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Abstract 33 

Transcriptome-wide association study (TWAS) is a powerful strategy for elucidating the molecular 34 

mechanisms behind the genetic loci of complex phenotypes. However, TWAS analysis is still daunting 35 

in many species due to the complication of the TWAS analysis pipeline, including the construction of 36 

the gene expression reference panel, gene expression prediction, and the subsequent association 37 

analysis in the large cohorts of genome-wide association study (GWAS). Farm animals are major 38 

protein sources and biomedical models for humans. To facilitate the translation of genetic findings 39 

across species, here we provide an interactive and easy-to-use multi-species TWAS web server for the 40 

entire community, called the FarmGTEx TWAS-server (http://twas.farmgtex.org), which is based on the 41 

GTEx and FarmGTEx projects. It includes gene expression data from 49, 34, and 23 tissues in 838 42 

humans, 5,457 pigs, and 4,889 cattle, representing 38,180, 21,037, and 17,942 distinct eGenes in 43 

prediction models for humans, pigs, and cattle, respectively. It allows users to conduct gene expression 44 

prediction for any individuals with genotypes, GWAS summary statistics imputation, customized TWAS, 45 

and popular downstream functional annotation. It also provides 479,203, 1,208, and 657 tissue-gene-46 

trait association trios for the research community, representing 1,129 human traits, 41 cattle traits, and 47 

11 pig traits. In summary, the FarmGTEx TWAS-server is a one-stop solution for performing TWAS 48 

analysis for researchers without programming skills in both human and farm animal research 49 

communities. It will be maintained and updated timely within the FarmGTEx project to facilitate gene 50 

mapping and phenotype prediction within and across species.  51 

  52 
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INTRODUCTION 53 

Genome-wide association studies (GWAS) have discovered numerous genetic variants associated with 54 

complex diseases and traits in both human and livestock populations (1-4). However, most of these 55 

variants are in high linkage disequilibrium (LD) and reside in noncoding regions, which makes it 56 

extremely challenging to interpret their underlying molecular mechanisms. Integration of multi-omics 57 

data has been proven to be efficient in understanding the mechanisms of action of noncoding variants 58 

behind complex phenotypes. Among those methods, transcriptome-wide association study (TWAS) is 59 

a popular one (5). In brief, TWAS first derives the gene expression prediction models by using a 60 

regression model or non-parametric approaches from a reference panel with both genotype and gene 61 

expression. With these prediction models, gene expression levels of individuals in GWAS populations 62 

can be predicted based on their genotype data. And then we can associate the predicted expression 63 

levels (the genetically controlled proportion) of each gene with the phenotypes of interest (5). To date, 64 

various TWAS software packages have been developed, e.g., PrediXcan/S-PrediXcan (5), TWAS 65 

FUSION (6), UTMOST (7), MR-JTI (8), TIGAR (9), and PUMICE+ (10).  66 

In human genetics, projects like Genotype-Tissue Expression (GTEx) (11) provided a valuable gene 67 

expression reference panel across various tissues in hundreds of individuals and paved the way to 68 

systemically characterize the regulatory effects on complex traits and diseases via TWAS (12-17). 69 

Several webservers for TWAS analysis and results sharing such as webTWAS (18), TWAS-hub (19) 70 

and TWAS atlas (20) are available in human. However, TWAS studies in livestock lag far behind humans. 71 

The Farm animal Genotype-Tissue Expression (FarmGTEx, https://www.farmgtex.org/) project has 72 

been established to provide the transcriptome reference panel across a wide range of tissues in farm 73 

animal species, including cattle (21), pig (22), and other species in the future. Although the genotype 74 

and gene expression data are available, the complicated TWAS analysis is still challenging and time-75 

consuming for most of the researchers who do not have a solid background in bioinformatics and 76 

statistical genetics. In addition, translating genetic findings across species is also important in the field 77 

of evolution, biology, and genetics. For instance, previous studies demonstrated the conserved 78 

functional impacts of orthologous variants on gene expression and complex traits between livestock 79 

and humans (23-28). Liang et al. (29) also proposed polygenic transcriptomic risk scores (PTRS), which 80 

paved the way to translate polygenic signals across human ancestry groups. Moreover, livestock has 81 

been proposed as a desirable model for human biology and medicine studies. For example, the pig 82 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 5, 2023. ; https://doi.org/10.1101/2023.02.03.527092doi: bioRxiv preprint 

https://www.farmgtex.org/
https://doi.org/10.1101/2023.02.03.527092
http://creativecommons.org/licenses/by-nc/4.0/


shows more similar body size, organ size, physiology, and anatomy to humans (30), which makes it a 83 

suitable biological model used for drug design and organ xenotransplantation in human medical 84 

research(31,32). Therefore, combining genetics studies in humans and farm animals will become 85 

crucial and worthwhile for understanding the molecular and evolutionary basis of complex phenotypes 86 

across species. 87 

In this study, to facilitate the TWAS analysis and the translation of genetic findings across species, we 88 

develope the FarmGTEx TWAS-server, which is the first user-friendly web server that allows users to 89 

conduct the TWAS analysis across multiple species including human, pig, and cattle. We implement 90 

three popular and classical TWAS software packages: S-PrediXcan (5), TWAS-FUSION (6), and 91 

