
Critical assessment of E. coli genome-scale metabolic model with high-throughput mutant 

fitness data 

David B. Bernstein1, Batu Akkas1, Morgan N. Price2, Adam P. Arkin1,2 

1. Department of Bioengineering, University of California, Berkeley, California, USA 

2. Environmental Genomics and Systems Biology Division, Lawrence Berkeley National 

Laboratory, Berkeley, California, USA 

Running Title 

Validation of E. coli metabolic model 

Keywords 

Genome-scale metabolic model, Flux balance analysis, RB-TnSeq 

Abstract 
The E. coli genome-scale metabolic model (GEM) is a gold standard for the simulation of cellular 

metabolism. Experimental validation of model predictions is essential to pinpoint model 

uncertainty and ensure continued development of accurate models. Here we assessed the 

accuracy of the E. coli GEM using published mutant fitness data for the growth of gene 

knockout mutants across thousands of genes and 25 different carbon sources. We explored the 

progress of the E. coli GEM versions over time and further investigated errors in the latest 

version of the model (iML1515). We observed that model size is increasing while prediction 

accuracy is decreasing. We identified several adjustments that improve model accuracy 3 the 

addition of vitamins/cofactors and re-assignment of reaction reversibility and isoenzyme gene 

to reaction mapping. Furthermore, we applied a machine learning approach which identified 

hydrogen ion exchange and central metabolism branch points as important determinants of 

model accuracy. Continued integration of experimental data to validate GEMs will improve 

predictive modeling of the mapping from genotype to metabolic phenotype in E. coli and 

beyond. 
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Synopsis 

 
E. coli genome-scale metabolic model flux balance analysis (FBA) prediction accuracy was 

quantified with published experimental data assaying gene knockout mutant growth across 

different carbon sources. Insights into model development trends and sources of inaccuracy 

were revealed. 

• Model representational power (size) has been increasing over time, while accuracy has 

been decreasing. 

• Adding vitamins/cofactors to the model environment and re-assigning reaction 

reversibility and isoenzyme gene-to-reaction mapping improves correspondence 

between model predictions and experimental data. 

• Machine learning reveals hydrogen ion exchange and central metabolism branch points 

as important features in the determination of model accuracy. 

Introduction 
 The E. coli genome-scale metabolic model (GEM) represents one of the most well-

established compendia of knowledge on a single organism9s cellular metabolism. This model 

maps genotype to metabolic phenotype and can be used to mechanistically simulate E. coli 

growth under various gene knockouts and/or environmental chemical perturbations. The E. coli 

GEM was one of the first GEMs to be analyzed (Varma and Palsson 1994), and has undergone 

iterative curation for over 20 years (Reed et al. 2003; Feist et al. 2007; Orth et al. 2011; Monk et 

al. 2017). The E. coli GEM serves as a gold standard both for the reconstruction of new GEMs 

for other organisms and for benchmarking our ability to quantitatively simulate metabolism at 

the genome-scale (Machado et al. 2018; Zimmermann, Kaleta, and Waschina 2021; Henry et al. 

2010). 

 Despite success in mapping the E. coli genome to metabolic functions, uncertainty in 

GEM reconstruction and analysis still generally limits our ability to accurately simulate 

metabolic phenotypes (Bernstein et al. 2021). For example, specifications of gene-to-reaction 

mappings, or the chemical composition of the environment for specific experiments can differ 

from researcher to researcher or computational pipeline to pipeline (Mendoza et al. 2019). 

Furthermore, it is not always clear how to optimally simulate metabolic flux in the cell given 

regulatory and other non-metabolic constraints. As we continue to reconstruct GEMs for new 

organisms these issues are more prominent (Ankrah et al. 2021). 
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 Critical assessment of model prediction accuracy, using experimental data, is essential 

for pinpointing sources of model uncertainty and ensuring continued development of accurate 

models. One rich source of data that can be used to validate GEMs is high-throughput mutant 

phenotype measurements 3 as measured through random barcode transposon-site sequencing 

(RB-TnSeq) (Wetmore et al. 2015; Price et al. 2018). This approach utilizes the power of highly 

parallelized genetic library screens to assay the fitness of gene knockout mutants across an 

array of conditions. The data that is generated can be readily simulated by GEMs and has been 

used recently to curate metabolic models (diCenzo, Mengoni, and Fondi 2019; Ong et al. 2020), 

and benchmark several new automated GEM reconstruction pipelines (Machado et al. 2018; 

Zimmermann, Kaleta, and Waschina 2021). 

 In this work, we provide a critical assessment of the E. coli genome-scale metabolic 

model9s accuracy using high-throughput mutant phenotype data measuring the fitness of E. coli 

gene knockout mutants for thousands genes grown across environments containing 25 

different primary carbon sources (Wetmore et al. 2015; Price et al. 2018). We compare the size 

and accuracy of the four latest E. coli GEMs to outline progress in the field (Reed et al. 2003; 

Feist et al. 2007; Orth et al. 2011; Monk et al. 2017). We then perform a detailed investigation 

of the errors in the latest E. coli GEM (iML1515). We identify straightforward adjustments to 

the model that can improve accuracy and use a machine learning framework to suggest specific 

fluxes associated with incorrect model predictions. 

