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Abstract

The Xenium In Situ platform is a new spatial transcriptomics product commercialized by 10X Genomics
capable of mapping hundreds of transcripts in situ at a subcellular resolution. Given the multitude of
commercially available spatial transcriptomics technologies, recommendations in choice of platform
and analysis guidelines are increasingly important. Herein, we explore eight preview Xenium datasets of
the mouse brain and two of human breast cancer by comparing scalability, resolution, data quality,
capacities and limitations with eight other spatially resolved transcriptomics technologies. In addition,
we benchmarked the performance of multiple open source computational tools when applied to Xenium
datasets in tasks including cell segmentation, segmentation-free analysis, selection of spatially variable
genes and domain identification, among others. This study serves as the first independent analysis of
the performance of Xenium, and provides best-practices and recommendations for analysis of such
datasets.

Introduction
Spatially-resolved transcriptomics (SRT) methods

on the addition of spatial barcodes to the RNA
fragments sequenced later by next generation

have been crucial for generating molecular atlases in
health and disease by placing individual RNA
transcripts in the context of tissues’. A plethora of SRT
methods that leave the tissue intact have been
developed in recent years?. These methods can be
divided into different groups. On the one hand,

sequencing-based methods (e.g. ST3, Slide-seq?) rely
]

sequencing, detecting the entire transcriptome with a
supracellular (10-100 ym) to subcellular (220 nm)
resolution®. On the other hand, imaging-based
methods rely on the detection of individual RNA
molecules using fluorescence-based microscopy.
Depending on their chemistry, these methods are
subdivided into in situ hybridization-based (ISH) (e.g.
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MERFISH®, SeqFISH’, EEL®) and in situ sequencing-
based techniques (e.g. in situ sequencing®,
STARmap'?, SCRINSHOT'"). Despite each technique
having specific characteristics?, imaging-based SRT
enables the detection of transcripts at the subcellular
level for a selected gene panel over the tissue area.
The usefulness of these technologies to investigate
the spatial architecture of tissues, propose cell-cell
communication events and clarify the roles of different
cell types and molecules in disease has led to the
emergence of companies interested in
commercializing SRT methods. As it occurred with
single-cell RNA sequencing (scRNA-seq), commercial
products based on these techniques promise to
facilitate the rapid adoption of methods. One of the
most successful examples of these products is
Visium, the commercial product of ST by 10X
Genomics, which has proven to be a useful tool to
study spatial architecture of tissues, despite the
limited spatial resoluton of the method.
Complementing  these  approaches, several
companies have launched imaging-based SRT
products (e.g. CosMx by Nanostring, Molecular
Cartography by Resolved Biosciences, Esper by
Rebus Bioscience, segFISH by Spatial Genomics).
Among those we find Xenium, a 10X Genomics
product based on in situ sequencing (ISS), that
promises to generate maps of hundreds of transcripts
at a subcellular resolution. Although Xenium datasets
have been used by 10X Genomics to show the
potential of the technology'?, an independent
exploration and evaluation of the platform is required.
In this study, we explore the characteristics, capacities
and limitations of data from the Xenium platform. In
addition, we explore the performance of several open
source computational tools when applied to Xenium
data, highlighting the biological insights that they can
provide (Figure 1A).

Results

Available Xenium datasets provide high quality
measurements of tissue populations

To explore the characteristics of Xenium data, we
collected 10 preview datasets generated by 10X

2

Genomics (Online Methods) as part of four different
experiments. The datasets, obtained with 10X in
development chemistry, included (1) five mouse brain
coronal sections, obtained in two different
experiments, (2) three mouse brain coronal regions of
interest (ROI) and (3) two human breast cancer
samples which, all together, represented a total of
306.7 million reads and 1.26 million cells (Extended
Data Table 1). The number of genes profiled (the
“‘panel”’) ranged between 210 and 313 genes. All
datasets included the 3-dimensional position (x,y,z),
gene identity and phred-based quality value (qv) of
every decoded read, with 82% (range 77%-91%) of
the reads presenting a high quality (qv>20) on
average (Extended Data Table 1). In addition, cell-
segmentation masks and a cell-by-gene matrix
containing the expression and position (x,y) of every
detected cell were also provided (Online
Methods). An average of 229 reads per cell were
observed throughout the ten datasets, with 78.5% of
the reads being assigned to cells, with no obvious
differences between Fresh Frozen (FF) and Formalin-
Fixed Paraffin-Embedded (FFPE) sections (Figure
1B). Only 0.11% of the cells presented less than 10
assigned reads and were excluded from further
analysis, positioning Xenium as a suitable platform to
assess cell type frequencies in tissues.

