules using fluorescence-based microscopy. 

Depending on their chemistry, these methods are 

subdivided into in situ hybridization-based (ISH) (e.g. 
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MERFISH6, SeqFISH7, EEL8) and in situ sequencing-

based techniques (e.g. in situ sequencing9, 

STARmap10, SCRINSHOT11). Despite each technique 

having specific characteristics2, imaging-based SRT 

enables the detection of transcripts at the subcellular 

level for a selected gene panel over the tissue area. 

The usefulness of these technologies to investigate 

the spatial architecture of tissues, propose cell-cell 

communication events and clarify the roles of different 

cell types and molecules in disease has led to the 

emergence of companies interested in 

commercializing SRT methods. As it occurred with 

single-cell RNA sequencing (scRNA-seq), commercial 

products based on these techniques promise to 

facilitate the rapid adoption of methods. One of the 

most successful examples of these products is 

Visium, the commercial product of ST by 10X 

Genomics, which has proven to be a useful tool to 

study spatial architecture of tissues, despite the 

limited spatial resolution of the method. 

Complementing these approaches, several 

companies have launched imaging-based SRT 

products (e.g. CosMx by Nanostring, Molecular 

Cartography by Resolved Biosciences, Esper by 

Rebus Bioscience, seqFISH by Spatial Genomics). 

Among those we find Xenium, a 10X Genomics 

product based on in situ sequencing (ISS), that 

promises to generate maps of hundreds of transcripts 

at a subcellular resolution. Although Xenium datasets 

have been used by 10X Genomics to show the 

potential of the technology12, an independent 

exploration and evaluation of the platform is required. 

In this study, we explore the characteristics, capacities 

and limitations of data from the Xenium platform. In 

addition, we explore the performance of several open 

source computational tools when applied to Xenium 

data, highlighting the biological insights that they can 

provide (Figure 1A).  

Results 

 

Available Xenium datasets provide high quality 

measurements of tissue populations 

 

To explore the characteristics of Xenium data, we 

collected 10 preview datasets generated by 10X 

Genomics (Online Methods) as part of four different 

experiments. The datasets, obtained with 10X in 

development chemistry,  included (1) five mouse brain 

coronal sections, obtained in two different 

experiments, (2) three mouse brain coronal regions of 

interest (ROI) and (3) two human breast cancer 

samples which, all together, represented a total of 

306.7 million reads and 1.26 million cells (Extended 

Data Table 1). The number of genes profiled (the 

<panel=) ranged between 210 and 313 genes. All 
datasets included the 3-dimensional position (x,y,z), 

gene identity and phred-based quality value (qv) of 

every decoded read, with  82% (range 77%-91%) of 

the reads presenting a high quality (qv>20) on 

average (Extended Data Table 1). In addition, cell-

segmentation masks and a cell-by-gene matrix 

containing the expression and position (x,y) of every 

detected cell were also provided (Online 

Methods).  An average of 229 reads per cell were 

observed throughout the ten datasets, with 78.5% of 

the reads being assigned to cells, with no obvious 

differences between Fresh Frozen (FF) and Formalin-

Fixed Paraffin-Embedded (FFPE) sections (Figure 

1B). Only 0.11% of the cells presented less than 10 

assigned reads and were excluded from further 

analysis, positioning Xenium as a suitable platform to 

assess cell type frequencies in tissues. 

 

Xenium elevates ISS gene detection efficiency to 

rival ISH methods 

 

Mouse brain has been extensively characterized by a 

wide range of classical and contemporary spatial 

techniques and for that reason is often used to 

evaluate technical performance of SRT methods. The 

cellular composition of the mouse brain has been 

elucidated through many studies using scRNA-seq13–

17 and various SRTs7–9,18–23, which makes it an 

excellent tissue for benchmarking SRT methods. We 

therefore set out to benchmark Xenium against 

available datasets from the same general region of the 

mouse brain, primarily isocortex. The imaging-based 

SRT datasets included the recently published high 

sensitivity in situ sequencing (HS-ISS)24, STARmap 

PLUS23, sequential smFISH and MERFISH from the 

Allen Institute25, ExSeq22, BaristaSeq26, osmFISH18 
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and the Vizgen MERFISH Mouse Brain Receptor 

Map. For the sequencing-based SRT, we had three 

different publicly available Visium datasets. Finally, 

among all the Xenium datasets generated for the 

mouse brain, we used the 3 full coronal sections, 

named as <multisection= in Figure 1B, as they 

represented the most updated version of Xenium9s 
chemistry. Anatomical regions were manually 

annotated in the different SRT datasets to guarantee 

a fair comparison between similar regions (Online 

methods, Extended Data Figure 1) and then 

proceeded to compare the cells from annotated 

regions from the cortex. One inherent feature of the 

imaging-based SRT technologies is that they are 

targeted, which means that the number of detected 

molecules per cell varies depending on the probes 

used. We therefore calculated the detection efficiency 

of individual genes measured by each technology by 

comparing them to a reference scRNA-seq dataset17. 

Overall, we observed Xenium to be more sensitive 

than all other ISS-based techniques, presenting a 

similar sensitivity to some ISH-based technologies 

(Figure 1C). In addition, Xenium presented an overall 

detection efficiency similar to scRNA-seq (Chromium 

v2) (mean ratio=1.07). However, due to the nature of 

the method, the efficiency ratio of individual genes 

presented a high variability, ranging from 0.21 to 2.0. 