Results 

Progression of E. coli Genome-Scale Metabolic Models 

We calculated the accuracy of the E. coli GEM by comparing model predictions to 

previously published experimental data (Wetmore et al. 2015; Price et al. 2018). We generated 

model predictions for each experiment by knocking out the specified gene and adding the 

specified carbon source to the simulation environment and simulating a growth/no-growth 

phenotype with flux balance analysis (FBA). We then quantified the accuracy of the model 

based on the area under a precision recall curve (AUC) (Figure 1A, B; see methods for additional 

details). The precision and recall calculations for this metric focused on true negatives (defined 

as experiments with low fitness and model predicted gene essentiality). This metric was chosen, 

as opposed to the overall accuracy or receiver operating characteristic, because the highly 

imbalanced nature of the data set (far more positives than negatives; Figure 1A inset) suggests 

that the correct prediction of gene essentiality is more biologically meaningful than the 

converse prediction of gene non-essentiality. 

We began by comparing the accuracy of four versions of the E. coli GEM, which have 

been subsequently curated from 2003-2017 (iJR904, iAF1260, iJO1366, and iML1515)(Reed et 

al. 2003; Feist et al. 2007; Orth et al. 2011; Monk et al. 2017). We observed that the number of 

genes matched between the model and the data set has steadily increased (Figure 2 C). This 

indicates the increasing power of genome-scale metabolic models to capture metabolic 

functions. However, the accuracy of the models, as measured by the AUC, has steadily 

decreased (Figure 2 D). This slight decrease in accuracy points to the importance of balancing 

increases in model representational power with benchmarks of model accuracy. 
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Figure 1: Comparison of E. coli GEM accuracy for four subsequent versions of the model 

A) A histograms of model predictions and experimental fitness data are used to visualize the accuracy of 

the model. Predictions with flux balance analysis (FBA) biomass flux < 0.001 (no-growth) are included in 

the blue histogram, and >= 0.001 (growth) in the red histogram. The results for the iML1515 model are 

shown here. The histogram is cut off at 1000 counts, and the inset (cutoff at 10000 counts) shows the 

full histogram. 

B) The area under a precision recall curve (AUC) is used to quantify model prediction accuracy. The 

precision recall curve is calculated using the fitness value as a threshold to predict model essentiality. 

The iML1515 curve is shown. 

C) The number of genes matched between the model and the experimental data set across subsequent 

E. coli GEMs is shown. 

D) The accuracy of the models is shown across subsequent E. coli GEMs, as measured by area under 

precision recall curve. 
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Correction of Errors in the iML1515 Model 

 We sought to investigate the major sources of errors in the latest E. coli GEM (iML1515), 

and to implement model adjustments that could correct these predictions. Several key areas 

contributing to poor performance were apparent upon visualization and analysis of the model 

predictions (Figure 2, Supplemental Figure S1). 

First, many genes involved in vitamin and cofactor biosynthesis were leading to false 

negative predictions (Figure 2A). A total of 21 different genes involved in the biosynthesis of 

biotin, R-pantothenate, thiamin, tetrahydrofolate, and NAD+ were implicated. These genes, 

when knocked out of the model, create a growth defect. However, the experimental fitness of 

the corresponding gene knockouts was high. These predictions were corrected by adding the 

vitamins/cofactors to the simulation environment. They were either added to the extracellular 

(extracellular exchange) or cytoplasmic (intracellular exchange) compartment of the model, 

depending on if the model already contained a transporter and exchange reaction for the 

vitamin/cofactor. Addition of each individual vitamin/cofactor improved model accuracy, and 

addition of all led to substantial improvement in accuracy (Figure 2B). This result indicates that 

the identified vitamins/cofactors may be available to the mutants in the RB-TnSeq experiments. 

Possible mechanisms for the availability of vitamins/cofactors in the experiments 

include cross-feeding between the diverse library of E. coli mutants or carry-over within 

individual E. coli mutants. We examined an alternative set of experimental RB-TnSeq data, 

collected at 5 and 12 generations for E. coli grown in a minimal glucose medium (Price et al. 

2016). This data showed that the phenotypes for genes in the biosynthetic pathways of R-

pantothenate (panB, C), thiamin (thiC-H), and NAD+ (nadA-C) had weak negative fitness after 5 

generations, but fitness dropped off to be strongly negative after 12 generations. This pattern 

supports the carry-over hypothesis and suggests that increasing the number of experimental 

generations could correct these false negative predictions. Alternatively, genes in the 

biosynthetic pathways for biotin (bioA-D, F, H) and tetrahydrofolate (pabA, B) showed weak 

negative fitness at both 5 and 12 generations. After 12 generations these metabolites would be 

depleted by around a factor of 212 (>1000x). This suggests that carry-over alone could not 

maintain the observed growth in these mutants. A separate study 3 using the Keio collection of 

individual gene knockout mutants across 30 carbon sources 3 reported that knockouts of these 

genes in the biotin and tetrahydrofolate pathways were not essential when assayed on solid 

medium (where diverse neighboring colonies could in principle cross-feed metabolites) but 

were essential when grown in individual liquid cultures (Tong et al. 2020). This suggests that 

biotin and tetrahydrofolate (or precursors of these metabolites) are cross-fed between E. coli 

mutants. Further in line with the carry-over and cross-feeding hypotheses, it has been 

demonstrated that many vitamin/cofactor precursors are stable and persist for several 

generations in E. coli and other organisms, and that diverse auxotrophs9 growth is supported by 

co-culture with prototrophs (Hartl et al. 2017; Ryback, Bortfeld-Miller, and Vorholt 2022). 