UTMOST (7). By uploading the GWAS summary statistics, users could perform the TWAS analysis 92 

conveniently. We also provide functions including liftOver, GWAS summary statistics imputation, gene 93 

set enrichment analysis (GSEA), and result visualization. Incidentally, we provided summary statistics 94 

of TWAS from many complex traits in humans, cattle, and pigs. The FarmGTEx TWAS-server is an 95 

open-access resource that is freely available at http://twas.farmgtex.org, and it will be updated timely 96 

and include more species as the FarmGTEx project is expanding. 97 

 98 

MATERIAL AND METHODS 99 

Gene expression data collection and normalization 100 

The expression (Transcripts per Million, TPM) of 26,908 and 27,537 genes from 34 and 23 tissues in 101 

pigs and cattle were obtained from the FarmGTEx project (21,22), respectively. Details of these 102 

samples are summarized in Supplementary Table 1 and Supplementary Table 2. For each of the tissues 103 

in pigs and cattle, genes with TPM < 0.1 and raw read counts < 6 in more than 20% of samples were 104 

excluded. Finally, a total of 5,457 and 4,889 samples were analyzed in pigs and cattle, respectively. 105 

Gene expression values were sample-wise corrected using the trimmed mean of M values (TMM) (33), 106 

followed by the inverse normal transformation of TMM. More details have been reported in (21,22). The 107 

TPM of 55,878 genes from 54 human tissues were downloaded from the Genotype-Tissue Expression 108 

(GTEx) project (https://www.gtexportal.org/) (11), among which five tissues were excluded due to the 109 

small sample size, including bladder (n=21), cervix_ectocervix (n=9), cervix_endocervix (n=10), 110 

fallopian_tube (n=9), and kidney_medulla (n=4). The sample size of all the human tissues used in the 111 

TWAS sever is summarized in Supplementary Table 3. 112 
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 113 

Gene expression prediction model training 114 

To build gene expression prediction models based on the transcriptome reference panels, we used the 115 

Elastic Net model in S-PrediXcan(5), Top1, BLUP, and BSLMM models in FUSION (6), and CTIMP in 116 

UTMOST (7). For humans, the prediction models were downloaded from 117 

https://zenodo.org/record/3519321/ (Elastic Net model), http://gusevlab.org/projects/fusion/ (TWAS-118 

FUSION), and https://zenodo.org/record/3842289 (UTMOST). For pigs and cattle, the Elastic Net 119 

models are available at https://www.farmgtex.org/. We further built the prediction models by using 120 

FUSION (Top1, BLUP, and BSLMM) and UTMOST (CTIMP) in pigs and cattle following the pipeline as 121 

did in humans (6,7), and the detailed parameters were referred to (21) and (22). In brief, to account for 122 

hidden batch effects of transcriptome-wide variation in gene expression within each tissue, ten PEER 123 

factors were estimated by the Probabilistic Estimation of Expression Residuals (PEER v1.3) (34) 124 

method based on the gene expression matrix. To account for the population structure, genotype PCs 125 

were estimated using PLINK v1.9 (35) based on the genotype data. The number of genotype PCs was 126 

included according to sample size: five PCs for tissues with < 200 samples, and ten PCs for tissues 127 

with ≥ 200 samples. The cis-window of a gene was defined as 1Mb up- and down-stream of its TSS. 128 

The prediction models of FUSION were then calculated using the Rscript FUSION.compute_weights.R 129 

--bfile $OUT --tmp $OUT.tmp --out $FINAL_OUT --verbose 0 --save_hsq --PATH_gcta $GCTA --130 

PATH_gemma $GEMMA --PATH_plink $PLINK2 --models top1,blup,bslmm --covar 131 

$TISSUE.covariates4Fusion.txt --crossval 5. For CTIMP models, we followed the command from 132 

https://github.com/yiminghu/CTIMP.  133 

 134 

GWAS data collection and quality control 135 

To demonstrate the usefulness of this TWAS-server, we collected GWAS summary statistics of 1,129 136 

human traits from GWAS Catalog (36), webTWAS (18), and Neale Lab UKBB v3 137 

(http://www.nealelab.is/uk-biobank), 7 pig traits (37) and 41 cattle traits (38). Besides, we also included 138 

GWAS results of four pig traits using our newly generated genotypes of 2,778 Duroc pigs. Briefly, we 139 

genotyped these Duroc pigs with a Neogen GGP 50 K Porcine v1 Genotyping BeadChip (n = 974) or 140 

low coverage whole genome sequencing (depth = 1X, n = 1,804). We then used beagle v5.4 (39) to 141 

impute missing genotypes with the current version of Pig Genomics Reference Panel (PGRP v1) from 142 
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the PigGTEx, which contained whole-genome sequence data of 1,602 pigs from over 100 breeds 143 

worldwide (22). We then performed the GWAS for four traits using GEMMA (40), including birth weight 144 

(BW), corrected days to 115 kg (DAY115), back-fat thickness correct for 115 kg (BFT115), and loin 145 

muscle area corrected for 115 kg (LMA115).  146 

We only considered the GWAS summary statistics with full information including dbSNP ID or variant 147 

coordinate, effect/non-effect allele, P-value, beta coefficient, and z-score. To ensure the format of 148 

