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Abstract

Evolution-based deep generative models represent an exciting direction in
understanding and designing proteins. An open question is whether such
models can represent the constraints underlying specialized functions that
are necessary for organismal fitness in specific biological contexts. Here, we
examine the ability of three different models to produce synthetic versions of
SH3 domains that can support function in a yeast stress signaling pathway.
Using a select-seq assay, we show that one form of a variational autoencoder
(VAE) recapitulates the functional characteristics of natural SH3 domains
and classifies fungal SH3 homologs hierarchically by function and phylogeny.
Locality in the latent space of the model predicts and extends the function
of natural orthologs and exposes amino acid constraints distributed near and
far from the SH3 ligand-binding site. The ability of deep generative models
to specify orthologous function in vivo opens new avenues for probing and
engineering protein function in specific cellular environments.
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1 Introduction

2 An emerging approach for understanding and designing synthetic proteins
3 is learning the design principles of natural proteins evolved through varia-
+ tion and natural selection. These principles are encoded within ensembles of
s homologous amino acid sequences and define the mapping from primary se-
s quence to multifaceted protein phenotypes, including foldability, biochemical
7 activities, and organismal fitness in a natural biological context [1, 2, 3, 4, 5].
s Evolution-based algorithms that learn these rules have the potential to gen-
o erate new hypotheses for protein mechanism, and to permit the design of
10 diverse synthetic variants with novel functions, with powerful implications
u for medicine, biotechnology, chemical engineering, and public health [6].

12 Historically, protein design typically involve physics-based scoring func-
13 tions that adopt tertiary structure as the central object to bridge sequence
1 to function [7, 8, 9] or involve directed evolution to learn a sequence to
15 function mapping through iterative rounds of mutation and functional selec-
16 tion [10, 11, 12]. In recent years, advances in deep machine learning have
17 driven exciting developments in machine learning-assisted directed evolution
s (MLDE) [6, 13, 14, 15, 16, 17] that train models to learn the sequence to func-
19 tion map. The central idea of these strategies is to replace a blind mutational
2 search through the vast gulf of protein sequence space with a model-guided
a1 search, and to eliminate the need for the direct use of structural informa-
22 tion by implicitly representing the underlying physics in the model-learned
3 parameters. The learned models provide a new understanding of the organiz-
2 ing principles of natural proteins at both in terms of general “linguistic rules”
»s underpinning the patterns amino acids in all natural proteins and the local
» and global epistatic interactions between amino acids in individual proteins
z that provide for protein phenotypes [18, 19, 5, 20, 21, 22, 23, 24, 25].

28 Two MLDE approaches that have demonstrated particular promise are
2 direct coupling analysis (DCA) and deep generative modeling (DGM). The
w0 essence of DCA is to start with a multiple sequence alignment (MSA) of a
a1 protein family and infer a generative model representing the intrinsic con-
» straints on amino acids (the ”one-body” terms) and the pairwise interactions
13 between amino acids (the "two-body” terms) [20, 26, 21, 24, 27]. For the cho-
u rismate mutase enzyme family, recent work showed that the DCA model is
55 sufficient to design of synthetic variants that function in a manner equiva-
s lent to natural enzymes both in vitro and in vivo, in E. coli cells [5]. The
s relative simplicity of the constraints imposed by the DCA model led to con-
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;s siderable sequence divergence in the synthetic proteins, demonstrating access
3 to an enormous space of functional proteins consistent with the evolutionary
s constraints.

