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Abstract

Evolution-based deep generative models represent an exciting direction in
understanding and designing proteins. An open question is whether such
models can represent the constraints underlying specialized functions that
are necessary for organismal fitness in specific biological contexts. Here, we
examine the ability of three different models to produce synthetic versions of
SH3 domains that can support function in a yeast stress signaling pathway.
Using a select-seq assay, we show that one form of a variational autoencoder
(VAE) recapitulates the functional characteristics of natural SH3 domains
and classifies fungal SH3 homologs hierarchically by function and phylogeny.
Locality in the latent space of the model predicts and extends the function
of natural orthologs and exposes amino acid constraints distributed near and
far from the SH3 ligand-binding site. The ability of deep generative models
to specify orthologous function in vivo opens new avenues for probing and
engineering protein function in specific cellular environments.
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Introduction1

An emerging approach for understanding and designing synthetic proteins2

is learning the design principles of natural proteins evolved through varia-3

tion and natural selection. These principles are encoded within ensembles of4

homologous amino acid sequences and define the mapping from primary se-5

quence to multifaceted protein phenotypes, including foldability, biochemical6

activities, and organismal fitness in a natural biological context [1, 2, 3, 4, 5].7

Evolution-based algorithms that learn these rules have the potential to gen-8

erate new hypotheses for protein mechanism, and to permit the design of9

diverse synthetic variants with novel functions, with powerful implications10

for medicine, biotechnology, chemical engineering, and public health [6].11

Historically, protein design typically involve physics-based scoring func-12

tions that adopt tertiary structure as the central object to bridge sequence13

to function [7, 8, 9] or involve directed evolution to learn a sequence to14

function mapping through iterative rounds of mutation and functional selec-15

tion [10, 11, 12]. In recent years, advances in deep machine learning have16

driven exciting developments in machine learning-assisted directed evolution17

(MLDE) [6, 13, 14, 15, 16, 17] that train models to learn the sequence to func-18

tion map. The central idea of these strategies is to replace a blind mutational19

search through the vast gulf of protein sequence space with a model-guided20

search, and to eliminate the need for the direct use of structural informa-21

tion by implicitly representing the underlying physics in the model-learned22

parameters. The learned models provide a new understanding of the organiz-23

ing principles of natural proteins at both in terms of general “linguistic rules”24

underpinning the patterns amino acids in all natural proteins and the local25

and global epistatic interactions between amino acids in individual proteins26

that provide for protein phenotypes [18, 19, 5, 20, 21, 22, 23, 24, 25].27

Two MLDE approaches that have demonstrated particular promise are28

direct coupling analysis (DCA) and deep generative modeling (DGM). The29

essence of DCA is to start with a multiple sequence alignment (MSA) of a30

protein family and infer a generative model representing the intrinsic con-31

straints on amino acids (the ”one-body” terms) and the pairwise interactions32

between amino acids (the ”two-body” terms) [20, 26, 21, 24, 27]. For the cho-33

rismate mutase enzyme family, recent work showed that the DCA model is34

sufficient to design of synthetic variants that function in a manner equiva-35

lent to natural enzymes both in vitro and in vivo, in E. coli cells [5]. The36

relative simplicity of the constraints imposed by the DCA model led to con-37
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siderable sequence divergence in the synthetic proteins, demonstrating access38

to an enormous space of functional proteins consistent with the evolutionary39

constraints.40

The DCA model is relatively simple because it is inferred only from the41

first- and second-order statistics of sequence alignments. Given this, it is42

impressive that it can suffice to capture the design constraints for specifying43

proteins that can fold and function in their natural cellular context. How-44

ever, it is also true that the chorismate mutases largely represent a family of45

orthologs - extant proteins that are descended by speciation events and are46

expected to share the same function across species. Indeed, a large fraction47

of homologous chorismate mutases operate in E. coli in the specific experi-48

mental conditions in which the design was carried out [5]. Such consistency49

of function in a protein family likely represents a simpler problem for infer-50

ence of generative models. A deeper and more general test of evolution-based51

generative models would come from a study of a family of paralogs - proteins52

that arose through gene duplication events and typically have diverged to53

carry out distinct and specialized functions. Indeed, paralogs of a protein54

family are thought to under strong selection to be functionally orthogonal55

with respect to each other [28], a strategy to ensure specificity in signaling56

[28, 29] and metabolic [30] pathways. These observations raise the question57

of whether it is even possible to make generative models for specific orthologs58

