
Cortex-wide topography of 1/f-exponent in

Parkinson’s disease

Pascal Helson * 1, Daniel Lundqvist2, Per Svenningsson3, Mikkel C. Vinding*2,4, and Arvind

Kumar*1

1School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm,

Sweden and Science for Life Laboratory, Sweden

2Department of Clinical Neuroscience, NatMEG, Karolinska Institutet, Stockholm, Sweden

3Section of Neurology, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska

Institutet, Stockholm, Sweden. Karolinska Hospital, Stockholm, Sweden

4Copenhagen University Hospital - Hvidovre, Copenhagen, Denmark

Abstract

Parkinson’s Disease causes progressive and debilitating changes to the brain as well as to the mind.

While the diagnostic hallmark features are the characteristic movement-related symptoms, the dis-

ease also causes decline in sensory processing, cognitive, emotional performance and most patients

develop dementia over time. The extent of symptoms and the brain-wide projections of neuromodu-

lators such as dopamine suggest that many brain regions are simultaneously affected in Parkinson’s

disease. To characterise such disease-related and brain-wide changes in neuronal function, we per-

formed a source level analysis of resting state magnetoencephalogram (MEG) from two groups:

Parkinson’s disease patients and healthy controls. Besides standard spectral analysis, we quantified

*Corresponding authors: pashel@kth.se, mikkelcv@drcmr.dk, arvkumar@kth.se

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2023. ; https://doi.org/10.1101/2023.01.19.524792doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.19.524792
http://creativecommons.org/licenses/by/4.0/


the aperiodic component of the neural activity by fitting a power law (κ/fλ) to the MEG spec-

trum and then studied its relationship with age and UPDRS. Consistent with previous results, the

most significant spectral changes were observed in the high theta/low alpha band (7-10 Hz) in all

brain regions. Furthermore, analysis of the aperiodic part of the spectrum showed that, in all but

frontal regions, λ was significantly larger in Parkinson’s disease patients than in control subjects.

Our results indicate for the first time that Parkinson’s disease is associated with significant changes

in population activity across the whole neocortex. Surprisingly, even early sensory areas showed

a significantly larger λ in patients than in healthy controls. Moreover, λ was not affected by the

L-dopa medication. Finally, λ was positively correlated with patient age but not with UPDRS-III

(summary measure of motor symptoms’ clinical rating). Because λ is closely associated excitation-

inhibition balance, our results propose new hypotheses about manifestation of Parkinson’s disease

in cortical networks.

Running title: 1/f-exponent in Parkinson’s disease

Keywords: Parkinson’s disease, MEG, aperiodic activity, cortex-wide, excitation-inhibition

balance.

Abbreviations: PD = Parkinson’s disease, BR = brain region, MDS-UPDRS = Movement

Disorder Society’s Unified Parkinson’s Disease Rating Scale, EI = excitation-inhibition, BG =

basal ganglia, FC = functional connectivity, HC = healthy control, PSD = power spectral density.
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Introduction1

In Parkinson’s Disease (PD), the progressive loss of the dopaminergic cells not only depletes the2

neuromodulator dopamine but also alters the dynamics of other key neuromodulators such as sero-3

tonin, noradrenaline and acetylcholine (see the review by McGregor and Nelson1). Given the4

widespread prevalence of neuromodulators in the neocortex, it is expected that the neocortical neu-5

ral circuits dynamics and function would also be affected in PD. That is, the signature of PD related6

dysfunction should also be visible in the neuronal activity recorded from neocortical regions.7

Consistent with this, analyses of EEG and MEG have revealed several changes in the population8

activity of different neocortical regions (see reviews by Geraedts et al.2 and Boon et al.3). While9

the results are diverse given the heterogeneity of the patients, it is commonly observed that the low10

frequency – delta to low-alpha band – power increases whereas high-alpha to gamma band power11

decreases.412

This kind of spectral slowing was shown to be correlated with motor and cognitive symptoms.513

Such spectral slowing has been observed in the earliest stages of the disease (e.g. in the posterior14

cortex regions6), hence demonstrating that it is not an effect of dopamine medication. Moreover,15

dopamine replacement therapy hardly reverses the spectral slowing, especially in the more ad-16

vanced PD patients.617

Spectral power alterations are also associated with changes in functional connectivity (FC) in18

PD patients. Throughout the disease, the low-alpha band FC decreases after an initial increase.7,8
19

Increase in beta band synchrony is also commonly observed in the basal ganglia as well as in the20

cortico-basal ganglia loops (see the review by Hammond et al.9).21

Thus, previous work on analysis of EEG/MEG has been largely focused on oscillatory activity22

in different frequency bands. Besides oscillations, the aperiodic part of the population activity23

can also be informative about the underlying network dysfunction and relative excitation-inhibition24

balance.10 To the best of our knowledge, the aperiodic part of the EEG/MEG activity in PD was25

characterised in three studies. First, Vinding et al.11 reported steeper power law decay of MEG26
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power in sensorimotor regions of PD patients. In a more recent study, Wiesman et al.12 estimated27

the aperiodic activity on four different frequency bands showing a neurophysiological slowing –28

decrease through frequency of the λ deviation from HC. Finally, Wang et al.13 studied low-spatial29

resolution EEG from PD-ON and OFF medication showing that there is a significant increase of30

the offset and exponent power law parameters from OFF to ON medication in some of the sensors.31