n The DCA model is relatively simple because it is inferred only from the
2 first- and second-order statistics of sequence alignments. Given this, it is
s impressive that it can suffice to capture the design constraints for specifying
w proteins that can fold and function in their natural cellular context. How-
55 ever, it is also true that the chorismate mutases largely represent a family of
s orthologs - extant proteins that are descended by speciation events and are
s expected to share the same function across species. Indeed, a large fraction
s of homologous chorismate mutases operate in E. coli in the specific experi-
» mental conditions in which the design was carried out [5]. Such consistency
so of function in a protein family likely represents a simpler problem for infer-
51 ence of generative models. A deeper and more general test of evolution-based
52 generative models would come from a study of a family of paralogs - proteins
53 that arose through gene duplication events and typically have diverged to
sa carry out distinct and specialized functions. Indeed, paralogs of a protein
55 family are thought to under strong selection to be functionally orthogonal
ss  with respect to each other [28], a strategy to ensure specificity in signaling
s [28, 29] and metabolic [30] pathways. These observations raise the question
ss of whether it is even possible to make generative models for specific orthologs
s given input data comprising the full spectrum of functional divergences in
s most protein families.

61 An ideal model system to investigate this question is the Src homology
2 3 (SH3) family of protein interaction modules. SH3 domains are small all-
&3 beta folds that bind to type II poly-proline containing peptides of the form
se  N-R/KXXPXXP-C or N-XPXXPXR/K-C [31](Fig. 1A) and mediate diverse
es signaling functions in cells [32]. For example, a C-terminal SH3 domain in the
s Shol transmembrane receptor in fungi (Shol"®) mediates the response to
o7 external osmotic stress through binding to a polyproline ligand in the Pbs2
¢ MAP kinase (Fig. 1B). The Shol pathway has been conserved within the
s fungal kingdom through many speciation events, creating a diverse ensemble
20 of extant Shol®"3 ortholog sequences. In addition, duplication events have
7 occurred during natural evolution, creating many paralogous SH3 domains
72 that have diverged to acquire distinct and non-overlapping ligand specifici-
73 ties. For example, in S. cerevisiae, the Shol%#3 is the only SH3 domain
72 amongst 26 other paralogous domains in genome that can support osmosens-
75 ing in the Shol pathway [28]. This exclusivity in wvivo is recapitulated in

3
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7 direct binding assays with the Pbs2 ligand, demonstrating that the speci-
77 ficity is directly encoded in the Sho1%"® amino acid sequence. For all these
7s reasons, the SH3 domain provides a powerful system to test the generative
7o power of evolution-based models.

80 Here, we examine the ability of three modern machine-learning approaches
s to design of ”synthetic orthologs” of Shol%" starting from sequences com-
g2 prising the full SH3 family. By synthetic orthologs, we mean a designed
s proteins that span the same diversity as natural Sho15#3 orthologs but that
s are functionally indistinguishable, both in vitro and in vivo. We show that
ss one method (InfoVAE [33]) learns a low-dimensional ”latent” space that hier-
ss archically organizes SH3 homologs by function and phylogeny. Furthermore,
sz we show that locality in the latent space is both necessary and sufficient to
s design synthetic Shol15"? orthologs that bind Pbs2 and support osmosensing
s in S. cerevisiae. Interestingly, constraints on orthology are spread both near
o and far from the SH3 binding pocket, including many unconserved, solvent-
a1 exposed regions that would not be conventionally obvious. The capacity to
o2 learn the rules for ortholog function from a functionally diverse protein fam-
o3 ily provides a platform for a deeper understanding of protein function in a
o natural biological context.

