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Abstract

The E. coli genome-scale metabolic model (GEM) is a gold standard for the simulation of cellular
metabolism. Experimental validation of model predictions is essential to pinpoint model
uncertainty and ensure continued development of accurate models. Here we assessed the
accuracy of the E. coli GEM using published mutant fitness data for the growth of gene
knockout mutants across thousands of genes and 25 different carbon sources. We explored the
progress of the E. coli GEM versions over time and further investigated errors in the latest
version of the model (iML1515). We observed that model size is increasing while prediction
accuracy is decreasing. We identified several adjustments that improve model accuracy — the
addition of vitamins/cofactors and re-assignment of reaction reversibility and isoenzyme gene
to reaction mapping. Furthermore, we applied a machine learning approach which identified
hydrogen ion exchange and central metabolism branch points as important determinants of
model accuracy. Continued integration of experimental data to validate GEMs will improve
predictive modeling of the mapping from genotype to metabolic phenotype in E. coli and
beyond.
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E. coli genome-scale metabolic model flux balance analysis (FBA) prediction accuracy was
qguantified with published experimental data assaying gene knockout mutant growth across
different carbon sources. Insights into model development trends and sources of inaccuracy
were revealed.

e Model representational power (size) has been increasing over time, while accuracy has
been decreasing.

e Adding vitamins/cofactors to the model environment and re-assigning reaction
reversibility and isoenzyme gene-to-reaction mapping improves correspondence
between model predictions and experimental data.

e Machine learning reveals hydrogen ion exchange and central metabolism branch points
as important features in the determination of model accuracy.
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Introduction

The E. coli genome-scale metabolic model (GEM) represents one of the most well-
established compendia of knowledge on a single organism’s cellular metabolism. This model
maps genotype to metabolic phenotype and can be used to mechanistically simulate E. coli
growth under various gene knockouts and/or environmental chemical perturbations. The E. coli
GEM was one of the first GEMs to be analyzed (Varma and Palsson 1994), and has undergone
iterative curation for over 20 years (Reed et al. 2003; Feist et al. 2007; Orth et al. 2011; Monk et
al. 2017). The E. coli GEM serves as a gold standard both for the reconstruction of new GEMs
for other organisms and for benchmarking our ability to quantitatively simulate metabolism at
the genome-scale (Machado et al. 2018; Zimmermann, Kaleta, and Waschina 2021; Henry et al.
2010).

Despite success in mapping the E. coli genome to metabolic functions, uncertainty in
GEM reconstruction and analysis still generally limits our ability to accurately simulate
metabolic phenotypes (Bernstein et al. 2021). For example, specifications of gene-to-reaction
mappings, or the chemical composition of the environment for specific experiments can differ
from researcher to researcher or computational pipeline to pipeline (Mendoza et al. 2019).
Furthermore, it is not always clear how to optimally simulate metabolic flux in the cell given
regulatory and other non-metabolic constraints. As we continue to reconstruct GEMs for new
organisms these issues are more prominent (Ankrah et al. 2021).
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Critical assessment of model prediction accuracy, using experimental data, is essential
for pinpointing sources of model uncertainty and ensuring continued development of accurate
models. One rich source of data that can be used to validate GEMs is high-throughput mutant
phenotype measurements — as measured through random barcode transposon-site sequencing
(RB-TnSeq) (Wetmore et al. 2015; Price et al. 2018). This approach utilizes the power of highly
parallelized genetic library screens to assay the fitness of gene knockout mutants across an
array of conditions. The data that is generated can be readily simulated by GEMs and has been
used recently to curate metabolic models (diCenzo, Mengoni, and Fondi 2019; Ong et al. 2020),
and benchmark several new automated GEM reconstruction pipelines (Machado et al. 2018;
Zimmermann, Kaleta, and Waschina 2021).

In this work, we provide a critical assessment of the E. coli genome-scale metabolic
model’s accuracy using high-throughput mutant phenotype data measuring the fitness of E. coli
gene knockout mutants for thousands genes grown across environments containing 25
different primary carbon sources (Wetmore et al. 2015; Price et al. 2018). We compare the size
and accuracy of the four latest E. coli GEMs to outline progress in the field (Reed et al. 2003;
Feist et al. 2007; Orth et al. 2011; Monk et al. 2017). We then perform a detailed investigation
of the errors in the latest E. coli GEM (iML1515). We identify straightforward adjustments to
the model that can improve accuracy and use a machine learning framework to suggest specific
fluxes associated with incorrect model predictions.

