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Abstract

Parkinson’s Disease causes progressive and debilitating changes to the brain as well as to the mind.
While the diagnostic hallmark features are the characteristic movement-related symptoms, the dis-
ease also causes decline in sensory processing, cognitive, emotional performance and most patients
develop dementia over time. The extent of symptoms and the brain-wide projections of neuromodu-
lators such as dopamine suggest that many brain regions are simultaneously affected in Parkinson’s
disease. To characterise such disease-related and brain-wide changes in neuronal function, we per-
formed a source level analysis of resting state magnetoencephalogram (MEG) from two groups:

Parkinson’s disease patients and healthy controls. Besides standard spectral analysis, we quantified
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the aperiodic component of the neural activity by fitting a power law (x/f*) to the MEG spec-
trum and then studied its relationship with age and UPDRS. Consistent with previous results, the
most significant spectral changes were observed in the high theta/low alpha band (7-10 Hz) in all
brain regions. Furthermore, analysis of the aperiodic part of the spectrum showed that, in all but
frontal regions, A was significantly larger in Parkinson’s disease patients than in control subjects.
Our results indicate for the first time that Parkinson’s disease is associated with significant changes
in population activity across the whole neocortex. Surprisingly, even early sensory areas showed
a significantly larger \ in patients than in healthy controls. Moreover, A was not affected by the
L-dopa medication. Finally, A was positively correlated with patient age but not with UPDRS-III
(summary measure of motor symptoms’ clinical rating). Because ) is closely associated excitation-
inhibition balance, our results propose new hypotheses about manifestation of Parkinson’s disease
in cortical networks.

Running title: 1/f-exponent in Parkinson’s disease

Keywords: Parkinson’s disease, MEG, aperiodic activity, cortex-wide, excitation-inhibition
balance.

Abbreviations: PD = Parkinson’s disease, BR = brain region, MDS-UPDRS = Movement
Disorder Society’s Unified Parkinson’s Disease Rating Scale, EI = excitation-inhibition, BG =

basal ganglia, FC = functional connectivity, HC = healthy control, PSD = power spectral density.
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. Introduction

2 In Parkinson’s Disease (PD), the progressive loss of the dopaminergic cells not only depletes the
s neuromodulator dopamine but also alters the dynamics of other key neuromodulators such as sero-
4+ tonin, noradrenaline and acetylcholine (see the review by McGregor and Nelson'). Given the
s widespread prevalence of neuromodulators in the neocortex, it is expected that the neocortical neu-
s ral circuits dynamics and function would also be affected in PD. That is, the signature of PD related
7 dysfunction should also be visible in the neuronal activity recorded from neocortical regions.

8 Consistent with this, analyses of EEG and MEG have revealed several changes in the population
o activity of different neocortical regions (see reviews by Geraedts et al.* and Boon et al.®). While
10 the results are diverse given the heterogeneity of the patients, it is commonly observed that the low
11 frequency — delta to low-alpha band — power increases whereas high-alpha to gamma band power
12 decreases.

13 This kind of spectral slowing was shown to be correlated with motor and cognitive symptoms.>
12 Such spectral slowing has been observed in the earliest stages of the disease (e.g. in the posterior
15 cortex regions®), hence demonstrating that it is not an effect of dopamine medication. Moreover,
16 dopamine replacement therapy hardly reverses the spectral slowing, especially in the more ad-
17 vanced PD patients.®

18 Spectral power alterations are also associated with changes in functional connectivity (FC) in
1o PD patients. Throughout the disease, the low-alpha band FC decreases after an initial increase.”®
20 Increase in beta band synchrony is also commonly observed in the basal ganglia as well as in the
21 cortico-basal ganglia loops (see the review by Hammond et al ).

22 Thus, previous work on analysis of EEG/MEG has been largely focused on oscillatory activity
23 in different frequency bands. Besides oscillations, the aperiodic part of the population activity
24 can also be informative about the underlying network dysfunction and relative excitation-inhibition

25 balance'” To the best of our knowledge, the aperiodic part of the EEG/MEG activity in PD was

26 characterised in three studies. First, Vinding et al'! reported steeper power law decay of MEG
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27 power in sensorimotor regions of PD patients. In a more recent study, Wiesman et a
2s the aperiodic activity on four different frequency bands showing a neurophysiological slowing —
29 decrease through frequency of the \ deviation from HC. Finally, Wang et al.™¥ studied low-spatial
s resolution EEG from PD-ON and OFF medication showing that there is a significant increase of
a1 the offset and exponent power law parameters from OFF to ON medication in some of the sensors.
:2 However, thus far it has remained unclear how the spatial distribution of aperiodic component of
a3 the population activity is altered by chronic dopamine depletion and dopamine replacement therapy
s+ 1n human patients.