Xenium elevates ISS gene detection efficiency to
rival ISH methods

Mouse brain has been extensively characterized by a
wide range of classical and contemporary spatial
techniques and for that reason is often used to
evaluate technical performance of SRT methods. The
cellular composition of the mouse brain has been
elucidated through many studies using scRNA-seq'?"
7 and various SRTs’'2 which makes it an
excellent tissue for benchmarking SRT methods. We
therefore set out to benchmark Xenium against
available datasets from the same general region of the
mouse brain, primarily isocortex. The imaging-based
SRT datasets included the recently published high
sensitivity in situ sequencing (HS-1SS)?*, STARmap
PLUS?, sequential smFISH and MERFISH from the
Allen Institute®>, ExSeqg??, BaristaSeq?, osmFISH®
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and the Vizgen MERFISH Mouse Brain Receptor
Map. For the sequencing-based SRT, we had three
different publicly available Visium datasets. Finally,
among all the Xenium datasets generated for the
mouse brain, we used the 3 full coronal sections,
named as “multisection” in Figure 1B, as they
represented the most updated version of Xenium’s
chemistry. Anatomical regions were manually
annotated in the different SRT datasets to guarantee
a fair comparison between similar regions (Online
methods, Extended Data Figure 1) and then
proceeded to compare the cells from annotated
regions from the cortex. One inherent feature of the
imaging-based SRT technologies is that they are
targeted, which means that the number of detected
molecules per cell varies depending on the probes
used. We therefore calculated the detection efficiency
of individual genes measured by each technology by
comparing them to a reference scRNA-seq dataset'”.
Overall, we observed Xenium to be more sensitive
than all other ISS-based techniques, presenting a
similar sensitivity to some ISH-based technologies
(Figure 1C). In addition, Xenium presented an overall
detection efficiency similar to scRNA-seq (Chromium
v2) (mean ratio=1.07). However, due to the nature of
the method, the efficiency ratio of individual genes
presented a high variability, ranging from 0.21 to 2.0.
A negative correlation (r=0.53) was found between the
level of expression in scRNA-seq and the
SRT/scRNA-seq gene efficiency ratios (Extended
Data Figure 2A), indicating that lower expressors
from scRNA-seq are detected with a high efficiency in
situ and vice versa. This could be explained by the
different number of padlock probes added for each
gene, which was done to tune the detection efficiency
of each gene in a customized way in order to reduce
optical crowding limitations (Extended Data Figure
2B). However, the variability between genes targeted
with the same number of probes suggest that
additional factors play a role in determining the
SRT/scRNA-seq gene efficiency ratios.

Finally, we compared Xenium against Visium?, the
most widely used spatial transcriptomics platform.
Since Visium doesn’t have single cell resolution,
cortical and hippocampal regions were subset from
both datasets, comparing the pseudo bulk reads
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detected by each method for each gene. Xenium was
found to be much more efficient than Visium on a
tissue level, with a median of 21 times more reads
detected using Xenium compared to Visium Fresh
Frozen (FF) (Extended Data Figure 2C).

Identified populations are influenced by the
expansion of nuclei

For further exploring Xenium datasets’ characteristics,
we focused on the three adjacent tissue slices imaged
in the mouse cortex and hippocampal regions (Figure
1D). These sections exhibited a high similarity in terms
of read quality and counts (Extended Data Figure
2D) (Pearson’s r = 0.997), which allowed us to use
them as technical replicates throughout the study.
Xenium’s customized cell identification algorithm
consists of an initial nuclei segmentation based on
DAPI, followed by an expansion of the segmentation
masks. Using the cell-by-gene matrix of segmented
nuclei, we identified a total of 41 cell types in the three
mouse brain datasets that were consistent with those
previously identified in scRNA-seq experiments
(Figure 1E, Extended Data Figure 2E) (Online
Methods), demonstrating that nuclei segmentation
masks contain sufficient information to decipher the
identity of individual cells in situ. These cell types were
then mapped back onto the tissue to create a cell-type
map (Figure 1F). The proportion of detected cell types
was highly similar across all the three adjacent slices
(Pearson’s r = 0.99) (Extended Data Figure 2 D-F).
When assigning these annotated cells to anatomical
tissue domains (Online Methods) we observed a
consistent distribution of domain-specific cell types'
(Extended Data Figure 2 G-H).

Despite the transcripts assigned to cells based on
nuclear segmentation being sufficient to define cell
populations, some cytoplasmic reads might be lost in
the process. Under this assumption, Xenium’s nuclear
segmentation is followed by an expansion of 15 ym.
When identifying cell types using this expanded cell-
by-gene matrix, many of the cell types were divided
into region-specific clusters, in contrast with the
homogeneous cell types identified using unexpanded
segmentation (Extended Data Figure 3 A,B). In
addition, clusters in the UMAP based on expanded
nuclei were globally embedded by region (Extended
Data Figure 3C). For instance, oligodendrocytes in
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the thalamus were grouped together with astrocytes in
the thalamus, rather than with other oligodendrocytes
(Extended Data Figure 3 D-E). This indicates that
expansion captures domain-specific expression
signatures, influencing the clustering. Furthermore,
the clusters detected didn't present clear marker
genes and, compared with nuclei-based clusters,
some biologically relevant cell types were lost in favor
of region-specific clusters (Extended Data Figure 3
F-G).

To better understand the region specific effect of
expansion, which we suspected was due to
misassignment of spots from neighboring cells, we
defined nuclear expression signatures for each of the
identified cell types, as well as background expression
signatures for each of the manually annotated
domains. Taking these signatures as a reference, we
found that including transcripts beyond 8.24 um from
the cell centroid resulted in a higher gene expression
correlation to background domain-specific expression
signatures compared to nuclear cell type-specific
expression signatures (Figure 2A-C, Extended Data
Figure 4 A-B). This distance likely represents the
average radius of identified cells in the tissue,
including both nuclei and cytoplasm. Since, on
average, nuclei in this dataset presented a radius of
4.85 pm, the ideal expansion of cells in the samples
analyzed should be of 3.38 pm. Different cell types
presented, though, different average distances,
representing their diverse cellular morphologies. As a
consequence, segmentation strategies based on the
identification of nuclei followed by a rigid expansion
might not be the optimal solution.