Results

Progression of E. coli Genome-Scale Metabolic Models

We calculated the accuracy of the E. coli GEM by comparing model predictions to
previously published experimental data (Wetmore et al. 2015; Price et al. 2018). We generated
model predictions for each experiment by knocking out the specified gene and adding the
specified carbon source to the simulation environment and simulating a growth/no-growth
phenotype with flux balance analysis (FBA). We then quantified the accuracy of the model
based on the area under a precision recall curve (AUC) (Figure 1A, B; see methods for additional
details). The precision and recall calculations for this metric focused on true negatives (defined
as experiments with low fitness and model predicted gene essentiality). This metric was chosen,
as opposed to the overall accuracy or receiver operating characteristic, because the highly
imbalanced nature of the data set (far more positives than negatives; Figure 1A inset) suggests
that the correct prediction of gene essentiality is more biologically meaningful than the
converse prediction of gene non-essentiality.

We began by comparing the accuracy of four versions of the E. coli GEM, which have
been subsequently curated from 2003-2017 (iJR904, iAF1260, iJO1366, and iML1515)(Reed et
al. 2003; Feist et al. 2007; Orth et al. 2011; Monk et al. 2017). We observed that the number of
genes matched between the model and the data set has steadily increased (Figure 2 C). This
indicates the increasing power of genome-scale metabolic models to capture metabolic
functions. However, the accuracy of the models, as measured by the AUC, has steadily
decreased (Figure 2 D). This slight decrease in accuracy points to the importance of balancing
increases in model representational power with benchmarks of model accuracy.
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Figure 1: Comparison of E. coli GEM accuracy for four subsequent versions of the model

A) A histograms of model predictions and experimental fitness data are used to visualize the accuracy of
the model. Predictions with flux balance analysis (FBA) biomass flux < 0.001 (no-growth) are included in
the blue histogram, and >= 0.001 (growth) in the red histogram. The results for the iML1515 model are
shown here. The histogram is cut off at 1000 counts, and the inset (cutoff at 10000 counts) shows the
full histogram.

B) The area under a precision recall curve (AUC) is used to quantify model prediction accuracy. The
precision recall curve is calculated using the fitness value as a threshold to predict model essentiality.
The iML1515 curve is shown.

C) The number of genes matched between the model and the experimental data set across subsequent
E. coli GEMs is shown.

D) The accuracy of the models is shown across subsequent E. coli GEMs, as measured by area under
precision recall curve.
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Correction of Errors in the iML1515 Model

We sought to investigate the major sources of errors in the latest E. coli GEM (iML1515),
and to implement model adjustments that could correct these predictions. Several key areas
contributing to poor performance were apparent upon visualization and analysis of the model
predictions (Figure 2, Supplemental Figure S1).

First, many genes involved in vitamin and cofactor biosynthesis were leading to false
negative predictions (Figure 2A). A total of 21 different genes involved in the biosynthesis of
biotin, R-pantothenate, thiamin, tetrahydrofolate, and NAD+ were implicated. These genes,
when knocked out of the model, create a growth defect. However, the experimental fitness of
the corresponding gene knockouts was high. These predictions were corrected by adding the
vitamins/cofactors to the simulation environment. They were either added to the extracellular
(extracellular exchange) or cytoplasmic (intracellular exchange) compartment of the model,
depending on if the model already contained a transporter and exchange reaction for the
vitamin/cofactor. Addition of each individual vitamin/cofactor improved model accuracy, and
addition of all led to substantial improvement in accuracy (Figure 2B). This result indicates that
the identified vitamins/cofactors may be available to the mutants in the RB-TnSeq experiments.

Possible mechanisms for the availability of vitamins/cofactors in the experiments
include cross-feeding between the diverse library of E. coli mutants or carry-over within
individual E. coli mutants. We examined an alternative set of experimental RB-TnSeq data,
collected at 5 and 12 generations for E. coli grown in a minimal glucose medium (Price et al.
2016). This data showed that the phenotypes for genes in the biosynthetic pathways of R-
pantothenate (panB, C), thiamin (thiC-H), and NAD+ (nadA-C) had weak negative fitness after 5
generations, but fitness dropped off to be strongly negative after 12 generations. This pattern
supports the carry-over hypothesis and suggests that increasing the number of experimental
generations could correct these false negative predictions. Alternatively, genes in the
biosynthetic pathways for biotin (bioA-D, F, H) and tetrahydrofolate (pabA, B) showed weak
negative fitness at both 5 and 12 generations. After 12 generations these metabolites would be
depleted by around a factor of 2% (>1000x). This suggests that carry-over alone could not
maintain the observed growth in these mutants. A separate study — using the Keio collection of
individual gene knockout mutants across 30 carbon sources — reported that knockouts of these
genes in the biotin and tetrahydrofolate pathways were not essential when assayed on solid
medium (where diverse neighboring colonies could in principle cross-feed metabolites) but
were essential when grown in individual liquid cultures (Tong et al. 2020). This suggests that
biotin and tetrahydrofolate (or precursors of these metabolites) are cross-fed between E. coli
mutants. Further in line with the carry-over and cross-feeding hypotheses, it has been
demonstrated that many vitamin/cofactor precursors are stable and persist for several
generations in E. coli and other organisms, and that diverse auxotrophs’ growth is supported by
co-culture with prototrophs (Hartl et al. 2017; Ryback, Bortfeld-Miller, and Vorholt 2022).
Considering this evidence, the cross-feeding and carry-over hypotheses should be considered
when assessing the accuracy of GEM reconstruction pipelines and implementing gap-filling
approaches using high-throughput mutant phenotyping data. For example, if these metabolites
are present in the experiments but not added to the simulation environment it could lead to
the addition of new gap-filled biosynthetic reactions that introduce false positive predictions in
more well controlled environments.
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Next, we focused on genes that were contributing to false positive predictions. These
did not cause a growth defect when knocked out of the model but had low experimental fitness
values. Three genes in the L-serine biosynthesis pathway (serA, serB, and serC) were implicated
(Figure 2C). Through examination of the metabolic flux in the gene knockout models it was
observed that L-serine was being produced from glycine by a reversible reaction (GHMT2r,
glycine hydroxymethyltransferase). Setting this reaction to be irreversible corrected the
essentiality predictions for the three genes in the L-serine biosynthetic pathway and improved
the overall accuracy of the model (Figure 2D). This correction points to reaction reversibility as
a key variable in curating GEMs to match experimental data. The reaction in question here has
been proposed to run in reverse as a possible route for L-serine biosynthesis from glycine.
However, the function of this reaction for this purpose is not firmly established (Price,
Deutschbauer, and Arkin 2020).