35 Therefore, we studied the spatial distribution of spectral peaks and aperiodic component of the
s activity from neural populations measured with MEG in PD patients in their on and off medication
a7 states. To this end, MEG acquired using 306 sensors were pre-processed to obtain 44 sources’
ss activity distributed all over the neocortex according to the HCP-MMP1 atlas. We found that indeed
39 there is a slowing in the MEG spectrum even when the spectral peaks were identified without
w0 classical frequency band definition. Analysis of the power-law exponent (\) of MEG spectrum
a1 revealed a significant increase in the A in sensory and motor regions in PD patients compared to
s2 the healthy controls. In fact, A\ showed a spatial positive gradient from anterior to posterior brain
ss regions in PD patients. Surprisingly, the frontal regions which receive most of the dopaminergic
s projections did not show a significant difference in \. L-dopa administration did not affect the
a5 spatial distribution of \. However, A\ changes were correlated to the patients’ age but not to their
s UPDRS-III score (the clinical rating of motor symptoms). That is, neocortical activity dynamics
47 is more vulnerable to chronic dopamine changes in older PD patients than in younger patients.
s Moreover, our results reveal aspects of neocortical population activity which are not affected by the
s L-dopa therapy. Because 1/f-exponent () can be linked to excitation inhibition (EI) balance, our

so analysis suggests new testable hypotheses about the PD related changes in the neocortex.
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- Materials and methods

= MEG data and its pre-processing

ss Here we analysed the resting state (eyes opened) MEG recorded from 17 PD patients (age 41-
s« 85; five female) and 20 age matched healthy controls (HC; age 54-76; eight female). The data was
ss acquired at the Swedish National Facility for MEG (NATMEG, https://natmeg.se/) using the Elekta
ss Neuromag TRIUX 306-channel MEG system. The study was approved by the regional ethics
57 committee (Etikpdingsnéamden Stockholm, DNR: 2016/911-31/1) and followed the Declaration
ss of Helsinki. All participants gave written informed consent before participating.

59 For more details of the experimental protocol please refer to Vinding et al'# study. Briefly, the
o MEG was acquired at a sampling rate of 1kHz with an online 0.1 Hz high-pass filter and 330 Hz
st low-pass filter. Each subject was recorded twice. MEG from PD patients was recorded in OFF
s2 and ON medication states. In the OFF medication condition, PD patients were off their dopamine
ss replacement medications (Levodopa) for at least 12 hours. After the first recording session, patients
s« took their medication and MEG was recorded for the second time one hour after the medication
es intake. HC subjects were also recorded twice at an interval of 1 h.

66 Each recording epoch was of 8 minutes duration. Data were down-sampled to a sampling fre-
o7 quency of 200 Hz and a low pass filtered at 45 Hz was applied. We pre-processed the data to re-
es move non-neural noise and eye movement artifacts using ICA and data from electro-oculogram or
so electrocardiogram. We then used the dynamic statistical parametric mapping (dSPM'2) for source
70 reconstruction (implemented in MNE-Python'®), followed by a labelling using HCP MM1 atlas'’

7 which resulted in 44 brain regions (BR) signals as shown in Figure[T]


https://doi.org/10.1101/2023.01.19.524792
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.19.524792; this version posted January 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

-PFCA O-PFC-rh
O-PFC-h ®
AC-MPC-h DPC-rh
— DPC-h ® o ® ® [ ——
] AC-MPC-rh FCah
FC-h
FEOC-th
LFOC-h ®
[ ] PMC-rh
PMC-l.h POC-th
POC-lh ) w
AC-th
® ® PL-MCC-h 6
AACHh mricanvadh @ MTighvah g
e o PL-MCC-th TC-rh
s [ ]
(] SMC-rh  EAC-rh
cacyn SMcih
T-P-O-}rh
Tp-0-1h pCCih  PCCh PCth
SPCrh
®, Ve "
PCth @ opcih VSVC-rh
MT.C-rh
M¥4h
— .EVS‘”‘ Pvc-v16m ® %Vc*h —
DSVCh  pvcvi-h ENE-h
AC-MPC Anterior Cingulate and Medial Prefrontal Cortex MTC Medial Temporal Cortex
AAC Auditory Association Cortex O-PFC Orbital and Polar Frontal Cortex
DSVC Dorsal Stream Visual Cortex PL-MCC Paracentral Lobular and Mid Cingulate Cortex
DPC DorsoLateral Prefrontal Cortex PCC Posterior Cingulate Cortex
EAC Early Auditory Cortex POC Posterior Opercular Cortex
EVC Early Visual Cortex PMC Premotor Cortex
FC Inferior Frontal Cortex PVCV1 Primary Visual Cortex (V1
PC Inferior Parietal Cortex SMC Somatosensory and Motor Cortex
1-FOC Insular and Frontal Opercular Cortex SPC Superior Parietal Cortex
LTC Lateral Temporal Cortex T-P-O0-] Temporo-Parieto-Occipital Junction
MT+C-NVA MT+ Complex and Neighboring Visual Areas VSVC Ventral Stream Visual Cortex

Figure 1: Cortex-wide projection of the centre of mass of the 44 brain regions investigated here using MEG. The

brain regions were extracted using the HCP MM1 atlas.

» EXxtraction of the frequency peaks

73 For each BR of each patient we estimate the power spectral density (PSD) — using the Welch
7 method!® implemented in SciPy citescipy with default parameters (average = ‘mean’ and window
75 = 'hann”) — averaging over 5 sec segments with 50% overlap over the whole signal. The periodic
76 part of the spectrum was extracted using the FOOOF method proposed by Donoghue et al ™.