GWAS data acceptable by TWAS software, we performed the following quality control. 1) In the human 149 

dataset, for variants only with variant coordinates, we retrieved their rsID from dbSNP build 151. While 150 

in animal datasets, we used the variant coordinates for TWAS based on Sscrofa11.1/susScr11 or ARS-151 

UCD1.2/bosTau9 for pigs and cattle, respectively. If the GWAS summary statistics were based on 152 

different genome assemblies, we performed the liftOver analysis by PyLiftover v0.4 153 

(https://pypi.org/project/pyliftover/). 2) We removed the GWAS summary statistics that the non-effect 154 

allele or effect allele wasn9t clearly determined. 3) We excluded the GWAS summary statistics without 155 

P-value and beta coefficient. 4) After performing TWAS, we discarded the results with less than ten 156 

genes being tested. 157 

 158 

Imputation module for GWAS summary statistics  159 

To enhance the power of TWAS, we constructed the GWAS summary statistics imputation module. The 160 

genome reference panels were obtained from 1000 Genomes (41), CattleGTEx (21), and PigGTEx (22) 161 

for human, cattle, and pig, respectively. In the <GWAS imputation= module, we provided the whole 162 

genome sequence panel including 27,731,499 (n = 500), 3,824,445 (n = 7,394, the variants were called 163 

from RNA-seq data), 42,523,218 (n = 1,602) variants for humans, cattle, and pigs, respectively. To 164 

reduce the computational burden, we only considered SNPs identified as significant variants in the gene 165 

expression prediction model (eVariants) for the <GWAS imputation=. The number of eVariants for each 166 

prediction model is summarized in Supplementary Table 5. 167 

We considered two software packages for GWAS summary statistics imputation: 1) The Python-based 168 

software package summary-gwas-imputation proposed by Barbeira et al. (42), and 2) C++-based DIST 169 

(Direct imputation of summary statistics for unmeasured SNPs) (43). However, DIST did not support 170 

the imputation of cattle GWAS originally, because it did not allow the chromosome number bigger than 171 

22. The summary-gwas-imputation could be used for three species. As they use different formats of 172 
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genome reference panels as input, we constructed the respective panels for them following the 173 

pipelines in https://github.com/hakyimlab/summary-gwas-imputation and 174 

https://github.com/dleelab/dist. The human reference panels were also downloaded using the links 175 

above. In addition, we used chromosome with the largest number of SNPs to evaluate the accuracy of 176 

imputation (i.e., Pearson correlation coefficient between the imputed z-score and the observed) using 177 

the five-fold cross-validation approach. 178 

 179 

The workflow for online TWAS analysis 180 

To provide a comprehensive and user-friendly TWAS web server, we allow users to perform quality 181 

control, liftOver, GWAS summary imputation, TWAS analysis, and gene set enrichment analysis (GSEA) 182 

with only uploading the GWAS summary statistics. All results and publication-quality figures are 183 

downloadable. The GWAS summary statistics file uploaded should include columns of the chromosome, 184 

position, SNP name, effect allele, non-effect allele, P-value, and beta coefficient. For quality control, the 185 

server will check the reference assembly, SNP, and chromosome. If the reference assembly of GWAS 186 

does not match that of GTEx or FarmGTEx, the server will use PyLiftover 187 

0.4(https://pypi.org/project/pyliftover/) to converse the genomic coordinates. The GWAS imputation has 188 

been described above. For TWAS analysis, we prepared multiple software packages for users to 189 

choose from, including two single-tissue TWAS methods (i.e., S-PrediXcan (5) and TWAS-FUSION (6)) 190 

and a multi-tissue TWAS method (UTMOST(7)). To explore the function of a list of gene, users could 191 

perform GSEA using clusterProfiler (44). When the job is finished, we will send out an email with a link 192 

to all the job processes and results. Moreover, for users who have individual-level data, we also provide 193 

the <Expression Prediction= module, which is based on the PrediXcan (45) software package. With the 194 

imputed gene expression level, users could then quantify the association of the genetically regulated 195 

levels of gene expression with phenotypes of interest. 196 

We provided 2,268, 41, and 15 TWAS summary statistics based on S-PrediXcan (5) for humans, cattle, 197 

and pigs, respectively, and built a user-friendly interface for users to search/query the results. In humans, 198 

due to the high density of SNP in GWAS, we conducted TWAS using the GWAS summary statistics 199 

directly. Whereas, in pigs and cattle, we conducted the GWAS imputation first and then performed 200 

TWAS analysis. Significant disease/trait-tissue-gene associations are defined as genes with P-value 201 

less than a cutoff threshold set to 0.05/n, where n is the number of genes being tested in a TWAS. 202 
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 203 

Database and TWAS web server 204 

We built the back end of TWAS-server using the PHP-based ThinkPHP5.0 web framework 205 

(https://www.thinkphp.cn/) and developed the front end using the Layui framework 206 

(https://github.com/layui/layui) and jQuery JavaScript library (https://jquery.com/). We established the 207 

database based on MySQL software. We used Python and R to develop the computational pipelines in 208 

the TWAS-server and visualize all data and results using the ggplot2(46) in R(47).  209 