Another set of genes that were observed to contribute to false positive predictions were
genes involved in isoenzyme gene-to-reaction mappings (where there is an “or” relationship in
the Boolean mapping of genes to a reaction). Eight different isoenzymes mapping to ten
different reactions were among the lowest fitness genes for which the model simulated a
growth phenotype (Figure 2E). Reassigning the gene-to-reaction mapping for each of these
isoenzyme/reaction pairs, such that each gene was solely responsible for the reaction,
improved model performance for all but one pair (metC, CYSDS). The metC gene is mapped to
two reactions as an isoenzyme (CYSDS and CYSTL). Only CYSTL is essential in minimal carbon
medium. Adjusting the isoenzyme mapping for the essential reaction (CYSTL) improved model
accuracy but adjusting the mapping for the CYSDS had no effect on accuracy. Reassigning all
isoenzyme gene-to-reaction mappings (excluding metC, CYSDS) led to a further increase in
model accuracy (Figure 2F). This correction suggests that isoenzyme representation is an
important area for continued curation of GEMs. Isoenzymes can be difficult to properly account
for in metabolic models, as different enzymes may be expressed under different regulatory
states (Jacobs et al. 2017; Ihmels, Levy, and Barkai 2004). Thus, representations of isoenzymes
that do not account for regulatory information can generate overly promiscuous metabolic
networks leading to false positive predictions. One example is shown in Figure 4C where dmlA
can replace the function of leuB. However, dmlA expression is induced by the presence of D-
malate (greater than 50-fold relative to expression in L-malate, D-glucose, or glycerol) (Stern
and Hegre 1966). Thus, dmlA would not rescue leuB mutants in many conditions.

Altogether, the three corrections mentioned above, none of which is carbon source
specific, substantially improved overall model prediction accuracy (Figure 2G, H, Supplemental
Figure S2). These corrections nearly eliminated false negative predictions and substantially
reduced false positive predictions. Importantly, they point to several specific areas of GEM
reconstruction where adjustments can be made to improve correspondence between model
predictions and experimental data.
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Figure 2: Correction of errors in the latest E. coli GEM (iML1515)

A) Adding vitamins and cofactors to the model environment corrected false negatives (high fitness,
model essential). Several genes in vitamin/cofactor biosynthesis pathways were among the highest
average fitness with model predicted essentiality across all carbon sources. These genes are listed,
grouped by their biosynthetic pathway. Vitamins/cofactors are further grouped into extracellular
exchange and intracellular exchange based on whether the model contained a transporter for the
associated extracellular metabolite. These vitamins/cofactors were added to the model extracellular or
intracellular space through existing or newly added exchange reactions.

B) The model prediction accuracy, with vitamins/cofactors added, is displayed as the fitness histogram.
The area under the precision recall curve (AUC) is listed in the title. The original histogram, without
vitamins/cofactors added, is shown as red and blue outlines. The addition of vitamins/cofactors
corrected many false negative predictions, as seen by the decrease in the component of the blue
histogram with high fitness values.

C) L-serine biosynthesis gene essentiality predictions are corrected by adjusting the reversibility of the
GHMT2r reaction. Three genes in the L-serine biosynthetic pathway (serA, serC, and serB) had incorrect
false positive predictions (low fitness, model non-essential). Negative flux through the GHMT2r reaction
creates an alternative route for L-serine biosynthesis. Adjusting this reaction to be irreversible makes
the L-serine biosynthetic genes essential and corrects the false positive predictions.