77 FOOOF optimally fits the PSD with a function composed of the sum of an aperiodic part and a
78 periodic part. The aperiodic part is modelled as f—"& where f > 0 Hz is the frequency, « is the offset
79 of the PSD and A defines how the PSD decays as a function of f. The periodic part is modelled as a
so sum of P weighted Gaussian distributions whose mean, standard deviation and weight respectively

st indicate the peak frequency, width and height of the spectral power bump of the peak. We manually
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s2 specified the frequency band (1-45 Hz) on which the fitting was done. To identify oscillatory peaks
s 1in the PSD using FOOOF, we need to provide the maximum number of peaks P, their minimum
s+ height and band width. We searched for P = 4 peaks with a minimum peak height of 10%? V2/Hz
ss and peak width within [1, 10] Hz (see Figure[2|C).
86 From the proportion of individuals having such peaks within each group, we defined a nor-
&7 malised difference between groups as

_ pll)gln)dOFF(b) — P?ﬁ%d(b)

D band b —
Proppp OFF—HC( ) p%BdOFF(b) + pl}%d(b)

s where p%"?(b) is the proportion of individual in the group G' € {PD OFF, HC'} having at least
ss one peak frequency in the frequency band band and the brain region b (see Figure{d|B). These
o proportions, p%m?(b), for the theta and gamma frequency bands are illustrated in Figure@C and D,

o1 respectively.

«» Temporal dynamics of the slope of the MEG power spectrum

o3 To characterise the aperiodic component of the MEG activity, we focused on the way the power
s« of the MEG signals decayed as a function of the frequency. To this end, we first estimated the
o5 time-resolved spectrum (spectrogram) of each MEG source (epoch size = 50 sec, overlap 40 sec,
s see Figure[2JA). The PSD for each epoch was evaluated using Welch’s method averaging over 2 sec
o7 segments with 50% overlap (default parameters: average = "'mean’ and window = "hann’). Next,
9s  we fitted a power law to each PSD using the FOOQF algorithm. In the aperiodic activity analysis,
% we used the frequency band [1, 45] Hz, a minimum peak height of 10%2? V2/Hz, a peak width within
100 [2,10] Hz and a maximum of 4 peaks (see Figure[2|C for an example of such a FOOOF fitting).
101 Finally, we obtained the temporal and spatial dynamics of A, x and P by applying this method
102 to each epoch of each source (see Figure[2]D red trace). We checked the accuracy of the fit by

103 computing its r-squared error (for all the data combined; mean: 0.94, standard deviation: 0.04).
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Calibration of )\ estimate

A priori it is not clear how much error is expected in the estimation of A given a specific A and
epoch size. We have fixed the epoch size to 50 sec, which is large enough to give us a good
estimate of the PSD. Still we need to determine the appropriate segment size (1) for Welch’s
algorithm. To address this issue we resorted to a numerical simulation approach. First, we created
a PSD of the form p%’ and assigned random phase (drawn from a uniform distribution U|_ 1)
to each frequency. Next, we used inverse Fourier transform to reconstruct a signal of desired
length (Figure[ST|A). Finally, we extracted )y, for different values of W (Figure[SI|D-F). We
systematically varied \;.,. and . We found that the error in the estimate of \;,, depends on
both the A and W (FigureE,F). Based on these numerical experiments we chose W = 2 sec.

which gave us the best compromise between the errors in mean and standard deviation of the A in

a range that we have observed in our data.

Variability of )

For each brain region, we assume that A depends only on two parameters, time and group (PD
patient ON or OFF medication and HC). So, for a brain region b and a subject i, A\ (#) is the typical
dynamics of the 1/f-exponent. To estimate the variability of \2(¢) as a function of time in a given

individual and BR, we calculated the coefficient of variation (CV) as:

oVvP =

7 Y

2

i

where o, and )Tf are respectively the standard deviation and the mean of A2 (¢).

Relationship between )\ and subject age and UPDRS-III scores

A could be related to the subject age and disease severity (UPDRS-III score) in both linear or
non-linear manner. Therefore, we estimated both linear and non-linear measures of dependence

between A and = € {age, UPDRS} using the following three descriptors:
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Figure 2: Overview of the estimation of A dynamics done on every BR of each patient. (A) Time series of MEG
from a source located in the pre-motor cortex left hemisphere of a PD patient. (B) Zoom in one epoch (duration 50 sec)
of the time series of Panel A. (C) The black line shows the PSD of the time series of panel B. The gray line is the full
fit provided by FOOOF package. The dotted line shows the aperiodic activity following a power law f% (D) Right:
Pseudocolor image of the PSD as a function of time. The red line shows the corresponding A for each epoch. Left:

Temporal probability density of A.
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126 * Distance correlation measures the non-linear dependence between two variables:
1 - - _ — — _
dcm,(>\,$) = ﬁ Z (ajk — Qp — CL]' + CL) (b]k — bk — bj + b)
j7k
127 where using the notation || - || for the Euclidean norm,

1 1
Ak = H)‘J — >\k||7 bjk = ||JIJ —IkH, and Ve € {(l, b}, Ej = ﬁzcjk’ Cc= ﬁzéj'
k J

