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Abstract

PTEN dysfunction, caused by loss of lipid phosphatase activity or deletion, promotes pathologies,
cancer, benign tumors, and neurodevelopmental disorders (NDDs). Despite efforts, exactly how
the mutations trigger distinct phenotypic outcomes, cancer or NDD, has been puzzling. It has also
been unclear how to distinguish between mutations harbored by isoforms, are they cancer or
NDDs-related. Here we address both. We demonstrate that PTEN mutations differentially
allosterically bias P-loop dynamics and its connection to the catalytic site, affecting catalytic
activity. NDD-related mutations are likely to sample conformations present in the wild-type, while
sampled conformations sheltering cancer-related hotspots favor catalysis-prone conformations,
suggesting that NDD mutations are weaker. Analysis of isoform expression data indicates that if
the transcript has NDD-related mutations, alone or in combination with cancer hotspots, there is
high prenatal expression. If no mutations within the measured days, low expression levels. Cancer
mutations promote stronger signaling and cell proliferation; NDDs’ are weaker, influencing brain
cell differentiation. Further, exon 5 is impacted by NDD or non-NDD mutations, while exon 7 is
exclusively impacted by NDD mutations. Our comprehensive conformational and genomic
analysis helps discover how same allele mutations can foster different clinical manifestations and

uncovers correlations of splicing isoform expression to life expectancy.

Key words: tumor suppressor, glioblastoma, PTEN hamartoma tumor syndrome,

neurodevelopmental disorders, autism spectrum disorder, allostery, BrainSpan
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Introduction

Tumor suppressor phosphatase and tensin homologue (PTEN) acts as a dual-specific protein and
lipid phosphatase, suppressing cell growth and survival (Tu et al., 2020). A major role of PTEN is
the negative regulation of phosphoinositide 3-kinase (PI3K)/phosphoinositide-dependent protein
kinase 1 (PDK1)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling
through dephosphorylation of the signaling lipid phosphatidylinositol 3,4,5-trisphosphate (PIP3)
to phosphatidylinositol 4,5-bisphosphate (PIP2) (Georgescu, 2010). Dysfunction of PTEN due to
somatic and germline genetic variations is associated with many different disease phonotypes.
While somatic mutation of PTEN after conception is often associated with human cancers
including glioblastomas and endometrial carcinomas (Koboldt et al., 2021; Sansal and Sellers,
2004), germline mutations (in egg or sperm cells) lead to neurodevelopmental disorders (NDDs)
such as macrocephaly/autism syndrome (OMIM # 605309) (Busch et al., 2019; Morris-Rosendahl
and Crocq, 2020) and PTEN hamartoma tumor syndrome (PHTS) (Abkevich et al., 1995). PHTS
is a rare inherited syndrome characterized by a benign noncancerous tumor-like cell growth,
including Cowden syndrome (CS) and Bannayan-Riley-Ruvalcaba syndrome (BRRS) (Cummings
et al., 2022; Pilarski et al., 2013). Individuals with CS and BRRS open have macrocephaly, a non-
tumoural phenotype. Further, individuals with PHTS genetic disorder have increased risk for
certain types of cancer and autism spectrum disorder (ASD) (Butler et al., 2005; Buxbaum et al.,
2007; Tan et al., 2012; Yehia et al., 2022).

The PTEN gene encodes the second most frequently mutated protein in human cancer
followed by 7P53 (Yin and Shen, 2008). The most common PTEN mutations are nonsense,
frameshift, and deletion/insertion (Bonneau and Longy, 2000). They likely result in premature

termination of translation, which would decrease the level of PTEN protein in the cell. In addition,
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a considerable number of PTEN mutations are missense point substitutions (Serebriiskii et al.,
2022) that may result in loss of protein function including reduced catalytic activity and protein
stability at the membrane. Missense mutations including indel mutations are commonly located at
the phosphatase domain, while nonsense mutations including truncation and frameshift are largely
found in the C2 domain (Bonneau and Longy, 2000; Serebriiskii ef al., 2022). In addition to the
mutations, posttranslational modifications (PTMs) on the C-terminal tail through the
phosphorylation of Ser/Thr cluster (Ser380, Thr382, Thr383, and Ser385) (Figure 1A) hamper
PTEN’s cellular membrane localization, silencing its catalytic activity (Bolduc et al., 2013;
Dempsey et al., 2021; Henager et al., 2016). In human malignancies, premature terminations,
missense and nonsense mutations, frameshift mutations with frame deletion, PTMs including
phosphorylation, ubiquitination, oxidation of active-site, and acetylation elevate uncontrolled
PI3K-stimulated cell growth and survival (Alvarez-Garcia et al., 2019; Kotelevets et al., 2020;
Meng et al., 2016; Singh and Chan, 2011; Song et al., 2012; Xia et al., 2020; Xu et al., 2014; Zhang
et al., 2020).

Although a number of experimental studies have demonstrated loss of PTEN lipid
phosphatase activity due to mutations, mechanistic details of the mutations and the structural
features of the mutant proteins at atomic resolution are still unknown. Here, comprehensive
computational studies using molecular dynamics (MD) simulations were performed for PTEN
mutants at an anionic lipid bilayer, composed of the phospholipids, phosphatidylcholine (PC) and
phosphatidylserine (PS), and the phosphoinositides, PIP> and PIP; (Figure 1B). We only
considered PTEN with the missense point substitutions, since proteins with the nonsense mutations
and premature terminations are not amenable to MD simulations. Eight missense mutations of