 210 

RESULTS 211 

Overview of the FarmGTEx TWAS-server   212 

Figure 1 shows the overview of the FarmGTEx TWAS server. Based on the gene expression reference 213 

panels in the FarmGTEx (21,22) and Human GTEx (11) projects, we first trained the gene expression 214 

prediction models in single- and multi-tissue manners. In general, the TWAS-server can take GWAS 215 

summary statistics, individual genotype and phenotype as input. As a result, it will output predicted gene 216 

expression and TWAS results. It also supports to explore the newly generated TWAS results with 217 

existing ones in the FarmGTEx server.  218 

Prediction models of gene expression 219 

In the FarmGTEx TWAS server, we provided gene expression prediction models with S-PrediXcan 220 

(Elastic Net methods), FUSION (Top1, BLUP, BSLMM), and UTMOST (CTIMP) for each of 34, 23, and 221 

49 tissues in pigs, cattle, and humans, respectively. The sample size, eGenes (genes with significant 222 

eQTL), and eVariants of each tissue are summarized in Supplementary Table 1-3. The number of 223 

distinct eGenes and eVariants used in S-PrediXcan, FUSION, and UTMOST is displayed in 224 

Supplementary Table 4 and Supplementary Table 5. The average of estimated cis-heritability of genes 225 

and prediction performance of models (the square of Pearson correlation (R2) between predicted and 226 

observed expression in the five-fold cross-validation) are shown in Supplementary Table 6-8. We 227 

provided a total of 38,180, 21,037, and 17,942 distinct eGenes in humans, pigs, and cattle, respectively. 228 

It represented 13,780, 13,444, and 13,442 one-to-one orthologous genes in human vs. pig, human vs. 229 

cattle, and cattle vs. pig, respectively. Furthermore, Supplementary Table 9-11 shows the comparison 230 

of eGenes between species in terms of cis-heritability. The correlation of heritability ranged from 0.0921 231 

to 0.2041 across tissues between humans and pigs. Among these tissues, the human heart (left 232 
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ventricle) (n = 432) and pig heart (n = 165) showed the highest correlation (Pearson r = 0.20, P-value 233 

= 9.35E-04) with 260 shared orthologous genes being tested. Human skeletal muscle (n = 803) and pig 234 

muscle (n = 1,322) had a heritability correlation of 0.14 (P-value = 9.98E-07) with 1,252 orthologous 235 

genes being tested (Supplementary Table 9). In the comparison between humans and cattle, the 236 

correlation of heritability ranged from -0.0071 to 0.0733 (Supplementary Table 10).  237 

GWAS imputation module 238 

To improve the power of TWAS, particularly in farm animals where GWAS are often conducted with 239 

low- or high-density SNP array, we provided the <GWAS imputation= function for imputing the GWAS 240 

summary statistics to the GTEx sequence level (i.e., matching SNPs in the eQTL mapping reference 241 

population) according to the genotype imputation reference panel from the GTEx projects. The pig 242 

genotype imputation reference panel consists of 1,602 samples with 42,523,218 variants which were 243 

generated from the whole genome sequence. The cattle genotype imputation reference panel consists 244 

of 7,394 samples with 3,824,445 variants, which were generated from the RNA-seq data. The human 245 

genotype imputation reference panel consists of 500 European individuals with 27,731,499 variants. 246 

The GWAS imputation module allows users to perform harmonization, format standardization, missing 247 

data imputation, five-fold cross-validation, and result visualization. The 8GWAS Imputation9 tab contains 248 

the following two steps. Step 1 allows the user to enter the <Email=, which is used to send a result link 249 

from the server (Figure 2A). Users must select one of the species and the genome assembly version, 250 

and then the server will perform liftOver if the genome reference version is different from those of 251 

FarmGTEx or GTEx (GRCh38/hg38, Sscrofa11.1/susScr11, ARS-UCD1.2/bosTau9). Users can also 252 

select the software used for imputation, including summary-gwas-imputation (42) and DIST (43). After 253 

uploading the file in the compressed format (.gz) to the server, the header of the file will be extracted, 254 

and the user must select the name for each column in Step 2 (Figure 2A). In addition to text results, the 255 

server provides downloadable publication-quality figures (Figure 2B). Furthermore, it will output the 256 

imputation accuracy of the GWAS summary statistics using the five-fold cross-validation based on the 257 

longest chromosome (Figure 2B).  258 

Online TWAS analysis module 259 

The TWAS module is the major part of the FarmGTEx TWAS-server. It aims to provide a user-friendly 260 

web server for the research community to conduct the TWAS analysis easily across tissues and species 261 

based on the FarmGTEx, HumanGTEx, and other similar efforts. In the current version, it includes 262 
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humans, pigs, and cattle. It will include more animals, e.g., chickens, sheep, and goats in the future, as 263 

the FarmGTEx project is working on these species. Like the GWAS imputation module, users have to 264 

upload the GWAS summary data file in Step 1 and select the columns9 names in Step 2 (Figure 3A). In 265 

detail, in Step 1, users can choose whether to do GWAS imputation in <Mode=. It will impute the genetic 266 

variants involved in the gene expression prediction models to reduce the computational time 267 

(Supplementary Table 5). Users can select different software packages to do TWAS analysis, including 268 

MetaXcan(S-PrediXcan) (5), FUSION (6), and UTMOST (7). As MetaXcan is computationally fast and 269 

has been applied in many research projects, we recommend users to try it first. To speed up the 270 