D) The model prediction accuracy, with the GHMT2r reaction made irreversible, is displayed as the
fitness histogram. The area under the precision recall curve (AUC) is listed in the title. The original
histogram, with GHMT2r reversible, is shown as red and blue outlines. The adjustment of GHMT2r
reversibility corrected false positive predictions as shown by the slight decrease in the red histogram
below the red outline for low fitness values.

E) Adjustment of isoenzyme gene-to-reaction mapping corrected false positive predictions for several
genes. Isoenzyme genes, with low fitness and model predicted non-essentiality, are listed with an arrow
pointing to the reactions for which they are an isoenzyme. Gene-to-reaction mapping was adjusted to
make these isoenzymes solely responsible for their corresponding reactions. An example where the lueB
gene is mapped to the IPMD reaction by removing the alternative mapping of the dmlA gene to this
reaction is shown. Adjusting the gene-to-reaction mapping improved model prediction accuracy for all
isoenzymes, excluding metC to CYSDS which had no impact (shown in red).

F) The model prediction accuracy, with adjusted isoenzyme gene-to-reaction mapping, is displayed as
the fitness histogram. The area under the precision recall curve (AUC) is listed in the title. The original
histogram, with original isoenzyme gene-to-reaction mapping, is shown as red and blue outlines. The
adjustment of isoenzyme mapping corrected false positive predictions as shown by the slight decrease
in the red histogram below the red outline for low fitness values.

G) The precision recall curve is shown for the original uncorrected model, each of the above corrections,
and with all the corrections combined. The area under the precision recall curves is listed in the legend
to the right of the figure.

H) The model prediction accuracy, with all corrections combined, is displayed as the fitness histogram.
The area under the precision recall curve (AUC) is listed in the title. The original histogram, with no
corrections, is shown as red and blue outlines. The corrections led to a decrease in both false positive
and false negative predictions.
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Carbon Source Specific Predictions

The dataset utilized here assays 25 different carbon sources, providing insight across
diverse carbon utilization pathways. We explored the carbon source specific accuracy of the
corrected iML1515 model by calculating the area under the precision recall curve for predicting
gene knockout phenotypes for each separate carbon source (Figure 3A). We observed that
gluconeogenic carbon sources and other carbon sources that enter metabolism below glycolysis
appeared to have lower accuracy than glycolytic carbon sources. This may indicate that our
representation of carbon source utilization pathways is more accurate for glycolytic substrates
than for other alternative pathways. Additionally, we observed that carbon source specific gene
knockout model essentiality predictions were more likely to occur in genes coding for reactions
that are near the specified carbon source in the metabolic network (Figure 3B). This should be
expected as genes in the pathway for utilization of specific carbon sources are likely to be
important for growth on those substrates. It suggests that these genes are the main
contributors to carbon source specific predictions rather than global metabolic processes.
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Figure 3: Carbon source specific metabolic model predictions

A) The accuracies of the model predictions (area under the precision recall curve, with all corrections)
for each specific carbon source are shown.

B) The distance along the metabolic network between the carbon source and knocked out gene is
shown for different subsets of experiments. The distance is calculated as the number of reactions from
carbon source to the closest reaction for which the gene is essential (see methods for additional details).
The distance is plotted as a violin plot with short bandwidth filter to show the distribution of distances
at each integer value. The “all” subset of data shows the distribution of distances for all experiments
involving gene knockouts that disrupt at least one reaction. The “model no-growth” subset shows the
distribution of experiments with simulated no-growth. The “carbon specific no-growth” subset shows
the distribution of experiments where there was simulated no-growth that was carbon source specific
(no growth in 80% of carbon sources or less).
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Machine Learning Suggests Flux Profiles Associated with Incorrect Predictions

Genome-scale metabolic modeling provides additional insight beyond a prediction of
growth/no-growth. Each simulation, where a growth phenotype is predicted, simultaneously
predicts the metabolic flux through every reaction in the network. We sought to use this flux
information to gain deeper insight into model accuracy. We began by calculating the metabolic
fluxes for each simulation using parsimonious flux balance analysis (Lewis et al. 2010).
Visualization of the flux space for each simulation, through principal component analysis,
revealed centers for each carbon source wild-type flux distribution surrounded by clouds of the
gene knockout simulations grown with that carbon source (Figure 4A). The Euclidean distance
of the knockout flux vector from the wild-type flux had a slight negative correlation with the
experimental fitness value (Figure 4B). This indicated a weak relationship suggesting that gene
knockouts that perturb wild-type flux more greatly led to larger fitness defects.

To gain additional insight into which flux profiles are contributing most to the accuracy
of the model, we used a machine learning approach. We used a gradient boosting decision tree
framework, lightGBM (Ke et al. 2017), to classify experiments as true positives or false positives
based on their simulated flux profile. Our analysis here focused on positive predictions, as
negative predictions (model simulated no-growth) do not have corresponding fluxes to use as
the input for the model. The model accuracy was assessed for repeated train/test splits with
cross-validation on all experiments (carbon source and gene combinations) that were held out
of the training set, and on an orthogonal test set consisting only of experiments with new
carbon sources and genes that were not used in the training set (Figure 4C, Supplemental
Figure S3). The orthogonal test set provides a measure of the model’s ability to capture
metabolic processes that generalize to unseen carbon sources and genes. While this machine
learning approach had weak performance, it was able to classify samples better than random,
and capture general metabolic processes (Figure 4C).