PTEN were considered: six in the phosphatase (Y68H, H93R, A126T, R130Q, G132D, and R173C)
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92  and two in the C2 (F241S and D252G) domains (Figure 1C). The types of mutations selected for
93 the residues were with different chemical properties, ensuring that structural integrity of protein
94  can be observable due to the mutations within the simulation time. Among them, Y68H is in the
95  core of phosphatase domain and H93R is in the WPD loop (residues 88-98). The A126T, R130Q,
96 and G132D mutations occur in and near the P loop (residues 123-130) with the catalytic signature
97  motif, HCxxGxxR"*? (where x is any amino acid). R173C is located at the interface between the
98  phosphatase and C2 domains. For the C2 mutations, F241S is in the f-sandwich of the C2 domain
99  and D252G is located at the interface between two major domains. Our studies indicate that the
100 PTEN mutants can effectively absorb the anionic lipid bilayer, similar to wild-type PTEN.
101  However, the mutations significantly reduce protein stability and hinder substrate recruitment. The
102  dynamics of the P loop were restrained due to the strong allosteric signals from the mutation sites,
103 which would affect the PTEN’s catalytic activity.
104 Our results underscore the merit of detailed structural and functional mechanisms of PTEN
105  with mutations at the membrane, point how they may help resolve the enigma of how same-protein
106  mutations can promote different pathologies, cancer versus NDDs, and a way to help determine
107  their outcome. The sampled conformations of mutants harboring a mutation associated with an
108 NDD resemble those of the wild-type protein. In contrast, conformations sampled by variants
109  associated with cancer hotspots differ and indicate more potent catalytic activation. This supports
110 the hypothesis that a key difference between cancer and NDDs mutations is mutation strength
111 (Nussinov et al., 2022b; c). A strong activating mutation promotes cell proliferation, a weak/mild
112  mutation promotes differentiation. This suggests that mutation strength, as manifested in the biased

113 conformational sampling that the mutant favors can be harnessed as a feature in identifying
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114  mutations connected with the distinct clinical manifestation, cancer or NDD, assisting in early
115  diagnosis.

116 NDDs emerge during embryonic brain cell development, suggesting that in addition to
117  mutations, the level of prenatal gene expression plays a vital role. We analyzed prenatal and
118  postnatal expression levels of isoforms harboring NDD (macrocephaly/ASD)-related mutations
119  alone or in combination with cancer mutations. All mutant-harboring isoforms were highly
120  expressed in the prenatal time window, dropping following birth; if no mutations within the
121 measured life span, lower prenatal expression. Cancer development results from multiple (more
122 than one hotspot) mutations, emerging sporadically during life. NDDs mutation carriers have
123 higher chances of cancer emergence, suggesting that NDDs-related mutations can combine with
124  cancer mutations. If they reside at adjacent chromosomal regions, deletions/insertions can also
125  infringe both.

126 Our analysis helps learning how same allele mutations can abet different clinical
127  manifestations and uncovers correlations of splicing isoform expression with life expectancy. It
128  observes that splicing isoforms that do not carry exon 5 are exclusively impacted by the NDD
129  mutations, F241S and D252G. On the other hand, variants carrying exons 5 and 7 can be highly
130  correlated with increased lifetime risk for certain types of cancer. Individuals afflicted with NDDs
131  are known to have increased risk of cancer, in schizophrenia as much as 50% probability
132 (Nordentoft et al., 2021). It is also high in e.g., autism (Liu et al., 2022a), and in intellectual
133 disability (Achterberg et al., 1978; Liu et al., 2021). Our work also offers guidelines for
134  identification of cancer and NDD mutational variants. If the transcript harbors unknown mutation
135  types, they can be differentiated by their strengths; cancer mutations tend to be stronger, with

136  higher signaling levels; NDD’s weaker, with moderate signaling. To differentiate between the
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137  mutations, statistics and atomistic simulations can help, although applying MD on a large scale is
138  demanding. Sampling could be accelerated. However, the challenge in accelerated conformational
139  sampling is to have it sensitive to sequence alterations.

140
141 Results

142 A full-length PTEN contains 403 amino acids (Lee et al., 1999), consisting of the N-terminal PIP2-
143  binding domain (PBD, residues 1-15), the phosphatase domain (residues 16-185), the C2 domain
144  (residues 190-350), and the carboxy-terminal tail (CTT, residues 351-403) (Figure 1). The CTT
145  includes the PDZ binding motif (PDZ-BM, “'TKV*®) at the C-terminal end. For catalysis, the
146  phosphatase domain provides three critical catalytic residues in the active site; Asp92 in the WPD
147  loop, and Cys124 and Argl30 in the P loop. We performed MD simulations on eight different
148  PTEN mutants interacting with an anionic lipid bilayer composed of PC, PS, PIP2, and PIPs. The
149  initial configuration of PTEN mutants at the membrane is the “open-open” conformation (Malaney
150 et al.,, 2013; Rahdar et al., 2009; Ross and Gericke, 2009), reflecting the relaxed PTEN
151  conformation at the anionic lipid bilayer as observed in the wild-type case (Jang et al., 2021; Nanda
152  etal., 2015; Shenoy et al., 2012). All PTEN mutants stably anchored in the anionic lipid bilayer.
153  As observed in the wild-type PTEN system with the same lipid compositions (Jang et al., 2021),
154  the probability distribution functions of membrane contacts of the protein residues point to five
155  loops that are responsible for the membrane association (Figure 1—figure supplement 1). The peaks
156  in the distribution indicate PBD-pB1(!*’DGFDL?®) and pp2-pal (*RLEGVYR*) loops in the
157  phosphatase domain, and cpl-cf2 ((>MFSGGTC?!'"), CBR3 (***KQNKMLKKDK?%), and Co2
158  (**’KANKDKANR?**%) loops in the C2 domain. In addition to the PBD, the two positively charged

159  loops, pp2-pal and CBR3 loops, one from the phosphatase domain and the other from the C2
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160  domain, are major membrane-binding interfaces of PTEN mutants. As observed in the wild-type
161  systems, similar profiles of the distributions of the helix tilt angles for the helices in the
162  phosphatase domain of PTEN mutants (Figure 1-figure supplement 2) suggest that membrane
163  absorption and orientation of the protein are highly affected by the lipid compositions in the bilayer.
164