A negative correlation (r=0.53) was found between the 

level of expression in scRNA-seq and the 

SRT/scRNA-seq gene efficiency ratios (Extended 

Data Figure 2A), indicating that lower expressors 

from scRNA-seq are detected with a high efficiency in 

situ and vice versa. This could be explained by the 

different number of padlock probes added for each 

gene, which was done to tune the detection efficiency 

of each gene in a customized way in order to reduce 

optical crowding limitations (Extended Data Figure 

2B). However, the variability between genes targeted 

with the same number of probes suggest that 

additional factors play a role in determining the 

SRT/scRNA-seq gene efficiency ratios. 

Finally, we compared Xenium against Visium3, the 

most widely used spatial transcriptomics platform. 

Since Visium doesn9t have single cell resolution, 

cortical and hippocampal regions were subset from 

both datasets, comparing the pseudo bulk reads 

detected by each method for each gene. Xenium was 

found to be much more efficient than Visium on a 

tissue level, with a median of 21 times more reads 

detected using Xenium compared to Visium Fresh 

Frozen (FF) (Extended Data Figure 2C).  

Identified populations are influenced by the 

expansion of nuclei  
 

For further exploring Xenium datasets9 characteristics, 
we focused on the three adjacent tissue slices imaged 

in the mouse cortex and hippocampal regions (Figure 

1D). These sections exhibited a high similarity in terms 

of read quality and counts (Extended Data Figure 

2D) (Pearson9s r = 0.997), which allowed us to use 

them as technical replicates throughout the study.  

Xenium9s customized cell identification algorithm 
consists of an initial nuclei segmentation based on 

DAPI, followed by an expansion of the segmentation 

masks. Using the cell-by-gene matrix of segmented 

nuclei, we identified a total of 41 cell types in the three 

mouse brain datasets that were consistent with those 

previously identified in scRNA-seq experiments 

(Figure 1E, Extended Data Figure 2E) (Online 

Methods), demonstrating that nuclei segmentation 

masks contain sufficient information to decipher the 

identity of individual cells in situ. These cell types were 

then mapped back onto the tissue to create a cell-type 

map (Figure 1F). The proportion of detected cell types 

was highly similar across all the three adjacent slices 

(Pearson9s r = 0.99) (Extended Data Figure 2 D-F). 

When assigning these annotated cells to anatomical 

tissue domains (Online Methods) we observed a 

consistent distribution of domain-specific cell types13 

(Extended Data Figure 2 G-H). 

Despite the transcripts assigned to cells based on 

nuclear segmentation being sufficient to define cell 

populations, some cytoplasmic reads might be lost in 

the process. Under this assumption, Xenium9s nuclear 
segmentation is followed by an expansion of 15 μm. 

When identifying cell types using this expanded cell-

by-gene matrix, many of the cell types were divided 

into region-specific clusters, in contrast with the 

homogeneous cell types identified using unexpanded 

segmentation (Extended Data Figure 3 A,B). In 

addition, clusters in the UMAP based on expanded 

nuclei were globally embedded by region (Extended 

Data Figure 3C). For instance, oligodendrocytes in 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.13.528102doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528102
http://creativecommons.org/licenses/by-nc/4.0/


 

4   
 

the thalamus were grouped together with astrocytes in 

the thalamus, rather than with other oligodendrocytes 

(Extended Data Figure 3 D-E). This indicates that 

expansion captures domain-specific expression 

signatures, influencing the clustering. Furthermore, 

the clusters detected didn't present clear marker 

genes and, compared with nuclei-based clusters, 

some biologically relevant cell types were lost in favor 

of region-specific clusters (Extended Data Figure 3 

F-G). 

To better understand the region specific effect of 

expansion, which we suspected was due to 

misassignment of spots from neighboring cells, we 

defined nuclear expression signatures for each of the 

identified cell types, as well as background expression 

signatures for each of the manually annotated 

domains. Taking these signatures as a reference, we 

found that including transcripts beyond 8.24 um from 

the cell centroid resulted in a higher gene expression 

correlation to background domain-specific expression 

signatures compared to nuclear cell type-specific 

expression signatures (Figure 2A-C, Extended Data 

Figure 4 A-B). This distance likely represents the 

average radius of identified cells in the tissue, 

including both nuclei and cytoplasm. Since, on 

average, nuclei in this dataset presented a radius of 

4.85 μm, the ideal expansion of cells in the samples 

analyzed should be of 3.38 μm. Different cell types 

presented, though, different average distances, 

representing their diverse cellular morphologies. As a 

consequence, segmentation strategies based on the 

identification of nuclei followed by a rigid expansion 

might not be the optimal solution. 

 

Standard Xenium segmentation is outperformed 

by Baysor and Cellpose 

 

The influence of cell segmentation on cell-typing 

accuracy motivated us to explore alternative 

segmentation methods. For this, we benchmarked the 

performance of the segmentation provided by Xenium 

against commonly used segmentation strategies 

(Online Methods). These strategies can be broadly 

classified as: staining-based, if the position of cells is 

determined by an auxiliary staining like DAPI 

(watershed27, Cellpose28); read-based, where cells 

are defined based on the read density and 

composition of tissues (Baysor29); or mixed models, 

where both staining and the position of reads is used 

for defining cells (Baysor29, Clustermap30). 

Segmentation based on equally distributed bins 

across the tissue (binning) was also included in the 

comparison as an example of simplistic segmentation. 

In addition, different cell expansions were applied on 

top of each segmentation output (0, 5 ,11 ,16 μm).  

We estimated the similarity between segmentation 

strategies using Adjusted Rand Index (ARI), 

identifying groups of strategies performing similarly 

(Figure 2 D-E, Extended Data Figure 4 C-D). 