given input data comprising the full spectrum of functional divergences in59

most protein families.60

An ideal model system to investigate this question is the Src homology61

3 (SH3) family of protein interaction modules. SH3 domains are small all-62

beta folds that bind to type II poly-proline containing peptides of the form63

N-R/KXXPXXP-C or N-XPXXPXR/K-C [31](Fig. 1A) and mediate diverse64

signaling functions in cells [32]. For example, a C-terminal SH3 domain in the65

Sho1 transmembrane receptor in fungi (Sho1SH3) mediates the response to66

external osmotic stress through binding to a polyproline ligand in the Pbs267

MAP kinase (Fig. 1B). The Sho1 pathway has been conserved within the68

fungal kingdom through many speciation events, creating a diverse ensemble69

of extant Sho1SH3 ortholog sequences. In addition, duplication events have70

occurred during natural evolution, creating many paralogous SH3 domains71

that have diverged to acquire distinct and non-overlapping ligand specifici-72

ties. For example, in S. cerevisiae, the Sho1SH3 is the only SH3 domain73

amongst 26 other paralogous domains in genome that can support osmosens-74

ing in the Sho1 pathway [28]. This exclusivity in vivo is recapitulated in75
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direct binding assays with the Pbs2 ligand, demonstrating that the speci-76

ficity is directly encoded in the Sho1SH3 amino acid sequence. For all these77

reasons, the SH3 domain provides a powerful system to test the generative78

power of evolution-based models.79

Here, we examine the ability of three modern machine-learning approaches80

to design of ”synthetic orthologs” of Sho1SH3 starting from sequences com-81

prising the full SH3 family. By synthetic orthologs, we mean a designed82

proteins that span the same diversity as natural Sho1SH3 orthologs but that83

are functionally indistinguishable, both in vitro and in vivo. We show that84

one method (InfoVAE [33]) learns a low-dimensional ”latent” space that hier-85

archically organizes SH3 homologs by function and phylogeny. Furthermore,86

we show that locality in the latent space is both necessary and sufficient to87

design synthetic Sho1SH3 orthologs that bind Pbs2 and support osmosensing88

in S. cerevisiae. Interestingly, constraints on orthology are spread both near89

and far from the SH3 binding pocket, including many unconserved, solvent-90

exposed regions that would not be conventionally obvious. The capacity to91

learn the rules for ortholog function from a functionally diverse protein fam-92

ily provides a platform for a deeper understanding of protein function in a93

natural biological context.94

Results and Discussion95

Evolution-based deep generative models96

We began by constructing a multiple sequence alignment (MSA, see Sup-97

plementary Material) of 5299 SH3 homologs, including 3647 fungal domains98

and 1652 non-fungal domains. The alignment includes all 27 unique paralog99

groups found in fungal species (from > 150 genomes), representing a deep100

sampling of the evolutionary record of the fungal kingdom. Sho1SH3 orthologs101

were annotated by fusion to the transmemnbrane portions of the Sho1 re-102

ceptor rather than by direct alignment scores; thus detection of orthology103

is independent of sequence similarity within the SH3 domain. This MSA104

comprises the input data to algorithms that compress the information con-105

tained within the natural sequences into a low-dimensional model (Fig. 1C).106

If the compression captures the essential constraints on folding and binding107

specificity, it should be possible to design diverse synthetic orthologs of SH3108

domains (e.g. Sho1SH3) that reproduce the activity and diversity of natural109

orthologs (Fig. 1C).110
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Figure 1: Evolutionary-based deep generative models of SH3 domains in the

context of the yeast high-osmolarity pathway. (A) A structure of the S. cerevisiae
Sho1SH3 domain (PDB 2VKN) in complex with the Pbs2 peptide ligand (yellow stick
bonds). SH3 domains are protein interaction modules that bind to polyproline containing
target ligands. (B) Binding between the Sho1SH3 domain and its target sequence in the
Pbs2 MAP kinase kinase mediates responses to fluctuations in external osmotic pressure
by controlling the production of internal osmolytes. (C) Schematic of evolutionary-based
data-driven generative models, consisting of a compression step (the encoder) that maps a
sequence alignment of natural homologs to a low-dimensional Gaussian latent space (blue
box), defined by vector ~z for each sequence, and a decoder which converts latent space
coordinates to protein sequences. By definition a VAE is trained to reproduce its inputs;
thus decoded sequences represent hypotheses for synthetic members of the protein family.
(D) The three-dimensional latent space for the SH3 MSA; the Sho1SH3 ortholog group is
highlighted in red.
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The first model we consider is the Boltzmann machine direct-coupling111

analysis (bmDCA) [26]. The DCA approach assumes that the probability of112

each natural amino acid sequence x = (x1, . . . , xL) to occur is exponentially113

related to an ”energy” function parameterized by the intrinsic constraints114

on each amino acid xi at each position i (hi(xi)) and the pairwise couplings115

between amino acids (xi, xj) at positions (i, j) (Jij(xi, xj)):116

P (x) ∝ exp

[

∑

i

hi(xi) +
∑

i<j

Jij(xi, xj)