s Results and Discussion

o Fuvolution-based deep generative models

o We began by constructing a multiple sequence alignment (MSA, see Sup-
¢ plementary Material) of 5299 SH3 homologs, including 3647 fungal domains
o and 1652 non-fungal domains. The alignment includes all 27 unique paralog
wo groups found in fungal species (from > 150 genomes), representing a deep
01 sampling of the evolutionary record of the fungal kingdom. Shol"3 orthologs
102 were annotated by fusion to the transmemnbrane portions of the Shol re-
13 ceptor rather than by direct alignment scores; thus detection of orthology
04 is independent of sequence similarity within the SH3 domain. This MSA
s comprises the input data to algorithms that compress the information con-
s tained within the natural sequences into a low-dimensional model (Fig. 1C).
w7 If the compression captures the essential constraints on folding and binding
s specificity, it should be possible to design diverse synthetic orthologs of SH3
0o domains (e.g. Shol5M3) that reproduce the activity and diversity of natural
o orthologs (Fig. 1C).
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Figure 1: Evolutionary-based deep generative models of SH3 domains in the
context of the yeast high-osmolarity pathway. (A) A structure of the S. cerevisiae
Sho15H3 domain (PDB 2VKN) in complex with the Pbs2 peptide ligand (yellow stick
bonds). SH3 domains are protein interaction modules that bind to polyproline containing
target ligands. (B) Binding between the Sho1%#3 domain and its target sequence in the
Pbs2 MAP kinase kinase mediates responses to fluctuations in external osmotic pressure
by controlling the production of internal osmolytes. (C) Schematic of evolutionary-based
data-driven generative models, consisting of a compression step (the encoder) that maps a
sequence alignment of natural homologs to a low-dimensional Gaussian latent space (blue
box), defined by vector Z for each sequence, and a decoder which converts latent space
coordinates to protein sequences. By definition a VAE is trained to reproduce its inputs;
thus decoded sequences represent hypotheses for synthetic members of the protein family.
(D) The three-dimensional latent space for the SH3 MSA; the Shol%H3 ortholog group is
highlighted in red.
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11 The first model we consider is the Boltzmann machine direct-coupling
2 analysis (bmDCA) [26]. The DCA approach assumes that the probability of
us each natural amino acid sequence x = (z1,...,2) to occur is exponentially
us related to an ”energy” function parameterized by the intrinsic constraints
s on each amino acid x; at each position i (h;(x;)) and the pairwise couplings
us  between amino acids (x;, ;) at positions (7, 5) (J;;(xs, x;)):

P(z) ocexp | Y hi(z:) + Y Jij(wi, ;) (1)
i i<j
7 The parameters (h, J) are trained to reproduce the empirical positional fre-
us quencies and pairwise correlations of amino acids (the one- and two-body
o statistics) in the input MSA. If the model accounts for the information con-
120 tent of natural sequences, synthetic sequences drawn from this probability
1 distribution with low energy (that is, high probability) should be natural-like
122 proteins. Boltzmann machine learning is computationally intensive but pro-
123 vides accurate fitting; for example, the trained bmDCA model for the SH3
e family shows excellent reproduction of the input sequence statistics (Fig.
15 S5A). As with any machine learning algorithm, bmDCA involves setting var-
16 ious parameters during model training. Here we follow the approach in pre-
17 vious work [5] to test whether the design of members of the ortholog family
s studied in that work generalizes to a functionally diverse family of paralogs.
120 The second class of models we examined are DGMs known as a varia-
10 tional autoencoders (VAEs) [34], consisting of two back-to-back deep neural
1 networks: an encoder gy(z|z) that compresses the information content of
132 sequences x in the MSA into low-dimensional latent space vectors z, and a
133 decoder pg(z|z) that performs the reverse process, transforming latent vec-
13 tors z back into protein sequences x (Fig. S1A). If the learning was effective,
135 the latent space should reveal functional and/or evolutionary relationships
s between sequences, and the decoding process should generate novel sequences
17 from latent space coordinates not occupied by natural sequences. The former
138 operation can be thought of as an interpretive function of the VAE, while
1o the latter represents novel design. In contrast to bmDCA, which learns on
1o the one- and two-body amino acid statistics, the VAE models are trained to
11 reconstruct all features of the input data, and make no assumptions about
12 the form of the sequence-function model. This approach takes advantage of
113 the powerful representational capacity of the deep neural networks [35, 36],
us and provides a direct solution for designing novel sequences from the latent
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us  space without the need for computationally expensive numerical simulations
us 37, 38, 39, 40].

147 We implemented two forms of a VAE: (1) a generic, widely-used form
us that we call the "vanilla-VAE”, and (2) a variant known as an information
e maximizing VAE (InfoVAE) [33]. While the generic algorithms have proven
150 useful for studying protein properties [41, 42, 43, 44, 45, 25, 37, 39, 38|,
151 they can also lead to inaccurate latent inference and non-optimal decoder
152 performance [46, 47]. The InfoVAE addresses these problems, incorporating
153 additional constraints during training models that encourages more accurate
1sa - decoding from the latent space for design [33]. We present data on both VAE
155 architectures in this work, but for brevity, we illustrate features of the latent
156 Space representations in figures below using the infoVAE method.