128 Here ); refers to the slope of the frequency spectrum of i** subject for a given brain region.
129 Other variables and this definition are illustrated in Figure[3] For further details please see
130 the work by Székely et al.?’.
A . B
. —) _
1.51 . . . (A xic) A >a
>0
y jk = Ak aip - An1 '|
~ 1.0 . bji = by;
° . a’jk . |
0.5 ¢ A, x)) .
Jr i e
. An1 - Ann J
° ° ° —
0.01 . . °
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X

Figure 3: Schematic of distance correlation measurement. (A) Example of a sample of (A, z) in a given brain
region for 17 different individuals (uniformly drawn). (@1)m,; (Xesp. (bmi)m,i) is the matrix of distances within the
vector A (resp. z). (B) Computations on (@m;)m,; rows and columns: @; is the mean of the jth row (or column as

(@mi)m,i is symmetric) and @ is the mean of (G, );.

131 e Pearson correlation measures the linear link between two variables:
cov(\, x)
p(A,x) = ——,
O) Oy
132 where cov is covariance and o, is the standard deviation of the variable .
133 » Spearman correlation measures the monotonic relationship between two variables:

rs(A, @) = p(R(A), R(z))
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134 where R(-) is the rank function.

135 To disentangle the dependence of A on the age and UPDRS-III, we computed the partial correla-
136 tions. To do so, we used partial_corr function of the pingouin Python package to calculate the
137 Pearson and Spearman partial correlations. Concerning the partial distance correlation, it is similar
138 to the classical partial correlation. It is based on projections but now in a more complex space called
150 the Hilbert space of U-centred matrices. We refer to the work by Székely and Rizzo*! for a rigor-
120 ous definition. We used the corresponding function, partial_distance_correlation, from the Python
11 package dcor*' for more information). We performed a permutation test (200 000 permutations on

122 the x variable) to estimate the p-values.

w  Statistical tests

144 With the exception of the correlations among UPDRS-III, age and A\, we used the Kolmogorov-
145 Smirnov test from the ks_2samp function implemented in SciPy to determine the statistical signif-
16 icance of our results. This test captures more the deviations near the distribution centre than at its
147 tails. Moreover, its power is greater when used in the one-tailed case. Therefore, we used the latter
148 to test whether the cumulative distribution functions (CDFs) of one variable is greater or less in
19 one group compared to another. In the test, the statistic is D = sup,cg[F'(u) — G(u)] where F
150 and G are the CDFs to be compared.** For example, when comparing the \ in FigureB, we tested
15t whether the CDF of \pporr was less than )\ ¢ in the frontal regions and the opposite in other BRs.
152 When comparing the two HC groups — between sessions 1 and 2, see FigureB — AHC ses1 and
155 \pC ses2 are statistically closed (distributions across the group) so that we gathered both groups as
15« one group (the HC group). However, the CVs difference between the two sessions was of the same
155 order than the difference between the CVs of HC and PD-OFF or PD-ON medication. Thus, we
15 only compared CVs session-wise: PD-OFF and HC ses1, PD-ON and HC-ses2, see Figure[S2|C,D.
157 Concerning the statistical significance of correlation measures, we performed a permutation test
155 (200 000 permutations on the x variable) to estimate the p-values of the partial distance correlation.

159 For Pearson and Spearman partial correlations, two-sided p-values were computed from the one-
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sample 7-test. The degrees of freedom of this test is NV — 1 where N is the data size (N = 17 in PD
groups and N = 20 in healthy groups).

Finally, we did not correct for multiple comparisons. We only used comparison-wise error rate
for each specific brain area, because this study is an exploratory work on the possible changes of
the 1/f-exponent dynamics in PD. The alpha-level that was used to determine significance was a
p-value less than 0.01. However, as we performed statistical tests on 44 BRs, a p-value of less than
0.05/44 ~ 0.001 has a significance level of 0.05 after Bonferroni correction, which is the most

conservative correction for multiple comparison.

Data availability

The MEG data cannot be made publicly available because of the ethical permits. The data analysis

scripts are available at: https://github.com/paschels/PD_one_over_f.

Results

To characterise how cortical activity is changed in human PD patients, we analysed the MEG
signals acquired during resting state. To this end, we quantified both the oscillatory peaks and the
slope of the spectrum for MEG sources corresponding to 44 different brain regions and then we

estimated the dependence of the latter on age and UPDRS-III.

Frequency slowing in PD

Analyses of MEG and EEG from PD patients suggest that frequency associated with peak power in
theta and alpha bands is reduced in human PD patients when compared to healthy controls To test

whether this is also the case in our data, we searched for Gaussian peaks in the spectrum of MEG

signals without explicitly defining the frequency bands (see Materials and methods)).

By estimating the distribution of all the frequency peaks observed across all the brain regions,

we found that indeed in PD there is a general slowing of spectral peaks (PD-PFF vs HC, p-value
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s < 1072° with Kolmogorov-Smirnov test, see Figure@A). Notably, Levodopa medication did not
1e« improve this slowing, in fact, if at all it seemed to worsen the frequency slowing (PD-PFF vs PD-
185 ON, p-value < 0.017 with Kolmogorov-Smirnov test).