FUSION, we modified the code to allow it to run TWAS in parallel. For UTMOST, we used S-PrediXcan 271 

for the single-tissue TWAS first with the CTIMP prediction model and then performed a joint GBJ 272 

(generalized Berk-Jones) test for all the TWAS summary statistics. Step 2 allows users to select multiple 273 

tissues to do TWAS analysis (up to 49, 34, and 23 tissues for humans, pigs, and cattle, respectively). 274 

Users can also specify the P-value cutoff (default is 0.05), and the statistical significance will be defined 275 

as 0.05/n, where n is the number of genes being tested. Upon job submission, the TWAS module will 276 

perform the following six steps. (i) Quality control, (ii) LiftOver, (iii) GWAS imputation, (iv) TWAS analysis, 277 

(v) Manhattan plot illustration, (vi) GSEA for GO & KEGG enrichment analysis of genes, and (vii) result 278 

visualization. We will provide a link recording all the processes and results by Step 3 (Supplementary 279 

Figure 1A) and send an email containing the link when the job is finished. Finally, five kinds of Manhattan 280 

plots (PDF format) can be downloaded directly, including (1) figures for GWAS (Supplementary Figure 281 

2A), (2) figures for imputation GWAS (Supplementary Figure 2B), (3) figures for P-value 282 

(Supplementary Figure 2C) and z-score (Supplementary Figure 2D) of TWAS result per tissue, (4) 283 

figures for P-value of TWAS results from all tissues (Figure 3B), and (5) users can also zoom in a 284 

specific genomic region by the <post-Manhattan= tab (Supplementary Figure 2E). In addition to using 285 

GWAS summary statistics for TWAS analysis, the <Expression Prediction= module (Figure 3C) also 286 

allows users to predict the gene expression based on the individual-level genotype data. For doing this, 287 

users should upload the individual genotypes in VCF (compressed in gz) format, and the server will 288 

predict the gene expression level for each individual across tissues using the PrediXcan (45). We will 289 

keep users9 data on the server for a week. Afterward, we will remove the data from the server completely. 290 

Search module 291 

The FarmGTEx TWAS-server curated TWAS results for 1,129 distinct human traits and diseases based 292 
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on 2,268 GWAS summary data, representing 479,203 significant disease-tissue-gene trios (P-value < 293 

0.05/n, n > 10). Furthermore, we added TWAS results of 41 and 7 complex traits in cattle (38) and pigs 294 

(37), respectively. Users can search these TWAS results by querying a gene or a certain disease/trait 295 

(Supplementary Figure 3). The web will provide detailed information on the quired gene and orthologous 296 

gene in other species (Supplementary Figure 3A), including the location of the gene, homology type, 297 

and ortholog confidence. It will also display the number of the disease/trait-tissue associated with the 298 

quired gene (Supplementary Figure 3B). By clicking on the digital, the corresponding disease/trait 299 

association statistics of TWAS result will show up, including gene Ensembl ID, gene symbol, trait, tissue, 300 

P-value, and z-score (Supplementary Figure 3C). Moreover, it will provide the gene expression of 301 

orthologous genes across tissues in all the available species (Supplementary Figure 3D). As shown in 302 

Supplementary Figure 4, the web also allows users to search for TWAS results by a particular 303 

disease/trait. It will provide detailed information about the trait, including disease/trait name, sample 304 

sizes, population, publication information, source links, and the number of associated tissue-genes 305 

detected by S-PrediXcan (Supplementary Figure 4A). By clicking on the digital, the details of the TWAS 306 

result will show up, including gene ID, gene symbol, tissue, P-value, z-score, and the number of 307 

associated genes in each of the tissues (Supplementary Figure 4B, C). In summary, users can explore 308 

the molecular mechanisms behind a gene or a trait based on the large-scale TWAS results, which will 309 

be a valuable resource for translating genetic findings across species.  310 

Cross-species mapping module 311 

In the <Orthologous= module, users can upload TWAS summary statistics containing Ensembl ID, P-312 

value, and z-score from any species such as human, pig, cattle, sheep, chicken, and mouse. The web 313 

allows users to select species and tissues to compare (Supplementary Figure 5A). Then, it will calculate 314 

the Pearson correlation coefficient based on the P-value and z-score of one-to-one orthologous genes 315 

between species. These results will help translate the genetic findings between species and enhance 316 

the understanding of the evolutionary basis of a particular trait/disease (Supplementary Figure 5B, C).  317 

Comparison to others 318 

Currently, the FarmGTEx TWAS-server is the only web server that allows users to perform TWAS 319 

analysis across multiple species, including pigs, cattle, and humans. Compared to webTWAS (18) and 320 

TWAS-hub (19), the FarmGTEx TWAS-server is a more comprehensive server with multiple 321 

advantages, (i) more species: the webTWAS and TWAS-hub only focus on humans, whereas TWAS-322 
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server provides TWAS analysis and TWAS summary statistics across humans, cattle and pigs. In the 323 

future, we will include other farm animal species in the ongoing FarmGTEx project, such as chickens, 324 

goats, and sheep. In addition to gene expression, we will incorporate more molecular types, such as 325 

alternative splicing, promoter usage, and enhancer expression. (ii) more software packages: TWAS-326 

hub only implements TWAS-FUSION, and webTWAS (http://www.webtwas.net/#/twas) only provides 327 