Staining-based strategies applied to DAPI generated 

similar outputs, with cell expansion as the driving force 

of their differences. In addition, Baysor-based, 

Clustermap-based and binning strategies were found 

to cluster by method, indicating distinct method-

specific segmentation output. Alongside quantitative 

assessment of segmentation similarity, we also 

employed quantitative metrics to evaluate the 

performance of segmentation strategies. We defined 

the best segmentation strategy as the one maximizing 

the proportion of reads assigned to cells while 

maintaining specific expression patterns, quantified 

by Negative Marker Purity (NMP) (Online Methods) 

(Figure 2F, Extended Data Figure 5). NMP 

measures, based on a reference scRNA-seq17, the 

percentage of reads detected in cell types that are 

expected to express the read's gene. We identified 

Baysor-based strategies and specifically Baysor 

combined with a Cellpose-based segmentation 

(BA28-CPc) as best segmentation strategy (Figure 

2F). Although no additional cell types were detected 

using BA28-CPc segmentation in comparison with 

Xenium9s nuclear segmentation (Extended Data 

Figure 4E), we observed a median increase of 44 

reads per cell (127 vs 83). 

Segmentation-free models provide an alternative 

to classical workflows 

Segmentation-free models, where the identification of 

spatially-resolved molecular signatures is done 

independently from the segmentation of individual 

cells have proven to be an alternative approach to the 
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traditional analytical workflow. The more 

parsimonious nature of segmentation-free 

approaches, which avoid modeling cellular structures 

and operate on the immediately detected signal 

instead allows for a different type of analysis. First, 

they can be used to investigate local signal properties 

and fidelity before the spatial accumulation into cells. 

With the aim of exploring cellular and subcellular 

patterns, we applied two of these approaches, 

SSAM31 and Points2Regions32. Using SSAM de novo 

mode, a total of 26 cell type-specific clusters were 

identified. The comparison between these clusters 

and the cell types identified in Figure 1E highlights the 

capacity of these methods to capture cell type-specific 

expression patterns (Figure 3A-C). Since, unlike in 

segmentation-based methods, all the reads are 

included in the analysis, extranuclear reads were 

consistently assigned to specific signatures without 

the necessity of performing segmentation. Moreover, 

the relatively simple and resource-effective SSAM 

algorithm can incorporate information of molecule 

placement along the z-axis and potentially identify 

subcellular structures and compartments. We used 

Xenium9s 3-dimensional coordinates to detect cases 

of possible mixed-source signals originating from cells 

overlapping in the z-dimension (Figure 3D-E). The 

presence of these cases (Extended Data Figure 6A) 

highlights the importance of considering spatial 

datasets as 3-dimensional maps, rather than 

simplifying their position to 2-dimensional coordinates. 

Besides identifying cell types, we explored whether 

the read density of Xenium datasets could be 

sufficient to identify subcellular expression patterns. 

Using Points2Regions, we identified a total of 100 

clusters representing subcellular patterns (Figure 3F). 

By coupling them with the output of Xenium9s nuclear 
segmentation, these clusters were classified in 

nuclear, cytoplasmic or extracellular. Furthermore, 

many of these clusters could be associated with 

specific cell types. We identified subtle yet specific 

expression differences between nuclear and 

cytoplasmic clusters associated with the same 

population (Figure 3 G-H), suggesting that Xenium9s 
signal density enables the identification of subcellular 

structures in situ.  

Benchmarking the performance of gene 

imputation tools on Xenium datasets 

Targeted SRT methods are generally limited by the 

number of genes measured simultaneously. 

Imputation approaches overcome this by predicting 

gene expression from a reference scRNA-seq onto 

the cellular-resolution SRT dataset33. We sought out 

to benchmark the performance of five methods 

(gimVI34, SpaGE35, Tangram10, SpaOTsc36 and 

NovoSpaRc37) using  the workflow designed by Li et 

al.33 and taking as a reference a cortical and 

hippocampal atlas17. Brain regions not included in the 

reference scRNA-seq were excluded from 

comparison (Figure 4A, Extended Data Figure 6B) 

(Online Methods).  

Imputation performance was assessed by Pearson 

correlation coefficient (PCC), structural similarity 

index (SSIM), root mean square error (RMSE) and the 

Jensen-Shannon divergence (JS), where a higher 

PCC/SSIM and a lower RMSE/JS value indicates 

better prediction accuracy. Using these metrics, we 

consistently identified  SpaGE as the best performing 

method (Figure 4B). In addition, Tangram and 

SpaOTsc achieved an overall high performance. 

Surprisingly, gimVI performance was found to be 

lower than the one reported when using it to integrate 

scRNA-seq with  other SRT technologies33.  

Since the workflow used relies on comparing detected 

and imputed gene expression of individual genes, we 

conceived this as a good way to identify genes with an 

overall low agreement between scRNA-seq and 

Xenium. By quantifying these gene-specific 

differences using PCC across all genes and methods, 

we observed an enormous difference in the imputation 

performance between methods. These differences 

were consistent across imputation methods (Figure 

4C) and were correlated with the level of expression 

of the genes in situ (Figure 4D) (PCC=0.63). 