]

(1)

The parameters (h, J) are trained to reproduce the empirical positional fre-117

quencies and pairwise correlations of amino acids (the one- and two-body118

statistics) in the input MSA. If the model accounts for the information con-119

tent of natural sequences, synthetic sequences drawn from this probability120

distribution with low energy (that is, high probability) should be natural-like121

proteins. Boltzmann machine learning is computationally intensive but pro-122

vides accurate fitting; for example, the trained bmDCA model for the SH3123

family shows excellent reproduction of the input sequence statistics (Fig.124

S5A). As with any machine learning algorithm, bmDCA involves setting var-125

ious parameters during model training. Here we follow the approach in pre-126

vious work [5] to test whether the design of members of the ortholog family127

studied in that work generalizes to a functionally diverse family of paralogs.128

The second class of models we examined are DGMs known as a varia-129

tional autoencoders (VAEs) [34], consisting of two back-to-back deep neural130

networks: an encoder qφ(z|x) that compresses the information content of131

sequences x in the MSA into low-dimensional latent space vectors z, and a132

decoder pθ(x|z) that performs the reverse process, transforming latent vec-133

tors z back into protein sequences x (Fig. S1A). If the learning was effective,134

the latent space should reveal functional and/or evolutionary relationships135

between sequences, and the decoding process should generate novel sequences136

from latent space coordinates not occupied by natural sequences. The former137

operation can be thought of as an interpretive function of the VAE, while138

the latter represents novel design. In contrast to bmDCA, which learns on139

the one- and two-body amino acid statistics, the VAE models are trained to140

reconstruct all features of the input data, and make no assumptions about141

the form of the sequence-function model. This approach takes advantage of142

the powerful representational capacity of the deep neural networks [35, 36],143

and provides a direct solution for designing novel sequences from the latent144
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space without the need for computationally expensive numerical simulations145

[37, 38, 39, 40].146

We implemented two forms of a VAE: (1) a generic, widely-used form147

that we call the ”vanilla-VAE”, and (2) a variant known as an information148

maximizing VAE (InfoVAE) [33]. While the generic algorithms have proven149

useful for studying protein properties [41, 42, 43, 44, 45, 25, 37, 39, 38],150

they can also lead to inaccurate latent inference and non-optimal decoder151

performance [46, 47]. The InfoVAE addresses these problems, incorporating152

additional constraints during training models that encourages more accurate153

decoding from the latent space for design [33]. We present data on both VAE154

architectures in this work, but for brevity, we illustrate features of the latent155

space representations in figures below using the infoVAE method.156

The VAE latent space for the SH3 family157

Fig. 2 shows the structure of the infoVAE latent space for the SH3 fam-158

ily. A statistical cross-validation approach determines the number of model159

dimensions; for the SH3 MSA, this indicates a three-dimensional space into160

which natural sequences are embedded (Fig. 1D). Interestingly, annotation161

shows that phylogeny is not the primary organizing principle [25]. For ex-162

ample, SH3 sequences from the Saccaromycotina family, the Pezizomycotina163

class, and the Basidiomycota division are distributed throughout the latent164

space with no immediately obvious pattern of localization (Fig. 2A). In con-165

trast, sequences are more distinctly organized by paralog group in the fungal166

genomes. The (Bzz11, Abp1, Rvs167, and Sho1 SH3 domains fall into distinct167

wedge-like divisions of the latent space (Fig. 2B, S1B, and see Supplementary168

Information for other paralog groups). However, within each paralog wedge,169

a sub-organization by phylogeny is evident. For example, for the Sho1SH3
170

group, the Ascomycota and Basidomycota divisions form two branches ex-171

tending radially from the origin of the latent space, and the non-dikarya SH3172

domains are more proximal (Fig. 2B, S2). The precise meaning of the spa-173

tial distribution within the patterns is a matter for further study, but we174

can conclude that the InfoVAE produces a hierarchical organization of SH3175

homologs in which functional distinctions are primary, and phylogeny is sec-176

ondary. In supplementary inforamtion, we show that the vanilla VAE latent177

space shows a similar hierarchical clustering (Fig. S3).178

To understand how sequences made with just first- and second-order179

statistics are repersented, we used the trained encoder to embed the bmDCA180

generated sequences into the latent space (Fig. S5C). The data show that181
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Figure 2: The InfoVAE latents learns a nested hierarchical partitioning of nat-

ural fungal SH3 homologs by function and phylogeny. (A) InfoVAE 3D latent
space embedding of the 5299 natural SH3 homologs annotated by the three main fungal
phylogeny groups. (B) Annotation by paralog group and phylogenetic annotation within
the Sho1 paralog cluster (red): Saccaromycotina (circle), Pezizomycotina (triangle), Ba-
sidiomycota (star) and non-dikarya (plus). Analogous plots for the remaining paralog
groups are presented in Figs. S1 and S2.
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these sequences localize closer to the origin of the VAE latent space, with no182