However, thus far it has remained unclear how the spatial distribution of aperiodic component of32

the population activity is altered by chronic dopamine depletion and dopamine replacement therapy33

in human patients.34

Therefore, we studied the spatial distribution of spectral peaks and aperiodic component of the35

activity from neural populations measured with MEG in PD patients in their on and off medication36

states. To this end, MEG acquired using 306 sensors were pre-processed to obtain 44 sources’37

activity distributed all over the neocortex according to the HCP-MMP1 atlas. We found that indeed38

there is a slowing in the MEG spectrum even when the spectral peaks were identified without39

classical frequency band definition. Analysis of the power-law exponent (λ) of MEG spectrum40

revealed a significant increase in the λ in sensory and motor regions in PD patients compared to41

the healthy controls. In fact, λ showed a spatial positive gradient from anterior to posterior brain42

regions in PD patients. Surprisingly, the frontal regions which receive most of the dopaminergic43

projections did not show a significant difference in λ. L-dopa administration did not affect the44

spatial distribution of λ. However, λ changes were correlated to the patients’ age but not to their45

UPDRS-III score (the clinical rating of motor symptoms). That is, neocortical activity dynamics46

is more vulnerable to chronic dopamine changes in older PD patients than in younger patients.47

Moreover, our results reveal aspects of neocortical population activity which are not affected by the48

L-dopa therapy. Because 1/f-exponent (λ) can be linked to excitation inhibition (EI) balance, our49

analysis suggests new testable hypotheses about the PD related changes in the neocortex.50
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Materials and methods51

MEG data and its pre-processing52

Here we analysed the resting state (eyes opened) MEG recorded from 17 PD patients (age 41-53

85; five female) and 20 age matched healthy controls (HC; age 54-76; eight female). The data was54

acquired at the Swedish National Facility for MEG (NATMEG, https://natmeg.se/) using the Elekta55

Neuromag TRIUX 306-channel MEG system. The study was approved by the regional ethics56

committee (Etikpöingsnöamden Stockholm, DNR: 2016/911-31/1) and followed the Declaration57

of Helsinki. All participants gave written informed consent before participating.58

For more details of the experimental protocol please refer to Vinding et al.14 study. Briefly, the59

MEG was acquired at a sampling rate of 1 kHz with an online 0.1 Hz high-pass filter and 330 Hz60

low-pass filter. Each subject was recorded twice. MEG from PD patients was recorded in OFF61

and ON medication states. In the OFF medication condition, PD patients were off their dopamine62

replacement medications (Levodopa) for at least 12 hours. After the first recording session, patients63

took their medication and MEG was recorded for the second time one hour after the medication64

intake. HC subjects were also recorded twice at an interval of 1 h.65

Each recording epoch was of 8 minutes duration. Data were down-sampled to a sampling fre-66

quency of 200 Hz and a low pass filtered at 45 Hz was applied. We pre-processed the data to re-67

move non-neural noise and eye movement artifacts using ICA and data from electro-oculogram or68

electrocardiogram. We then used the dynamic statistical parametric mapping (dSPM15) for source69

reconstruction (implemented in MNE-Python16), followed by a labelling using HCP MM1 atlas17
70

which resulted in 44 brain regions (BR) signals as shown in Figure 1.71
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Figure 1: Cortex-wide projection of the centre of mass of the 44 brain regions investigated here using MEG. The

brain regions were extracted using the HCP MM1 atlas.

Extraction of the frequency peaks72

For each BR of each patient we estimate the power spectral density (PSD) – using the Welch73

method18 implemented in SciPy citescipy with default parameters (average = ’mean’ and window74

= ’hann’) – averaging over 5 sec segments with 50% overlap over the whole signal. The periodic75

part of the spectrum was extracted using the FOOOF method proposed by Donoghue et al.19.76

FOOOF optimally fits the PSD with a function composed of the sum of an aperiodic part and a77

periodic part. The aperiodic part is modelled as κ
fλ where f > 0 Hz is the frequency, κ is the offset78

of the PSD and λ defines how the PSD decays as a function of f . The periodic part is modelled as a79

sum of P weighted Gaussian distributions whose mean, standard deviation and weight respectively80

indicate the peak frequency, width and height of the spectral power bump of the peak. We manually81
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specified the frequency band (1-45 Hz) on which the fitting was done. To identify oscillatory peaks82

in the PSD using FOOOF, we need to provide the maximum number of peaks P , their minimum83

height and band width. We searched for P = 4 peaks with a minimum peak height of 100.2 V2/Hz84

and peak width within [1, 10] Hz (see Figure 2 C).85

From the proportion of individuals having such peaks within each group, we defined a nor-86

malised difference between groups as87

Dpropband
P D OF F −HC(b) =

pband
P D OF F (b) − pband

HC (b)

pband
P D OF F (b) + pband

HC (b)

where pband
G (b) is the proportion of individual in the group G ∈ {PD OFF, HC} having at least88

one peak frequency in the frequency band band and the brain region b (see Figure 4 B). These89

proportions, pband
G (b), for the theta and gamma frequency bands are illustrated in Figure 4 C and D,90

respectively.91

Temporal dynamics of the slope of the MEG power spectrum92

To characterise the aperiodic component of the MEG activity, we focused on the way the power93

of the MEG signals decayed as a function of the frequency. To this end, we first estimated the94

time-resolved spectrum (spectrogram) of each MEG source (epoch size = 50 sec, overlap 40 sec,95

see Figure 2 A). The PSD for each epoch was evaluated using Welch’s method averaging over 2 sec96

segments with 50% overlap (default parameters: average = ’mean’ and window = ’hann’). Next,97

we fitted a power law to each PSD using the FOOOF algorithm. In the aperiodic activity analysis,98

we used the frequency band [1, 45] Hz, a minimum peak height of 100.2 V2/Hz, a peak width within99