 

Assessing computational tools to explore tissue 

architecture 

 

Imaging-based SRT has the ability to recover the 

spatial location of individual cells which can be used 

to decipher the organization of tissues' intrinsic 

architecture. By utilizing computational frameworks for 
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the exploration of spatial datasets implemented in 

Squidpy38 and Giotto39, we identified the major spatial 

regions in mouse brain  (Figure. 5A-B). While some 

cell types like excitatory neurons in the hippocampus 

presented a more restricted connectivity due to their 

specific location, other cell types such as astrocytes 

or OPCs presented a broader number of connections 

to other cell types, in line with their known broad 

distribution. 

Despite the architecture of cell types, the identification 

of spatially variable features (SVF) is useful to 

discriminate genes explaining the main spatial 

variation patterns within the tissue. The plethora of 

methods available for this task, though, could lead to 

slightly different conclusions depending on the 

algorithm used. When comparing the most commonly 

used metrics and algorithms developed for this task 

(Moran9s I38, Geary9s C38, Hotspot40, SomDE41, 

SpatialDE42, Giotto39) we observed that a mean of 

96% of the genes included in the Xenium9s panels 
were considered as SVF (pval<0.05) (Figure 5C). All 

methods presented a high consistency in identifying 

SVFs, with overall Jaccard scores above 0.95, with 

the only exception of SpatialDE. The consistency of 

different algorithms in identifying SVF is lost when 

comparing the most variable genes identified by every 

method (Figure 5D). As a consequence, a selection 

based on significance would be preferred in contrast 

with the selection of the top SVFs. Since most of the 

genes targeted are consistently found to be spatially 

variable, though, a gene selection of SVF in Xenium 

would not be as useful as in other untargeted spatial 

transcriptomics technologies.  

Identifying tissue architecture can be helpful to 

understand its function. Identifying the most reliable 

tools to define these domains is of general interest, 

although no independent comparison is yet available. 

Therefore, we benchmarked 4 domain finder 

algorithms (neighborhood-based43, Banksy44, 

DeepST45, SpaGCN) against the regions identified by 

expert manual annotation using the coronal P56 

section from Allen Brain Atlas46 (Figure 5D-E). A total 

of 36 domains were manually annotated, and thus 

each method was adjusted to predict a similar number 

of domains (35-37). We found the domains predicted 

by Banksy to be the most similar ones compared to 

the manual annotation (Adjusted Rand Index = 0.59) 

(Figure 5D). Nevertheless, there were consistent 

differences in the identification of specific domains 

(Figure 5F). While cortical and hippocampal regions 

were overall accurately predicted, others like thalamic 

regions were consistently misidentified (Figure 5F). 

As expected, expression differences between 

domains were correlated with a good identification of 

domains, being especially the case in most 

transcriptionally distinct domains.  

Best practices for processing and analyzing 

Xenium datasets 

As seen previously, the way Xenium data is processed 

and analyzed can distorsion the biological significance 

of the results obtained. For this, and based on the 

evidences shown through the manuscript, we propose 

an optimal processing and analysis of Xenium 

datasets.  We have condensed this information in an 

end-to-end pipeline (Code Availability) with the aim 

of helping Xenium users to take the most out of their 

data.   

Briefly, taking the data obtained from Xenium as an 

input, the first key step for an optimal processing of the 

data is cellular segmentation. The optimal algorithm 

for this consist on two steps: (1) the identification 

nuclei using Cellpose28 and (2) the assignment of 

reads to individual cells using Baysor29. Cellular 

expansion is not needed, since extranuclear reads are 

assigned using Baysor. If cellular segmentation 

results in a poor performance, segmentation free 

methods like SSAM31 or Points2Regions32 can be 

used to identify molecular signatures without the 

necessity of identifying individual cells. After 

segmenting individual cells, a cell-by-gene matrix is 

obtained. Taking this as an input, cell type 

identification can be achieved using standard scRNA-

seq workflows consisting of (1) cell filtering, (2) log-

transformation and normalization, (3) identification of 

the main PCs, (4) low-dimensional reduction and (5) 

clustering. The selection of SVF was found to be an 

unecessary step in this process due to the targeted 

nature of the method. In addition, if sc/snRNA-seq is 

available, gene imputation can be performed using 

algorithms such as SpaGE35or Tangram10. Finally, for 
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the identification of domains, using Banksy can be a 

powerful solution.   

 

Discussion 

In this study we presented an independent exploration 

and evaluation of Xenium in situ datasets. The 

assessed technology can be used to generate highly 

multiplexed spatial maps of RNA molecules at a 

subcellular resolution. The number of reads per cell 

identified, in the range of hundreds, and the area of 

the tissues characterized facilitate the easy 

identification of cellular populations in situ.  

The Xenium in situ platform showed a detection 

efficiency comparable to Chromium v2, representing 

a remarkable increase in sensitivity in comparison with 

other ISS-based methods. Among SRT methods, 

however, these comparisons need to be taken with 

caution, as gene-specific sensitivities depend on the 

probes used to target them. RCA-based technologies, 

like Xenium, enable the tuning of molecules detected 

per gene. We believe that modifying these levels for 

intentionally decreasing the detection levels of high 

expressors or, more importantly, increasing the 

detection levels of lowly expressed genes is one of the 

main advantages of this approach in comparison with 

other commercial solutions. Although Xenium 

presents a considerably higher detection efficiency 

than Visium, when compared with some other 

available ISH based SRT products and platforms, its 

mean detection efficiency was found to be slightly 

lower. Despite this being one of the most important 

features of SRT methods, further independent 

comparison of technical aspects such as the imaging 

time, cost of individual experiments, simplicity of the 

technique and reproducibility would be needed to be 

more comprehensive compared between the different 

technologies and commercial solutions.  