165 Y68H in the core of phosphatase domain

166  In wild-type PTEN, Tyr68 in pp3 forms an aromatic cluster with Tyr88 in pp4 and Phe104 in pa3.
167 In the Y68H mutant, the point substitution disrupts this cluster (Figure 2A), resulting in the
168  destruction of the salt bridge between Lys66 in pp3 and Asp107 in pa3 (Figure 2B). The membrane
169  absorption of the pp2-pal loop in the phosphatase domain seems to be weaker than that of the
170  other mutants and wild-type system (Figure 1-figure supplement 1). The disruptions of key residue
171  interactions cause a conformational change in the phosphatase domain, yielding a loosely packed
172 core structure. This provides room for the mutant residue His68 to rotate its aromatic ring. The
173 periodic fluctuations in the distance between HD1 at the ring and HB2 at Cp atom indicate the
174  rotation of His68 aromatic sidechain (Figure 2C). In comparison with wild-type PTEN, no rotation
175  of the aromatic ring of Tyr68 is monitored. To observe how the mutation allosterically affects the
176  conformation of the active site, we identified the signal propagation pathways through the protein
177 by calculating the dynamic correlated motion among residues using the weighted implementation
178  of suboptimal paths (WISP) algorithm (Van Wart et al., 2014). A number of optimal and
179  suboptimal pathways were generated between the source residue, His68 (or Tyr68 for wild type),
180 and the sink resides, Cys124 and Argl30, in the P loop (Figure 2D). The allosteric signal
181  propagations through the protein illustrate that the mutant residue His68 is dynamically correlated

182  with the P loop residues, Cys124, Lys125, Arg130, and Thr131. The strong allosteric signals due
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183  to the mutation transmitting through the active site constrain the P loop to move upwards from the
184  bilayer surface (Figure 2E). In marked contrast to the mutant system, the allosteric signal nodes of
185  Lys125 and Thr131 are absent in the signal propagation pathways from the wild-type residue
186  Tyr68, implicating weak allosteric coupling to the P loop. For Y68H, the allosteric restraint on the
187 P loop with the shifted conformation hampers the catalytic residue Argl30 recruitment of the
188  substrate PIP3 (Figure 2F), which can lead to reduced catalytic activity.

189

190 H93R in the WPD loop

191  The P loop is highly basic, containing three basic residues that facilitate the recruitment of the
192  acidic substate PIP3 to the catalytic pocket. For catalysis, three catalytically significant residues,
193  Cysl24 and Argl30 in the P loop and Asp92 in the WPD loop, align to coordinate PIP3 at the
194  active site. The WPD loop in a closed conformation can bring Asp92 in the coordination, leading
195  to high catalytic activity (Brandao et al., 2012). A point substitution H93R in the WPD loop
196  amplifies the positively charged nature of the active site (Figure 3). The location of the WPD loop
197  with respect to the P loop is comparable to the wild type (Figure 3—figure supplement 3),
198  suggesting that H93R preserves the closed loop conformation. However, the mutant residue Arg93
199  increases the interaction with the substate PIP3, which seems to block the migration of the substrate
200 to the catalytic site residues. This additional membrane interaction might be correlated with the
201  absence of the membrane contact of the Ca2 loop in the C2 domain (Figure 1-figure supplement
202 1A).

203

204 A126T, R130Q, and G132D in the P loop
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205  The P loop contains the catalytic signature motif "> HCKAGKGR'*, suggesting that any mutation
206 of P loop residue can alter the loop conformation. Our data illustrate that the direct P loop
207  mutations, A126T and R130Q, and G132D nearby the P loop, induce a collapsed loop
208  conformation (Figure 4A). In contrast, it was found that an extended (or relaxed) conformation of
209  the P loop is populated for wild-type PTEN when the anionic bilayers contain both PIP2 and PIP3
210  (Jang et al., 2021). Although our mutant systems contain the same phosphoinositide lipids, they
211 yield the collapsed P loop conformation regardless of the lipid composition. Interestingly, both
212 A126T and R130Q mutants show an open conformation of the WPD loop with increased distance
213 from the P loop as compared to the wild type (Figure 4B). However, the G132D mutant maintains
214  aclosed conformation of the WPD loop with the distance from the P loop comparable to wild-type
215  PTEN, suggesting that G132D exhibits weaker mutational effect compared to the other mutations.
216 For catalysis, PTEN requires residual water molecules around the sidechains of Cys124
217  and Argl30 at the active site in the process of hydrolysis to release the phosphate group from
218  Cysl24 after transferring it from PIP3; (Brandao et al., 2012). To delineate the catalytic activity in
219  the mutant systems, we calculated the three-dimensional water density map in the region of the
220  phosphatase domain (Figure 5). Compared to the wild-type system, low probability of water
221 around the catalytic residues indicates that the active sites of A126T, R130Q, and G132D mutants
222 are largely dehydrated. The severe dehydration in the active site of R130Q suggests that the
223  mutational effect may be stronger than the other mutants. For R130Q, changes in the helix tilt
224  angles for pa3 and paS are apparent when compared to wild-type PTEN (Figure 1-figure
225  supplement 2A).