Considering this evidence, the cross-feeding and carry-over hypotheses should be considered 

when assessing the accuracy of GEM reconstruction pipelines and implementing gap-filling 

approaches using high-throughput mutant phenotyping data. For example, if these metabolites 

are present in the experiments but not added to the simulation environment it could lead to 

the addition of new gap-filled biosynthetic reactions that introduce false positive predictions in 

more well controlled environments. 
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Next, we focused on genes that were contributing to false positive predictions. These 

did not cause a growth defect when knocked out of the model but had low experimental fitness 

values. Three genes in the L-serine biosynthesis pathway (serA, serB, and serC) were implicated 

(Figure 2C). Through examination of the metabolic flux in the gene knockout models it was 

observed that L-serine was being produced from glycine by a reversible reaction (GHMT2r, 

glycine hydroxymethyltransferase). Setting this reaction to be irreversible corrected the 

essentiality predictions for the three genes in the L-serine biosynthetic pathway and improved 

the overall accuracy of the model (Figure 2D). This correction points to reaction reversibility as 

a key variable in curating GEMs to match experimental data. The reaction in question here has 

been proposed to run in reverse as a possible route for L-serine biosynthesis from glycine. 

However, the function of this reaction for this purpose is not firmly established (Price, 

Deutschbauer, and Arkin 2020). 

Another set of genes that were observed to contribute to false positive predictions were 

genes involved in isoenzyme gene-to-reaction mappings (where there is an <or= relationship in 

the Boolean mapping of genes to a reaction). Eight different isoenzymes mapping to ten 

different reactions were among the lowest fitness genes for which the model simulated a 

growth phenotype (Figure 2E). Reassigning the gene-to-reaction mapping for each of these 

isoenzyme/reaction pairs, such that each gene was solely responsible for the reaction, 

improved model performance for all but one pair (metC, CYSDS). The metC gene is mapped to 

two reactions as an isoenzyme (CYSDS and CYSTL). Only CYSTL is essential in minimal carbon 

medium. Adjusting the isoenzyme mapping for the essential reaction (CYSTL) improved model 

accuracy but adjusting the mapping for the CYSDS had no effect on accuracy. Reassigning all 

isoenzyme gene-to-reaction mappings (excluding metC, CYSDS) led to a further increase in 

model accuracy (Figure 2F). This correction suggests that isoenzyme representation is an 

important area for continued curation of GEMs. Isoenzymes can be difficult to properly account 

for in metabolic models, as different enzymes may be expressed under different regulatory 

states (Jacobs et al. 2017; Ihmels, Levy, and Barkai 2004). Thus, representations of isoenzymes 

that do not account for regulatory information can generate overly promiscuous metabolic 

networks leading to false positive predictions. One example is shown in Figure 4C where dmlA 

can replace the function of leuB. However, dmlA expression is induced by the presence of D-

malate (greater than 50-fold relative to expression in L-malate, D-glucose, or glycerol) (Stern 

and Hegre 1966). Thus, dmlA would not rescue leuB mutants in many conditions. 

Altogether, the three corrections mentioned above, none of which is carbon source 

specific, substantially improved overall model prediction accuracy (Figure 2G, H, Supplemental 

Figure S2). These corrections nearly eliminated false negative predictions and substantially 

reduced false positive predictions. Importantly, they point to several specific areas of GEM 

reconstruction where adjustments can be made to improve correspondence between model 

predictions and experimental data. 
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Figure 2: Correction of errors in the latest E. coli GEM (iML1515) 

A) Adding vitamins and cofactors to the model environment corrected false negatives (high fitness, 

model essential). Several genes in vitamin/cofactor biosynthesis pathways were among the highest 

average fitness with model predicted essentiality across all carbon sources. These genes are listed, 

grouped by their biosynthetic pathway. Vitamins/cofactors are further grouped into extracellular 

exchange and intracellular exchange based on whether the model contained a transporter for the 

associated extracellular metabolite. These vitamins/cofactors were added to the model extracellular or 

intracellular space through existing or newly added exchange reactions. 

B) The model prediction accuracy, with vitamins/cofactors added, is displayed as the fitness histogram.  

The area under the precision recall curve (AUC) is listed in the title. The original histogram, without 

vitamins/cofactors added, is shown as red and blue outlines. The addition of vitamins/cofactors 

corrected many false negative predictions, as seen by the decrease in the component of the blue 

histogram with high fitness values. 