Several processing steps were identified to be crucial 

when analyzing Xenium datasets with segmentation 

being highlighted as one of the most important. With 

the current segmentation provided by 10X Genomics, 

cells9 nuclei were overall nicely identified and their 

information found to be sufficient for identifying the 

main cell populations present in the sections 

analyzed. We identified that the expansion of cells 

after segmentation can have detrimental effects in the 

characterization of cell populations due to the 

assignment of domain-specific reads to cells from 

neighboring cells. By comparing alternative 

segmentation strategies to define cell populations, we 

identified Baysor combined with Cellpose 

segmentation to outperform the rest of the strategies, 

being capable to define individual cells based both on 

the density and identity of individual reads in situ. This 

strategy allows Baysor to identify cells with different 

sizes, composition and to even detect cells that didn9t 
present their nuclei in the analyzed section due to 

sectioning. Despite its overall good performance, 

Baysor struggled in identifying cells in dense 

homogenous areas such as the hippocampus. 

Overlapping cells were identified as a recurrent yet 

difficult to segment case due to the 2-dimensional 

nature of most of the algorithms used. Thus, the 

implementation of new segmentation algorithms that 

consider the 3-dimensional structure of the data and 

the inclusion of additional stainings for cellular 

membranes would facilitate the correct identification 

of individual cells. 

In this direction, segmentation-free cell typing 

methods represent an alternative to the typical 

segmentation-then-clustering workflow, being able to 

identify cell populations and subcellular patterns. The 

exploration of subcellular patterns represents an 

underexplored layer of information that is now 

becoming accessible due to the sensitivity and 

resolution of new imaging-based SRT methods such 

as Xenium. The combination of these technologies 

with systematic analytical approaches using 

segmentation-free algorithms or tools like Bento47 

could facilitate the understanding of RNA biology at a 

subcellular level.  

Due to the vast availability of methods, just a subset 

of the most popular methods were included in the 

benchmarking of the different tasks and thus, for each 

task the top performer method found might not be the 

best available method. In addition, some of the 

published algorithms approached the tasks in an 

alternative manner, resulting in non-comparable 

outputs (i.e. SpaGCN48 identifies domain-specific 
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SVFs) and were not suitable for benchmarking. 

Overall, despite some efforts being made, a more 

systematic benchmarking of these and other 

algorithms considering datasets generated in different 

tissues with different experimental designs would be 

beneficial to decipher when to use each algorithm. For 

this, the accessibility to new and more diverse 

datasets would be recommended. 

All in all, Xenium represents an overall improvement 

in comparison with other RCA-based technologies. Its 

increased detection efficiency, together with its 

resolution enables the identification of cell types in 

space, being a useful tool to explore spatial biology. 

Furthermore, it can be easily complemented by open 

source algorithms, which further expand the analytical 

possibilities of these datasets.  

Online Methods 

Xenium datasets processing 

 

The 10 datasets included in this study were formatted 

in the anndata format using a customized function 

(https://github.com/Moldia/Xenium_benchmarking) 

and processed using Scanpy (v1.9.1.). Cell-by-gene 

matrices provided by 10X genomics were log-

transformed and normalized. In order to identify 

clusters, neighborhood graphs were computed 

considering 40 principal components and 12 

neighbors, followed by Leiden clustering. Cell-type 

annotations were performed using differentially 

expressed marker genes previously described in Yao 

et. al.17 .The same preprocessing steps were 

performed on cell-by-gene matrices obtained for 

alternative segmentation methods.  

 

Annotation of mouse brain architecture 

Tissue domains from SRT  datasets were manually 

annotated using the mouse coronal P56 sample from 

Allen Brain Atlas46. Datasets were first processed as 

described above and then used to generate plots 

containing cell cluster or spot identity, overlaid on their 

respective DAPI-, immunofluorescence- or H&E-

stained images. Region delimitations were created 

using enclosed vectorized Bézier-curves, which could 

then be saved as polygons in scalable vector graphics 

format (.svg). These annotations were then integrated 

to the cell and/or spot coordinate system from each 

sample, respectively, allowing both classification of 

cells and/or spots and projection of annotated regions 

onto the datasets for inspection and downstream 

analysis (see below). This approach promotes a more 

reproducible annotation of regions of interest, which 

can be further modified or updated as necessary, 

while also being scalable and machine readable. All 

annotations and detailed instructions on how to use 

them are freely available at 

https://github.com/Moldia/Xenium_benchmarking. 

Single-cell RNA sequencing processing  

A subset of the scRNA-seq dataset from Yao et. al.17  

was used in this study. For generating this subset, 

guaranteeing the equal representation of all 

populations, populations were subsampled to a 

maximum of 500 cells each. The resulting subset 

consisted of 150K cells further used for integration and 

annotation of the populations found in situ. Cell type 

signatures of each cell type were also obtained for the 

different levels of annotations presented in Yao et. al. 

These signatures were used as an input in several cell 

typing methods, such as SSAM.  