226

227 R173C at the interface

10


https://doi.org/10.1101/2023.01.26.525746
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.26.525746; this version posted January 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

228  In wild-type PTEN, Argl73 in pa6 of the phosphatase domain is important for maintaining the
229  interdomain interaction at the interface between the phosphatase and C2 domains. It forms a strong
230  salt bridge with Asp324 in the cf7-ca2 loop, which induces the interdomain n-n stacking between
231 Tyrl77 in pa6 and Phe279 in cal (Figure 6A). In the R173C mutant, the absence of the salt bridge
232 actuates the destabilization of the interface, resulting in the disruption of the n-rt stacking. The
233 removal of these key residue interactions increases the interdomain distance at the mutation site
234 (Figure 6B). However, the opposite site of the interface is still maintained by the hydrophobic
235 interaction between Pro95 in the WPD loop and Trp274 in cf6, and an additional salt bridge
236  formation between GIn97 in the WPD loop and Asp252 in cf5. This unbalanced interaction in the
237  interface induces the rotation of the C2 domain with respect to the phosphatase domain (Figure
238  6C), causing the loss of the membrane contact of the Ca2 loop in the C2 domain (Figure 1-figure
239 supplement 1A). The allosteric signaling pathways from the mutant residue Cys173 to the catalytic
240  residue Argl30 seem to be stronger than those from the wild-type residue Argl73 (Figure 6D).
241  This suggests that the R173C mutant allosterically constrains the P loop through the multiple
242  shortest optimal pathways. The allosteric restraint on the P loop changes the loop conformation
243  that moves upwards from the bilayer surface as observed in Y68H (Figure 6E). The shifted P loop
244  that the location is highly elevated from the bilayer surface and adopts a collapsed loop
245  conformation (Figure 6F), which induces the WPD loop open conformation. We observed that the
246  substrate PIP3 is populated in the region of the C2 domain. The failure of the R173C mutant to
247  recruit PIP3 by Argl30 (Figure 6G) indicates that it has a reduced catalytic activity.

248

249  F241S and D252G in the C2 domain

11
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250  F241S in cp4 resides in the pocket of the B-sandwich of the C2 domain, forming a hydrophobic
251  cluster. D252G in ¢35 occurs at the interface between the phosphatase and C2 domains, similar to
252 R173C. As expected, both C2 mutations increase the fluctuations in the C2 domain as compared
253  to wild-type PTEN (Figure 7A). However, averaged deviations of the key basic residues from the
254  bilayer surface are markedly different between these two C2 mutants (Figure 7B). The profile of
255  averaged deviations of F241S resembles that of wild-type PTEN, but that of D252G is distinct.
256  F241S shows a relatively weak membrane absorption of the pPp2-pal loop (Figure 1-figure
257  supplement 1B), and D252G alters the helix tilt angles for the helices in the phosphatase domain
258  (Figure 1-figure supplement 2B). F241S destabilizes the hydrophobic core of the B-sandwich
259  (Figure 7C), affecting the dynamic correlations of motions of the residues in the C2 domain. The
260  allosteric signal propagations from the mutant residue Ser241 to the active site avoid the signal
261  nodes in the hydrophobic core, while the allosteric signals from the wild-type residue Phe241
262  transmit through the signal nodes in the hydrophobic core of the B-sandwich (Figure 7D). F241S
263  obtains a single optimal pathway that passes more allosteric signal nodes than the wild type,
264  indicating less effective allosteric connection to the active site. In contrast, D252G exhibits strong
265 allosteric connection to the active site (Figure 7E). The allosteric signals from the wild-type residue
266  Asp252 propagate through the signal nodes at the interface, Pro95 and Trp274, and in the WPD
267  loop, Glu91, Asp92, His93, Asn94, and Pro96. However, the allosteric signals transmitting through
268  the WPD loop is missing in the D252G mutant. The loss of the hydrophobic interaction due to the
269  mutation destabilizes the interface (Figure 7F) and increases the interfacial distance (Figure 7G).
270  D252G shows the similar behavior as observed in R173C since both mutations occur in the same
271  interface but in different side.

272

12
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273  PTEN variants expressions for NDD vs. non-NDD

274  PTEN mutations are associated with various diseases including PHTS, cancer, and NDDs. Some
275  PTEN mutations are exclusively expressed in a certain disease type, but mutations can share across
276  both disease phenotypes. Here, the NDD-related mutations are H93R, F241S, and D252G that are
277  exclusively responsible for macrocephaly/autism syndrome (Butler ef al., 2005). The PTEN gene
278  is located on the chromosome 10 and contains nine exons. The longest human PTEN splicing
279  isoform is encoded by the transcript ENST00000371953, with exon 3 (Y68H) and exon 6 (R173C)
280  being impacted by the non-NDD mutations, exon 7 (F241S and D252G) by the NDD mutations,
281  and exon 5 (H93R, A126T, R130Q, and G132D) by both, the NDD and non-NDD mutations
282 (Figure 8A).

283 Two other transcripts (ENST00000498703 and ENST00000472832) are shorter isoforms
284  that carry above combinations of mutations, except that exon 6 in the ENST00000472832 isoform
285  (87952199-87952259, GRCh38.p13) is slightly (~80 bp) shorter than the same exon in the
286  ENSTO00000371953 isoform (87952118-87952259, GRCh38.p13) due to alternative splicing, and
287 it therefore carries only two NDD mutations in its exon 7 (F241S and D252G) and is missing a
288  non-NDD mutation R173C from exon 6. There are additional isoforms comprising exons 1 and 2
289 that do not carry any known disease risk mutations. We quantified expression levels of these five
290 isoforms from the RNA-seq dataset of the developing human brain BrainSpan (Kang et al., 2011;
291 Lietal., 2018), as we have previously described (Chau et al., 2021), and observed that three PTEN
292 isoforms (ENST00000371953, ENST00000472832, and ENSTO00000498703) are highly
293  expressed prenatally, and their expression levels decrease after birth (Figure 8B). The remaining
294  two isoforms (ENST00000487939 and ENST00000462694) that are not impacted by mutations,

295 are lowly expressed in the developing brain. Interestingly, the isoform ENST00000472832 with
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296  the shorter exon 6 that is exclusively impacted only by the NDD mutations, is the second highly
297  expressed PTEN isoform, which may have further implications for NDD biology.