Standard Xenium segmentation is outperformed
by Baysor and Cellpose

The influence of cell segmentation on cell-typing
accuracy motivated us to explore alternative
segmentation methods. For this, we benchmarked the
performance of the segmentation provided by Xenium
against commonly used segmentation strategies
(Online Methods). These strategies can be broadly
classified as: staining-based, if the position of cells is
determined by an auxiliary staining like DAPI
(watershed?’, Cellpose®); read-based, where cells
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are defined based on the read density and
composition of tissues (Baysor?®); or mixed models,
where both staining and the position of reads is used
for defining cells (Baysor®, Clustermap®).
Segmentation based on equally distributed bins
across the tissue (binning) was also included in the
comparison as an example of simplistic segmentation.
In addition, different cell expansions were applied on
top of each segmentation output (0, 5,11 ,16 um).

We estimated the similarity between segmentation
strategies using Adjusted Rand Index (ARI),
identifying groups of strategies performing similarly
(Figure 2 D-E, Extended Data Figure 4 C-D).
Staining-based strategies applied to DAPI generated
similar outputs, with cell expansion as the driving force
of their differences. In addition, Baysor-based,
Clustermap-based and binning strategies were found
to cluster by method, indicating distinct method-
specific segmentation output. Alongside quantitative
assessment of segmentation similarity, we also
employed quantitative metrics to evaluate the
performance of segmentation strategies. We defined
the best segmentation strategy as the one maximizing
the proportion of reads assigned to cells while
maintaining specific expression patterns, quantified
by Negative Marker Purity (NMP) (Online Methods)
(Figure 2F, Extended Data Figure 5). NMP
measures, based on a reference scRNA-seq'’, the
percentage of reads detected in cell types that are
expected to express the read's gene. We identified
Baysor-based strategies and specifically Baysor
combined with a Cellpose-based segmentation
(BA28-CPc) as best segmentation strategy (Figure
2F). Although no additional cell types were detected
using BA28-CPc segmentation in comparison with
Xenium’s nuclear segmentation (Extended Data
Figure 4E), we observed a median increase of 44
reads per cell (127 vs 83).

Segmentation-free models provide an alternative
to classical workflows

Segmentation-free models, where the identification of
spatially-resolved molecular signatures is done
independently from the segmentation of individual
cells have proven to be an alternative approach to the
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traditional  analytical  workflow. The  more
parsimonious nature of segmentation-free
approaches, which avoid modeling cellular structures
and operate on the immediately detected signal
instead allows for a different type of analysis. First,
they can be used to investigate local signal properties
and fidelity before the spatial accumulation into cells.
With the aim of exploring cellular and subcellular
patterns, we applied two of these approaches,
SSAM?®! and Points2Regions®2. Using SSAM de novo
mode, a total of 26 cell type-specific clusters were
identified. The comparison between these clusters
and the cell types identified in Figure 1E highlights the
capacity of these methods to capture cell type-specific
expression patterns (Figure 3A-C). Since, unlike in
segmentation-based methods, all the reads are
included in the analysis, extranuclear reads were
consistently assigned to specific signatures without
the necessity of performing segmentation. Moreover,
the relatively simple and resource-effective SSAM
algorithm can incorporate information of molecule
placement along the z-axis and potentially identify
subcellular structures and compartments. We used
Xenium’s 3-dimensional coordinates to detect cases
of possible mixed-source signals originating from cells
overlapping in the z-dimension (Figure 3D-E). The
presence of these cases (Extended Data Figure 6A)
highlights the importance of considering spatial
datasets as 3-dimensional maps, rather than
simplifying their position to 2-dimensional coordinates.

Besides identifying cell types, we explored whether
the read density of Xenium datasets could be
sufficient to identify subcellular expression patterns.
Using Points2Regions, we identified a total of 100
clusters representing subcellular patterns (Figure 3F).
By coupling them with the output of Xenium’s nuclear
segmentation, these clusters were classified in
nuclear, cytoplasmic or extracellular. Furthermore,
many of these clusters could be associated with
specific cell types. We identified subtle yet specific
expression differences between nuclear and
cytoplasmic clusters associated with the same
population (Figure 3 G-H), suggesting that Xenium’s
signal density enables the identification of subcellular
structures in situ.

5

Benchmarking the performance of
imputation tools on Xenium datasets
Targeted SRT methods are generally limited by the
number of genes measured simultaneously.
Imputation approaches overcome this by predicting
gene expression from a reference scRNA-seq onto
the cellular-resolution SRT dataset®. We sought out
to benchmark the performance of five methods
(gimVI¥*, SpaGE®*, Tangram'®, SpaOTsc* and
NovoSpaRc?®) using the workflow designed by Li et
al.® and taking as a reference a cortical and
hippocampal atlas'’. Brain regions not included in the
reference  scRNA-seq were excluded from
comparison (Figure 4A, Extended Data Figure 6B)
(Online Methods).

Imputation performance was assessed by Pearson
correlation coefficient (PCC), structural similarity
index (SSIM), root mean square error (RMSE) and the
Jensen-Shannon divergence (JS), where a higher
PCC/SSIM and a lower RMSE/JS value indicates
better prediction accuracy. Using these metrics, we
consistently identified SpaGE as the best performing
method (Figure 4B). In addition, Tangram and
SpaOTsc achieved an overall high performance.
Surprisingly, gimVI performance was found to be
lower than the one reported when using it to integrate
scRNA-seq with other SRT technologies®.