observed probability density in the peripheral regions that best distinguish183

the fungal paralog groups. Note that the VAEs are trained to produce latent184

space that are multi-dimensional Gaussians; thus, the basic result here is185

that bmDCA sequences tend towards the average position in latent space.186

In contrast, VAE sequences extend to more unique positions in the tails of187

the distribution. These findings suggest that the VAE is learning a differ-188

ent and potentially deeper representation of the information content of SH3189

sequences.190

Deep conservation of Sho1 SH3 function in fungal genomes191

The localization of fungal ortholog groups in the VAE latent space is192

consistent with the idea that orthology corresponds to functional similarity193

[25]. But to what extent do we expect orthologs from diverse species to work194

in the context of specific model organism under specific experimental condi-195

tions? To test this, we developed a high-throughput quantitative select-seq196

assay for Sho1 pathway function in S. cerevisiae (Fig. 3A, and see Methods197

and Supplementary Material). The assay is based on prior work by Lim and198

coworkers, who constructed a Sho1 deletion yeast strain in which growth rate199

can be made to report the binding free energy between the Sho1SH3 domain200

and Pbs2 [28]. Using this strain, we make plasmid libraries in which we re-201

place wild-type Sho1SH3 in the Sho1 receptor with natural or synthetic SH3202

domains, transform yeast, and grow the entire library in a single flask under203

selective (1M KCl) conditions for a defined period of time. Deep sequenc-204

ing of the population before and after selection allows us to compute the205

enrichment of each allele relative to the wild-type S. cerevisiae Sho1SH3 (the206

”relative enrichment” or r.e.). Under specific conditions of gene induction,207

growth time, and temperature, the r.e. quantitatively reports the binding free208

energy between each SH3 variant and the Pbs2 target ligand (Fig. 3B). The209

physiological response curve between binding energy and fitness is expect-210

edly sigmoidal, indicating the range of SH3-ligand affinities that can support211

function in vivo under the conditions of these experiments (Fig. 3A). The212

assay show good reproducibility in independent trials (ρPearson = 0.87, n =213

11,442; Fig. S4A) and shows complete dependence on osmosensing (no cor-214

relation between selective (1M KCl) and non-selective (0M KCl) conditions215

(ρPearson = 0.10, n = 10,448; Fig. S4B). Thus, the assay provides a rigorous216

basis to study large numbers of natural and artificial sequences for in vivo217

functional activity.218
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Figure 3: High-throughput select-seq assay for Sho1SH3 function in S. cere-

visiae. (A) Workflow for characterization of yeast high-osmolarity response (i.e., Sho1
functionality). Sho1-deficient S. cerevisiae cells (ss101) carrying libraries of variants were
grown under selective conditions in 1M KCl media, after which we performed deep se-
quencing of input and selected population calculation of relative enrichment (r.e.) of each
variant. (B) Standard curve linking in vivo r.e. with relative binding dissociation constant
Kd of pbs2 MAPKK ligand for the Sho1 wild type and a set of 10 synthetic variants with
a diversity of Kd values. (C) Observed bimodal distribution of r.e. scores within 1M KCl
media of the 5299 natural SH3 homologs. A subset of 132 natural sequences rescue in
vivo osmosensing function in S. cerevisiae (red), which were used for local sampling in
VAEs, and the remaining 5167 sequences (blue). (D) Projection of the 5299 natural SH3
sequences into the 3D latent space of the InfoVAE show a crisp clustering between the
132 functional sequences (red) and 5167 sequences that fail to rescue (blue). The rescuing
sequences are localized in the vicinity of the Sho1SH3 paralog group (c.f. Fig. 2B).
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Using the select-seq assay, we examined the ability of all 5299 natural SH3219

homologs in the MSA to rescue osmosensing function in S. cerevisiae. The220

result is a bimodal distribution of function, with a small mode (comprising221

132 sequences) centered at the level of wild-type Sho1SH3 (”functional”) and a222

large mode centered near to the position of the null allele (”non-functional”).223