[2, 10] Hz and a maximum of 4 peaks (see Figure 2 C for an example of such a FOOOF fitting).100

Finally, we obtained the temporal and spatial dynamics of λ, κ and P by applying this method101

to each epoch of each source (see Figure 2 D red trace). We checked the accuracy of the fit by102

computing its r-squared error (for all the data combined; mean: 0.94, standard deviation: 0.04).103
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Calibration of λ estimate104

A priori it is not clear how much error is expected in the estimation of λ given a specific λ and105

epoch size. We have fixed the epoch size to 50 sec, which is large enough to give us a good106

estimate of the PSD. Still we need to determine the appropriate segment size (W ) for Welch’s107

algorithm. To address this issue we resorted to a numerical simulation approach. First, we created108

a PSD of the form κ
fλtrue

, and assigned random phase (drawn from a uniform distribution U[−π,π])109

to each frequency. Next, we used inverse Fourier transform to reconstruct a signal of desired110

length (Figure S1 A). Finally, we extracted λsim for different values of W (Figure S1 D-F). We111

systematically varied λtrue and W . We found that the error in the estimate of λsim depends on112

both the λtrue and W (Figure S1 E,F). Based on these numerical experiments we chose W = 2 sec.113

which gave us the best compromise between the errors in mean and standard deviation of the λ in114

a range that we have observed in our data.115

Variability of λ116

For each brain region, we assume that λ depends only on two parameters, time and group (PD117

patient ON or OFF medication and HC). So, for a brain region b and a subject i, λb
i(t) is the typical118

dynamics of the 1/f-exponent. To estimate the variability of λb
i(t) as a function of time in a given119

individual and BR, we calculated the coefficient of variation (CV) as:120

CV b
i =

σλb

i

λb
i

,

where σλb

i

and λb
i are respectively the standard deviation and the mean of λb

i(t).121

Relationship between λ and subject age and UPDRS-III scores122

λ could be related to the subject age and disease severity (UPDRS-III score) in both linear or123

non-linear manner. Therefore, we estimated both linear and non-linear measures of dependence124

between λ and x ∈ {age, UPDRS} using the following three descriptors:125
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Welch9s method

on 50s segments

2s epochs

50% overlap

FOOOF method

Min peak height = 0.2

Peak width * [2,10] Hz

Max nbr of peaks = 4
--

!

"!

50s

10s increments

�� ��

A

B

C

D

Figure 2: Overview of the estimation of λ dynamics done on every BR of each patient. (A) Time series of MEG

from a source located in the pre-motor cortex left hemisphere of a PD patient. (B) Zoom in one epoch (duration 50 sec)

of the time series of Panel A. (C) The black line shows the PSD of the time series of panel B. The gray line is the full

fit provided by FOOOF package. The dotted line shows the aperiodic activity following a power law κ
fλ . (D) Right:

Pseudocolor image of the PSD as a function of time. The red line shows the corresponding λ for each epoch. Left:

Temporal probability density of λ.
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• Distance correlation measures the non-linear dependence between two variables:126

dcov(λ, x) =
1

n2

∑

j,k

(ajk − ak − aj + a)
(

bjk − bk − bj + b
)

where using the notation || · || for the Euclidean norm,127

ajk = ||λj − λk||, bjk = ||xj − xk||, and ∀c ∈ {a, b}, cj =
1

n

∑

k

cjk, c =
1

n

∑

j

cj.

Here λi refers to the slope of the frequency spectrum of ith subject for a given brain region.128

Other variables and this definition are illustrated in Figure 3. For further details please see129

the work by Székely et al.20.130

A B

Figure 3: Schematic of distance correlation measurement. (A) Example of a sample of (λ, x) in a given brain

region for 17 different individuals (uniformly drawn). (aml)m,l (resp. (bml)m,l) is the matrix of distances within the

vector λ (resp. x). (B) Computations on (aml)m,l rows and columns: aj is the mean of the jth row (or column as

(aml)m,l is symmetric) and a is the mean of (aj)j .

• Pearson correlation measures the linear link between two variables:131

ρ(λ, x) =
cov(λ, x)

σλ σx

,

where cov is covariance and σx is the standard deviation of the variable x.132

• Spearman correlation measures the monotonic relationship between two variables:133

rs(λ, x) = ρ(R(λ), R(x))
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where R(·) is the rank function.134

To disentangle the dependence of λ on the age and UPDRS-III, we computed the partial correla-135

tions. To do so, we used partial_corr function of the pingouin Python package to calculate the136

Pearson and Spearman partial correlations. Concerning the partial distance correlation, it is similar137

to the classical partial correlation. It is based on projections but now in a more complex space called138

the Hilbert space of U-centred matrices. We refer to the work by Székely and Rizzo21 for a rigor-139

ous definition. We used the corresponding function, partial_distance_correlation, from the Python140

package dcor21 for more information). We performed a permutation test (200 000 permutations on141

the x variable) to estimate the p-values.142

Statistical tests143

With the exception of the correlations among UPDRS-III, age and λ, we used the Kolmogorov-144

Smirnov test from the ks_2samp function implemented in SciPy to determine the statistical signif-145

icance of our results. This test captures more the deviations near the distribution centre than at its146

tails. Moreover, its power is greater when used in the one-tailed case. Therefore, we used the latter147

to test whether the cumulative distribution functions (CDFs) of one variable is greater or less in148

one group compared to another. In the test, the statistic is D+ = supu∈R
[F (u) − G(u)] where F149

and G are the CDFs to be compared.22 For example, when comparing the λ in Figure 5 B, we tested150

whether the CDF of λP DOF F was less than λHC in the frontal regions and the opposite in other BRs.151