Since the workflow used relies on comparing detected
and imputed gene expression of individual genes, we
conceived this as a good way to identify genes with an
overall low agreement between scRNA-seq and
Xenium. By quantifying these gene-specific
differences using PCC across all genes and methods,
we observed an enormous difference in the imputation
performance between methods. These differences
were consistent across imputation methods (Figure
4C) and were correlated with the level of expression
of the genes in situ (Figure 4D) (PCC=0.63).

gene

Assessing computational tools to explore tissue
architecture

Imaging-based SRT has the ability to recover the
spatial location of individual cells which can be used
to decipher the organization of tissues' intrinsic
architecture. By utilizing computational frameworks for
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the exploration of spatial datasets implemented in
Squidpy®® and Giotto®®, we identified the major spatial
regions in mouse brain (Figure. 5A-B). While some
cell types like excitatory neurons in the hippocampus
presented a more restricted connectivity due to their
specific location, other cell types such as astrocytes
or OPCs presented a broader number of connections
to other cell types, in line with their known broad
distribution.

Despite the architecture of cell types, the identification
of spatially variable features (SVF) is useful to
discriminate genes explaining the main spatial
variation patterns within the tissue. The plethora of
methods available for this task, though, could lead to
slightly different conclusions depending on the
algorithm used. When comparing the most commonly
used metrics and algorithms developed for this task
(Moran’s I°8 Geary’s C®, Hotspot®, SomDE*,
SpatialDE*?, Giotto®®) we observed that a mean of
96% of the genes included in the Xenium’s panels
were considered as SVF (pval<0.05) (Figure 5C). All
methods presented a high consistency in identifying
SVFs, with overall Jaccard scores above 0.95, with
the only exception of SpatialDE. The consistency of
different algorithms in identifying SVF is lost when
comparing the most variable genes identified by every
method (Figure 5D). As a consequence, a selection
based on significance would be preferred in contrast
with the selection of the top SVFs. Since most of the
genes targeted are consistently found to be spatially
variable, though, a gene selection of SVF in Xenium
would not be as useful as in other untargeted spatial
transcriptomics technologies.

Identifying tissue architecture can be helpful to
understand its function. Identifying the most reliable
tools to define these domains is of general interest,
although no independent comparison is yet available.
Therefore, we benchmarked 4 domain finder
algorithms (neighborhood-based*?, Banksy*4,
DeepST*°, SpaGCN) against the regions identified by
expert manual annotation using the coronal P56
section from Allen Brain Atlas* (Figure 5D-E). A total
of 36 domains were manually annotated, and thus
each method was adjusted to predict a similar number
of domains (35-37). We found the domains predicted
6

by Banksy to be the most similar ones compared to
the manual annotation (Adjusted Rand Index = 0.59)
(Figure 5D). Nevertheless, there were consistent
differences in the identification of specific domains
(Figure 5F). While cortical and hippocampal regions
were overall accurately predicted, others like thalamic
regions were consistently misidentified (Figure 5F).
As expected, expression differences between
domains were correlated with a good identification of
domains, being especially the case in most
transcriptionally distinct domains.

Best practices for processing and analyzing
Xenium datasets

As seen previously, the way Xenium data is processed
and analyzed can distorsion the biological significance
of the results obtained. For this, and based on the
evidences shown through the manuscript, we propose
an optimal processing and analysis of Xenium
datasets. We have condensed this information in an
end-to-end pipeline (Code Availability) with the aim
of helping Xenium users to take the most out of their
data.

Briefly, taking the data obtained from Xenium as an
input, the first key step for an optimal processing of the
data is cellular segmentation. The optimal algorithm
for this consist on two steps: (1) the identification
nuclei using Cellpose®® and (2) the assignment of
reads to individual cells using Baysor®. Cellular
expansion is not needed, since extranuclear reads are
assigned using Baysor. If cellular segmentation
results in a poor performance, segmentation free
methods like SSAM®! or Points2Regions® can be
used to identify molecular signatures without the
necessity of identifying individual cells. After
segmenting individual cells, a cell-by-gene matrix is
obtained. Taking this as an input, cell type
identification can be achieved using standard scRNA-
seq workflows consisting of (1) cell filtering, (2) log-
transformation and normalization, (3) identification of
the main PCs, (4) low-dimensional reduction and (5)
clustering. The selection of SVF was found to be an
unecessary step in this process due to the targeted
nature of the method. In addition, if sc/snRNA-seq is
available, gene imputation can be performed using
algorithms such as SpaGE?3®or Tangram'®. Finally, for
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the identification of domains, using Banksy can be a
powerful solution.

Discussion

In this study we presented an independent exploration
and evaluation of Xenium in situ datasets. The
assessed technology can be used to generate highly
multiplexed spatial maps of RNA molecules at a
subcellular resolution. The number of reads per cell
identified, in the range of hundreds, and the area of
the tissues characterized facilitate the easy
identification of cellular populations in situ.

The Xenium in situ platform showed a detection
efficiency comparable to Chromium v2, representing
a remarkable increase in sensitivity in comparison with
other ISS-based methods. Among SRT methods,
however, these comparisons need to be taken with
caution, as gene-specific sensitivities depend on the
probes used to target them. RCA-based technologies,
like Xenium, enable the tuning of molecules detected
per gene. We believe that modifying these levels for
intentionally decreasing the detection levels of high
expressors or, more importantly, increasing the
detection levels of lowly expressed genes is one of the
main advantages of this approach in comparison with
other commercial solutions. Although Xenium
presents a considerably higher detection efficiency
than Visium, when compared with some other
available ISH based SRT products and platforms, its
mean detection efficiency was found to be slightly
lower. Despite this being one of the most important
features of SRT methods, further independent
comparison of technical aspects such as the imaging
time, cost of individual experiments, simplicity of the
technique and reproducibility would be needed to be
more comprehensive compared between the different
technologies and commercial solutions.