Next, we utilized Shapley additive explanations, SHAP values (Lundberg and Lee 2017;
Lundberg et al. 2020), to quantify the importance of different fluxes in the machine learning
(Figure 4D). This analysis revealed flux distributions that were associated with correct or
incorrect predictions of the model. Several notable patterns are highlighted (Supplemental
Figure S4). The most important feature was the flux of hydrogen ions into or out of the cell. The
machine learning model suggested that a hydrogen ion exchange flux close to 0 was associated
through SHAP with correct model predictions, a large positive hydrogen ion exchange (ions
leaving the cell) was associated with incorrect model predictions, and a large negative hydrogen
ion flux (ions entering the cell) was associated strongly with incorrect model predictions
(Supplemental Figure S4 A). Several of the other most informative features were also involved
in hydrogen ion transfer between the periplasmic and cytoplasmic compartments of the model.
The NAD(P) transhydrogenase (THD2pp) uses a flux of hydrogen ions from the periplasm to
cytoplasm to reduce NADP+ to NADPH using NADH. High flux through THD2pp was associated
with incorrect model predictions. Two symporter reactions (PROt2rpp and GLUt2rpp) transport
either L-proline or L-glutamate from the periplasm to cytoplasm along with a hydrogen ion.
High negative flux through these reactions (transporting amino acids and hydrogen ions from
the cytoplasm to the periplasm) was associated with incorrect model predictions. The flux
through both of these reactions was also clustered (strongly covaried across simulations) with a
sodium ion symporter that carried the opposite flux transporting the amino acid and a sodium
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ion back into the cytoplasm. Thus, the net flux of these reaction clusters is the export of
hydrogen ions from cytoplasm to periplasm and import of sodium ions. To further address the
hydrogen ion flux we re-simulated flux balance analysis growth predictions while fixing the
hydrogen ion flux (ranging between 0 and 10) (Supplemental Figure S5). Fixing the hydrogen ion
flux to a small positive value increased model accuracy by making genes in the succinate
dehydrogenase complex (sdhA-D) essential on acetate and genes in the cytochrome bo
complex (cyoA-D) essential on glycolate. Further constraining the hydrogen ion flux to higher
values sharply decreased model accuracy by introducing false negative predictions. Beyond the
corrections identified by tuning the hydrogen ion flux, there may be more fundamental
corrections to GEMs that can be implemented through a more careful representation of
hydrogen ion fluxes and cross-membrane gradients.

There were also several reactions involved at branch points in central carbon
metabolism that were implicated in the SHAP feature importance analysis. Increased flux
through pyruvate dehydrogenase, directing pyruvate to the TCA cycle, was associated with
correct model predictions (Supplemental Figure S4 B). Increased flux of glyceraldehyde 3-
phosphate through lower glycolysis was associated with correct predictions, while negative flux
through lower glycolysis was associated with incorrect predictions (Supplemental Figure S4 C).
This result is in line with the previous observation that gluconeogenic carbon sources had lower
accuracy. Alternatively, increased flux of glyceraldehyde 3-phosphate through transaldolase in
the pentose phosphate pathway was associated with incorrect predictions (Supplemental
Figure S4 D). All together, these results suggest that hydrogen ion flux, as well as several major
branch points in central carbon metabolism are global determinants of model prediction
accuracy.
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Figure 4: Machine learning with metabolic fluxes to investigate E. coli GEM (iML1515) false positive
predictions

A) The principal component analysis plot of experiments grouped by parsimonious flux balance analysis
simulated metabolic flux is shown. Only experiments with simulated biomass flux > 0.001 are included.
Wild-type carbon source fluxes (w/ no gene knockouts) are shown as red points. Experiment points are
colored according to experimental fitness value.

B) The plot of experimental fitness value as a function of the Euclidean distance of simulated fluxes from
the wild-type fluxes on the same carbon source is shown. A slight negative correlation is seen between
fitness and distance (Pearson p =-0.175). The purple line shows a linear fit to the data, and the red line
shows a lowess fit.