Benchmarking Xenium against other SRT 

methods 

For comparing the gene detection efficiency between 

different SRT methods, only cells included within the 

manually annotated isocortex regions present in all 

image-based datasets were used (L2/3,L4,L5,L6b).In 

the side by side comparison between Xenium and 

Visium, manually annotated regions present in both 

datasets were considered. Cell-by-gene matrices from 

all available datasets were used for comparison. For 

comparison with scRNA-seq, a subset of the scRNA-

seq dataset from Yao et. al.17  was considered (see 

previous section).  Raw counts were compared 

between all methods. Since SRT methods measure a 

limited panel of genes, there wasn9t any gene detected 
in all experiments. Genes present in at least 4 

datasets were further used for comparison. Taking 

scRNA-seq as the reference dataset, the detection 

efficiency of each selected gene for each method was 
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assessed by (1) identifying positive cells for a certain 

gene in both methods (cells with more than 1 read), 

(2) computing the median expression of a gene in the 

population of positive cells and (3) computing the ratio 

between the two medians. Since we aimed to identify 

the efficiency of each specific gene in each SRT 

method, we divided the SRT median by the scRNA-

seq median. We considered solely positive cells for 

the estimation in order to reduce the effect of having 

slightly different cell compositions in the different 

datasets.  

Benchmarking segmentation algorithms 

We benchmarked the segmentation methods Baysor, 

Watershed, Cellpose, and Clustermap in comparison 

with segmentations provided by 10x and equally 

distributed bins across the tissue (binning) with a 

custom pipeline. All segmentation masks were 

expanded with 0, 5, 11, and 16 μm (0 - 75 pixels). 

Watershed was applied using squidpy (v1.2.3) with 

Gaussian blurring of standard deviations 0, 1, 5, and 

10 pixels (determining the naming WS0 - WS10) and 

Otsu9s thresholding. Baysor (v0.5.2) was tested with 
scale parameters 20, 28, 40 pixels (BA20 - BA40) and 

optionally a prior segmentation with default prior-

segmentation-confidence of 0.2 (e.g. CPc BA28). The 

Cellpose (v2.0.5) deep learning models "nuclei" (CPn) 

and "cyto" (CPc) were applied on the DAPI channel in 

their vanilla versions. Clustermap (github code from 

Nov 8, 22) was applied with gaussian blurring, 

xy_radius 15, and cell_num_threshold of 0.0001.  

The pipeline takes as input the DAPI image, the gene 

spots with cell type annotations and x and y 

coordinates, as well as a scRNA-seq reference 

dataset with cell type annotations that are matched 

with the cell type naming for the spatial cells. The 

dataset described in methods "scRNA-seq 

processing" was used as reference. The cell type 

annotations on the nuclear segmentation from 10X 

(methods "Xenium datasets processing") was 

provided with the spots. After each segmentation run 

a count per gene matrix of the cells were generated 

and cell types were assigned. As new cells are 

identified with every segmentation run, cell types of 

the new cells were assigned based on a spots9 
majority vote of the previous nuclear segmentation-

based annotation. For each segmentation output the 

pipeline measured the proportion of assigned reads, 

number of identified cells, the median and 5th 

percentile of reads per cell, and the median and 5th 

percentile of genes per cell. Further we introduced and 

measured the Negative Marker Purity (NMP) metric 

which is based on the assignment distribution of reads 

from negative markers: A negative marker for a set of 

"negative cell types" is defined, based on the single 

cell reference, as a gene that is expressed in less than 

0.5% of cells in each of the negative cell types. Two 

versions for the metric were defined: 1. (NMP reads) 

the percentage of reads of negative markers in the cell 

types expected to express the gene, and 2. (NMP 

cells) the percentage of positive cells of cell types that 

are expected to be positive for a given gene relative to 

all measured positive cells for the gene. 

Benchmarking gene imputation algorithms 

We evaluated the performance of five integration 

methods (gimVI, SpaGE, Tangram, SpaOTsc and 

NovoSpaRc) following the published Jupyter 

notebook by Li et al33. 

(https://github.com/QuKunLab/SpatialBenchmarking/

blob/main/BLAST_GenePrediction.ipynb). We 

used the raw normalized expression matrices for both 

the scRNA-seq and spatial transcriptomics datasets 

for input of the integration methods. Since the spatial 

transcriptomics dataset contained less than 100 

detected genes, we built the ground truth of our 

dataset using genes detected in both the spatial 

transcriptomics and scRNA-seq datasets (total 284 

genes). For the evaluation we used tenfold cross 

validation, where we for each iteration divided the 

genes into 10 portions, 9 of which were used for 

training and one for prediction. Because of the large 

sizes of our datasets (scRNA-seq dataset ~150,000 

cells, spatial transcriptomics dataset ~80,000 spots) 

we downsampled the datasets by a factor of ten, the 

lower amount of computational resources consumed 

by the integration methods not compromising the 

results.  
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Benchmarking domain finder algorithms 

Using the adjacent mouse brain slide (slide 1) used in 

Figure 1D, we evaluated the performance of different 

domain finder algorithms. For this, we manually 

annotated the tissue domains present in the slides 

analyzed using the mouse coronal P56 sample from 

Allen Brain Atlas46, which we considered as ground 

truth. Different algorithms (SpaGCN, Banksy, 

DeepST, neighborhood-based domain identification) 

were then used to define tissue domains, adjusting the 

number of domains identified to the number of 

domains manually annotated. Adjusted rand index 

(ARI) was used to compare the performance between 

the different algorithms. Methods with an ARI similar 

to the annotated domains were considered to have a 

better performance. In addition, domain-specific 

scores were obtained by calculating the maximum 

similarity between each manually annotated domain 

and the domains identified with the different 

algorithms using Jaccard Index.  

Segmentation-free analysis using SSAM  

Segmentation-free output was produced using the 

SSAM package (v1.0.1) using python v3.6. In total, 

two rounds of analysis were performed with different 

parameterizations.  