Several processing steps were identified to be crucial
when analyzing Xenium datasets with segmentation
being highlighted as one of the most important. With
the current segmentation provided by 10X Genomics,
cells’ nuclei were overall nicely identified and their
information found to be sufficient for identifying the
main cell populations present in the sections
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analyzed. We identified that the expansion of cells
after segmentation can have detrimental effects in the
characterization of cell populations due to the
assignment of domain-specific reads to cells from
neighboring cells. By comparing alternative
segmentation strategies to define cell populations, we
identified  Baysor combined with  Cellpose
segmentation to outperform the rest of the strategies,
being capable to define individual cells based both on
the density and identity of individual reads in situ. This
strategy allows Baysor to identify cells with different
sizes, composition and to even detect cells that didn’t
present their nuclei in the analyzed section due to
sectioning. Despite its overall good performance,
Baysor struggled in identifying cells in dense
homogenous areas such as the hippocampus.
Overlapping cells were identified as a recurrent yet
difficult to segment case due to the 2-dimensional
nature of most of the algorithms used. Thus, the
implementation of new segmentation algorithms that
consider the 3-dimensional structure of the data and
the inclusion of additional stainings for cellular
membranes would facilitate the correct identification
of individual cells.

In this direction, segmentation-free cell typing
methods represent an alternative to the typical
segmentation-then-clustering workflow, being able to
identify cell populations and subcellular patterns. The
exploration of subcellular patterns represents an
underexplored layer of information that is now
becoming accessible due to the sensitivity and
resolution of new imaging-based SRT methods such
as Xenium. The combination of these technologies
with  systematic analytical approaches using
segmentation-free algorithms or tools like Bento*’
could facilitate the understanding of RNA biology at a
subcellular level.

Due to the vast availability of methods, just a subset
of the most popular methods were included in the
benchmarking of the different tasks and thus, for each
task the top performer method found might not be the
best available method. In addition, some of the
published algorithms approached the tasks in an
alternative manner, resulting in non-comparable
outputs (i.e. SpaGCN* identifies domain-specific
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SVFs) and were not suitable for benchmarking.
Overall, despite some efforts being made, a more
systematic benchmarking of these and other
algorithms considering datasets generated in different
tissues with different experimental designs would be
beneficial to decipher when to use each algorithm. For
this, the accessibility to new and more diverse
datasets would be recommended.

All in all, Xenium represents an overall improvement
in comparison with other RCA-based technologies. Its
increased detection efficiency, together with its
resolution enables the identification of cell types in
space, being a useful tool to explore spatial biology.
Furthermore, it can be easily complemented by open
source algorithms, which further expand the analytical
possibilities of these datasets.

Online Methods
Xenium datasets processing

The 10 datasets included in this study were formatted
in the anndata format using a customized function
(https://github.com/Moldia/Xenium benchmarking)
and processed using Scanpy (v1.9.1.). Cell-by-gene
matrices provided by 10X genomics were log-
transformed and normalized. In order to identify
clusters, neighborhood graphs were computed
considering 40 principal components and 12
neighbors, followed by Leiden clustering. Cell-type
annotations were performed using differentially
expressed marker genes previously described in Yao
et. al.'”” .The same preprocessing steps were
performed on cell-by-gene matrices obtained for
alternative segmentation methods.

Annotation of mouse brain architecture

Tissue domains from SRT datasets were manually
annotated using the mouse coronal P56 sample from
Allen Brain Atlas*®. Datasets were first processed as
described above and then used to generate plots
containing cell cluster or spot identity, overlaid on their
respective DAPI-, immunofluorescence- or H&E-
stained images. Region delimitations were created
using enclosed vectorized Bézier-curves, which could
then be saved as polygons in scalable vector graphics
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format (.svg). These annotations were then integrated
to the cell and/or spot coordinate system from each
sample, respectively, allowing both classification of
cells and/or spots and projection of annotated regions
onto the datasets for inspection and downstream
analysis (see below). This approach promotes a more
reproducible annotation of regions of interest, which
can be further modified or updated as necessary,
while also being scalable and machine readable. All
annotations and detailed instructions on how to use
them are freely available at
https://github.com/Moldia/Xenium benchmarking.

Single-cell RNA sequencing processing

A subset of the scRNA-seq dataset from Yao et. al.!’
was used in this study. For generating this subset,
guaranteeing the equal representation of all
populations, populations were subsampled to a
maximum of 500 cells each. The resulting subset
consisted of 150K cells further used for integration and
annotation of the populations found in situ. Cell type
signatures of each cell type were also obtained for the
different levels of annotations presented in Yao et. al.
These signatures were used as an input in several cell
typing methods, such as SSAM.