C) The cross validated accuracy of the machine learning algorithm using simulated fluxes to classify
experiments as false positives (fitness values < -2) or true positives (fitness values >= -2) is shown. Only
experiments with simulated growth are used here since the simulated fluxes are used as the input for
the machine learning algorithm. Precision recall area under the curve is calculated for prediction of false
positives. The training set consists of data points from a random subset of 80% of carbon sources and
80% of genes (64% of samples). The full cross-validation (CV) test set contains all remaining data points
(36% of samples). The unseen carbon/gene cross-validation set consists of data points that do not
involve any of the carbon sources or genes in the training set (4% of samples). The permuted cross-
validation shows prediction accuracy with experimental fitness values for the test set randomly
permuted. Violin/scatter plots and means (red line) are shown for 100 random train/test splits.
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D) The feature importance for prediction of data points as true positives calculated through SHAP is
shown. Features are sorted by mean absolute SHAP value. For each feature, each sample is shown as a
colored point, with the SHAP value on the x-axis and the feature value displayed through the color.
When high feature value correlates with high SHAP value, this indicates that high flux through this
feature is associated with correct model predictions (true positives). Inversely, high feature values
correlating with low SHAP values indicates that high flux through this feature is associated with incorrect
model predictions (false positives). SHAP values are averaged across 100 random train/test splits.
Feature reaction index, identifier, and name are shown. Each feature corresponds to a representative
flux from a flux cluster (see methods for additional information).
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Discussion

In this work, we used high-throughput mutant fitness data to conduct a comprehensive
analysis of the accuracy of the E. coli GEM. The E. coli GEM is a gold standard for metabolic
model curation, and the dataset we utilize for validation is one of the largest consistent data
sets quantifying microbial phenotypes available. We identify several adjustments that can be
made to the latest iML1515 metabolic model to improve prediction accuracy. These
adjustments highlight including vitamins/cofactors in the simulation environment, and curating
reaction reversibility and isoenzyme gene-to-reaction mapping as important areas of
uncertainty in GEM reconstruction and simulation. Furthermore, our carbon source specific and
machine learning results point to gluconeogenic carbon sources, hydrogen ion flux, and several
key branch points in central metabolism as areas of metabolism where GEM predictions
warrant further scrutiny.

It is important to note that the corrections we implement in our analysis are not
necessarily the only model adjustments that could correct the false model predictions we have
identified. In the addition of vitamins/cofactors to the model simulation environment, it is
possible that alternative precursors, rather than the vitamins/cofactors themselves, may be the
metabolites being cross-fed or carried-over. For example, because the only genes implicated in
the tetrahydrofolate analysis were pabA and pabB it is likely that an upstream precursor such as
4-aminobenzoate (PABA) is cross-fed rather than tetrahydrofolate. Next, while we believe the
vitamin/cofactor predictions can be explained by the cross-feeding and carry-over hypotheses,
other examples of false negative predictions may alternatively be due to missing or unknown
biosynthetic reactions that need to be gap-filled. For the false positive predictions, corrected by
re-assignment of reaction reversibility and isoenzyme mapping, it is possible that corrections to
alternative reactions further up in the pathways of interest could correct these errors. Moving
forward, it will be important to establish a systematic and quantitative method for scoring the
likelihood of different model corrections based on correspondence with experimental data,
prior knowledge from the literature, and parsimony. Such a method could be implemented in a
Bayesian framework to formalize the reconstruction/curation of GEMs. Furthermore, curation
of GEMs with experimental data and literature evidence should embrace a “deep curation”
approach where different sources of evidence that converge to inform a particular model
parameter are cross-validated against each other (Macklin et al. 2020). Our work sets the stage
for the further development of such systematic and automated methods to reconstruct and
curate GEMs based on experimental data and suggests several areas where such approaches
could be fruitfully applied.

Our finding that E. coli GEM size has been increasing over time while accuracy has been
decreasing points towards the importance of the metrics used to assess progress in GEM
curation. Model accuracy has been addressed in past curations of GEMs, including for E. coli.
The original iML1515 publication assessed model accuracy using a similar gene essentiality data
set to the one used in this work. In this previous work, the authors measured the growth of the
Keio collection of E. coli mutants across 16 different carbon sources and compared the results
to iJ01366 and iML1515 model predictions (Monk et al. 2017). The reported overall accuracies
(iML1515 accuracy: 93.4%, iJ01366 accuracy: 89.9%) are close to the overall accuracy that we
calculate from our dataset when we set an experimental growth/no-growth threshold of fitness
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to -2 (iML1515 accuracy: 93.8%, iJO1366 accuracy: 92.8%). This overall accuracy metric does
show an improvement from the iJ01366 model to the iML1515 model. However, we believe
that the precision recall AUC metric we used in this work is more biologically meaningful as it
emphasizes model accuracy in predicting gene essentiality. For example, the addition of a gene
to the model with no metabolic function (that has no impact on the model or experiments)
would yield an additional true positive prediction for each carbon source. This non-functional
gene would be weighted equally with a gene that is essential for growth across all carbon
sources under the overall accuracy metric, while the addition of the non-functional gene would
have little impact on the precision-recall AUC metric. All together, we believe that an increased
focus on GEM prediction accuracy, and the metrics used for accuracy evaluation, will help
enable GEMs to deliver on the promise of predicting genotype from phenotype.