C) L-serine biosynthesis gene essentiality predictions are corrected by adjusting the reversibility of the 

GHMT2r reaction. Three genes in the L-serine biosynthetic pathway (serA, serC, and serB) had incorrect 

false positive predictions (low fitness, model non-essential). Negative flux through the GHMT2r reaction 

creates an alternative route for L-serine biosynthesis. Adjusting this reaction to be irreversible makes 

the L-serine biosynthetic genes essential and corrects the false positive predictions. 

D) The model prediction accuracy, with the GHMT2r reaction made irreversible, is displayed as the 

fitness histogram. The area under the precision recall curve (AUC) is listed in the title. The original 

histogram, with GHMT2r reversible, is shown as red and blue outlines. The adjustment of GHMT2r 

reversibility corrected false positive predictions as shown by the slight decrease in the red histogram 

below the red outline for low fitness values. 

E) Adjustment of isoenzyme gene-to-reaction mapping corrected false positive predictions for several 

genes. Isoenzyme genes, with low fitness and model predicted non-essentiality, are listed with an arrow 

pointing to the reactions for which they are an isoenzyme. Gene-to-reaction mapping was adjusted to 

make these isoenzymes solely responsible for their corresponding reactions. An example where the lueB 

gene is mapped to the IPMD reaction by removing the alternative mapping of the dmlA gene to this 

reaction is shown. Adjusting the gene-to-reaction mapping improved model prediction accuracy for all 

isoenzymes, excluding metC to CYSDS which had no impact (shown in red). 

F) The model prediction accuracy, with adjusted isoenzyme gene-to-reaction mapping, is displayed as 

the fitness histogram. The area under the precision recall curve (AUC) is listed in the title. The original 

histogram, with original isoenzyme gene-to-reaction mapping, is shown as red and blue outlines. The 

adjustment of isoenzyme mapping corrected false positive predictions as shown by the slight decrease 

in the red histogram below the red outline for low fitness values. 

G) The precision recall curve is shown for the original uncorrected model, each of the above corrections, 

and with all the corrections combined. The area under the precision recall curves is listed in the legend 

to the right of the figure. 

H) The model prediction accuracy, with all corrections combined, is displayed as the fitness histogram. 

The area under the precision recall curve (AUC) is listed in the title. The original histogram, with no 

corrections, is shown as red and blue outlines. The corrections led to a decrease in both false positive 

and false negative predictions.  
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Carbon Source Specific Predictions 

 The dataset utilized here assays 25 different carbon sources, providing insight across 

diverse carbon utilization pathways. We explored the carbon source specific accuracy of the 

corrected iML1515 model by calculating the area under the precision recall curve for predicting 

gene knockout phenotypes for each separate carbon source (Figure 3A). We observed that 

gluconeogenic carbon sources and other carbon sources that enter metabolism below glycolysis 

appeared to have lower accuracy than glycolytic carbon sources. This may indicate that our 

representation of carbon source utilization pathways is more accurate for glycolytic substrates 

than for other alternative pathways. Additionally, we observed that carbon source specific gene 

knockout model essentiality predictions were more likely to occur in genes coding for reactions 

that are near the specified carbon source in the metabolic network (Figure 3B). This should be 

expected as genes in the pathway for utilization of specific carbon sources are likely to be 

important for growth on those substrates. It suggests that these genes are the main 

contributors to carbon source specific predictions rather than global metabolic processes. 

 

 
Figure 3: Carbon source specific metabolic model predictions 

A) The accuracies of the model predictions (area under the precision recall curve, with all corrections) 

for each specific carbon source are shown. 

B) The distance along the metabolic network between the carbon source and knocked out gene is 

shown for different subsets of experiments. The distance is calculated as the number of reactions from 

carbon source to the closest reaction for which the gene is essential (see methods for additional details). 

The distance is plotted as a violin plot with short bandwidth filter to show the distribution of distances 

at each integer value. The <all= subset of data shows the distribution of distances for all experiments 

involving gene knockouts that disrupt at least one reaction. The <model no-growth= subset shows the 

distribution of experiments with simulated no-growth. The <carbon specific no-growth= subset shows 

the distribution of experiments where there was simulated no-growth that was carbon source specific 

(no growth in 80% of carbon sources or less). 
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Machine Learning Suggests Flux Profiles Associated with Incorrect Predictions 

 Genome-scale metabolic modeling provides additional insight beyond a prediction of 

growth/no-growth. Each simulation, where a growth phenotype is predicted, simultaneously 

predicts the metabolic flux through every reaction in the network. We sought to use this flux 

information to gain deeper insight into model accuracy. We began by calculating the metabolic 

fluxes for each simulation using parsimonious flux balance analysis (Lewis et al. 2010). 

Visualization of the flux space for each simulation, through principal component analysis, 

revealed centers for each carbon source wild-type flux distribution surrounded by clouds of the 

gene knockout simulations grown with that carbon source (Figure 4A). The Euclidean distance 

of the knockout flux vector from the wild-type flux had a slight negative correlation with the 

experimental fitness value (Figure 4B). This indicated a weak relationship suggesting that gene 

knockouts that perturb wild-type flux more greatly led to larger fitness defects. 