298
299 Discussion

300 Here, we considered six PTEN mutations in the phosphatase domain (Y68H, H93R, A126T,
301 R130Q, G132D, and R173C) and two in the C2 domain (F241S and D252G). Our studies
302  demonstrate that the PTEN mutants retain the wild-type capability of the membrane absorption to
303 the anionic lipid bilayer (Han et al., 2000). However, the dynamics of the P loop, the WPD loop
304  conformation, the hydration of the active site, and the substrate recruitment were greatly affected
305 by the mutations. Y68H is associated with CS, BRRS, and glioblastoma, which is known to be
306  affected by the loss of phosphatase activity and protein stability (Han et al., 2000; He et al., 2011;
307 Marsh et al., 2001; Post et al., 2020; Tsou et al., 1998). In our simulations, Y68H disrupted the
308 core of the phosphatase domain and allosterically constrained the P loop, which hinders the
309 recruitment of the substrate PIP3. The NDD-related mutation H93R is responsible for
310 macrocephaly/autism syndrome, displaying a modest loss of catalytic activity (Fricano-Kugler et
311  al.,, 2018; Redfern et al., 2010; Rodriguez-Escudero et al., 2011). In our structural model, H93R in
312 the WPD loop hijacked the substate PIPs3, interrupting the catalytic site residues recruitment of the
313  substate for catalysis. But the mutant protein preserved the closed WPD loop conformation. For
314  the P loop mutations, A126T is found in endometrial and ovarian carcinomas (Valtcheva et al.,
315  2017), and R130Q is shared by CS and endometrial carcinoma (Han ef al., 2000; Serebriiskii et
316  al, 2022). In our simulations, these mutations yielded a collapsed conformation of the P loop,
317  resulting in the loss of contact with the WPD loop. G132D near the P loop, which is associated

318  with endometrial carcinoma and ASD (Chao et al., 2020; Post et al., 2020), also exhibited the
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319  collapsed P loop conformation but preserved the closed WPD loop conformation. We observed
320 that the PTEN mutations in the P loop, or nearby, cause dehydration in the active site, where water
321  molecules are important for hydrolysis to release the phosphate group from the active site (Brandao
322 etal., 2012). R130Q exhibited more severe dehydration than the other mutants. At the interface
323  between the phosphatase and the C2 domains, R173C is associated with cancer, such as
324  glioblastoma and endometrial carcinoma (Han et al., 2000; Shan et al., 2020). We found that
325  R173C disrupts the domain-domain interaction, allosterically biasing the P loop dynamics. Similar
326  behavior was observed for the C2 mutation D252G at the interface. However, the other C2
327  mutation, F241S in the f-sandwich of C2 domain, exhibited less effective allosteric connection to
328 the catalytic site than that observed in wild-type PTEN. Both NDD-related C2 mutations F241S
329 and D252G are responsible for macrocephaly/autism syndrome (Fricano-Kugler et al., 2018;
330 Mingo et al., 2018; Post et al., 2020; Rodriguez-Escudero et al., 2011; Spinelli et al., 2015).

331 Total loss of protein function can occur when PTEN has: (i) reduced protein expression
332 due to truncation and (ii) PTM, i.e., C-terminal tail phosphorylation in solution. In these cases,
333  PTEN is totally removed from the cell membrane, dismissing its catalytic activity (Bolduc et al.,
334  2013; Dempsey et al., 2021; Henager et al., 2016). On the other hand, PTEN with missense
335  mutations can effectively absorb the cell membrane, exhibiting function with reduced activity (Han
336 et al., 2000). We characterized the structural integrity of how PTEN degrades its function at the
337 membrane due to missense mutations. Our membrane bound PTEN mutants exhibited key
338  structural features: (i) the phosphatase domain with reduced stability, (ii) the allosteric constraint
339  on the P loop, (iii) the collapsed P loop, (iv) the dehydration of active site, and (v) the open
340 conformation of WPD loop. Although the simulations cannot directly assay PTEN lipid

341  phosphatase activity, the failure in the coordination of the substate PIP3 at the catalytic residues is
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342  a corollary of all the above structural features that lead to silencing PTEN catalytic activity. The
343  phosphatase mutations, Y68H, A126T, R130Q, and R173C have all the above structural features
344  induced by the mutations, suggesting that these proteins appear to exhibit a strong mutational effect.
345  In contrast, the NDD-related H93R and F241S exhibit a weak mutational effect with few structural
346  features by the mutations. Both cancer- and NDD-related G132D and only NDD-related D252G
347  exhibit an intermediate mutational effect with the structural features by the mutations.

348 In our studies, the phosphatase mutations are associated with cancer, PHTS, and NDDs,
349  while the C2 mutations are exclusively related to NDDs. Principal component analysis (PCA) of
350 the sampled conformations found that the macrocephaly and ASD related mutations, H93R and
351  F241S, favor sampling conformations present in wild-type PTEN (Figure 8—figure supplement 4).
352  In contrast, the sampled conformations for the cancer and PHTS-related mutations, Y68H, A126T,
353  and G132D, differ from those in wild-type PTEN. The interface mutations R173C and D252G
354  favor sampling similar conformations. Interestingly, although the sampled conformations for
355  R130Q can overlap those of the wild-type PTEN, the function of the mutant protein largely differs.
356  We suspect that a key structural effect of the PTEN missense mutation at the membrane is an
357  impact on the dynamics and conformation of the P loop. The strong PTEN mutations, Y68H and
358 R173C, which are distant from the active site, constrain the P loop through a strong allosteric
359  signal, while R130Q, the mutation directly on the P loop, strongly controls the loop conformation.
360 It was reported that cancer or PHTS-associated mutations targeting the P-loop of PTEN resulted
361 in complete loss of protein function (Rodriguez-Escudero et al., 2011).