186 Next, we sorted the frequency peaks into classical frequency bands (theta=4-8 Hz, alpha=8-
1e7 13 Hz, beta=13-30Hz and gamma=30-45Hz). Thus, we obtained the proportion of peak fre-
188 quency (pgmd’ ®) for each band, MEG source b and group GG. Given the spectral slowing there were
180 not enough peaks in the theta and gamma bands to compare the HC and PD groups (Figure[|A).
190 Therefore, first we restricted our analysis to alpha and beta bands. Even though there was a re-
191 duction in alpha band peak power, the difference did not reach a statistical significance level for
192 none of the brain regions (Figure[d|B, left). In the beta band also we found a wide spread decrease
193 in the mean peak frequency among most of the patients. However, the difference was statistically
10«  significant in only one brain region (Figure[d|B, right). This suggests that spectral slowing does not
155 affect the alpha and beta bands locally. However, when we pool data across all the brain regions,
196 spectral slowing can be observed in all bands. The main local effect (i.e. brain region specific) of
197 spectral slowing is the reduction in the power of gamma band oscillations and increase in the power
1s  of theta bands oscillations. In particular, gamma band peaks were almost completely missing from
190 the frontal regions in PD patients (Figure[d]D). By contrast, HC seem to be lacking theta band peaks

200 in the central-temporal and posterior brain regions (Figure[4|C).
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Figure 4: Spectral slowing, a peak frequency perspective. (A) Distribution of peak frequencies in all BRs of all
individuals from the different groups. (B) Distribution of frequency peaks in alpha and beta bands. The colour inside
the dots is the difference (PD-PFF - HC) of the mean peak frequency of each brain region in alpha (left) and beta
(right). The edge colour of the dots is the normalised difference (PD-PFF - HC) of proportion of individuals having at
least one peak frequency in the given band. (C, D) Distribution of frequency peaks in theta (C) and gamma (CD bands.
Dot colour indicates mean peak frequency within the theta (C) and gamma (D) band. Edge colour of the dots indicate

the proportion of individuals having such peaks in the given group.
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Neocortex-wide change in the 1/f-exponent distribution in PD

Next, we focused on the aperiodic component of the neural activity and analysed how the spectral

power decreased as a function of frequency. Using the FOOOF algorithm we fitted a power law

function to the PSD (seeMaterials and methods|) and estimated the exponent A for each MEG source

and subject. Across all the data, A spanned a relatively wide range 0.1-2.0. However, temporal
variation of A for individual brain regions in both healthy controls and PD patients was smaller
than across subject variance (Figure[5|A,B). We found that in healthy controls, A was smaller in
sensory regions than in the cognitive regions (Figure[5|C, left). However, this apparent gradient of
A from frontal to posterior regions is not statistically significant.

By contrast, in PD patients (both OFF and ON medication) A was larger in sensory regions
than in the cognitive regions (Figure[5|C, middle, right). Moreover, A showed a clear frontal to
posterior gradient (Spearman correlation, p-value < 1076 and 7, (ng, y?) < —0.65 where 3° is the
y-coordinate of the BR band G € {PD OFF, PD ON}).

From Figure[5|C, it is clear that there are differences in the spatial distribution of A in PD patients
and HC. To quantify this difference, we performed a brain region wise comparison of \ in HC
and PD patients OFF medication (Figure[5|D right). We found that PD patients (OFF medication)
have larger )\ in auditory, visual, somato-senssory and motor regions than in HC (for significant
figures please see Figure[5|D right). The same landscape of differences in A was observed when we
compared PD patients ON medication with HC (Figure[5|D middle). Interestingly, a comparison
of PD patients in ON and OFF medication states did not reveal any significant differences across
the whole neocortex (Figure[5|D left). We also note that still in most brain regions (except frontal
areas), the group variance among HC was much lower than among PD patients (edge colours of
the dots in Figure[5|C). Finally, the most significant changes were observed in the left hemisphere,

which is expected as in our cohort most patient’s disease started in their right hand.
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Figure 5: Cortex-wide distribution of the mean over time of \ within each group. (A, B) Temporal evolution
of X\ over time in two specific regions (MT+C-NVA-lh and MTC-rh) for PD patients OFF medication (pale blue) and
HC (pale red). Each line corresponds to one subject. Blue and red lines indicate group averages. (C) Temporal
average of Ag for each group G € {HC, PD-ON, PD-PFF}. The inside colour refers to the mean over the group.
The border colour refers to the fluctuation of Ag within the group G. (D) Temporal average of A between two groups
G., Gy € {HC, PD-ON, PD-PFF}. The inside colour refers to the difference between the means over the groups. The

border colour refers to the averaged fluctuation of A combining the two groups G, and Gy,

225 A is not constant across time (Figure[5|A,B). To quantify these fluctuations over time, we mea-

226 sured the coefficient of variation (CV, seeMaterials and methods)) of A for each BR in each subject.
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Small value of CV of \ indicates temporal stability of . In general A was stable over time (small
CV). However, \ was more variable in frontal regions in both PD patients and HC (Figure[S2|C).
A comparison of CV of PD patients and HC revealed that for most brain regions A was less vari-
able in PD patients than in HC, particularly in the sensory regions where the CV difference was
statistically significant (Figure[S2|D,right).