 To gain additional insight into which flux profiles are contributing most to the accuracy 

of the model, we used a machine learning approach. We used a gradient boosting decision tree 

framework, lightGBM (Ke et al. 2017), to classify experiments as true positives or false positives 

based on their simulated flux profile. Our analysis here focused on positive predictions, as 

negative predictions (model simulated no-growth) do not have corresponding fluxes to use as 

the input for the model. The model accuracy was assessed for repeated train/test splits with 

cross-validation on all experiments (carbon source and gene combinations) that were held out 

of the training set, and on an orthogonal test set consisting only of experiments with new 

carbon sources and genes that were not used in the training set (Figure 4C, Supplemental 

Figure S3). The orthogonal test set provides a measure of the model9s ability to capture 

metabolic processes that generalize to unseen carbon sources and genes. While this machine 

learning approach had weak performance, it was able to classify samples better than random, 

and capture general metabolic processes (Figure 4C). 

Next, we utilized Shapley additive explanations, SHAP values (Lundberg and Lee 2017; 

Lundberg et al. 2020), to quantify the importance of different fluxes in the machine learning 

(Figure 4D). This analysis revealed flux distributions that were associated with correct or 

incorrect predictions of the model. Several notable patterns are highlighted (Supplemental 

Figure S4). The most important feature was the flux of hydrogen ions into or out of the cell. The 

machine learning model suggested that a hydrogen ion exchange flux close to 0 was associated 

through SHAP with correct model predictions, a large positive hydrogen ion exchange (ions 

leaving the cell) was associated with incorrect model predictions, and a large negative hydrogen 

ion flux (ions entering the cell) was associated strongly with incorrect model predictions 

(Supplemental Figure S4 A). Several of the other most informative features were also involved 

in hydrogen ion transfer between the periplasmic and cytoplasmic compartments of the model. 

The NAD(P) transhydrogenase (THD2pp) uses a flux of hydrogen ions from the periplasm to 

cytoplasm to reduce NADP+ to NADPH using NADH. High flux through THD2pp was associated 

with incorrect model predictions. Two symporter reactions (PROt2rpp and GLUt2rpp) transport 

either L-proline or L-glutamate from the periplasm to cytoplasm along with a hydrogen ion. 

High negative flux through these reactions (transporting amino acids and hydrogen ions from 

the cytoplasm to the periplasm) was associated with incorrect model predictions. The flux 

through both of these reactions was also clustered (strongly covaried across simulations) with a 

sodium ion symporter that carried the opposite flux transporting the amino acid and a sodium 
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ion back into the cytoplasm. Thus, the net flux of these reaction clusters is the export of 

hydrogen ions from cytoplasm to periplasm and import of sodium ions. To further address the 

hydrogen ion flux we re-simulated flux balance analysis growth predictions while fixing the 

hydrogen ion flux (ranging between 0 and 10) (Supplemental Figure S5). Fixing the hydrogen ion 

flux to a small positive value increased model accuracy by making genes in the succinate 

dehydrogenase complex (sdhA-D) essential on acetate and genes in the cytochrome bo 

complex (cyoA-D) essential on glycolate. Further constraining the hydrogen ion flux to higher 

values sharply decreased model accuracy by introducing false negative predictions. Beyond the 

corrections identified by tuning the hydrogen ion flux, there may be more fundamental 

corrections to GEMs that can be implemented through a more careful representation of 

hydrogen ion fluxes and cross-membrane gradients. 

There were also several reactions involved at branch points in central carbon 

metabolism that were implicated in the SHAP feature importance analysis. Increased flux 

through pyruvate dehydrogenase, directing pyruvate to the TCA cycle, was associated with 

correct model predictions (Supplemental Figure S4 B). Increased flux of glyceraldehyde 3-

phosphate through lower glycolysis was associated with correct predictions, while negative flux 

through lower glycolysis was associated with incorrect predictions (Supplemental Figure S4 C). 

This result is in line with the previous observation that gluconeogenic carbon sources had lower 

accuracy. Alternatively, increased flux of glyceraldehyde 3-phosphate through transaldolase in 

the pentose phosphate pathway was associated with incorrect predictions (Supplemental 

Figure S4 D). All together, these results suggest that hydrogen ion flux, as well as several major 

branch points in central carbon metabolism are global determinants of model prediction 

accuracy. 
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Figure 4: Machine learning with metabolic fluxes to investigate E. coli GEM (iML1515) false positive 

predictions 

A) The principal component analysis plot of experiments grouped by parsimonious flux balance analysis 

simulated metabolic flux is shown. Only experiments with simulated biomass flux > 0.001 are included. 

Wild-type carbon source fluxes (w/ no gene knockouts) are shown as red points. Experiment points are 

colored according to experimental fitness value. 

B) The plot of experimental fitness value as a function of the Euclidean distance of simulated fluxes from 

the wild-type fluxes on the same carbon source is shown. A slight negative correlation is seen between 

fitness and distance (Pearson r = -0.175). The purple line shows a linear fit to the data, and the red line 

shows a lowess fit. 