362 These distinct structural features in PTEN mutations appear to correlate with mutation
363  strength and timing of the expression of the transcripts that determine the cancer and NDD

364  outcomes. PTEN contains nine exons, and its mutations largely occur in exon 5, followed by exon
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365 7,3,and 6 (Tanetal., 2011). Most missense mutations occur within the phosphatase domain, while
366  the C2 domain mainly accommodates nonsense mutations. The largest exon 5 encodes the PTEN
367 residues 84-164 including the catalytic signature motif, '>HCxxGxxR!"°. It was found that up to
368  40% of all germline mutations are located in exon 5 (Waite and Eng, 2002). The developing brain
369  isoform expression data indicate that exon 5 is impacted by NDD or non-NDD mutations.
370 Interestingly, we observed that PTEN splicing isoforms that do not carry exon 5 are exclusively
371  impacted by the NDD mutations, F241S and D252G. We expect that the increased life expectancy
372 of PTEN variants carrying exons 5 and 7 can be highly correlated to increased lifetime risk for
373  certain types of cancer.

374
375 Conclusions

376  PTEN, like other proteins in the signaling networks of the Ras superfamily and their associated
377  regulatory proteins harbor mutations connected with cancer and with NDDs. As a phosphatase,
378  PTEN is undruggable. Its associated interactome can be. Early diagnosis could help in ASD
379  pharmacology. Identifying the mutations acting in cancer, NDD, or both has been challenging. The
380 timing of the expression is a major determinant, during embryonic development or sporadic,
381  throughout life in cancer. Here our data suggest that mutation strength is another crucial factor. To
382  determine the mutation strength here we exploit the conformations sampled by the mutants. If the
383  conformations are biased toward the wild type, we interpret the mutation as low/mild, acting in
384  NDD. If they differ, adopting catalytically favored states, we label them as tending to strong
385  hotspots. Strong mutations result in a larger population of active molecules, thus stronger signals
386  reaching the cell cycle to promote proliferation (Nussinov et al., 2022a; d). We suggest sampling

387 as a general approach toward defining the likelihood of mutations to act in distinct pathology in
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388  diagnosis. The atomistic MD simulations used here are limited by molecular size, and the number
389  of proteins and mutations. Accelerated MD can be applied on a broader scale. It could also be
390 employed as a first step in sequence sensitive, deep modeling (Strokach and Kim, 2022). We
391  expect that other proteins bearing NDD connected mutations also display biased conformations.
392 MD simulations are a powerful tool to gain insight into the molecular behavior of proteins,
393  wild type, and mutants. However, in the living cell, the conformational behavior is not stand-alone,
394  and the mutant behavior is insufficient in determining cell transformation (Nussinov et al., 2022a;
395 d). In addition to the mutation strength, determinants of signal strength include mechanisms that
396  can block or enhance the signal, the types, and locations of additional mutations, and critically, the
397  expression levels of the respective isoforms, and of cross-talking proteins in the pathway that
398 regulate the protein variants. Signal levels vary across cell types, states, and time windows, with
399  chromatin structure and alternative splicing playing key roles. A strong activating mutation can be
400  constrained by low expression level, and a weak/moderate mutation can be strengthened by high
401  expression. Considering the spatio-temporal isoform expression in relevant tissues and cell types
402  in conjunction with mutations can help unravel the molecular mechanisms driving human disease.
403  Here, the expression levels of splicing isoforms harboring NDD, and mixed NDD/cancer
404  mutations are elevated at the prenatal stage, dropping following birth. The mapping of these
405  mutations on the respective exons and the presence of the exons in the isoforms, can be among the
406  factors foretelling life expectancy.

407

408 Materials and methods

409  Construction of full-length PTEN protein with mutations
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410  To generate the initial configuration of full-length PTEN mutants, we adopted the conformations
411  of wild-type PTEN interacting with the membrane from previous studies (Jang et al., 2021).
412 Explicit membrane simulations generated the fully relaxed wild-type proteins on an anionic lipid
413 bilayer composed of DOPC:DOPS:PIP2:PIP3 (32:6:1:1 molar ratio). The wild-type sequence was
414  modified to generate eight different PTEN mutants with each point mutation of Y68H, H93R,
415  A126T,R130Q, G132D, R173C, F241S, and D252G. The anionic lipid bilayer with the same lipid
416  compositions as in the wild-type system were reconstructed for the adopted mutant proteins. For
417  all mutant systems, the initial configuration ensured that the PBD, phosphatase domain, and C2
418  domain were placed on the top of the bilayer surface without inserting the protein backbone into
419  the bilayer, but the C-tail resided in bulky region without interacting with the lipid bilayer. Both
420  PBD and C-tail were modeled as unstructured chains.

421

422  Atomistic molecular dynamics simulations

423  MD simulations were performed on PTEN mutant systems using the updated CHARMM program
424  with the modified all-atom force field (version 36m) (Brooks et al., 2009; Huang et al., 2017,
425  Klauda et al., 2010). Our computational studies closely followed the same protocol as in our
426  previous works (Grudzien et al., 2022; Haspel et al., 2021; Jang et al., 2016a; Jang et al., 2019;
427  Jang et al., 2016b; Jang et al., 2021; Jang et al., 2020; Liao et al., 2020; Liu et al., 2022b; Liu et
428 al., 2022c; Maloney et al., 2021; Maloney et al., 2022; Weako et al., 2021; Zhang et al., 2021a;
429  Zhang et al., 2021b). Prior to productions runs, a series of minimization and dynamics cycles were
430 performed for the solvents including ions and lipids with a harmonically restrained protein
431  backbone until the solvent reached 310 K. Next, preequilibrium simulations with dynamic cycles