When comparing the two HC groups – between sessions 1 and 2, see Figure S2 B – λHC ses1 and152

λHC ses2 are statistically closed (distributions across the group) so that we gathered both groups as153

one group (the HC group). However, the CVs difference between the two sessions was of the same154

order than the difference between the CVs of HC and PD-OFF or PD-ON medication. Thus, we155

only compared CVs session-wise: PD-OFF and HC ses1, PD-ON and HC-ses2, see Figure S2 C,D.156

Concerning the statistical significance of correlation measures, we performed a permutation test157

(200 000 permutations on the x variable) to estimate the p-values of the partial distance correlation.158

For Pearson and Spearman partial correlations, two-sided p-values were computed from the one-159
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sample t-test. The degrees of freedom of this test is N − 1 where N is the data size (N = 17 in PD160

groups and N = 20 in healthy groups).161

Finally, we did not correct for multiple comparisons. We only used comparison-wise error rate162

for each specific brain area, because this study is an exploratory work on the possible changes of163

the 1/f-exponent dynamics in PD. The alpha-level that was used to determine significance was a164

p-value less than 0.01. However, as we performed statistical tests on 44 BRs, a p-value of less than165

0.05/44 ∼ 0.001 has a significance level of 0.05 after Bonferroni correction, which is the most166

conservative correction for multiple comparison.167

Data availability168

The MEG data cannot be made publicly available because of the ethical permits. The data analysis169

scripts are available at: https://github.com/paschels/PD_one_over_f.170

Results171

To characterise how cortical activity is changed in human PD patients, we analysed the MEG172

signals acquired during resting state. To this end, we quantified both the oscillatory peaks and the173

slope of the spectrum for MEG sources corresponding to 44 different brain regions and then we174

estimated the dependence of the latter on age and UPDRS-III.175

Frequency slowing in PD176

Analyses of MEG and EEG from PD patients suggest that frequency associated with peak power in177

theta and alpha bands is reduced in human PD patients when compared to healthy controls.3 To test178

whether this is also the case in our data, we searched for Gaussian peaks in the spectrum of MEG179

signals without explicitly defining the frequency bands (see Materials and methods).180

By estimating the distribution of all the frequency peaks observed across all the brain regions,181

we found that indeed in PD there is a general slowing of spectral peaks (PD-PFF vs HC, p-value182
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< 10−20 with Kolmogorov-Smirnov test, see Figure 4 A). Notably, Levodopa medication did not183

improve this slowing, in fact, if at all it seemed to worsen the frequency slowing (PD-PFF vs PD-184

ON, p-value < 0.017 with Kolmogorov-Smirnov test).185

Next, we sorted the frequency peaks into classical frequency bands (theta = 4-8 Hz, alpha = 8-186

13 Hz, beta = 13-30 Hz and gamma = 30-45 Hz). Thus, we obtained the proportion of peak fre-187

quency (pband, b
G ) for each band, MEG source b and group G. Given the spectral slowing there were188

not enough peaks in the theta and gamma bands to compare the HC and PD groups (Figure 4 A).189

Therefore, first we restricted our analysis to alpha and beta bands. Even though there was a re-190

duction in alpha band peak power, the difference did not reach a statistical significance level for191

none of the brain regions (Figure 4 B, left). In the beta band also we found a wide spread decrease192

in the mean peak frequency among most of the patients. However, the difference was statistically193

significant in only one brain region (Figure 4 B, right). This suggests that spectral slowing does not194

affect the alpha and beta bands locally. However, when we pool data across all the brain regions,195

spectral slowing can be observed in all bands. The main local effect (i.e. brain region specific) of196

spectral slowing is the reduction in the power of gamma band oscillations and increase in the power197

of theta bands oscillations. In particular, gamma band peaks were almost completely missing from198

the frontal regions in PD patients (Figure 4 D). By contrast, HC seem to be lacking theta band peaks199

in the central-temporal and posterior brain regions (Figure 4 C).200

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2023. ; https://doi.org/10.1101/2023.01.19.524792doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.19.524792
http://creativecommons.org/licenses/by/4.0/


Figure 4: Spectral slowing, a peak frequency perspective. (A) Distribution of peak frequencies in all BRs of all

individuals from the different groups. (B) Distribution of frequency peaks in alpha and beta bands. The colour inside

the dots is the difference (PD-PFF - HC) of the mean peak frequency of each brain region in alpha (left) and beta

(right). The edge colour of the dots is the normalised difference (PD-PFF - HC) of proportion of individuals having at

least one peak frequency in the given band. (C, D) Distribution of frequency peaks in theta (C) and gamma (CD bands.

Dot colour indicates mean peak frequency within the theta (C) and gamma (D) band. Edge colour of the dots indicate

the proportion of individuals having such peaks in the given group.
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Neocortex-wide change in the 1/f-exponent distribution in PD201

Next, we focused on the aperiodic component of the neural activity and analysed how the spectral202

power decreased as a function of frequency. Using the FOOOF algorithm we fitted a power law203

function to the PSD (see Materials and methods) and estimated the exponent λ for each MEG source204

and subject. Across all the data, λ spanned a relatively wide range 0.1-2.0. However, temporal205

variation of λ for individual brain regions in both healthy controls and PD patients was smaller206

than across subject variance (Figure 5 A,B). We found that in healthy controls, λ was smaller in207

sensory regions than in the cognitive regions (Figure 5 C, left). However, this apparent gradient of208