C) The cross validated accuracy of the machine learning algorithm using simulated fluxes to classify 

experiments as false positives (fitness values < -2) or true positives (fitness values >= -2) is shown. Only 

experiments with simulated growth are used here since the simulated fluxes are used as the input for 

the machine learning algorithm. Precision recall area under the curve is calculated for prediction of false 

positives. The training set consists of data points from a random subset of 80% of carbon sources and 

80% of genes (64% of samples). The full cross-validation (CV) test set contains all remaining data points 

(36% of samples). The unseen carbon/gene cross-validation set consists of data points that do not 

involve any of the carbon sources or genes in the training set (4% of samples). The permuted cross-

validation shows prediction accuracy with experimental fitness values for the test set randomly 

permuted. Violin/scatter plots and means (red line) are shown for 100 random train/test splits. 
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D) The feature importance for prediction of data points as true positives calculated through SHAP is 

shown. Features are sorted by mean absolute SHAP value. For each feature, each sample is shown as a 

colored point, with the SHAP value on the x-axis and the feature value displayed through the color. 

When high feature value correlates with high SHAP value, this indicates that high flux through this 

feature is associated with correct model predictions (true positives). Inversely, high feature values 

correlating with low SHAP values indicates that high flux through this feature is associated with incorrect 

model predictions (false positives). SHAP values are averaged across 100 random train/test splits. 

Feature reaction index, identifier, and name are shown. Each feature corresponds to a representative 

flux from a flux cluster (see methods for additional information).  
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Discussion 
In this work, we used high-throughput mutant fitness data to conduct a comprehensive 

analysis of the accuracy of the E. coli GEM. The E. coli GEM is a gold standard for metabolic 

model curation, and the dataset we utilize for validation is one of the largest consistent data 

sets quantifying microbial phenotypes available. We identify several adjustments that can be 

made to the latest iML1515 metabolic model to improve prediction accuracy. These 

adjustments highlight including vitamins/cofactors in the simulation environment, and curating 

reaction reversibility and isoenzyme gene-to-reaction mapping as important areas of 

uncertainty in GEM reconstruction and simulation. Furthermore, our carbon source specific and 

machine learning results point to gluconeogenic carbon sources, hydrogen ion flux, and several 

key branch points in central metabolism as areas of metabolism where GEM predictions 

warrant further scrutiny. 

It is important to note that the corrections we implement in our analysis are not 

necessarily the only model adjustments that could correct the false model predictions we have 

identified. In the addition of vitamins/cofactors to the model simulation environment, it is 

possible that alternative precursors, rather than the vitamins/cofactors themselves, may be the 

metabolites being cross-fed or carried-over. For example, because the only genes implicated in 

the tetrahydrofolate analysis were pabA and pabB it is likely that an upstream precursor such as 

4-aminobenzoate (PABA) is cross-fed rather than tetrahydrofolate. Next, while we believe the 

vitamin/cofactor predictions can be explained by the cross-feeding and carry-over hypotheses, 

other examples of false negative predictions may alternatively be due to missing or unknown 

biosynthetic reactions that need to be gap-filled. For the false positive predictions, corrected by 

re-assignment of reaction reversibility and isoenzyme mapping, it is possible that corrections to 

alternative reactions further up in the pathways of interest could correct these errors. Moving 

forward, it will be important to establish a systematic and quantitative method for scoring the 

likelihood of different model corrections based on correspondence with experimental data, 

prior knowledge from the literature, and parsimony. Such a method could be implemented in a 

Bayesian framework to formalize the reconstruction/curation of GEMs. Furthermore, curation 

of GEMs with experimental data and literature evidence should embrace a <deep curation= 

approach where different sources of evidence that converge to inform a particular model 

parameter are cross-validated against each other (Macklin et al. 2020). Our work sets the stage 

for the further development of such systematic and automated methods to reconstruct and 

curate GEMs based on experimental data and suggests several areas where such approaches 

could be fruitfully applied. 

 Our finding that E. coli GEM size has been increasing over time while accuracy has been 

decreasing points towards the importance of the metrics used to assess progress in GEM 

curation. Model accuracy has been addressed in past curations of GEMs, including for E. coli. 

The original iML1515 publication assessed model accuracy using a similar gene essentiality data 

set to the one used in this work. In this previous work, the authors measured the growth of the 

Keio collection of E. coli mutants across 16 different carbon sources and compared the results 

to iJO1366 and iML1515 model predictions (Monk et al. 2017). The reported overall accuracies 

(iML1515 accuracy: 93.4%, iJO1366 accuracy: 89.9%) are close to the overall accuracy that we 

calculate from our dataset when we set an experimental growth/no-growth threshold of fitness 
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to -2 (iML1515 accuracy: 93.8%, iJO1366 accuracy: 92.8%). This overall accuracy metric does 

show an improvement from the iJO1366 model to the iML1515 model. However, we believe 

that the precision recall AUC metric we used in this work is more biologically meaningful as it 

emphasizes model accuracy in predicting gene essentiality. For example, the addition of a gene 

to the model with no metabolic function (that has no impact on the model or experiments) 

would yield an additional true positive prediction for each carbon source. This non-functional 

gene would be weighted equally with a gene that is essential for growth across all carbon 

sources under the overall accuracy metric, while the addition of the non-functional gene would 

have little impact on the precision-recall AUC metric. All together, we believe that an increased 

focus on GEM prediction accuracy, and the metrics used for accuracy evaluation, will help 

enable GEMs to deliver on the promise of predicting genotype from phenotype. 