One exciting idea for the development of the field in the direction of improved
predictive modeling is the implementation of a community competition centered on critical
assessment of microbial phenotype predictions. A community survey of metabolic modeling
and microbiome researchers recently highlighted model trust/validation as an important focus
for moving the field forward, and proposed such a community initiative (Ankrah et al. 2021).
This initiative could serve both to motivate standardized GEM validation and to coordinate data
collection and organization. As we move forward, we should also keep in mind that the
development of models of cellular physiology that go beyond metabolism will likely be
necessary. While GEMs currently offer an appealing balance between predictive power and
complexity, expanding models to deal with gene regulation, and other cellular processes has
the potential to further improve prediction accuracy for both metabolic and non-metabolic
phenotypes (Goldberg et al. 2018). In any case, standardized assessments of model prediction
accuracy (with large, curated databases of experimental data) will continue to be essential for
the successful application of computational modeling.

Materials and Methods

All the methods used throughout this analysis are documented in a reproducible Python
Jupyter Notebook which is available on GitHub at github.com/dbernste/E_coli_GEM _validation.
Metabolic model adjustments and simulations were conducted using COBRApy (Ebrahim et al.
2013). Data analysis, visualization, and machine learning were conducted using: jupyterlab
(Kluyver et al. 2016), matplotlib (Hunter 2007), numpy (Harris et al. 2020), pandas (McKinney
2010), scipy (Virtanen et al. 2020)[REF], Scikit-learn (Pedregosa et al. 2011), lightgbm (Ke et al.
2017), and SHAP (Lundberg et al. 2020).

Data Processing

Experimental RB-TnSeq data was collected from the online fitness browser
fit.genomics.lbl.gov (Price et al. 2018). The data from E. coli BW25113 was used for this
analysis. The fitness values (rather than the t scores) were used to represent the fitness, as
preliminary analyses indicated that these scores corresponded more closely with model
predictions. Genes were matched to the E. coli GEM through their “sysName” which
corresponds to their BiGG database identifiers (King et al. 2016). Carbon sources were matched
by manually searching the BiGG database for metabolite identifiers, other media components
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were similarly matched to the BiGG database. The two carbon sources sucrose and mannitol
were excluded from this analysis because of known issues in the experimental preparation of
their media. The fithess data for sucrose has since been removed from the fitness browser, and
data for mannitol has been replaced with corrected experimental data (Price, Deutschbauer,
and Arkin 2022). All carbon source experiments were conducted in duplicate in the original
data. The fitness scores for these duplicates were averaged for comparison to metabolic model
predictions. Preliminary analysis indicated that this averaging slightly improved correspondence
between fithess values and model predictions.

Genome-Scale Metabolic Model Simulation and Adjustment

Metabolic models were downloaded from the BiGG database in sbml format (King et al.
2016). Models were loaded and analyzed using COBRApy (Ebrahim et al. 2013). Models were
matched to media and carbon source metabolites and exchange bounds were adjusted to add
metabolites to the environment. Exchange lower bounds were set to -1000 [mmol/(gdw*hr)] as
a default and -10 [mmol/(gdw*hr)] for all carbon sources. Models were adjusted to account for
differences between the experimental BW25113 E. coli strain and the model MG1655 strain by
removing several genes and their corresponding reactions that are not present in the BW25113
strain (Grenier et al. 2014). Models were further adjusted to remove non-conditionally essential
genes from the analysis (genes that were essential when all possible exchanges have lower
bound set to -1000). Many of these non-conditionally essential genes were already removed
from the fitness data as they do not have reliable phenotype measurements in RB-TnSeq
experiments due to low representation in the initial library. Therefore, it is possible that the
remaining non-conditionally essential genes, matched between model and dataset, could be
false negative predictions. We chose to remove all these genes from our analysis for
consistency. Model simulations were conducted with model.slim_optimize, which provided
substantial speed improvements when only recording the biomass flux, or with parsimonious
FBA through cobra.flux_analysis.pfba to record all simulated fluxes (Lewis et al. 2010). A
biomass flux of 0.001 [gdw/(gdw*hr)] was used throughout this analysis as a growth/no-growth
cutoff.

Model Accuracy Calculation

Model accuracy was calculated using the area under a precision recall curve. The model
simulated FBA biomass flux data was binarized to a growth/no-growth phenotype based on a
cutoff of 0.001 (no-growth < 0.001, growth >= 0.001). A sliding threshold on the fitness value
was then used to generate a precision recall curve. The positive class was set to simulated
essentiality (no-growth phenotype). The area under this precision recall curve was used to
guantify model accuracy. Precision recall curves were calculated using sklearn.metrics.pre_rec
and area under the curve was calculated using sklearn.metrics.auc.