432 were performed while gradually releasing the harmonic restraints on the backbones of PTEN
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433  mutants. The particle mesh Ewald (PME) method was used to calculate the long-range electrostatic
434  interaction, and the van der Waals (vdW) interactions using switching functions with the twin
435  range cutoff at 12 A and 14 A were calculated for the short-range interaction between atoms. In
436  the production runs, the Nosé-Hoover Langevin piston control algorithm was used to sustain the
437  pressure at 1 atm, and the Langevin thermostat method was employed to maintain the constant
438  temperature at 310 K. The SHAKE algorithm was applied to constrain the motion of bonds
439  involving hydrogen atoms. Simulations were performed for eight mutant systems each with 1 ps,
440  and additional simulations for the same systems were also performed to check reproducibility. The
441  production runs were performed with the NAMD parallel-computing code (Phillips et al., 2005)
442  on a Biowulf cluster at the National Institutes of Health (Bethesda, MD). The result analysis was
443  performed in the CHARMM program (Brooks et al., 2009). To determine the most populated
444  conformation, the ensemble clustering in Chimera (Pettersen et al., 2004) was implemented to
445  obtain the conformational representatives. The weighted implementation of suboptimal path
446  (WISP) (Van Wart et al., 2014) algorithm was used to identify the allosteric signal propagation
447  pathways through the protein. To observe conformational changes in proteins, the normal mode
448  analysis (NMA) and principal component analysis (PCA) were conducted by the ProDy program
449  (Bakan et al., 2011). In the analysis, averages were taken afterward discarding the first 200 ns
450  trajectories.

451

452  PTEN variants mapping and visualization

453  For variants mapping, eight PTEN mutations were considered: six in the phosphatase (Y68H,
454  HI93R, A126T, R130Q, G132D, and R173C) and two in the C2 (F241S and D252G) domains. The

455  PTEN isoform structures were retrieved from the Release 42 (GRCh38.p13) of human genome on
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456  the GENCODE website (https://www.gencodegenes.org/human/). In total, we extracted isoform
457  structures for seven PTEN isoforms. Only 5 isoforms, for which expression data was available,
458  are shown in Figure 8. When we mapped PTEN variants to the isoforms, we only considered the
459  exonic regions. The variants are grouped by the disease status (NDD vs. Non-NDD) and the two
460  groups of variants are mapped and visualized separately. To perform the variants mapping, we
461  used R language (v4.0.5) and RStudio. The Tidyverse package in R was used for data processing
462  and data analysis. To generate the schematic figure for visualization of variants mapping results,
463  we used the Gviz package in R.

464

465 PTEN expression line plots

466  The expression profiles of PTEN isoforms were retrieved from the BrainSpan dataset which is an
467 RNA-Seq datasets quantified at the gene and isoform levels and we downloaded it from
468  PsychENCODE Knowledge Portal, PEC Capstone Collection, Synapse ID: syn8466658
469  (https://www.synapse.org/#!Synapse:syn12080241). The expression data was available for 5 out
470  of 7 PTEN isoforms. For isoform expression level, transcripts per million (TPM) was used and log
471  transformed. We used R language (v4.0.5) and RStudio to perform this analysis. The Tidyverse
472  package in R was used for data processing, and the ggplot2 package in R was used for data
473 visualization.

474
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475  Figure legends

476

477  Figure 1. Sequence and mutations of PTEN.

478  (A) The sequence of PTEN. In the sequence, the underlined residues highlight the mutation sites
479  in the phosphatase and C2 domains, and the phosphorylated sites in the serine-threonine cluster of
480  C-terminal tail. The residue letters are colored based on their amino acid types. (B) In silico model
481 of the full-length PTEN interacting with the anionic lipid bilayer composed of
482  DOPC:DOPS:PIP2:PIP3 (32:6:1:1, molar ratio). (C) Mapping of the residues for the mutations on
483  the PTEN structure showing the phosphatase and C2 domains. P loop containing the catalytic
484  signature motif 'PHCxxGxxR"? is marked.

485

486  Figure 2. Y68H in the core of phosphatase domain.

487  (A) The best representative conformation from the ensemble clusters highlighting the mutation
488  site of Y68H. The wild-type PTEN is shown for comparison. In the cartoons, residues are colored
489  based on their amino acid types. In wild-type PTEN, red dotted line denotes a salt bridge. (B)
490  Violin plots representing the atomic pair distance between NZ of Lys66 in pp3 and CG of Asp107
491  in pa3 for Y68H and wild-type PTEN. (C) The time series of atomic pair distances between HD1
492  and HB2 of His68 for Y68H (upper panel) and Tyr68 for wild-type PTEN (lower panel). (D) The
493  allosteric pathways between the mutation site and P loop. The source residues are His68 for Y68H
494  and Tyr68 for wild-type PTEN, and the sink residues are Cys124 and Argl130 for both proteins.
495  Yellow beads represent the source and sink residues, and green beads denote the allosteric signal
496  nodes. The blue lines represent the shortest allosteric paths. The P loop is colored yellow. (E)

497  Superimpositions of the top five representative conformations of P loop for Y68H (left panel) and
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498  wild-type PTEN (middle panel). Superimposition of the first representative conformations of P
499  loop from Y68H and wild-type PTEN (right panel). (F) The probability distribution of the center
500 of mass distances between the guanidine group of Argl30 and the phosphate group in the inositol
501  of PIPs for Y68H and wild-type PTEN.

502

503  Figure 3. H93R in the WPD loop.

504  Snapshot representing the best representative conformation from the ensemble clusters for H93R
505 in the anionic lipid bilayer (top left). Highlight showing the interaction of the mutant residue Arg93
506  with PIPs (right). The probability distribution of the center of mass distances between the
507  guanidine groups of Arg93, or Argl30 for comparison, and the phosphate group in the inositol of
508  PIPs for H93R (bottom left).