One exciting idea for the development of the field in the direction of improved 

predictive modeling is the implementation of a community competition centered on critical 

assessment of microbial phenotype predictions. A community survey of metabolic modeling 

and microbiome researchers recently highlighted model trust/validation as an important focus 

for moving the field forward, and proposed such a community initiative (Ankrah et al. 2021). 

This initiative could serve both to motivate standardized GEM validation and to coordinate data 

collection and organization. As we move forward, we should also keep in mind that the 

development of models of cellular physiology that go beyond metabolism will likely be 

necessary. While GEMs currently offer an appealing balance between predictive power and 

complexity, expanding models to deal with gene regulation, and other cellular processes has 

the potential to further improve prediction accuracy for both metabolic and non-metabolic 

phenotypes (Goldberg et al. 2018). In any case, standardized assessments of model prediction 

accuracy (with large, curated databases of experimental data) will continue to be essential for 

the successful application of computational modeling. 

Materials and Methods 
 All the methods used throughout this analysis are documented in a reproducible Python 

Jupyter Notebook which is available on GitHub at github.com/dbernste/E_coli_GEM_validation. 

Metabolic model adjustments and simulations were conducted using COBRApy (Ebrahim et al. 

2013). Data analysis, visualization, and machine learning were conducted using: jupyterlab 

(Kluyver et al. 2016), matplotlib (Hunter 2007), numpy (Harris et al. 2020), pandas (McKinney 

2010), scipy (Virtanen et al. 2020)[REF], Scikit-learn (Pedregosa et al. 2011), lightgbm (Ke et al. 

2017), and SHAP (Lundberg et al. 2020). 

 

Data Processing 

 Experimental RB-TnSeq data was collected from the online fitness browser 

fit.genomics.lbl.gov (Price et al. 2018). The data from E. coli BW25113 was used for this 

analysis. The fitness values (rather than the t scores) were used to represent the fitness, as 

preliminary analyses indicated that these scores corresponded more closely with model 

predictions. Genes were matched to the E. coli GEM through their <sysName= which 

corresponds to their BiGG database identifiers (King et al. 2016). Carbon sources were matched 

by manually searching the BiGG database for metabolite identifiers, other media components 
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were similarly matched to the BiGG database. The two carbon sources sucrose and mannitol 

were excluded from this analysis because of known issues in the experimental preparation of 

their media. The fitness data for sucrose has since been removed from the fitness browser, and 

data for mannitol has been replaced with corrected experimental data (Price, Deutschbauer, 

and Arkin 2022). All carbon source experiments were conducted in duplicate in the original 

data. The fitness scores for these duplicates were averaged for comparison to metabolic model 

predictions. Preliminary analysis indicated that this averaging slightly improved correspondence 

between fitness values and model predictions. 

 

Genome-Scale Metabolic Model Simulation and Adjustment 

 Metabolic models were downloaded from the BiGG database in sbml format (King et al. 

2016). Models were loaded and analyzed using COBRApy (Ebrahim et al. 2013). Models were 

matched to media and carbon source metabolites and exchange bounds were adjusted to add 

metabolites to the environment. Exchange lower bounds were set to -1000 [mmol/(gdw*hr)] as 

a default and -10 [mmol/(gdw*hr)] for all carbon sources. Models were adjusted to account for 

differences between the experimental BW25113 E. coli strain and the model MG1655 strain by 

removing several genes and their corresponding reactions that are not present in the BW25113 

strain (Grenier et al. 2014). Models were further adjusted to remove non-conditionally essential 

genes from the analysis (genes that were essential when all possible exchanges have lower 

bound set to -1000). Many of these non-conditionally essential genes were already removed 

from the fitness data as they do not have reliable phenotype measurements in RB-TnSeq 

experiments due to low representation in the initial library. Therefore, it is possible that the 

remaining non-conditionally essential genes, matched between model and dataset, could be 

false negative predictions. We chose to remove all these genes from our analysis for 

consistency. Model simulations were conducted with model.slim_optimize, which provided 

substantial speed improvements when only recording the biomass flux, or with parsimonious 

FBA through cobra.flux_analysis.pfba to record all simulated fluxes (Lewis et al. 2010). A 

biomass flux of 0.001 [gdw/(gdw*hr)] was used throughout this analysis as a growth/no-growth 

cutoff. 

 

Model Accuracy Calculation 

 Model accuracy was calculated using the area under a precision recall curve. The model 

simulated FBA biomass flux data was binarized to a growth/no-growth phenotype based on a 

cutoff of 0.001 (no-growth < 0.001, growth >= 0.001). A sliding threshold on the fitness value 

was then used to generate a precision recall curve. The positive class was set to simulated 

essentiality (no-growth phenotype). The area under this precision recall curve was used to 

quantify model accuracy. Precision recall curves were calculated using sklearn.metrics.pre_rec 

and area under the curve was calculated using sklearn.metrics.auc. 