Finally, even if there is no significant difference in this second order temporal statistics between
PD patients ON and OFF medication, Levodopa seems to decrease temporal fluctuations in some

BRs, especially frontal ones (Figure[S2]D,left).

The 1/f-exponent is positively correlated with age but not with UPDRS-
III in PD

In the above we have shown how \ was altered in PD patients across the whole neocortex. The
question arises: does this difference in A also correlate with the PD severity? A could be affected
by subject age and UPDRS-III score. Therefore, we estimated partial correlations between A\ and
UPDRS-III given age, and age given UPDRS-III for each brain region separately.

We found that a negative partial correlation between A and UPDRS-III scores but these correla-
tions do not reach a statistical significance level (Figure[|A, see also Figure [S4]for Spearman and
Pearson correlations). On the other hand, in PD patients (both ON and OFF medication), A and age
were positively correlated, especially in the left hemisphere T-P-O-J, SPC, PCC, MTC, MT + C-
NVA, I-FOC, EAC, DSVC and LTC, VSVC in the right hemisphere (Figure[f|B, see also Table[I|for
BR names, Table[ST|for exact p-values and Figure[S3|for Spearman and Pearson correlations). By
contrast, we did not find any significant correlation between \ and age in healthy controls. Despite
a decline in the dopaminergic neuron function due to normal ageing,* these “normal” changes do
not seem sufficient to affect the aperiodic component of cortical population activity, unlike in PD.

It is somewhat counter intuitive that despite significant PD-related changes in ), it was not cor-
related with UPDRS-III, even in the motor regions of the cortex. This result may be explained by

a lack of sensitivity of the data or by the fact that X is not by itself related to motor symptoms.
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The fact that the increase in \ was positively correlated with age suggests that persistent dopamine

depletion may be more detrimental for brain networks that are already undergoing age related de-

terioration like the sensory areas. For instance, vision is impaired in PD, especially in patients with

cognitive decline 223 Alternatively, brain networks in the younger patients may be more malleable

to compensate for the loss of dopamine than in older patients.
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Figure 6: Cortex-wide distribution of partial distance correlation between the mean over time of \; and Y

knowing Z for each group G € {HC sesl, PD ON, PD OFF}. (A) (Y,Z) = (UPDRS,age). (B) (Y,Z2) =

(age,UPDRS).
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Discussion

Given chronic change in the neuromodulator dopamine we expect that excitation and inhibition
(EI) balance may be altered in the neocortical regions. To test we analysed the aperiodic activity
of MEG data which has been inversely related to EI balance in several previous studies.?®> We
found that the 1/f-exponent (\) was higher in PD patients than in HC in most brain regions but
not in frontal regions. The most significant changes occurred within sensory and motor regions.
Moreover, we found that A showed a spatial gradient from posterior to anterior brain regions in PD
patients. Although not significant, in HC the gradient of A was reversed compared to that in the
PD patients. When examining the fluctuations of A\ over time, we found that A was more variable
in the frontal regions. Moreover, A fluctuated more in HC controls than in PD patients. This was
not expected as A was globally larger in PD. Surprisingly, 1-dopa medication had a little effect on
the topography of \. Finally, we computed different correlation measures between A and both the
age and UPDRS-III score. We did not find any correlations in the HC group neither with age or
UPDRS-III. Although not significant, global negative correlations with UPDRS-III were observed
in PD patients. On the other hand, A was positively correlated with age in PD patients in both ON
and OFF medication states.

Previously, Vinding et al.*

analysed the same data for 1/f slope (\) but that analysis was re-
stricted to the sensorimotor association regions. Consistent with our results, they also found that A
was positively correlated with age in PD patients but not in HC and the correlation between A\ and
UPDRS-III was not significant. We build on that study and now show the topography of \ over the
whole neocortex in both healthy controls and PD patients. Our analysis shows that A changes in
early sensory regions are also correlated with age but only in PD patients.

Recently, Wang et al.'® analysed the 1/f slope of EEG activity. Our results differ from their re-
sults in several ways. First, concerning the topography of \’s topography, we found that A decreased
(increased) from sensory to cognitive regions in PD patients (healthy controls). By contrast, Wang

1.13

et al.** have reported similar topography in both healthy and PD patients. In their study, A was high
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in the central regions with a decrease in all directions from there on. This difference might be due
to the fact that we used a brain atlas to project the MEG sensors to sources. Moreover, we have a
much denser spatial sampling of the space using 306 MEG sensors as opposed to the 32 EEG sen-
sors used by Wang et al.'?. However, this is a conspicuous difference that should be investigated in
a study where both MEG and EEG are acquired from the same patients. In contrast to Wang et al.'?,
we did not find significant differences between PD-ON and PD-OFF states. This could be due to
the difference in recording protocols in the two studies: in our case, dopamine effects were acute in
the sense that patients were OFF medication for at least 12 hours but then took the medication only
one hour before the ON medication state was recorded. Unlike Wang et al.l?, we have analysed

partial correlation between UPDRS-III/age and each MEG source. This separation of brain regions

and partial correlation revealed that A was correlated to age but only in PD patients.