λ from frontal to posterior regions is not statistically significant.209

By contrast, in PD patients (both OFF and ON medication) λ was larger in sensory regions210

than in the cognitive regions (Figure 5 C, middle, right). Moreover, λ showed a clear frontal to211

posterior gradient (Spearman correlation, p-value < 10−6 and rs(λ
b

G, yb) < −0.65 where yb is the212

y-coordinate of the BR b and G ∈ {PD OFF, PD ON}).213

From Figure 5 C, it is clear that there are differences in the spatial distribution of λ in PD patients214

and HC. To quantify this difference, we performed a brain region wise comparison of λ in HC215

and PD patients OFF medication (Figure 5 D right). We found that PD patients (OFF medication)216

have larger λ in auditory, visual, somato-senssory and motor regions than in HC (for significant217

figures please see Figure 5 D right). The same landscape of differences in λ was observed when we218

compared PD patients ON medication with HC (Figure 5 D middle). Interestingly, a comparison219

of PD patients in ON and OFF medication states did not reveal any significant differences across220

the whole neocortex (Figure 5 D left). We also note that still in most brain regions (except frontal221

areas), the group variance among HC was much lower than among PD patients (edge colours of222

the dots in Figure 5 C). Finally, the most significant changes were observed in the left hemisphere,223

which is expected as in our cohort most patient’s disease started in their right hand.224
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Figure 5: Cortex-wide distribution of the mean over time of λ within each group. (A, B) Temporal evolution

of λ over time in two specific regions (MT+C-NVA-lh and MTC-rh) for PD patients OFF medication (pale blue) and

HC (pale red). Each line corresponds to one subject. Blue and red lines indicate group averages. (C) Temporal

average of λG for each group G ∈ {HC, PD-ON, PD-PFF}. The inside colour refers to the mean over the group.

The border colour refers to the fluctuation of λG within the group G. (D) Temporal average of λ between two groups

Ga, Gb ∈ {HC, PD-ON, PD-PFF}. The inside colour refers to the difference between the means over the groups. The

border colour refers to the averaged fluctuation of λ combining the two groups Ga and Gb.

λ is not constant across time (Figure 5 A,B). To quantify these fluctuations over time, we mea-225

sured the coefficient of variation (CV, see Materials and methods) of λ for each BR in each subject.226
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Small value of CV of λ indicates temporal stability of λ. In general λ was stable over time (small227

CV). However, λ was more variable in frontal regions in both PD patients and HC (Figure S2 C).228

A comparison of CV of PD patients and HC revealed that for most brain regions λ was less vari-229

able in PD patients than in HC, particularly in the sensory regions where the CV difference was230

statistically significant (Figure S2 D,right).231

Finally, even if there is no significant difference in this second order temporal statistics between232

PD patients ON and OFF medication, Levodopa seems to decrease temporal fluctuations in some233

BRs, especially frontal ones (Figure S2 D,left).234

The 1/f-exponent is positively correlated with age but not with UPDRS-235

III in PD236

In the above we have shown how λ was altered in PD patients across the whole neocortex. The237

question arises: does this difference in λ also correlate with the PD severity? λ could be affected238

by subject age and UPDRS-III score. Therefore, we estimated partial correlations between λ and239

UPDRS-III given age, and age given UPDRS-III for each brain region separately.240

We found that a negative partial correlation between λ and UPDRS-III scores but these correla-241

tions do not reach a statistical significance level (Figure 6 A, see also Figure S4 for Spearman and242

Pearson correlations). On the other hand, in PD patients (both ON and OFF medication), λ and age243

were positively correlated, especially in the left hemisphere T-P-O-J, SPC, PCC, MTC, MT + C-244

NVA, I-FOC, EAC, DSVC and LTC, VSVC in the right hemisphere (Figure 6 B, see also Table 1 for245

BR names, Table S1 for exact p-values and Figure S3 for Spearman and Pearson correlations). By246

contrast, we did not find any significant correlation between λ and age in healthy controls. Despite247

a decline in the dopaminergic neuron function due to normal ageing,23 these “normal” changes do248

not seem sufficient to affect the aperiodic component of cortical population activity, unlike in PD.249

It is somewhat counter intuitive that despite significant PD-related changes in λ, it was not cor-250

related with UPDRS-III, even in the motor regions of the cortex. This result may be explained by251

a lack of sensitivity of the data or by the fact that λ is not by itself related to motor symptoms.252
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The fact that the increase in λ was positively correlated with age suggests that persistent dopamine253

depletion may be more detrimental for brain networks that are already undergoing age related de-254

terioration like the sensory areas. For instance, vision is impaired in PD, especially in patients with255

cognitive decline.24,25 Alternatively, brain networks in the younger patients may be more malleable256

to compensate for the loss of dopamine than in older patients.257
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Figure 6: Cortex-wide distribution of partial distance correlation between the mean over time of λG and Y

knowing Z for each group G ∈ {HC ses1, PD ON, PD OFF}. (A) (Y, Z) = (UPDRS,age). (B) (Y, Z) =

(age,UPDRS).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2023. ; https://doi.org/10.1101/2023.01.19.524792doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.19.524792
http://creativecommons.org/licenses/by/4.0/


Discussion258

Given chronic change in the neuromodulator dopamine we expect that excitation and inhibition259

(EI) balance may be altered in the neocortical regions. To test we analysed the aperiodic activity260

of MEG data which has been inversely related to EI balance in several previous studies.26–35 We261

found that the 1/f-exponent (λ) was higher in PD patients than in HC in most brain regions but262

not in frontal regions. The most significant changes occurred within sensory and motor regions.263