57 The VAE latent space for the SH3 family

158 Fig. 2 shows the structure of the infoVAE latent space for the SH3 fam-
10 ily. A statistical cross-validation approach determines the number of model
1o dimensions; for the SH3 MSA, this indicates a three-dimensional space into
161 which natural sequences are embedded (Fig. 1D). Interestingly, annotation
162 shows that phylogeny is not the primary organizing principle [25]. For ex-
1,3 ample, SH3 sequences from the Saccaromycotina family, the Pezizomycotina
14 class, and the Basidiomycota division are distributed throughout the latent
165 space with no immediately obvious pattern of localization (Fig. 2A). In con-
166 trast, sequences are more distinctly organized by paralog group in the fungal
167 genomes. The (Bzzl;, Abpl, Rvs167, and Shol SH3 domains fall into distinct
s wedge-like divisions of the latent space (Fig. 2B, S1B, and see Supplementary
160 Information for other paralog groups). However, within each paralog wedge,
10 a sub-organization by phylogeny is evident. For example, for the SholSH3
i group, the Ascomycota and Basidomycota divisions form two branches ex-
2 tending radially from the origin of the latent space, and the non-dikarya SH3
173 domains are more proximal (Fig. 2B, S2). The precise meaning of the spa-
s tial distribution within the patterns is a matter for further study, but we
s can conclude that the InfoVAE produces a hierarchical organization of SH3
e homologs in which functional distinctions are primary, and phylogeny is sec-
177 ondary. In supplementary inforamtion, we show that the vanilla VAE latent
s space shows a similar hierarchical clustering (Fig. S3).

179 To understand how sequences made with just first- and second-order
180 statistics are repersented, we used the trained encoder to embed the bmDCA
1 generated sequences into the latent space (Fig. S5C). The data show that

7
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Figure 2: The InfoVAE latents learns a nested hierarchical partitioning of nat-
ural fungal SH3 homologs by function and phylogeny. (A) InfoVAE 3D latent
space embedding of the 5299 natural SH3 homologs annotated by the three main fungal
phylogeny groups. (B) Annotation by paralog group and phylogenetic annotation within
the Shol paralog cluster (red): Saccaromycotina (circle), Pezizomycotina (triangle), Ba-
sidiomycota (star) and non-dikarya (plus). Analogous plots for the remaining paralog
groups are presented in Figs. S1 and S2.
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12 these sequences localize closer to the origin of the VAE latent space, with no
183 observed probability density in the peripheral regions that best distinguish
8¢ the fungal paralog groups. Note that the VAEs are trained to produce latent
15 space that are multi-dimensional Gaussians; thus, the basic result here is
185 that bmDCA sequences tend towards the average position in latent space.
17 In contrast, VAE sequences extend to more unique positions in the tails of
188 the distribution. These findings suggest that the VAE is learning a differ-
189 ent and potentially deeper representation of the information content of SH3
190 Sequences.