Interpretation of 1/f slope

There are at least three possible interpretations of the changes in A. Population signals such as
MEG are generated by dipoles created by transmembrane currents.*” The transmembrane currents
are generated due to synaptic inputs impinging on the neurons. Therefore, the frequency spec-
trum of the MEG (and also EEG, LFP) reflects the time constants of the synaptic inputs. Typically,
inhibitory (GABAergic) synaptic transients have a longer time constant than excitatory (glutamater-
gic) current. Therefore, increased A may be an indicator of either increased GABAergic or reduced
glutamatergic currents. That is, ) is a proxy of relative excitation-inhibition (EI) balance '

However, even glutamatergic synaptic inputs due to NMDA receptors can also be very slow.
Therefore, it is also possible that increased A may indicate a relative increase in the NMDA type
synaptic currents. In the context of our results, we found that A\ in PD is increased in the sensory
areas. These areas usually have relatively small fractions of NMDA receptors.2®

Finally, it is also possible that the change in A is simply a reflection of changes in the dynamics
of local and external inputs to the network. That is, if the network is driven by slowly fluctuating

inputs it will also reflect in slower fluctuations and therefore larger A. If this is the case then we
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would also expect a change in the time scales of spiking activity.

Hypotheses about network level changes in PD

Each of these possibilities suggest a different but testable hypothesis. If the slope of the MEG
reflects change in the relative fraction of excitatory and inhibitory currents, then it is tempting to
hypothesise that in PD there is an increase in inhibition in the sensory region. Increase in relative
fraction of NMDA will also account for an altered excitation-inhibition balance on longer time
scales. Techniques such as MRS could be used for a non-invasive estimate of the relative fraction
of AMPA, NMDA and GABA in order to test this hypothesis. Ideally, these hypotheses should be
tested in animal models with in vivo measurements of excitatory and inhibitory currents.

If changes in the A reflect a change in the time scales of fluctuations in the input then, we will
need to explain how in a presynaptic network the spectrum of neuronal activity could change. For
that we again revert to the hypothesis of a change in excitation-inhibition balance. However, before
following this line of reasoning, we need to estimate whether there are significant changes in the
spiking activity of a given brain region where A has changed. This suggests that spiking activity
from early sensory regions should also be recorded in animal models of PD.

As we discussed earlier, it is tempting to relate the slope of the frequency spectrum to EI bal-
ance. Origin of pathological activity in the basal ganglia during PD, especially the beta band
oscillations is closely related to changes in the EI balance in STN and GPe regions of the basal
ganglia??#Y Local field potential recorded from the STN or GPe during DBS surgery can be used
to estimate relative EI balance at different locations in the STN in terms of As. Such an estimate of

relative EI balance could guide stimulation electrode placement.

Age and UPDRS-III dependence

A lack of a clear correlation between A s and UPDRS-III suggests that it may not be useful as a
clinical biomarker. However, correlation between )\ s and age in the PD group suggests that \ is

indeed altered in PD. In particular, we observe a positive correlation in PD in most brain regions
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except the frontal regions. This result may suggest that dopamine depletion has an important impact
on the sensory and motor ’ageing’.

A positive correlation between A and age in PD patients is a curious observation. Previous work
from several groups have shown a negative correlation between \ and age in the neocortex.*™
However, in over 60 years old HC, \ from somatosensory regions may positively correlate.** In
contrast to these findings, in our data we did not observe any significant correlation between A and

age in HC. As age is highly (positively) correlated to disease duration, PD thus seems to affect all

(except frontal parts) necortex’s A s by increasing them over age/disease duration.

Effect of dopamine on )\

Levodopa effects are fast as shown by the UPDRS-III score improvements only one hour after the
drug administration. We found that in our data Levodopa influenced the spectral slowing. However,
the effect of Levodopa on A was not observed in the neocortex. To the best of our knowledge, there
is no consensus on the cortical effects of Levodopa*® In our study, a possible reason could be the
short time (1 hour) between taking the medication and recording of MEG. A recent study by Wang
et al*¥ reported changes in the \ estimated from EEG. In that study, PD patient ON medication took
their medication dose as usual, in the morning before the measurement. However, Wang et al 1
also reported that Levodopa did not improve the aperiodic part (i.e. A increased) of the neocortex
activity spectrum. In addition, the total washout of Levodopa may take days** The latter could

explain the similar results we obtained for ON and OFF medication.

Limitations

Here we used a commonly used range of frequencies (1 to 45 Hz) for our analysis. This range is
relatively small. Indeed the broader the frequency range, the better the fit should be. However,
for MEG it is not as easy to take the largest band possible because muscle artifacts become more
prominent in high frequencies. Therefore, local field potential or ECoG may be more suited for

such an analysis over broad frequency ranges.
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Next, we have used a specific brain atlas and it is not clear how the topography of A may change
when using a different brain atlas. In this regard, adding information from the sensor space may
help matching the different atlases’ results.

Finally, to better understand the functional implications of A changes, a more detailed corre-
lation analysis is needed that takes into account the UPDRS-III sub-scale*® as well as cognitive

Scores.