Moreover, we found that λ showed a spatial gradient from posterior to anterior brain regions in PD264

patients. Although not significant, in HC the gradient of λ was reversed compared to that in the265

PD patients. When examining the fluctuations of λ over time, we found that λ was more variable266

in the frontal regions. Moreover, λ fluctuated more in HC controls than in PD patients. This was267

not expected as λ was globally larger in PD. Surprisingly, l-dopa medication had a little effect on268

the topography of λ. Finally, we computed different correlation measures between λ and both the269

age and UPDRS-III score. We did not find any correlations in the HC group neither with age or270

UPDRS-III. Although not significant, global negative correlations with UPDRS-III were observed271

in PD patients. On the other hand, λ was positively correlated with age in PD patients in both ON272

and OFF medication states.273

Previously, Vinding et al.36 analysed the same data for 1/f slope (λ) but that analysis was re-274

stricted to the sensorimotor association regions. Consistent with our results, they also found that λ275

was positively correlated with age in PD patients but not in HC and the correlation between λ and276

UPDRS-III was not significant. We build on that study and now show the topography of λ over the277

whole neocortex in both healthy controls and PD patients. Our analysis shows that λ changes in278

early sensory regions are also correlated with age but only in PD patients.279

Recently, Wang et al.13 analysed the 1/f slope of EEG activity. Our results differ from their re-280

sults in several ways. First, concerning the topography of λ’s topography, we found that λ decreased281

(increased) from sensory to cognitive regions in PD patients (healthy controls). By contrast, Wang282

et al.13 have reported similar topography in both healthy and PD patients. In their study, λ was high283
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in the central regions with a decrease in all directions from there on. This difference might be due284

to the fact that we used a brain atlas to project the MEG sensors to sources. Moreover, we have a285

much denser spatial sampling of the space using 306 MEG sensors as opposed to the 32 EEG sen-286

sors used by Wang et al.13. However, this is a conspicuous difference that should be investigated in287

a study where both MEG and EEG are acquired from the same patients. In contrast to Wang et al.13,288

we did not find significant differences between PD-ON and PD-OFF states. This could be due to289

the difference in recording protocols in the two studies: in our case, dopamine effects were acute in290

the sense that patients were OFF medication for at least 12 hours but then took the medication only291

one hour before the ON medication state was recorded. Unlike Wang et al.13, we have analysed292

partial correlation between UPDRS-III/age and each MEG source. This separation of brain regions293

and partial correlation revealed that λ was correlated to age but only in PD patients.294

Interpretation of 1/f slope295

There are at least three possible interpretations of the changes in λ. Population signals such as296

MEG are generated by dipoles created by transmembrane currents.37 The transmembrane currents297

are generated due to synaptic inputs impinging on the neurons. Therefore, the frequency spec-298

trum of the MEG (and also EEG, LFP) reflects the time constants of the synaptic inputs. Typically,299

inhibitory (GABAergic) synaptic transients have a longer time constant than excitatory (glutamater-300

gic) current. Therefore, increased λ may be an indicator of either increased GABAergic or reduced301

glutamatergic currents. That is, λ is a proxy of relative excitation-inhibition (EI) balance.10
302

However, even glutamatergic synaptic inputs due to NMDA receptors can also be very slow.303

Therefore, it is also possible that increased λ may indicate a relative increase in the NMDA type304

synaptic currents. In the context of our results, we found that λ in PD is increased in the sensory305

areas. These areas usually have relatively small fractions of NMDA receptors.38
306

Finally, it is also possible that the change in λ is simply a reflection of changes in the dynamics307

of local and external inputs to the network. That is, if the network is driven by slowly fluctuating308

inputs it will also reflect in slower fluctuations and therefore larger λ. If this is the case then we309
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would also expect a change in the time scales of spiking activity.310

Hypotheses about network level changes in PD311

Each of these possibilities suggest a different but testable hypothesis. If the slope of the MEG312

reflects change in the relative fraction of excitatory and inhibitory currents, then it is tempting to313

hypothesise that in PD there is an increase in inhibition in the sensory region. Increase in relative314

fraction of NMDA will also account for an altered excitation-inhibition balance on longer time315

scales. Techniques such as MRS could be used for a non-invasive estimate of the relative fraction316

of AMPA, NMDA and GABA in order to test this hypothesis. Ideally, these hypotheses should be317

tested in animal models with in vivo measurements of excitatory and inhibitory currents.318

If changes in the λ reflect a change in the time scales of fluctuations in the input then, we will319

need to explain how in a presynaptic network the spectrum of neuronal activity could change. For320

that we again revert to the hypothesis of a change in excitation-inhibition balance. However, before321

following this line of reasoning, we need to estimate whether there are significant changes in the322

spiking activity of a given brain region where λ has changed. This suggests that spiking activity323

from early sensory regions should also be recorded in animal models of PD.324

As we discussed earlier, it is tempting to relate the slope of the frequency spectrum to EI bal-325

ance. Origin of pathological activity in the basal ganglia during PD, especially the beta band326

oscillations is closely related to changes in the EI balance in STN and GPe regions of the basal327

ganglia.39,40 Local field potential recorded from the STN or GPe during DBS surgery can be used328

to estimate relative EI balance at different locations in the STN in terms of λ s. Such an estimate of329

relative EI balance could guide stimulation electrode placement.330

Age and UPDRS-III dependence331

A lack of a clear correlation between λ s and UPDRS-III suggests that it may not be useful as a332

clinical biomarker. However, correlation between λ s and age in the PD group suggests that λ is333

indeed altered in PD. In particular, we observe a positive correlation in PD in most brain regions334
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except the frontal regions. This result may suggest that dopamine depletion has an important impact335

on the sensory and motor ’ageing’.336

A positive correlation between λ and age in PD patients is a curious observation. Previous work337

from several groups have shown a negative correlation between λ and age in the neocortex.41–43
338