 

Carbon Source Distance Analysis 

 The distance between carbon sources and genes was calculated using the genome-scale 

metabolic model. The model was converted to a bi-partite graph with metabolites and 

reactions as nodes. An edge was placed between any metabolite and reaction where that 
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metabolite was a reactant or product for that reaction (non-zero stoichiometry), and an 

adjacency matrix was constructed for the metabolic network. From this adjacency matrix, high 

degree <hub= nodes were removed. Hub nodes were defined as any node with more than 50 

connections and consisted of central metabolites such as hydrogen and water, cofactors such 

as ATP and NAD+, and the E. coli Biomass reactions. Pyruvate was also a hub node but was left 

in the network due to its role as a carbon source in this analysis. This hub-less network was 

then used to calculate the carbon source gene distance. The distance was calculated as the 

number of reactions traversed from the extracellular carbon source to the nearest reaction that 

was essentially encoded by the gene (a gene knockout removed the reaction). For example, 

distance of 0 corresponded to an essential reaction directly involving the extracellular carbon 

source, while distance of 1 corresponded to an essential reaction involving any metabolite 

connected to a reaction of distance 0. Distances on the metabolic network were calculated 

using the scipy.csgraph.shortest_path method implementation of Dijkstra9s algorithm. 

 

Machine Learning and Feature Importance 

 Machine learning (ML) was conducted to classify simulations with biomass flux into false 

positives (experimental fitness < -2) or true positives (experimental fitness >= -2). A lightgbm 

classifier was used. Flux vectors, quantifying the simulated flux across all reactions in the 

metabolic model (2714 total fluxes), were used as the input for the ML algorithm. Fluxes with 

variance across samples less than 10-7 were discarded form the analysis (leaving 579 total 

fluxes). Fluxes were clustered into groups of fluxes with covariation greater than 0.99 across 

samples (leaving 172 flux clusters). One representative flux from each cluster was used for the 

ML input. ML accuracy was assessed by 100 repeated train/test splits. For each train/test split a 

random subset of samples from 80% of the carbon sources and 80% of the genes was selected 

as the training set. Cross-validated accuracy was assessed on the full set of test samples as well 

as a smaller set of samples with no overlapping carbon sources or genes in the training set. 

Model performance was explored for varying number of leaves in the ML model, an important 

tuning parameter for over-fitting. In the final model 5 leaves were used, which balanced full 

cross-validation with new carbon/gene cross-validation. Other parameters were set to the 

lightgbm classifier default values (boosting_type='gbdt', num_leaves=5, max_depth=-1, 

learning_rate=0.1, n_estimators=100, subsample_for_bin=200000, objective=None, 

class_weight=None, min_split_gain=0.0, min_child_weight=0.001, min_child_samples=20, 

subsample=1.0, subsample_freq=0, colsample_bytree=1.0, reg_alpha=0.0, reg_lambda=0.0, 

random_state=None, n_jobs=None, importance_type='gain'). Feature importance was 

calculated using Shapley additive explanations (SHAP) through shap.TreeExplainer (Lundberg et 

al. 2020). SHAP values shown in the text are for the classification of samples as true positives 

and averaged across train/test splits. 
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Supplemental Figures 

 
Supplemental Figure S1: Experimental fitness and simulation results 

The entire data matrix of genes by carbon sources is visualized. Color indicates experimental fitness 

value (dark blue: low, yellow: high), a red dot indicates simulated no-growth (biomass flux < 0.001). 
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Supplemental Figure S2: Experimental fitness and post-correction simulation results 

The entire data matrix of genes by carbon sources is visualized. Color indicates experimental fitness 

value (dark blue: low, yellow: high), a red dot indicates simulated no-growth after implementing 

corrections (biomass flux < 0.001). 
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Supplemental Figure S3: Machine learning training and cross-validation 

A) The schematic for training and test set partitioning is shown. The data is structured as a matrix of 

carbon sources and genes (with a vector of metabolic fluxes for each element in this matrix). The test 

error was calculated in two different ways. 1) For all held out experiments in a full cross-validation (blue 

outline). 2) For new gene/carbon sources that were unused in the training set (red outline). 

B) The area under the receiver operating curve accuracy of the machine learning model for different 

numbers of leaves (an important parameter to control overfitting) is plotted for 100 random train/test 

splits. Mean +/- standard error is shown. 

C) The area under the precision recall curve accuracy of the machine learning model for different 

numbers of leaves is plotted for 100 random train/test splits. Mean +/- standard error is shown. 
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Supplemental Figure S4: SHAP value dependency plots for select flux features 

A) Hydrogen ion exchange and transport 

B) Pyruvate dehydrogenase 

C) Lower glycolysis 

D) Transaldolase 
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Supplemental Figure S5: Model prediction accuracy with fixed hydrogen ion flux 

Fixing the bounds of hydrogen ion flux to small positive values (dots show tested values) leads to an 

optimal value that improves model prediction performance. The first uptick in performance comes from 

the correction of genes in the succinate dehydrogenase complex (sdhA-D) becoming essential for 

growth on acetate (red dot). The second level of improved prediction performance (which has slightly 

lower AUC than the red dot) additionally causes genes in the  cytochrome complex (CyoA-D) to become 

essential for growth on glycolate (yellow dot). Further increases in the fixed hydrogen ion flux sharply 

decrease model prediction performance by adding false negative predictions. 
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