Annotation of the functional sequences shows that they are all orthologs of224

Sho1SH3 throughout the fungal kingdom including Sho1SH3 domains from225

distant Basidomycota and even non-Dikarya species. The ability of these226

distant Sho1SH3 orthologs to work in S. cerevisiae to a level indistinguishable227

from the S. cerevisiae ortholog demonstrates deep conservation of Sho1SH3
228

function in the fungal kingdom.229

A small subset of natural sequences (331, or 6.2%) fall in an intermedi-230

ate range between the two modes; these sequences is consistent with prior231

observations that some fraction of paralogous SH3 domains can partially232

complement the Sho1 deletion phenotype [28]. A deeper analysis of the233

”partial-rescue” behavior will be presented elsewhere. For the purposes of234

this work, this comprehensive study of the function of natural SH3 domains235

in the S. cerevisiae Sho1 pathway provides a reference for assessing the per-236

formance of the three evolution-based design algorithms tested here. Given237

that Sho1SH3 orthologs localize to a specific wedge in the InfoVAE latent238

space (Fig. 2B) and that all the fully functional SH3 domains are Sho1SH3
239

orthologs, it follows that coloring the latent space by the r.e. scores reveals240

nearly the same organization as coloring by orthology (Fig. 2B, 3D).241

Synthetic orthologs of Sho1SH3 from deep generative models242

The study of natural SH3 domains frames the problem of learning the243

design rules for specific orthologs. Only 2.5% of the input MSA displays full244

rescue of osmosensing, but these sequences represent the deep evolutionary245

history of the fungal kingdom. Thus, a strong test of the power of models246

trained on the input MSA is the ability to generate synthetic homologs of247

Sho1SH3 with an efficiency, quality, and diversity that matches the input248

dataset. To test this, we assayed libraries of synthetic SH3 variants designed249

from the three models (Fig. 4) and tested them together in a single select-seq250

experiment.251

For the bmDCA model, we followed the same protocol in the recent252

work on the chorismate mutase family [5] to generate synthetic sequences253

(N = 3740) that reproduce the same distribution of statistical energies (e.g.254
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same probability) as the natural homologs (Fig. S5B) [5]. For the SH3 fam-255

ily, the result shows that no bmDCA designed sequences are capable of full256

complementation of the Sho1 deletion phenotype, though a few sequences fall257

into a partial rescue range (Fig. 4B). This result is particularly interesting258

since previous work by Best and colleagues [27] convincingly demonstrates259

that the bmDCA model is fully capable of producing well-folded and stable260

SH3 domains. Thus, it appears that bmDCA suffices to make folded SH3261

proteins, but at least as tested here, does not capture enough information262

to specify orthologous function. This outcome could arise either from lim-263

itations imposed by using only pairwise statistics in the MSA or from the264

various approximations and parameter choices used in inferring the model265

[48]. Regardless, the central conclusion is that at least for Sho1SH3, sim-266

ply reproducing the statistical energies of natural sequences in the bmDCA267

model is not sufficient to reproduce the distribution of function.268

What is the generative capacity of the VAE models? We generated li-269

braries of synthetic sequences from the latent space of both vanilla (N=3984)270

and infoMAX (N=2000) models by randomly sampling latent space coordi-271

nates and passing them through the decoder to convert into protein sequences272

(Fig. S1A). Re-embedding the designed sequences using the encoder demon-273

strates that they globally sample the latent space in both models (Fig. S5C).274

Experimental analysis with the select-seq assay shows that both models are275

able to produce variants that rescue Sho1 function to the same level as wild-276

type S. cerevisiae Sho1SH3 (Fig. 4C, 4E), albeit with different yields. Specif-277

ically, 0.6% of vanilla-VAE and 1.75% of infoVAE designed sequences fully278

function in the Sho1 pathway. A two-sample Kolmogorov-Smirnov test shows279

that the vanilla-VAE distribution deviates from the natural distribution (p280

= 1 × 10−4), but that the InfoVAE distribution is statistically nearly the281

same (p = 0.06). These data show that both VAE models have the capa-282

bilities to design functional synthetic orthologs of S. cerevisiae Sho1SH3 but283

as expected, the InfoVAE model more accurately represents the design rules284

embedded in the natural ensemble.285

The localization of natural Sho1SH3 orthologs in the latent space (Fig. 2B)286

suggests an additional hypothesis - that sampling in the immediate vicinity of287

natural orthologs should enrich the yield of synthetic orthologs. To test this,288

we computed the mean and variance of the functional natural orthologs and289

designed libraries of sequences from latent space coordinates sampled from290

the corresponding Gaussian distribution (N = 896 and N = 987 for vanilla-291

and info-VAE, respectively). A re-embedding of these sequences shows that292
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Figure 4: Function and diversity of natural and synthetic SH3 variants. (A-
F) Distribution of r.e. scores measured by high-throughput select-seq assay for the 5299
natural SH3 homologs (A), 3740 bmDCA synthetic variants (B), 3984 global (C) and 896
local (D) vanilla VAE synthetic variants, and 2000 global (E) and 987 local (F) InfoVAE
synthetic variants. (G-I) Scatterplots of r.e. vs. sequence identity (ID) to the nearest
natural homolog or S. Cerevisiae Sho1SH3 for the 5299 natural sequences (G), 4880 global
and local vanilla VAE synthetic sequences (H) and 2987 global and local InfoVAE synthetic
sequences (I).
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they return to the environment from which they were sampled (Figs. 5 and293