However, in over 60 years old HC, λ from somatosensory regions may positively correlate.44 In339

contrast to these findings, in our data we did not observe any significant correlation between λ and340

age in HC. As age is highly (positively) correlated to disease duration, PD thus seems to affect all341

(except frontal parts) necortex’s λ s by increasing them over age/disease duration.342

Effect of dopamine on λ343

Levodopa effects are fast as shown by the UPDRS-III score improvements only one hour after the344

drug administration. We found that in our data Levodopa influenced the spectral slowing. However,345

the effect of Levodopa on λ was not observed in the neocortex. To the best of our knowledge, there346

is no consensus on the cortical effects of Levodopa.36 In our study, a possible reason could be the347

short time (1 hour) between taking the medication and recording of MEG. A recent study by Wang348

et al.13 reported changes in the λ estimated from EEG. In that study, PD patient ON medication took349

their medication dose as usual, in the morning before the measurement. However, Wang et al.13
350

also reported that Levodopa did not improve the aperiodic part (i.e. λ increased) of the neocortex351

activity spectrum. In addition, the total washout of Levodopa may take days.45 The latter could352

explain the similar results we obtained for ON and OFF medication.353

Limitations354

Here we used a commonly used range of frequencies (1 to 45 Hz) for our analysis. This range is355

relatively small. Indeed the broader the frequency range, the better the fit should be. However,356

for MEG it is not as easy to take the largest band possible because muscle artifacts become more357

prominent in high frequencies. Therefore, local field potential or ECoG may be more suited for358

such an analysis over broad frequency ranges.359
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Next, we have used a specific brain atlas and it is not clear how the topography of λ may change360

when using a different brain atlas. In this regard, adding information from the sensor space may361

help matching the different atlases’ results.362

Finally, to better understand the functional implications of λ changes, a more detailed corre-363

lation analysis is needed that takes into account the UPDRS-III sub-scale46 as well as cognitive364

scores.365

Implications366

Our findings also raise the question why frontal regions are more protected than sensory and mo-367

tor regions even though dopaminergic projections in the neocortex are primarily restricted to the368

frontal regions.47 The lack of prefrontal changes between PD and HC may be due to dopamine369

pathways. Indeed, the main brain area producing dopamine and projecting to the cortex (in par-370

ticular prefrontal cortex) is the Ventral Tegmental Area, which is altered after the substantia nigra371

compacta in PD.48 Hence, changes in the frontal regions may take longer to manifest.372

In addition, because there is such a big change in the λ value in sensory regions one would ex-373

pect deficits in the sensory representations. It is well established that PD patients have olfactory,49
374

proprioceptive50 and cross-modal sensory fusion deficits.51However, our work suggest changes in375

other sensory modalities such as vision and audition.376

It is common to measure functional connectivity between brain regions in a frequency depen-377

dent manner. Usually these estimates are based on filtered time series. Here we found that λ varies378

over time. Therefore, we can ask whether λ variations across brain regions are correlated or not379

in PD and HCs. Recent work suggests that functional connectivity based on the component of380

aperiodic activity may be more robust.52
381

Overall, we show that the aperiodic activity, which usually has been considered as noise, gives382

new insights in PD and deserves more attention when analysing any neural field potentials like383

ECoG, LFP, EEG and MEG. Finally, previous studies showed frequency slowing in relation to384

cognitive decline rather than the motor symptoms.5 It could then be that the change in λ is a more385

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2023. ; https://doi.org/10.1101/2023.01.19.524792doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.19.524792
http://creativecommons.org/licenses/by/4.0/


general expression of neurodegeneration than only the dopamine affected systems.386
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Figure S1: Comparing the true 1/f-exponent of a simulated signal reconstructed from a given power spectrum

of the form κ/fλ (A) Reconstructed signal from PSD equals to 10−2.5/f0.5. (B) PSD of the reconstructed signal

using the entire signal or a segment of it of sizes 1, 2 or 4 sec. (C) Spectrogram of the reconstructed signal shown in

A using the method described in Materials and methods. (D) Temporal dynamics of λsim the reconstructed signals for

a PSD 10−2.5/f1 and epochs of 1 sec. (E) Temporal average of λ from reconstructed signals, λsim, compared to the

true λtrue. (F) Temporal standard deviation of λ from reconstructed signals in function of the true λ.
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Figure S2: Cortex-wide distribution of the mean and the coefficient of variation over time of λ within

each group. (A) (resp. (C)) Temporal mean (resp. coefficient of variation) of λG for each group G ∈

{HC ses1, HC ses2, PD-ON, PD-PFF}. The inside colour refers to the mean over the group. The border colour refers

to the fluctuation of λG (resp. CVλG
) within the group G. (B) (resp. (D)) Temporal mean (resp. coefficient of

variation) of λ between two groups Ga, Gb ∈ {HC ses1, HC ses2, PD-ON, PD-PFF}. The inside colour refers to the

difference between the means over the groups. The border colour refers to the averaged fluctuation of λG (resp. CVλG
)

combining the two groups Ga and Gb.
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                         Patient