Benchmarking Xenium other SRT

methods

against

For comparing the gene detection efficiency between
different SRT methods, only cells included within the
manually annotated isocortex regions present in all
image-based datasets were used (L2/3,L4,L5,L6b).In
the side by side comparison between Xenium and
Visium, manually annotated regions present in both
datasets were considered. Cell-by-gene matrices from
all available datasets were used for comparison. For
comparison with scRNA-seq, a subset of the scRNA-
seq dataset from Yao et. al.”” was considered (see
previous section). Raw counts were compared
between all methods. Since SRT methods measure a
limited panel of genes, there wasn’t any gene detected
in all experiments. Genes present in at least 4
datasets were further used for comparison. Taking
scRNA-seq as the reference dataset, the detection
efficiency of each selected gene for each method was


https://github.com/Moldia/Xenium_benchmarking
https://github.com/Moldia/Xenium_benchmarking
https://doi.org/10.1101/2023.02.13.528102
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.13.528102; this version posted February 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

assessed by (1) identifying positive cells for a certain
gene in both methods (cells with more than 1 read),
(2) computing the median expression of a gene in the
population of positive cells and (3) computing the ratio
between the two medians. Since we aimed to identify
the efficiency of each specific gene in each SRT
method, we divided the SRT median by the scRNA-
seq median. We considered solely positive cells for
the estimation in order to reduce the effect of having
slightly different cell compositions in the different
datasets.

Benchmarking segmentation algorithms

We benchmarked the segmentation methods Baysor,
Watershed, Cellpose, and Clustermap in comparison
with segmentations provided by 10x and equally
distributed bins across the tissue (binning) with a
custom pipeline. All segmentation masks were
expanded with 0, 5, 11, and 16 ym (0 - 75 pixels).
Watershed was applied using squidpy (v1.2.3) with
Gaussian blurring of standard deviations 0, 1, 5, and
10 pixels (determining the naming WS0 - WS10) and
Otsu’s thresholding. Baysor (v0.5.2) was tested with
scale parameters 20, 28, 40 pixels (BA20 - BA40) and
optionally a prior segmentation with default prior-
segmentation-confidence of 0.2 (e.g. CPc BA28). The
Cellpose (v2.0.5) deep learning models "nuclei" (CPn)
and "cyto" (CPc) were applied on the DAPI channel in
their vanilla versions. Clustermap (github code from
Nov 8, 22) was applied with gaussian blurring,
xy_radius 15, and cell_num_threshold of 0.0001.

The pipeline takes as input the DAPI image, the gene
spots with cell type annotations and x and y
coordinates, as well as a scRNA-seq reference
dataset with cell type annotations that are matched
with the cell type naming for the spatial cells. The
dataset described in methods "scRNA-seq
processing" was used as reference. The cell type
annotations on the nuclear segmentation from 10X
(methods "Xenium datasets processing") was
provided with the spots. After each segmentation run
a count per gene matrix of the cells were generated
and cell types were assigned. As new cells are
identified with every segmentation run, cell types of
the new cells were assigned based on a spots’
majority vote of the previous nuclear segmentation-
9

based annotation. For each segmentation output the
pipeline measured the proportion of assigned reads,
number of identified cells, the median and 5th
percentile of reads per cell, and the median and 5th
percentile of genes per cell. Further we introduced and
measured the Negative Marker Purity (NMP) metric
which is based on the assignment distribution of reads
from negative markers: A negative marker for a set of
"negative cell types" is defined, based on the single
cell reference, as a gene that is expressed in less than
0.5% of cells in each of the negative cell types. Two
versions for the metric were defined: 1. (NMP reads)
the percentage of reads of negative markers in the cell
types expected to express the gene, and 2. (NMP
cells) the percentage of positive cells of cell types that
are expected to be positive for a given gene relative to
all measured positive cells for the gene.

Benchmarking gene imputation algorithms

We evaluated the performance of five integration
methods (gimVI, SpaGE, Tangram, SpaOTsc and

NovoSpaRc) following the published Jupyter
notebook by Li et al®s,
(https://github.com/QuKunlLab/SpatialBenchmarking/
blob/main/BLAST GenePrediction.ipynb). We

used the raw normalized expression matrices for both
the scRNA-seq and spatial transcriptomics datasets
for input of the integration methods. Since the spatial
transcriptomics dataset contained less than 100
detected genes, we built the ground truth of our
dataset using genes detected in both the spatial
transcriptomics and scRNA-seq datasets (total 284
genes). For the evaluation we used tenfold cross
validation, where we for each iteration divided the
genes into 10 portions, 9 of which were used for
training and one for prediction. Because of the large
sizes of our datasets (scRNA-seq dataset ~150,000
cells, spatial transcriptomics dataset ~80,000 spots)
we downsampled the datasets by a factor of ten, the
lower amount of computational resources consumed
by the integration methods not compromising the
results.
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Benchmarking domain finder algorithms

Using the adjacent mouse brain slide (slide 1) used in
Figure 1D, we evaluated the performance of different
domain finder algorithms. For this, we manually
annotated the tissue domains present in the slides
analyzed using the mouse coronal P56 sample from
Allen Brain Atlas*, which we considered as ground
truth. Different algorithms (SpaGCN, Banksy,
DeepST, neighborhood-based domain identification)
were then used to define tissue domains, adjusting the
number of domains identified to the number of
domains manually annotated. Adjusted rand index
(ARI) was used to compare the performance between
the different algorithms. Methods with an ARI similar
to the annotated domains were considered to have a
better performance. In addition, domain-specific
scores were obtained by calculating the maximum
similarity between each manually annotated domain
and the domains identified with the different
algorithms using Jaccard Index.