S5C), a quality check on the robustness of the VAE model in these regions.294

Experimental testing shows that indeed, local sampling produces a much295

higher density of fully functional synthetic orthologs (Fig. 4D, 4F). An inter-296

esting observation is that natural Sho1SH3 orthologs fall into phylogenetically297

defined radially organized sub-regions within an overall space filled out by298

functional synthetic sequences Fig. 5. Thus, locality in latent space corre-299

sponds to locality in function, even for models trained on sequence data alone300

and no prior knowledge of function.301

We selected five synthetic orthologs that show full function in vivo for302

in-depth biochemical characterization. These proteins were expressed in Es-303

cherichia coli as His6-tagged fusions, purified to homogeneity, and assayed304

for (1) binding to the S. cerevisiae Pbs2 target peptide using a standard305

tryptophan fluorescence assay [49] and (2) thermal stability by differential306

scanning calorimetry. The data show that the synthetic proteins are well ex-307

pressed, soluble, and display a range of binding affinities that are comparable308

to, or stronger than, the value for wild-type S.cerevisiae Sho1SH3 (Table 1,309

Fig. S6). Thermal denaturation experiments show that the synthetic proteins310

show cooperative unfolding transitions with half-maximal melting tempera-311

tures (Tm) and enthalpies of unfolding that span a range around the wild-type312

protein. Thus, the synthetic variants display biochemical properties similar313

to natural Sho1SH3 domains.314

What is the diversity of the new synthetic variants with respect to nat-315

ural SH3 domains? For comparison, Fig. 4G shows the distribution of top316

sequence identities of natural sequences to their nearest natural counterpart317

or to S. cerevisiae Sho1SH3. Functional Sho1SH3 orthologs are more sequence318

similar to each other (>60% top-hit identity) than to SH3 paralogs, but can319

be quite diverged from S. cerevisiae Sho1SH3 (as low as 40% identity). The320

vanilla- and info-VAE methods approximate the same diversity, both in terms321

of distance from all Sho1SH3 orthologs and from the S. cerevisiae variant (Fig.322

4H-I). The ability to reproduce the sequence diversity of natural homologs323

suggests that the models learn the physical constraints on orthologs without324

extensive overfitting on irrelevant idiosyncrasies of extant variants.325

Spatial characteristics of Sho1SH3 function in the infoVAE latent space326

The generative efficiency of the infoVAE latent space inspires a deeper327

study of how Sho1SH3 function maps to latent space position. As noted, the328

functional natural Sho1SH3 and synthetic orthologs are tightly localized to329
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Figure 5: The sequence-function relationship in the infoVAE latent space. Re-
embedding all synthetic functional sequences in the infoVAE latent space shows that they
return to the local environment from which they were sampled, a test of robustness of
the model. Natural sequences occupy phylogenetically structures trajectories within an
overall wedge-like space that defines Sho1SH3-like function.
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a radially extended wedge-like structure in the VAE latent space (Fig. 5).330

To make this quantitative, we defined a minimal polygon in the latent space331

(a so-called ”convex hull”) that bounds the natural sequences displaying full332

function in the S. cerevisiae Sho1 pathway (Fig. 6A). The majority of Sho1SH3
333

orthologs in the fungal kingdom (155/172) lie within the hull, and very few334

sequences within the hull are not functional (Fig. 6B). Also, synthetic or-335

thologs embedding inside the hull show the same distribution of function as336

their natural counterparts (Fig. 6C-D). Thus, the hull represents a bounding337

box that defines the space of extant and synthetic functional Sho1SH3-like338

orthologs.339

How does Sho1SH3-like function change as one exits the convex hull?340

Consistent with the idea that the hull defines Sho1SH3 function, synthetic341

orthologs re-embedding outside the convex hull are largely non-functional,342

with the few that do show Sho1SH3-like function occurring in the immediate343

shell outside the hull (Fig. 6E-F). To quantitatively examine how Sho1SH3
344

function varies across the boundary of the hull, we computed the probability345

of functional sequences in the S. cerevisiae Sho1 pathway as a function of346

scaled volume shells of the convex hull moving from within the hull to outside347

(Fig. 6G-H). The data show that Sho1SH3-like function drops sharply across348

the boundary, supporting the idea that the hull largely encloses the sequence349

rules for Sho1SH3 function.350

An interesting feature is that the immediate environment outside the351

convex hull includes some bonafide Sho1SH3 synthetic orthologs (Fig. 6E,352

yellow symbols). This demonstrates a principle of extrapolation in the VAE353

model in which the space of designable functional sequences extends beyond354

the limits defined by natural orthologs alone.355

Locality in the latent space exposes global amino acid constraints356

The finding that locality within the convex hull of the InfoVAE latent357

space defines Sho1SH3 function provides an opportunity to examine the pat-358

tern of amino acid constraints that specifically underlie orthologous function.359