S-PrediXcan and TWAS-FUSION for online TWAS analysis. In the FarmGTEx TWAS-server, apart from 328 

the single-tissue TWAS method, we implement the multi-tissue TWAS method, UTMOST, and allow 329 

users to perform liftOver and GWAS summary statistics imputation. (iii) more functional annotations: 330 

neither TWAS-hub nor webTWAS do not allow users to perform function annotations of genes, whereas 331 

the FarmGTEx TWAS-server provides the GSEA analysis. (iv) more illustrations: apart from Manhattan 332 

plots of TWAS results, we also provide illustrations for uploaded GWAS summary statistics, imputed 333 

GWAS summary statistics (Supplementary Figure 2E).  334 

Case study 335 

Here, we presented two case studies to show how the FarmGTEx TWAS-server can help researchers 336 

to perform TWAS analysis and discover the molecular mechanisms underlying complex traits across 337 

species. 338 

Case study1. We obtained the GWAS summary statistics from a previous study by Yang et al. (37), 339 

where they identified that the ABCD4 gene was associated with total teat number (TTN). Through 340 

performing TWAS analysis using the FarmGTEx TWAS-server based on their GWAS summary data, 341 

we found that the gene expression of ABCD4 in muscle and pituitary tissues was specifically and 342 

significantly associated with TTN (Figure 4A), suggesting the important role of muscle and pituitary in 343 

regulating TTN. In addition, due to the increased statistical power of TWAS compared to GWAS, we 344 

also found that ABCD4 was significantly associated with left teat number (LTN) (muscle and pituitary) 345 

(Figure 4B) and right teat number (RTN) (brain, frontal cortex, muscle, blood, and small intestine) 346 

(Figure 4C). As ABCD4 showing different P significance in different tissues for teat number (TN) (Figure 347 

4), we explored the correlation between different TN traits across tissues (Figure 4D-K) and found that 348 

TTN is most correlated with LTN (r = 0.7-0.71), followed by RTN (r = 0.69-0.71) and RTN (r = 0.33-349 

0.36), which is constant across tissues. Case study1 demonstrated that the FarmGTEx TWAS-server 350 

could not only help provide regulatory mechanisms underlying GWAS loci by identifying the associated 351 
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genes in relevant tissues but also increase the statistical power of association tests potentially by 352 

coming multiple signals of variants into a single gene. 353 

Case study2. To illustrate the usefulness of the FarmGTEx TWAS server in translating genetic findings 354 

across species, we compared the TWAS summary statistics of body conformation-related traits in 355 

humans, pigs, and cattle. It included body height (BH), body weight (BW), and body mass index (BMI) 356 

in humans obtained from Barton et al. (48), Backman et al. (49), and Sakaue et al. (50). Cattle body 357 

conformation traits includes stature, udder depth, fore udder attachment, strength, rump width, feet and 358 

legs, rump angle, body depth (38). Pig carcass traits included back fat thickness at 115 kg (BFT115), 359 

and loin muscle area at 115 kg (LMA115). They are all complex traits, and it is still challenging to 360 

elucidate their underlying mechanisms. For TWAS results of BMI, we found that P-value in 361 

8Adipose_Visceral_Omentum9 and 8Adipose_Subcutaneous9 tissues were highly correlated with those 362 

in liver, stomach and all the intestinal tissues (i.e, esophagus muscularis, esophagus gastroesophageal 363 

junction, colon transverse, colon sigmoid, small intestine terminal ileum) (Supplementary Figure 6). 364 

Figure 5A displayed P-values of orthologous genes that were significantly associated between human 365 

body conformation traits and pig carcass traits in the digestive system (esophagus muscularis, 366 

esophagus mucosa, esophagus gastroesophageal junction, colon transverse, colon sigmoid, small 367 

intestine terminal ileum, and liver of human. And small intestine, large intestine, duodenum, colon, ileum, 368 

jejunum, and liver of pig). Human BMI was more correlated with LMA115 and BFT115 than other traits 369 

(e.g., DAY115, BW, LMD100) in pigs. This is in line with that BFT115 and LMA115 are in high genetic 370 

correlation with lean meat percentage (LMP) in pigs (51). We found that cattle body conformation traits 371 

had fewer overlapped genes with human BMI compared to pigs (Supplementary Figure 7, Figure 5A), 372 

revealing that pigs might be more desirable models for human body conformation traits than cattle. 373 

In the comparison of BFT115 and BMI, 747 out of 3,020 one-to-one orthologous genes being tested 374 

were significantly associated with BMI (Supplementary Figure 8B), and 23 were significantly associated 375 

with BFT115 (Supplementary Figure 8A). Six genes (i.e., DIS3L, GAB2, IP6K3, ITPR3, PIGN, LEMD2) 376 

were significantly associated with both BMI and BFT115. Interestingly, ITPR3 and IP6K3 were 377 

significantly associated with BFT115, LMA115, and BMI (Figure 5A-C, Supplementary Figure 8D, E). A 378 

previous study reported that the deletion of IP6K3 protected mice from age-induced fat accumulation 379 

and insulin resistance (52). The methylation status of ITPR3 might contribute to fat deposition (53). In 380 

addition, the animalQTLdb also reported that ITPR3 was associated with body height, body weight, and 381 
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body mass index significantly in pigs (54). Of note, even though the current sample size of BFT115 and 382 