The first round was a SSAM de novo cell-type 

mapping analysis using the (x,y)-coordinates of 

Xenium9s provided mouse brain coronal section. 
SSAM was run at a resolution of 1 pixel/um and 

parameterized with a kernel bandwidth of 2.5. Local 

maximum signal points were sampled from SSAM9s 
vector field, and the signatures of the sampled 

expression vectors were normalized and clustered (by 

first reducing the data to 50 dimensions using PCA 

and applying the Louvain algorithm at a resolution of 

0.3) using SSAM's built-in de-novo functionality. The 

detected 91 clusters were then each assigned one out 

of 29 celltypes by correlating their expression 

centroids to the mean expression profiles of Yao et. 

al17 and correcting manually for ill-defined clusters. A 

SSAM cell-type map was produced filtered using a 

median filter to remove potential noise.  

For a 3d analysis, the sample9s global gradient along 
the z-axis had to be corrected for the SSAM analysis 

to be computationally tractable. A local elevation 

estimator was created per molecule by building a 

KNN-graph of all molecules in (x,y)-space and locally 

propagating the molecules9 z-values in an iterative 

graph diffusion strategy. The local elevation estimator 

was subtracted from each molecule9s z-value, 

rendering a sample representation that was 

approximately geometrically centered around the z-

origin at all locations. Single outliers above and below 

9 μm from the new z-origin were removed. The 

centered spot data was subjected to a 3d-SSAM de 

novo analysis run at a 2.5 pixels/μm resolution, using 

a kernel bandwidth of 2.5 μm. Convolution edge 

effects were corrected for by multiplying the signal 

with an inverse gaussian of the same bandwidth along 

the z-axis, centered around the z-axis origin. 

To investigate signal coherence along the z-axis, 

SSAM vector field was split in the middle along the z-

axis, creating two 9 μm semi-sections. The correlation 

of the top-bottom SSAM vector field signals at each 

(x/y) coordinate was computed and multiplied by the 

2d vector field norm at each location. Peaks in the 

resulting signal coherence indicator were detected in 

a localmax search to identify regions of interest. Out 

of these regions of interest (sorted by signal 

coherence), the regions 829, 839, and 879 were selected 
for display since they covered different parts of the 

tissue, cell types and structures (Extended Data 

Figure 6A).  

For the display, molecules within a 40-pixel window 

around a region of interest were identified and 

assigned a cell type by correlating the local, integrated 

SSAM vector field signal to expression profiled from 

Yao et al.17 ,similar to the earlier two-dimensional 

analysis. Final product was a scatter plot of the 

regional molecules colored by cell type, with half the 

region of interest removed along the x-axis to reveal 

the (central) spot of highest signal incoherence. 

Points2Regions  

Points2Regions32 was used as one of the 

segmentation free approaches.  In essence, 

Points2Regions is a plugin for TissUUmaps 3, 

intended for quick exploratory and interactive 

dissection of molecular patterns in in situ 

transcriptomics data. At its core, the plugin works by 
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collecting markers in spatial bins of width w. Each bin 

thus comprises a composition of molecular markers. 

Adjacent bins are blurred together using a Gaussian 

filter parameterized by the standard deviation Ã. Bins 

containing few markers are excluded based on a user-

defined threshold Ä.  Bins passing the threshold are 

finally normalized by total count and clustered using 

mini-batch KMeans clustering with k clusters. The 

plugin thus comes with four tunable parameters: w, Ã, 

Ä and k, each respectively set here to 1 µm, 3 µm, 0 

and 100 for all experiments. 
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Data availability 

The Xenium datasets used in this analysis were 

provided by 10X Genomics. The three mouse brain 

coronal sections (<ms brain multisection=) are 

publically available datasets and can be downloaded 

at from the 10X website 

(https://www.10xgenomics.com/resources/datasets). 

The mouse brain full coronal and half coronal sections 

(named as <ms brain coronal= and <ms brain ROI= in 
Figure 1B), as well as the human breast sections are 

available upon request. 

Code availability 

All the code used in this analysis can be found in the 

following github repository: 

https://github.com/Moldia/Xenium_benchmarking. Sin

ce different tools require their own environment, 

analysis are divided in folders, providing different 

Conda recipes files to recreate the environments 

needed to reproduce the analysis.  
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Figure 1: Overview of the analysis and cell type identification using Xenium. A. Schematic representation 

of the overall analysis performed with Xenium datasets. Mouse brain and human breast cancer sections were 

used to explore the capabilities of Xenium, exploring and benchmarking available methods in several tasks. B. 

Density plot of the transcripts/cell (left), genes/cell (middle) and the percentage of nuclear area (right) identified 

on each of the datasets. The vertical solid lines indicate the mean and the vertical dashed lines represents the 

median of each. C. Boxplot representing the SRT/scRNA-seq gene efficiency ratios of different SRT methods in 

log10 scale. Using this scale, a log10 efficiency ratio of 0 indicates the same detection efficiency in both methods. 