A simple approach is to compare the conservation of sequence positions in360

sequences sampled globally from the VAE latent space with that from se-361

quences embedded within the convex hull (Fig. 7). In essence, this analysis362

provides as first-order view of where the ”extra” constraints to be a Sho1SH3
363

ortholog occur in the amino acid sequence. The conservation pattern for364

globally sampled sequences is nearly the same as for the natural MSA (Fig.365

S7), a result consistent with the finding that global design reproduces the366
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Figure 6: Spatial localization of Sho1SH3 function in the VAE latent space (A-
B) Convex hull (black lines) of the natural functional SH3 orthologs (red) defined as the
smallest convex polygon that encloses 132 functional SH3 homologs. A small number of 23
non-functional natural sequences (blue) are contained within the convex hull construction.
The preponderance 85.2% of sequences contained within the convex hull are functional,
indicating that localization within the region of latent space defined by the convex hull
is a good proxy for osmosensing function. (C-D) Analysis of the synthetic sequences
locally designed by the InfoVAE lying within the natural convex hull reveals 288 functional
(yellow) and 80 non-functional (blue) synthetic variants, indicating that 78.3% of synthetic
InfoVAE variants residing within the convex hull are functional. (E-F) Analysis of locally
designed InfoVAE synthetic sequences lying outside the natural convex hull reveals 145
functional (yellow) and 451 non-functional (blue) synthetic variants, indicating that 24.3%
of local InfoVAE variants residing in the vicinity of the convex hull are functional. (G)
Illustration of the hulls scaled by 1/3, 2/3, 1, 4/3, 5/3, and 2 within 2D projections of
the InfoVAE latent space and superposed upon the 132 functional natural SH3 orthologs
(red), 468 functional synthetic proteins, and the rest of non-functional synthetic proteins
(blue) generated by the InfoVAE. (H) Probability (P) of functional natural and InfoVAE
designed sequences contained within each hull as a function of scaling factor.
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distribution of function in the natural MSA. However, it is quite different367

for sequences sampled within the convex hull bounding Sho1SH3-like func-368

tion (Fig. 7A). The differences in conservation can be modeled by a double369

Gaussian mixture model, providing a statistical basis to identify positions370

that contribute the most to Sho1 function (Fig. 7B). The extra constraints371

for Sho1SH3 function arise both at known specificity determining sites in the372

ligand binding pocket [50, 51] and at a set of weakly-conserved and solvent-373

exposed positions distributed throughout the protein structure (Fig. 7C).374

These findings illustrate the use of VAE models to provide new hypotheses375

for mechanisms of protein function in specific cellular contexts in vivo.376

Conclusion377

In this work, we show that the latent space of variational encoder models378

trained on homologs of the SH3 protein family capture the rules for spec-379

ifying folding and function of specific orthologs of the family. Using this380

approach, we generated hundreds of sequence-diverse synthetic orthologs of381

the Sho1SH3 domain that support osmosensing in S. cerevisiae to an extent382

comparable to the wild-type domain. This result expands the use of gen-383

erative models to protein families in which functional diversification leaves384

only a small fraction of sequences in the input data (< 3%) that can operate385

in a specific cellular and genome context. In addition, the data show that386

Sho1SH3 function is localized to a small volume of the VAE latent space, and387

that localization to that volume is nearly necessary and sufficient to specify388

synthetic orthology. It is interesting that extant natural orthologs occupy389

only sparse, phylogenetically-structured trajectories within the volume (red390

symbols and blue arrows, Fig. 2B and Fig. 5). A logical interpretation is391

that natural sequences are constrained not only by the need to fold and to392

function, but also by the stochasticity and historical contingencies of natu-393

ral evolution. Thus, natural sequences are forced to organize into specific394

sub-regions within a large design space controlled by the underlying selec-395

tion pressures. In this sense, functional synthetic sequences arising from396

non-natural regions of latent space may be thought of as alternative histories397

that could have occurred (but did not) in the history of evolution.398

From a practical perspective, these findings suggest that even with no su-399

pervision from experimental data, the VAE is distilling the essential physical400