LMA115 is limited (n sample size= 2,778), there are still significantly associated genes shared between 383 

human BMI and pig carcass traits, indicating that the genetics of similar phenotypes might be conserved 384 

across species. We believe that the FarmGTEx TWAS-server could help translate genetic results 385 

between breeds and species. 386 

Conclusions and future prospects 387 

Here we presented the FarmGTEx TWAS-server to the research community. A unique feature of this 388 

TWAS-server is that it provides customized TWAS analysis and popular downstream functional 389 

annotation across multiple species, e.g., humans, cattle and pigs. The FarmGTEx TWAS-server can 390 

take individual genotype and GWAS summary statistics as input. As a result, it will output predicted 391 

gene expression and the TWAS results. It also supports to querying the existing TWAS results in the 392 

server by genes and traits. The case studies demonstrated that the FarmGTEx TWAS-server is effective 393 

for complex trait gene mapping and translating genetic findings across species.  394 

Currently, there are three species (i.e., cattle, pigs, and humans) and their respective gene expression 395 

prediction models across a wide range of tissues implemented in the FarmGTEx TWAS-server. As the 396 

FarmGTEx project is developing, one promising direction of the FarmGTEx TWAS-server is to 397 

incorporate more tissues/cell types, molecular phenotypes (e.g., alternative splicing and enhancer 398 

expression), and species. We believe that the FarmGTEx TWAS-server will be a valuable resource that 399 

will help the entire community explore the genetic mechanism of complex traits and translate genetic 400 

results between breeds and species. 401 

  402 
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DATA AVAILABILITY 403 

The FarmGTEx TWAS-server is publicly available at http://twas.farmgtex.org. The genotype and gene 404 

expression data of animals is available at https://www.farmgtex.org/. The data for humans is available 405 

at https://www.gtexportal.org/. The code is available at https://github.com/ZhangZhenYang-zzy/TWAS. 406 
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 580 

Figure 1. Graphical Abstract. FarmGTEx TWAS-server (http://twas.farmgtex.org) workflow. The 581 

Reference panel represents the gene expression data & genotype data used for the gene expression 582 

prediction model. The Prediction Model shows the number of eGenes used in corresponding software 583 

in all the species. The color of the boxes in the User input is the same as that in the corresponding 584 

result in the Output. The name in the line connecting the User input and TWAS Server backend analysis 585 

is the corresponding module name. And the end of the arrow is the software or dataset based on. Briefly, 586 

the TWAS-server can take GWAS summary statistics (blue), individual genotype (green), gene name/ID 587 

(cyan), trait name (orange-red), and TWAS summary statistics (brown) as input. As a result, it will output 588 

the TWAS results (blue), predicted gene expression (green), traits associated with quired genes (cyan), 589 

genes associated with quired traits (orange-red), and the correlated traits based on TWAS summary 590 

statistics (brown), respectively. 591 

 592 
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 593 

Figure 2. Operation flow for the 8GWAS imputation9 module. A. Step 1: Upload the GWAS summary 594 

statistics and select the options. Step 2: Select the corresponding columns name by clicking the mouse. 595 

B. An example output for the impute GWAS summary statistics and imputation accuracy by fivefold 596 

cross-validation 597 
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 598 

Figure 3. Operation flow for the 8TWAS analyses9 module. A. Step 1: Upload the GWAS summary 599 
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statistics and select the options. Step 2: select the corresponding columns name by clicking the mouse 600 

and tissues used for TWAS analysis. B. The output of the TWAS analysis. We can provide the 601 

Manhattan plots that combined all the TWAS results from multiple tissues and the visualization of the 602 

GO & KEGG enrichment analysis. C. Operation flow for the 8Expression prediction9 module. 603 

 604 

 605 

Figure 4. Results for Case study 1, TWAS results calculated from the published paper. The Manhattan 606 

plots of TWAS results for TTN(A), LTN(B), and RTN(C). FDR: false discovery rate. The upper triangle 607 

of the heatmap showed the Pearson correlation coefficient across traits in the brain(D), frontal cortex(E), 608 

pituitary(F), muscle(G), blood(H), small intestine(I), colon(J), liver(H). The lower triangle of the heatmap 609 

represents the statistical significance of the Pearson correlation. *** represents Pearson correlation P 610 

value < 0.001. 611 
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 612 

Figure 5. Results of Case study 2. A. The heatmap plot showed the lowest FDR in TWAS analysis of 613 

humans (BW, BH, BMI) and pigs (LMA115, BFT115, DAY115, bornWeight, LMD100) in the digestive 614 

system (esophagus muscularis, esophagus mucosa, esophagus gastroesophageal junction, colon 615 

transverse, colon sigmoid, small intestine terminal ileum, and liver of human. And small intestine, large 616 

intestine, duodenum, colon, ileum, jejunum, and liver of pig), the color of the box indicates the lowest 617 

FDR in corresponding tissues. B and C display the -log10(P-value) of IP6K3 gene (B) and ITPR3 gene 618 

(C) calculated from BMI, BFT115, and LMA115 across tissues. CHR: chromosome. 619 

  620 
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Supplementary files 621 