Segmentation-free analysis using SSAM

Segmentation-free output was produced using the
SSAM package (v1.0.1) using python v3.6. In total,
two rounds of analysis were performed with different
parameterizations.

The first round was a SSAM de novo cell-type
mapping analysis using the (x,y)-coordinates of
Xenium’s provided mouse brain coronal section.
SSAM was run at a resolution of 1 pixel/um and
parameterized with a kernel bandwidth of 2.5. Local
maximum signal points were sampled from SSAM’s
vector field, and the signatures of the sampled
expression vectors were normalized and clustered (by
first reducing the data to 50 dimensions using PCA
and applying the Louvain algorithm at a resolution of
0.3) using SSAM's built-in de-novo functionality. The
detected 91 clusters were then each assigned one out
of 29 celltypes by correlating their expression
centroids to the mean expression profiles of Yao et.
al'” and correcting manually for ill-defined clusters. A
SSAM cell-type map was produced filtered using a
median filter to remove potential noise.

For a 3d analysis, the sample’s global gradient along
the z-axis had to be corrected for the SSAM analysis
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to be computationally tractable. A local elevation
estimator was created per molecule by building a
KNN-graph of all molecules in (x,y)-space and locally
propagating the molecules’ z-values in an iterative
graph diffusion strategy. The local elevation estimator
was subtracted from each molecule’s z-value,
rendering a sample representation that was
approximately geometrically centered around the z-
origin at all locations. Single outliers above and below
9 pum from the new z-origin were removed. The
centered spot data was subjected to a 3d-SSAM de
novo analysis run at a 2.5 pixels/um resolution, using
a kernel bandwidth of 2.5 um. Convolution edge
effects were corrected for by multiplying the signal
with an inverse gaussian of the same bandwidth along
the z-axis, centered around the z-axis origin.

To investigate signal coherence along the z-axis,
SSAM vector field was split in the middle along the z-
axis, creating two 9 ym semi-sections. The correlation
of the top-bottom SSAM vector field signals at each
(x/y) coordinate was computed and multiplied by the
2d vector field norm at each location. Peaks in the
resulting signal coherence indicator were detected in
a localmax search to identify regions of interest. Out
of these regions of interest (sorted by signal
coherence), the regions 2’, ‘3’, and ‘7’ were selected
for display since they covered different parts of the
tissue, cell types and structures (Extended Data
Figure 6A).

For the display, molecules within a 40-pixel window
around a region of interest were identified and
assigned a cell type by correlating the local, integrated
SSAM vector field signal to expression profiled from
Yao et al."” ,similar to the earlier two-dimensional
analysis. Final product was a scatter plot of the
regional molecules colored by cell type, with half the
region of interest removed along the x-axis to reveal
the (central) spot of highest signal incoherence.

Points2Regions

Points2Regions® was used as one of the
segmentation free approaches. In essence,
Points2Regions is a plugin for TissUUmaps 3,
intended for quick exploratory and interactive
dissection of molecular patterns in in situ
transcriptomics data. At its core, the plugin works by
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collecting markers in spatial bins of width w. Each bin
thus comprises a composition of molecular markers.
Adjacent bins are blurred together using a Gaussian
filter parameterized by the standard deviation o. Bins
containing few markers are excluded based on a user-
defined threshold r. Bins passing the threshold are
finally normalized by total count and clustered using
mini-batch KMeans clustering with k clusters. The
plugin thus comes with four tunable parameters: w, o,
T and K, each respectively set here to 1 um, 3 um, 0
and 100 for all experiments.
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Data availability

The Xenium datasets used in this analysis were
provided by 10X Genomics. The three mouse brain
coronal sections (“ms brain multisection”) are
publically available datasets and can be downloaded
at from the 10X website
(https://www.10xgenomics.com/resources/datasets).
The mouse brain full coronal and half coronal sections
(named as “ms brain coronal” and “ms brain ROI” in
Figure 1B), as well as the human breast sections are
available upon request.
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Code availability

All the code used in this analysis can be found in the
following github repository:
https://github.com/Moldia/Xenium benchmarking. Sin
ce different tools require their own environment,
analysis are divided in folders, providing different
Conda recipes files to recreate the environments
needed to reproduce the analysis.
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Figure 1: Overview of the analysis and cell type identification using Xenium. A. Schematic representation
of the overall analysis performed with Xenium datasets. Mouse brain and human breast cancer sections were
used to explore the capabilities of Xenium, exploring and benchmarking available methods in several tasks. B.
Density plot of the transcripts/cell (left), genes/cell (middle) and the percentage of nuclear area (right) identified
on each of the datasets. The vertical solid lines indicate the mean and the vertical dashed lines represents the
median of each. C. Boxplot representing the SRT/scRNA-seq gene efficiency ratios of different SRT methods in
log10 scale. Using this scale, a log10 efficiency ratio of 0 indicates the same detection efficiency in both methods.
Boxplots represent the distribution of the efficiencies, divided in quartiles, where the central line represents the
median efficiency of each technology assessed. Individual gene ratios are represented as individual dots for
each method. D. Expression maps representing the location of decoded reads in three regions of interest
selected from the mouse brain replicate 1 section. Reads are overlaid on top of their corresponding nuclei
staining (DAPI) and colored depending on their identity. E. UMAP representation of the 41 different cell types
identified by Xenium in the 3 adjacent mouse brain regions using unexpanded cells. F. Spatial map of the clusters
identified in panel E in replicate 1(right) and two regions of interest in the cortex (left, up) and the ependymal /
CP (left, down). Cells are represented using the cell boundaries identified by Xenium’s segmentation algorithm