Brain region
PD ON lh PD ON rh PD OFF lh PD OFF rh

AC-MPC 0,052655 0,0327 0,023435 0,05004

AAC 0,005475 0,008165 0,001995 0,01079

DSVC 0,00098 0,10805 0,001665 0,05319

DPC 0,029015 0,09365 0,020805 0,138505

EAC 0,00134 0,00813 0,00047 0,002055

EVC 0,009255 0,00509 0,017115 0,016085

IFC 0,0169 0,11816 0,065705 0,072345

IPC 0,004815 0,014195 0,00435 0,006125

I-FOC 0,001375 0,00364 0,00146 0,002615

LTC 0,00621 0,00102 0,0191 0,01329

MT+C-NVA 0,00308 0,0098 0,004235 0,00613

MTC 0,001795 0,004075 0,008265 0,00591

O-PFC 0,05662 0,15312 0,061315 0,053295

PL-MCC 0,0401 0,02616 0,09309 0,02303

PCC 0,00078 0,007705 0,00162 0,006045

POC 0,015555 0,04716 0,012155 0,02366

PMC 0,018335 0,100665 0,12863 0,05784

PVC-V1 0,01139 0,00877 0,024695 0,00548

SMC 0,025775 0,033375 0,10384 0,02987

SPC 0,001025 0,0362 0,003105 0,014585

T-P-O-J 0,000495 0,006065 0,002675 0,0031

VSVC 0,00903 0,001855 0,00938 0,009635

Table S1: P-values of the distance correlation per brain region, PD patient session and hemisphere. The shad-

owed cells are the 20 lowest p-values.
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Figure S3: Cortex-wide distribution of different relationship measures between the mean over time of λ and

ages within each group.
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Figure S4: Cortex-wide distribution of different relationship measures between the mean over time of λ and

UPDRS-III within each PD group and combining them (first column).
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Figure S5: 1/f-exponent distributions over the different groups in the different BRs.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2023. ; https://doi.org/10.1101/2023.01.19.524792doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.19.524792
http://creativecommons.org/licenses/by/4.0/


60 80
age

0.5
1.0
1.5

1/
f e

xp
on

en
t AC-MPC-lh

60 80
age

0.5
1.0
1.5

AC-MPC-rh

60 80
age

0.5
1.0
1.5

AAC-lh

60 80
age

0.5
1.0
1.5

AAC-rh

HC
PD ON
PD OFF

60 80
age

0.5
1.0
1.5

1/
f e

xp
on

en
t DSVC-lh

60 80
age

0.5
1.0
1.5

DSVC-rh

60 80
age

0.5
1.0
1.5

DPC-lh

60 80
age

0.5
1.0
1.5

DPC-rh

HC
PD ON
PD OFF

60 80
age

0.5
1.0
1.5

1/
f e

xp
on

en
t EAC-lh

60 80
age

0.5
1.0
1.5

EAC-rh

60 80
age

0.5
1.0
1.5

EVC-lh

60 80
age

0.5
1.0
1.5

EVC-rh

HC
PD ON
PD OFF

60 80
age

0.5
1.0
1.5

1/
f e

xp
on

en
t IFC-lh

60 80
age

0.5
1.0
1.5

IFC-rh

60 80
age

0.5
1.0
1.5

IPC-lh

60 80
age

0.5
1.0
1.5

IPC-rh

HC
PD ON
PD OFF

60 80
age

0.5
1.0
1.5

1/
f e

xp
on

en
t I-FOC-lh

60 80
age

0.5
1.0
1.5

I-FOC-rh

60 80
age

0.5
1.0
1.5

LTC-lh

60 80
age

0.5
1.0
1.5

LTC-rh

HC
PD ON
PD OFF

60 80
age

0.5
1.0
1.5

1/
f e

xp
on

en
t MT+C-NVA-lh

60 80
age

0.5
1.0
1.5

MT+C-NVA-rh

60 80
age

0.5
1.0
1.5

MTC-lh

60 80
age

0.5
1.0
1.5

MTC-rh

HC
PD ON
PD OFF

60 80
age

0.5
1.0
1.5

1/
f e

xp
on

en
t O-PFC-lh

60 80
age

0.5
1.0
1.5

O-PFC-rh

60 80
age

0.5
1.0
1.5

PL-MCC-lh

60 80
age

0.5
1.0
1.5

PL-MCC-rh

HC
PD ON
PD OFF

60 80
age

0.5
1.0
1.5

1/
f e

xp
on

en
t PCC-lh

60 80
age

0.5
1.0
1.5

PCC-rh

60 80
age

0.5
1.0
1.5

POC-lh

60 80
age

0.5
1.0
1.5

POC-rh

HC
PD ON
PD OFF

60 80
age

0.5
1.0
1.5

1/
f e

xp
on

en
t PMC-lh

60 80
age

0.5
1.0
1.5

PMC-rh

60 80
age

0.5
1.0
1.5

PVC-V1-lh

60 80
age

0.5
1.0
1.5

PVC-V1-rh

HC
PD ON
PD OFF

60 80
age

0.5
1.0
1.5

1/
f e

xp
on

en
t SMC-lh

60 80
age

0.5
1.0
1.5

SMC-rh

60 80
age

0.5
1.0
1.5

SPC-lh

60 80
age

0.5
1.0
1.5

SPCrh

HC
PD ON
PD OFF

60 80
age

0.5
1.0
1.5

1/
f e

xp
on

en
t T-P-O-J-lh

60 80
age

0.5
1.0
1.5

T-P-O-J-rh

60 80
age

0.5
1.0
1.5

VSVC-lh

60 80
age

0.5
1.0
1.5

VSVC-rh

HC
PD ON
PD OFF

Figure S6: 1/f-exponent as a function of age for the different groups in the different BRs.
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Figure S7: 1/f-exponent as a function of UPDRS-III for PD-ON and PD-OFF in the different BRs.
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