 622 

Supplementary_Figure1. A. When users submit the job, the server will provide a link recording all the 623 

processes and results, which is in red font. B. The screenshot of the details of the successful job. The 624 

results include the GWAS imputation, TWAS results of each tissue. And the 8Post Manhattan9 tab 625 

provides the interactive plot function. 626 

A

B
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 627 

Supplementary_Figure2. TWAS-server provides several kinds of Manhattan plots. A. Plots for GWAS. 628 

B. Plots for imputation GWAS. And plots for P-value(C) and z-score(D) of TWAS result in each tissue, 629 

(E) plots for a specific area by the <post-Manhattan= tab.  630 

 631 
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Supplementary_Figure3. Operation flow for the 8Search by gene9. A. The general information of the 633 

gene and orthologous gene in other species. B. The bar plot shows the number of associated trait-634 

tissues in humans, pigs, and cattle. C. The details of TWAS summary statistics for interested species. 635 

D. And the expression level of the gene in humans, pigs, and cattle. 636 

 637 

A

B

C
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Supplementary_Figure4. Screenshots of 8Search by trait9. A. The number of the associated trait-638 

tissues with the diseases/traits containing the searching keyword. B. By clicking the digital of the 639 

interesting study, a table displaying the TWAS summary statistics will be generated. C. A bar plot will 640 

show the number of associated genes across tissues. 641 

 642 

Supplementary_Figure5. Screenshots of 8Orthologous module9. A. Upload the GWAS summary 643 

statistics and select the options. B. The screenshot of the result.  644 
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 645 

Supplementary_Figure6. Cluster heatmap of correlation of the TWAS summary statistics across 646 

different tissues for BMI. The color of the box represents the Pearson correlation coefficient of P-value 647 

between two tissues. 648 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 5, 2023. ; https://doi.org/10.1101/2023.02.03.527092doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.03.527092
http://creativecommons.org/licenses/by-nc/4.0/


 649 

Supplementary_Figure7. The heatmap showed the TWAS summary statistics of human (BW, BH, BMI) 650 

and cattle body conformation traits in the digestive system (esophagus muscularis, esophagus mucosa, 651 

esophagus gastroesophageal junction, colon transverse, colon sigmoid, small intestine terminal ileum, 652 

and liver of human. And rumen, jejunum, ileum, liver of cattle). The color means the P-value of the 653 

genes in different traits and tissues.  654 
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 655 

Supplementary_Figure8. The significance of one-to-one orthologous genes between humans and 656 

pigs in TWAS analysis. A. The Manhattan plot of BMI TWAS results in humans. The Manhattan plot of 657 

BFT115 (B) and LMA115 (C) in the pig. D. On the x-axis, genes are ordered by the -log10(P-value) in 658 

human BMI, blue dots are the -log10(P-value) of human BMI, and the orange dots are the -log10(P-value) 659 

of pig BFT115. E. On the x-axis, genes are ordered by the -log10(P-value) in human BMI, and blue dots 660 

are the z-score of human BMI, and the orange dots are the z-score of pig BFT115. 661 

Supplementary Table 1. The sample size of the RNA-seq samples for pig, and the number of the 662 

eVariants and eGENEs of the eQTL models. eGene: Genes with significant cis-eQTLs for each model. 663 

eVariants: Variants associated with at least one gene. etGene: tested genes for cis-eQTL. ePercent: 664 

Percentage of significant cis-eGenes in all tested genes. 665 

Supplementary Table 2. The sample size of the RNA-seq samples for cattle, and the number of the 666 

eVariants and eGENEs of the eQTL models. 667 

Supplementary Table 3. The sample size of the RNA-seq samples for human, and the number of the 668 

eVariants and eGENEs of the eQTL models. 669 

Supplementary Table 4. The number of distinct eGenes detected by different methods in human, pig 670 

and cattle.  671 

Supplementary Table 5. The number of distinct eVariants detected by different methods in human, pig 672 

and cattle. 673 
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Supplementary Table 6. The average heritability in each tissue and the average cross-validation R2 674 

in prediction models for pigs. 675 

Supplementary Table 7. The average heritability in each tissue and the average cross-validation R2 in 676 

prediction models for cattle. 677 

Supplementary Table 8. The average heritability in each tissue and the average cross-validation R2 in 678 

prediction models for humans. 679 

Supplementary Table 9. The tissue pairs used in the comparative analysis between humans and pigs. 680 

The "Number of orthologous genes" represents the eGenes shared in corresponding tissues. 681 

<Correlation of heritability= is the Pearson correlation of the orthologous genes9 heritability in 682 

corresponding tissues. 683 

Supplementary Table 10. The tissue pairs used in the comparative analysis between humans and 684 

cattle. The "Number of orthologous genes" represents the eGenes shared in corresponding tissues. 685 

<Correlation of heritability= is the Pearson correlation of the orthologous genes9 heritability in 686 

corresponding tissues. 687 

Supplementary Table 11. The tissue pairs used in the comparative analysis between pig and cattle. 688 

The "Number of orthologous genes" represents the eGenes shared in corresponding tissues. 689 

<Correlation of heritability= is the Pearson correlation of the orthologous genes9 heritability in 690 

corresponding tissues. 691 
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