after the expansion. Colors correspond to clusters identified in panel E. Scale bar indicate 150 um.
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Figure 2. Exploring segmentation in Xenium. A. Region of interest of one of the mouse brain sections. Reads
are overlaid on a DAPI staining and colored depending the distance to their closest cell centroid. Color legend
is present in Figure 2B. B. Pearson correlation coefficient (PCC) of OPC to the nuclear OPC mean expression
signature in Layer 4 of the cortex (purple) and the PCC to the background Layer 6a-specific expression signature
(green, dashed) depending of the distance to the cell centroid. C. Bar plot indicating distance of the intersection
between nuclei and the domain-specific background as represented at Figure 2B for a subset of the clusters
identified at Figure 1E. The intersection point is calculated for all the possible combinations of cell types and

domains, provided that the assessed cell type has at least 5000 reads assigned to the assessed domain. Error
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bars represent the 95% confidence interval. The mean nuclei and cell radius of every cluster are represented
using red and green rectangles respectively. D. Adjusted rand index (ARI) between the different outputs
produced by combinations of segmentation algorithms, hyperparameters and expansions. Segmentation
methods included Cellpose (CPn: nuclei, CPc: cyto models), binning (bins), clustermap, watershed (WA), Baysor
(BA) and cellpose combined with Baysor (CPc BA/CPn BA).Xenium segmentation were also included in the
comparison (XENIUM cel, XENIUM nuc). Hyperparameters for each method are described in methods. Methods
on the y-axis were colored depending on the expansion performed after segmentation. Scale bars represent 25
um E. Cells identified using different segmentation algorithms in a region of interest outlined in Extended Data
4C corresponding to L6. DAPI is represented as a background and color-specific masks represent individual
cells. Segmentation strategies represent different segmentation outputs, as described in Figure 2E. F. Scatter
plot representing the number of reads assigned (x-axis) and the negative marker purity (y-axis) of different
assessed segmentation strategies. The name and color of each segmentation strategy are represented as in
Figure 2E.
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Figure 3. Segmentation-free analyses highlight 3D and subcellular patterns. A. Cell type map of the
signatures identified in one of the mouse brain adjacent slides (slide 2). Colors represent the different cell types
identified, using the same color map as in Figure 1D. A yellow square represents the region of interest
represented in Figure 3B. B. Representation of cell types using SSAM (left) and the default 10x segmentation
(nuclear segmentation, right) in the cortical region of interest highlighted in Figure 3A. C. Pearson correlation
between the cell type-specific signatures described using SSAM and those found in Figure 1E using nuclei-
based segmentation. D-E. Spatial representation in 3D (D) and 2D (E) of overlapping cells found in the mouse
brain section analyzed in Figure 3A. F. Representation of the subcellular clusters identified by Points2Regions
in the mouse brain section analyzed in Figure 3A. Individual spots are overlaid on top of a DAPI staining and
colored by the assigned cluster. G. Representation of astrocyte-associated clusters with different subcellular
localization (up). The reads assigned to some genes with a subcellular patterning in astrocytes are represented
also in the map (up). The expression of the top 3 differentially expressed genes between subcellular astrocytic
clusters are represented in the form of a dot plot (bottom). H. UMAP representing the expression of Cabp7 in

the different cell types identified in Figure 1E. Astrocytes are highlighted.
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imputation algorithms combined with Xenium. A. Detected and imputed
expression of the gene Rasgrf2 in the cortex and hippocampus using different imputation algorithms. B.
Performance of different gene imputation methods as described by 4 different metrics: pearson correlation
coefficient (PCC), structural similarity index (SSIM) ,the Jensen-Shannon divergence (JS) and root mean square
error (RMSE). Data are presented as mean values + 95% confidence intervals. C. Scatter plot representing the

PCC found between the detected expression and the imputed expression for specific genes using different gene

imputation algorithms. D. Relation between the imputation accuracy scores (as PCC) of individual genes and
the detected gene counts of the genes at percentile 99, represented as a scatter plot.
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Figure 5. Spatial characterization using Xenium. A. Network representing the spatial enrichment between
different cell types. Nodes represent each cell type annotated in Figure 1C, with colors corresponding to the
ones used in the mentioned panel. Edges between cell types presenting a positive significant enrichment
(p>0.05) are drawn. Edges’ width corresponds to the enrichment scores. B. Bar plot representing the
enrichment/repletion score (left) and number of connections (right) between different cell type pairs. Only pairs
presenting a p-value>0.005 and a total of interactions larger than 250 are plotted. Bars are colored depending
on the type of interaction.C. Heatmap representing the Jaccard score obtained by comparing the significant
spatially variable features (SVF) (p<0.05) detected by different algorithms. Small bar plots on the top of each
column represent the percentage of genes identified as SVF by each method. D. Heatmap representing the
agreement between different SVF methods when selecting the top 100 SVF by each method. E. Heatmap
representing the agreement between different algorithms in identifying tissue domains in mouse brain sections.
F. Spatial map of the manually annotated domains identified in the mouse brain section (replicate 1, left) and the
domains identified by different algorithms including (Banksy, DeepST, SpaGCN and neighborhood-based region
identification) G. Scatter plot representing the maximum Jaccard Index (JI) (y-axis) between each reference-
based domain (x-axis) and the different domains predicted by the different domain finder algorithms.
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