Carbon Source Distance Analysis

The distance between carbon sources and genes was calculated using the genome-scale
metabolic model. The model was converted to a bi-partite graph with metabolites and
reactions as nodes. An edge was placed between any metabolite and reaction where that
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metabolite was a reactant or product for that reaction (non-zero stoichiometry), and an
adjacency matrix was constructed for the metabolic network. From this adjacency matrix, high
degree “hub” nodes were removed. Hub nodes were defined as any node with more than 50
connections and consisted of central metabolites such as hydrogen and water, cofactors such
as ATP and NAD+, and the E. coli Biomass reactions. Pyruvate was also a hub node but was left
in the network due to its role as a carbon source in this analysis. This hub-less network was
then used to calculate the carbon source gene distance. The distance was calculated as the
number of reactions traversed from the extracellular carbon source to the nearest reaction that
was essentially encoded by the gene (a gene knockout removed the reaction). For example,
distance of 0 corresponded to an essential reaction directly involving the extracellular carbon
source, while distance of 1 corresponded to an essential reaction involving any metabolite
connected to a reaction of distance 0. Distances on the metabolic network were calculated
using the scipy.csgraph.shortest_path method implementation of Dijkstra’s algorithm.

Machine Learning and Feature Importance

Machine learning (ML) was conducted to classify simulations with biomass flux into false
positives (experimental fitness < -2) or true positives (experimental fitness >= -2). A lightgbm
classifier was used. Flux vectors, quantifying the simulated flux across all reactions in the
metabolic model (2714 total fluxes), were used as the input for the ML algorithm. Fluxes with
variance across samples less than 10”7 were discarded form the analysis (leaving 579 total
fluxes). Fluxes were clustered into groups of fluxes with covariation greater than 0.99 across
samples (leaving 172 flux clusters). One representative flux from each cluster was used for the
ML input. ML accuracy was assessed by 100 repeated train/test splits. For each train/test split a
random subset of samples from 80% of the carbon sources and 80% of the genes was selected
as the training set. Cross-validated accuracy was assessed on the full set of test samples as well
as a smaller set of samples with no overlapping carbon sources or genes in the training set.
Model performance was explored for varying number of leaves in the ML model, an important
tuning parameter for over-fitting. In the final model 5 leaves were used, which balanced full
cross-validation with new carbon/gene cross-validation. Other parameters were set to the
lightgbm classifier default values (boosting_type='gbdt', num_leaves=5, max_depth=-1,
learning_rate=0.1, n_estimators=100, subsample_for_bin=200000, objective=None,
class_weight=None, min_split_gain=0.0, min_child_weight=0.001, min_child_samples=20,
subsample=1.0, subsample_freq=0, colsample_bytree=1.0, reg_alpha=0.0, reg_lambda=0.0,
random_state=None, n_jobs=None, importance_type='gain'). Feature importance was
calculated using Shapley additive explanations (SHAP) through shap.TreeExplainer (Lundberg et
al. 2020). SHAP values shown in the text are for the classification of samples as true positives
and averaged across train/test splits.
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Experimental fitness and simulation results
The entire data matrix of genes by carbon sources is visualized. Color indicates experimental fitness

Supplemental Figure S1

value (dark blue: low, yellow: high), a red dot indicates simulated no-growth (biomass flux < 0.001).
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Experimental fitness and post-correction simulation results

Supplemental Figure S2

The entire data matrix of genes by carbon sources is visualized. Color indicates experimental fitness
value (dark blue: low, yellow: high), a red dot indicates simulated no-growth after implementing

corrections (biomass flux < 0.001).
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Supplemental Figure S3: Machine learning training and cross-validation

A) The schematic for training and test set partitioning is shown. The data is structured as a matrix of
carbon sources and genes (with a vector of metabolic fluxes for each element in this matrix). The test
error was calculated in two different ways. 1) For all held out experiments in a full cross-validation (blue
outline). 2) For new gene/carbon sources that were unused in the training set (red outline).

B) The area under the receiver operating curve accuracy of the machine learning model for different
numbers of leaves (an important parameter to control overfitting) is plotted for 100 random train/test
splits. Mean +/- standard error is shown.

C) The area under the precision recall curve accuracy of the machine learning model for different
numbers of leaves is plotted for 100 random train/test splits. Mean +/- standard error is shown.
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Supplemental Figure S4: SHAP value dependency plots for select flux features

A) Hydrogen ion exchange and transport
B) Pyruvate dehydrogenase

C) Lower glycolysis

D) Transaldolase
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Supplemental Figure S5: Model prediction accuracy with fixed hydrogen ion flux

Fixing the bounds of hydrogen ion flux to small positive values (dots show tested values) leads to an
optimal value that improves model prediction performance. The first uptick in performance comes from
the correction of genes in the succinate dehydrogenase complex (sdhA-D) becoming essential for
growth on acetate (red dot). The second level of improved prediction performance (which has slightly
lower AUC than the red dot) additionally causes genes in the cytochrome complex (CyoA-D) to become
essential for growth on glycolate (yellow dot). Further increases in the fixed hydrogen ion flux sharply
decrease model prediction performance by adding false negative predictions.
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