constraints on folding and function and, at least to some extent, removing401

pure historical constraints. Thus, the model opens up a vast space of syn-402
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Figure 7: The structural basis for Sho1SH3 function. (A) Positional conservation
(measured by Kullback-Leibler relative entropy D) in sequences sampled globally from the
InfoVAE latent space (top panel),locally from the convex hull bounding functional natural
sequences (middle panel), and the difference of the two (bottom panel). This analysis
exposes the extra constraints in SH3 domains to be specifically functional in the Sho1
osmosensing pathway. (B) The distribution of differences in conservation, with a fit to
a double Gaussian mixture model (blue). For illustrative puproses, the mixture model
helps to identify a population of 21 positions showing the largest change in conservation
(red curve). (C) The positions showing the largest change in conservation (red speheres)
are located at specificity determining regions of the ligand binding pocket and extending
throughout the tertiary structure. The imgages show three rotations of the Sho1SH3

structure, with the co-crystallized Pbs2 peptide ligand in yellow stick bonds.
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thetic solutions that span a range of biochemical phenotypes with regard to403

binding affinity and stability. It may be possible to use the initial round404

of synthetic design to iteratively train the models to recognize directions in405

multi-dimensional phenotypic space that deviate from the history of natural406

selection, but that may be of practical value. Such a semi-supervised design407

process might represent a practical approach to the design of optimized or408

even novel phenotypes [52, 37]. From a fundamental point-of-view, the study409

of iteratively trained models may provide insight about the capacity of natu-410

ral proteins for phenotypic innovation, a central property of systems evolving411

under fluctuating conditions of selection [53].412

Due to extensive past work documenting tight functional specificity in413

vivo and great functional diversity [28, 51], the SH3 domain family serves414

as a productive model system for studying the generative potential of data-415

driven models. However, the choice of the experimental system, algorithms416

for model construction, and assay technologies are otherwise unremarkable.417

Thus, we expect the findings here to be of general impact for understanding418

and engineering diverse protein functions in specific environments. both in419

vitro and in vivo.420

It is worth noting the conceptual distinction of evolution-based models421

from the extensive previous work in making models for proteins. All models422

for function and design represent a attempt to define rules of phenotypic423

variation by locality in some space of representation. For example, inspired424

by the steep distance- and geometry-dependence of the fundamental forces425

between atoms, physics-based design often focuses on local environments of426

tertiary structure to vary biochemical activities. For example, computational427

redesign of enzyme function typically involves variation of residues in the im-428

mediate contact environment of target ligands [8], a strategy to contain the429

complexity of the search process. An alternative method - directed evolu-430

tion - uses rounds of mutagenesis to search locally in the sequence space431

surrounding a natural protein to design new activities. The logic that evolu-432

tionary constraints force the local sequence environment of natural proteins433

to be densely populated and functionally connected such that it is possible434

to transit to new phenotypes through paths of single-step variations [54].435

Thus, an iterative search of the local environment is a productive approach436

for discovery of novel functions [55]. The data presented here suggests an437

alternative principle of design - locality in the latent space of the evolution-438

based models. This principle does not limit variation to local primary or439

tertiary structure environments; instead, it is organized by the patterns of440
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epistatic interactions that underlie protein folding and function. Non-linear441

learning tools such as the VAE are specifically capable of abstracting these442

complex features of proteins from extant sequence data, and thus open up443

an enormous new space for protein design. What is perhaps most surprising444

is the ability of these models to learn generative rules for protein phenotypes445

from the limited and biased sampling of available sequuences comprising a446

protein family [48]. The results speak to the relative simplicity of the infor-447

mation stored in natural protein sequences and provide a starting point to448

understand how basic physical and evolutionary constraints acting on natural449

proteins.450
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Header Closest Sho1SH3 ortholog ID (WT) ID (closest) Kd [µM] Tm [◦C] ∆H [kJ/mol]
WT Saccharomyces cerevisiae 1.00 1.00 3.0±0.1 59.1 41.2± 0.3

InfoVAE local 1 Trichophyton rubrum 0.53 0.92 1.1±0.1 44.5 41.5± 1.9
InfoVAE local 2 Moesziomyces antarcticus 0.53 0.90 0.7±0.1 65.0 50.9± 0.7
InfoVAE local 6 Fistulina hepatica 0.54 0.83 0.3±0.03 58.5 38.0± 0.3
InfoVAE local 10 Trichophyton rubrum 0.56 0.85 2.2±0.4 62.5 41.6± 1.1
InfoVAE local 11 Neurospora crassa 0.59 0.88 0.8±0.04 66.5 56.3± 0.6

Table 1: Biophysial study of five synthetic functional InfoVAE synthetic SH3 variants. ID (WT) = sequence
identity to wild-type Sho1SH3 ([56]), ID (closest) = sequence identity to nearest natural SH3 homolog, Kd = equilibrium
dissociation constant for binding the PBS2 target peptide ligand, Tm = half-maximal denaturation temperature (by DCS),
∆H = enthalpy of unfolding at the Tm.
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