w1 Deep conservation of Shol SH3 function in fungal genomes

192 The localization of fungal ortholog groups in the VAE latent space is
13 consistent with the idea that orthology corresponds to functional similarity
e [25]. But to what extent do we expect orthologs from diverse species to work
105 in the context of specific model organism under specific experimental condi-
s tions? To test this, we developed a high-throughput quantitative select-seq
w7 assay for Shol pathway function in S. cerevisiae (Fig. 3A, and see Methods
10 and Supplementary Material). The assay is based on prior work by Lim and
10 coworkers, who constructed a Shol deletion yeast strain in which growth rate
20 can be made to report the binding free energy between the Shol15" domain
20 and Pbs2 [28]. Using this strain, we make plasmid libraries in which we re-
22 place wild-type Shol%%3 in the Shol receptor with natural or synthetic SH3
203 domains, transform yeast, and grow the entire library in a single flask under
200 selective (1M KCI) conditions for a defined period of time. Deep sequenc-
2s ing of the population before and after selection allows us to compute the
26 enrichment of each allele relative to the wild-type S. cerevisiae Sho1™ (the
207 relative enrichment” or r.e.). Under specific conditions of gene induction,
208 growth time, and temperature, the r.e. quantitatively reports the binding free
200 energy between each SH3 variant and the Pbs2 target ligand (Fig. 3B). The
210 physiological response curve between binding energy and fitness is expect-
an edly sigmoidal, indicating the range of SH3-ligand affinities that can support
22 function in vivo under the conditions of these experiments (Fig. 3A). The
23 assay show good reproducibility in independent trials (ppearson = 0.87, n =
2 11,442; Fig. S4A) and shows complete dependence on osmosensing (no cor-
25 relation between selective (1M KCl) and non-selective (OM KCl) conditions
216 (Ppearson = 0.10, n = 10,448; Fig. S4B). Thus, the assay provides a rigorous
217 basis to study large numbers of natural and artificial sequences for in vivo
28 functional activity.
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Figure 3: High-throughput select-seq assay for SholSH3 function in S. cere-
visiae. (A) Workflow for characterization of yeast high-osmolarity response (i.e., Shol
functionality). Shol-deficient S. cerevisiae cells (ss101) carrying libraries of variants were
grown under selective conditions in 1M KCI media, after which we performed deep se-
quencing of input and selected population calculation of relative enrichment (r.e.) of each
variant. (B) Standard curve linking in vivo r.e. with relative binding dissociation constant
K, of pbs2 MAPKK ligand for the Shol wild type and a set of 10 synthetic variants with
a diversity of K, values. (C) Observed bimodal distribution of r.e. scores within 1M KCI
media of the 5299 natural SH3 homologs. A subset of 132 natural sequences rescue in
vivo osmosensing function in S. cerevisiae (red), which were used for local sampling in
VAEs, and the remaining 5167 sequences (blue). (D) Projection of the 5299 natural SH3
sequences into the 3D latent space of the InfoVAE show a crisp clustering between the
132 functional sequences (red) and 5167 sequences that fail to rescue (blue). The rescuing
sequences are localized in the vicinity of the Sho15H3 paralog group (c.f. Fig. 2B).
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219 Using the select-seq assay, we examined the ability of all 5299 natural SH3
20 homologs in the MSA to rescue osmosensing function in S. cerevisiae. The
21 result is a bimodal distribution of function, with a small mode (comprising
2 132 sequences) centered at the level of wild-type Sho13"3 (" functional”) and a
23 large mode centered near to the position of the null allele (”non-functional”).
24 Annotation of the functional sequences shows that they are all orthologs of
»s  SholH3 throughout the fungal kingdom including Shol®"® domains from
26 distant Basidomycota and even non-Dikarya species. The ability of these
27 distant Sho1%H? orthologs to work in S. cerevisiae to a level indistinguishable
25 from the S. cerevisiae ortholog demonstrates deep conservation of SholSH3
29 function in the fungal kingdom.

230 A small subset of natural sequences (331, or 6.2%) fall in an intermedi-
2 ate range between the two modes; these sequences is consistent with prior
22 observations that some fraction of paralogous SH3 domains can partially
213 complement the Shol deletion phenotype [28]. A deeper analysis of the
2 partial-rescue” behavior will be presented elsewhere. For the purposes of
235 this work, this comprehensive study of the function of natural SH3 domains
236 in the S. cerevisiae Shol pathway provides a reference for assessing the per-
237 formance of the three evolution-based design algorithms tested here. Given
26 that Shol®™3 orthologs localize to a specific wedge in the InfoVAE latent
»0 space (Fig. 2B) and that all the fully functional SH3 domains are Sho15H?
a0 orthologs, it follows that coloring the latent space by the r.e. scores reveals
21 nearly the same organization as coloring by orthology (Fig. 2B, 3D).