509

510 Figure 4. A126T, R130Q, and G132D in the P loop.

511  (A) The conformations of P loop and WPD loop for A126T, R130Q, and G132D. Key residues
512  are marked, and the mutated residues are marked with yellow background. (B) Violin plots
513  representing the atomic pair distance between Ca of His93 in the WPD loop and Ca of Argl130
514  (GIn130 for R130Q) in the P loop for A126T, G132D, and wild-type PTEN.

515

516  Figure 5. Water density in the active site.

517  Three-dimensional water density map with probabilities P = 0.5 (yellow surface) and P = 0.4 (blue
518 mesh) for A126T,R130Q, and G132D. Also showing wild-type PTEN for comparison. The protein
519  structures depict the best representative conformation from the ensemble clusters. The mutated

520 residues are marked with yellow background.
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521

522 Figure 6. R173C at the interface.

523  (A) The best representative conformation from the ensemble clusters highlighting the mutation
524  site of R173C. Also showing wild-type PTEN for comparison. In the cartoons, residues are colored
525 based on their amino acid types. Yellow dotted lines denote salt bridges. (B) Violin plots
526  representing the atomic pair distance between Ca of Cys173 (Argl73 for wild-type PTEN) in pa6
527 and Ca of Asp324 in the cf7-ca2 loop for R173C. (C) Superimposition of the first representative
528  conformations of R173C and wild-type PTEN with respect to the phosphatase domain. (D) The
529 allosteric pathways between the mutation site and P loop. The source residues are Cys173 for
530 R173C and Argl73 for wild-type PTEN, and the sink residue is Arg130 for both proteins. Yellow
531  beads represent the source and sink residues, and green beads denote the allosteric signal nodes.
532 The blue lines represent the shortest allosteric paths. The P loop is colored yellow. (E)
533  Superimposition of the first representative conformations of P loop from R173C and wild-type
534  PTEN. (F) Snapshot representing the best representative conformation from the ensemble clusters
535  for R173C. Highlight showing the interaction of PIP3 with the C2 domain. (G) The probability
536  distribution of the center of mass distances between the guanidine group of Argl30 and the
537  phosphate group in the inositol of PIP3 for R173C and wild-type PTEN.

538

539  Figure 7. F241S and D252G in the C2 domain.

540  (A) The root-mean-squared-fluctuations (RMSFs) of the C2 residues for F241S (left panel) and
541  D252G (right panel). Thin orange lines represent the RMSF of wild type PTEN for comparison.
542  (B) Averaged deviations of the amide nitrogen in the sidechains of Arg and Lys residues from the

543  bilayer surface for the PIP3-favored residues in the phosphatase and C2 domains for F241S and
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544  D252G. Also showing wild-type PTEN for comparison. Error bars denote standard deviation. (C)
545  Snapshot highlighting the hydrophobic core (surface representation in white) in the B-sandwich of
546  C2 domain for F241S and wild-type PTEN. The protein structures depict the best representative
547  conformation from the ensemble clusters. The allosteric pathways between the mutation site and
548  Ploop for (D) F241S and (E) D252G. In (D), the source residues are Ser241 and Phe241 for F241S
549  and wild-type PTEN, respectively, and in (E) they are Gly252 and Asp252 for D252G and wild-
550 type PTEN, respectively. The sink residue is Argl130 for all proteins. Yellow beads represent the
551  source and sink residues, and green beads denote the allosteric signal nodes. The blue lines
552  represent the shortest allosteric paths. The P loop is colored yellow. (F) The best representative
553  conformation from the ensemble clusters highlighting the mutation site of D252G. In the cartoons,
554  residues are colored based on their amino acid types. (G) Violin plots representing the atomic pair
555  distance between Ca of Gly252 (Asp252 for wild-type PTEN) in ¢f5 and Ca of GIn97 in the WPD
556  for D252G.

557

558  Figure 8. PTEN variants mapping and expression.

559  (A) Mapping of variants implicated in neurodevelopmental disorders (NDDs, pink) and those from
560 other diseases (green) to PTEN splicing isoforms. (B) Expression of PTEN isoforms in the
561  developing human brain for which expression levels are available. The isoform expression data
562  was quantified by the PsychEncode Consortium. Three PTEN isoforms (red, green and purple) are
563  highly expressed prenatally, and their expression levels decrease after birth. PTEN isoforms and
564  their associated exons and mutations are marked.

565
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se6 Figure supplement legends

567

568  Figure 1-figure supplement 1. Lipid contact probability.

569  The probability of lipid contacts for PTEN residues for (A) the phosphatase mutations (Y68H,
570  HO93R, A126T, R130Q, G132D, and R173C) and (B) the C2 mutations (F241S and D252G). Also
571  showing wild-type PTEN for comparison.

572

573  Figure 1-figure supplement 2. Helix tilt angle of PTEN.

574  Probability distribution functions of the helix tilt with respect to the bilayer normal for helices in
575  the phosphatase domain of PTEN for (A) the phosphatase mutations (Y68H, H93R, A126T,
576  R130Q, G132D, and R173C) and (B) the C2 mutations (F241S and D252G). Also showing wild-
577  type PTEN for comparison.

578

579  Figure 3—figure supplement 3. Closed WPD loop conformation of PTEN H93R.

580  Violin plots representing the atomic pair distance between Ca of Asp92 in the WPD loop and Ca
581  of Argl30 in the P loop for H93R and wild-type PTEN (left panel). The same plots for the distance
582  between Ca of Arg93 (His93 for wild-type PTEN) in the WPD loop and Ca of Argl30 in the P
583  loop for H93R (right panel).

584

585  Figure 8—figure supplement 4. The principal component analysis (PCA).

586  The projection of the first two principal components, PC1 and PC2, for the PTEN mutations, Y68H,
587  HI93R, A126T, R130Q, G132D, R173C, F241S, and D252G, and wild-type PTEN.

588
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