Boxplots represent the distribution of the efficiencies, divided in quartiles, where the central line represents the 

median efficiency of each technology assessed. Individual gene ratios are represented as individual dots for 

each method. D. Expression maps representing the location of decoded reads in three regions of interest 

selected from the mouse brain replicate 1 section. Reads are overlaid on top of their corresponding nuclei 

staining (DAPI) and colored depending on their identity. E. UMAP representation of the 41 different cell types 

identified by Xenium in the 3 adjacent mouse brain regions using unexpanded cells. F. Spatial map of the clusters 

identified in panel E in replicate 1(right) and two regions of interest in the cortex (left, up) and the ependymal / 

CP (left, down). Cells are represented using the cell boundaries identified by Xenium9s segmentation algorithm 

after the expansion. Colors correspond to clusters identified in panel E. Scale bar indicate 150 �m.  
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Figure 2. Exploring segmentation in Xenium. A. Region of interest of one of the mouse brain sections. Reads 

are overlaid on a DAPI staining and colored depending the distance to their closest cell centroid. Color legend 

is present in Figure 2B. B.  Pearson correlation coefficient (PCC) of OPC to the nuclear OPC mean expression 

signature in Layer 4 of the cortex (purple) and the PCC to the background Layer 6a-specific expression signature 

(green, dashed) depending of the distance to the cell centroid.  C. Bar plot indicating distance of the intersection 

between nuclei and the domain-specific background as represented at Figure 2B for a subset of the clusters 

identified at Figure 1E. The intersection point is calculated for all the possible combinations of cell types and 

domains, provided that the assessed cell type has at least 5000 reads assigned to the assessed domain. Error 
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bars represent the 95% confidence interval. The mean nuclei and cell radius of every cluster are represented 

using red and green rectangles respectively. D. Adjusted rand index (ARI) between the different outputs 

produced by combinations of segmentation algorithms, hyperparameters and expansions. Segmentation 

methods included Cellpose (CPn: nuclei, CPc: cyto models), binning (bins), clustermap, watershed (WA), Baysor 

(BA) and cellpose combined with Baysor (CPc BA/CPn BA).Xenium segmentation were also included in the 

comparison (XENIUM cel, XENIUM nuc). Hyperparameters for each method are described in methods. Methods 

on the y-axis were colored depending on the expansion performed after segmentation. Scale bars represent 25 

μm   E.   Cells identified using different segmentation algorithms in a region of interest outlined in Extended Data 

4C corresponding to L6.  DAPI is represented as a background and color-specific masks represent individual 

cells. Segmentation strategies represent different segmentation outputs, as described in Figure 2E. F. Scatter 

plot representing the number of reads assigned (x-axis) and the negative marker purity (y-axis) of different 

assessed segmentation strategies. The name and color of each segmentation strategy are represented as in 

Figure 2E.  
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Figure 3. Segmentation-free analyses highlight 3D and subcellular patterns. A. Cell type map of the 

signatures identified in one of the mouse brain adjacent slides (slide 2). Colors represent the different cell types 

identified, using the same color map as in Figure 1D. A yellow square represents the region of interest 

represented in Figure 3B. B. Representation of cell types using SSAM (left) and the default 10x segmentation 

(nuclear segmentation, right) in the cortical region of interest highlighted in Figure 3A. C. Pearson correlation 

between the cell type-specific signatures described using SSAM and those found in Figure 1E using nuclei-

based segmentation. D-E. Spatial representation in 3D (D) and 2D (E) of overlapping cells found in the mouse 

brain section analyzed in Figure 3A. F.  Representation of the subcellular clusters identified by Points2Regions 

in the mouse brain section analyzed in Figure 3A. Individual spots are overlaid on top of a DAPI staining and 

colored by the assigned cluster. G. Representation of astrocyte-associated clusters with different subcellular 

localization (up). The reads assigned to some genes with a subcellular patterning in astrocytes are represented 

also in the map (up). The expression of the top 3 differentially expressed genes between subcellular astrocytic 

clusters are represented in the form of a dot plot (bottom). H. UMAP representing the expression of Cabp7 in 

the different cell types identified in Figure 1E. Astrocytes are highlighted. 
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Figure 4. Benchmarking imputation algorithms combined with Xenium. A. Detected and imputed 

expression of the gene Rasgrf2 in the cortex and hippocampus using different imputation algorithms. B. 

Performance of different gene imputation methods as described by 4 different metrics: pearson correlation 

coefficient (PCC), structural similarity index (SSIM) ,the Jensen-Shannon divergence (JS) and root mean square 

error (RMSE). Data are presented as mean values ± 95% confidence intervals. C. Scatter plot representing the 

PCC found between the detected expression and the imputed expression for specific genes using different gene 

imputation algorithms. D. Relation between the imputation accuracy scores (as PCC) of individual genes and 

the detected gene counts of the genes at percentile 99, represented as a scatter plot. 
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Figure 5. Spatial characterization using Xenium. A. Network representing the spatial enrichment between 

different cell types. Nodes represent each cell type annotated in Figure 1C, with colors corresponding to the 

ones used in the mentioned panel. Edges between cell types presenting a positive significant enrichment 

(p>0.05) are drawn. Edges9 width corresponds to the enrichment scores. B. Bar plot representing the 

enrichment/repletion score (left) and number of connections (right) between different cell type pairs. Only pairs 

presenting a p-value>0.005 and a total of interactions larger than 250 are plotted. Bars are colored depending 

on the type of interaction.C. Heatmap representing the Jaccard score obtained by comparing the significant 

spatially variable features (SVF) (p<0.05) detected by different algorithms. Small bar plots on the top of each 

column represent the percentage of genes identified as SVF by each method. D. Heatmap representing the 

agreement between different SVF methods when selecting the top 100 SVF by each method. E. Heatmap 

representing the agreement between different algorithms in identifying tissue domains in mouse brain sections. 

F. Spatial map of the manually annotated domains identified in the mouse brain section (replicate 1, left) and the 

domains identified by different algorithms including (Banksy, DeepST, SpaGCN and neighborhood-based region 

identification) G. Scatter plot representing the maximum Jaccard Index (JI) (y-axis) between each reference-

based domain (x-axis) and the different domains predicted by the different domain finder algorithms. 
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