Implications

Our findings also raise the question why frontal regions are more protected than sensory and mo-
tor regions even though dopaminergic projections in the neocortex are primarily restricted to the
frontal regions*! The lack of prefrontal changes between PD and HC may be due to dopamine
pathways. Indeed, the main brain area producing dopamine and projecting to the cortex (in par-
ticular prefrontal cortex) is the Ventral Tegmental Area, which is altered after the substantia nigra
compacta in PD#¥ Hence, changes in the frontal regions may take longer to manifest.

In addition, because there is such a big change in the \ value in sensory regions one would ex-
pect deficits in the sensory representations. It is well established that PD patients have olfactory,*
proprioceptive®” and cross-modal sensory fusion deficits >’However, our work suggest changes in
other sensory modalities such as vision and audition.

It is common to measure functional connectivity between brain regions in a frequency depen-
dent manner. Usually these estimates are based on filtered time series. Here we found that \ varies
over time. Therefore, we can ask whether \ variations across brain regions are correlated or not
in PD and HCs. Recent work suggests that functional connectivity based on the component of
aperiodic activity may be more robust >

Overall, we show that the aperiodic activity, which usually has been considered as noise, gives
new insights in PD and deserves more attention when analysing any neural field potentials like
ECoG, LFP, EEG and MEG. Finally, previous studies showed frequency slowing in relation to

cognitive decline rather than the motor symptoms.” It could then be that the change in \ is a more
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general expression of neurodegeneration than only the dopamine affected systems.
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Figure S1: Comparing the true 1/f-exponent of a simulated signal reconstructed from a given power spectrum
of the form «/f* (A) Reconstructed signal from PSD equals to 1072-5/f0-5. (B) PSD of the reconstructed signal

using the entire signal or a segment of it of sizes 1, 2 or 4 sec. (C) Spectrogram of the reconstructed signal shown in

A using the method described in[Materials and methods| (D) Temporal dynamics of \;,, the reconstructed signals for

a PSD 1072/ f! and epochs of 1sec. (E) Temporal average of \ from reconstructed signals, A, compared to the

true Agpqye. (F) Temporal standard deviation of A from reconstructed signals in function of the true A.
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Figure S2: Cortex-wide distribution of the mean and the coefficient of variation over time of )\ within
each group. (A) (resp. (C)) Temporal mean (resp. coefficient of variation) of A\g for each group G €
{HC sesl, HC ses2, PD-ON, PD-PFF}. The inside colour refers to the mean over the group. The border colour refers
to the fluctuation of A\ (resp. CV)) within the group G. (B) (resp. (D)) Temporal mean (resp. coefficient of
variation) of A between two groups G, G, € {HC sesl, HC ses2, PD-ON, PD-PFF}. The inside colour refers to the
difference between the means over the groups. The border colour refers to the averaged fluctuation of A (resp. CVi )

combining the two groups G, and Gj.
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~ratent | bhoNIh | PDONTh | PDOFFI | PD OFF rh
Brain region

AC-MPC 0,052655 0,0327] 0,023435]| 0,05004
AAC 0,005475] 0,008165| 0,001995| 0,01079
DSVC 0,00098( 0,10805( 0,001665| 0,05319
DPC 0,029015| 0,09365| 0,020805| 0,138505
EAC 0,00134( 0,00813| 0,00047]| 0,002055
EVC 0,009255] 0,00509( 0,017115| 0,016085
IFC 0,0169| 0,11816| 0,065705| 0,072345
IPC 0,004815] 0,014195| 0,00435| 0,006125
[-FOC 0,001375] 0,00364| 0,00146| 0,002615
LTC 0,00621| 0,00102 0,0191| 0,01329
MT+C-NVA 0,00308 0,0098| 0,004235( 0,00613
MTC 0,001795] 0,004075| 0,008265| 0,00591
O-PFC 0,05662| 0,15312] 0,061315| 0,053295
PL-MCC 0,0401( 0,02616| 0,09309| 0,02303
PCC 0,00078| 0,007705] 0,00162| 0,006045
POC 0,015555| 0,04716| 0,012155( 0,02366
PMC 0,018335] 0,100665| 0,12863| 0,05784
PVC-V1 0,01139( 0,00877] 0,024695| 0,00548
SMC 0,025775] 0,033375| 0,10384| 0,02987
SPC 0,001025 0,0362] 0,003105] 0,014585
T-P-0O-J 0,000495| 0,006065| 0,002675 0,0031
VSVC 0,00903( 0,001855| 0,00938] 0,009635

Table S1: P-values of the distance correlation per brain region, PD patient session and hemisphere. The shad-

owed cells are the 20 lowest p-values.
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Figure S3: Cortex-wide distribution of different relationship measures between the mean over time of \ and

ages within each group.
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Figure S4: Cortex-wide distribution of different relationship measures between the mean over time of \ and

UPDRS-III within each PD group and combining them (first column).
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Figure S5: 1/f-exponent distributions over the different groups in the different BRs.
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Figure S6: 1/f-exponent as a function of age for the different groups in the different BRs.
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Figure S7: 1/f-exponent as a function of UPDRS-III for PD-ON and PD-OFF in the different BRs.
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