22 Synthetic orthologs of Shol*? from deep generative models

243 The study of natural SH3 domains frames the problem of learning the
24 design rules for specific orthologs. Only 2.5% of the input MSA displays full
us  rescue of osmosensing, but these sequences represent the deep evolutionary
26 history of the fungal kingdom. Thus, a strong test of the power of models
27 trained on the input MSA is the ability to generate synthetic homologs of
2 SholH3 with an efficiency, quality, and diversity that matches the input
29 dataset. To test this, we assayed libraries of synthetic SH3 variants designed
250 from the three models (Fig. 4) and tested them together in a single select-seq
251 experiment.

252 For the bmDCA model, we followed the same protocol in the recent
3 work on the chorismate mutase family [5] to generate synthetic sequences
250 (N = 3740) that reproduce the same distribution of statistical energies (e.g.

11
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255 same probability) as the natural homologs (Fig. S5B) [5]. For the SH3 fam-
6 1ly, the result shows that no bmDCA designed sequences are capable of full
7 complementation of the Shol deletion phenotype, though a few sequences fall
»s  into a partial rescue range (Fig. 4B). This result is particularly interesting
0 since previous work by Best and colleagues [27] convincingly demonstrates
0 that the bmDCA model is fully capable of producing well-folded and stable
1 SH3 domains. Thus, it appears that bmDCA suffices to make folded SH3
%2 proteins, but at least as tested here, does not capture enough information
x3  to specify orthologous function. This outcome could arise either from lim-
24 itations imposed by using only pairwise statistics in the MSA or from the
s various approximations and parameter choices used in inferring the model
s [48]. Regardless, the central conclusion is that at least for Shol®"3  sim-
s ply reproducing the statistical energies of natural sequences in the bmDCA
xs model is not sufficient to reproduce the distribution of function.

269 What is the generative capacity of the VAE models? We generated li-
20 braries of synthetic sequences from the latent space of both vanilla (N=3984)
o1 and infoMAX (N=2000) models by randomly sampling latent space coordi-
o2 nates and passing them through the decoder to convert into protein sequences
o3 (Fig. S1A). Re-embedding the designed sequences using the encoder demon-
o strates that they globally sample the latent space in both models (Fig. S5C).
s Experimental analysis with the select-seq assay shows that both models are
76 able to produce variants that rescue Shol function to the same level as wild-
o type S. cerevisiae Shol3 (Fig. 4C, 4E), albeit with different yields. Specif-
zs ically, 0.6% of vanilla-VAE and 1.75% of infoVAE designed sequences fully
279 function in the Shol pathway. A two-sample Kolmogorov-Smirnov test shows
20 that the vanilla-VAE distribution deviates from the natural distribution (p
s = 1 x 107%), but that the InfoVAE distribution is statistically nearly the
22 same (p = 0.06). These data show that both VAE models have the capa-
2 bilities to design functional synthetic orthologs of S. cerevisiae Shol5"® but
80 as expected, the InfoVAE model more accurately represents the design rules
s embedded in the natural ensemble.

286 The localization of natural Sho15"? orthologs in the latent space (Fig. 2B)
27 suggests an additional hypothesis - that sampling in the immediate vicinity of
s natural orthologs should enrich the yield of synthetic orthologs. To test this,
20 we computed the mean and variance of the functional natural orthologs and
20 designed libraries of sequences from latent space coordinates sampled from
21 the corresponding Gaussian distribution (N = 896 and N = 987 for vanilla-
22 and info-VAE, respectively). A re-embedding of these sequences shows that
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Figure 4: Function and diversity of natural and synthetic SH3 variants. (A-
F) Distribution of r.e. scores measured by high-throughput select-seq assay for the 5299
natural SH3 homologs (A), 3740 bmDCA synthetic variants (B), 3984 global (C) and 896
local (D) vanilla VAE synthetic variants, and 2000 global (E) and 987 local (F) InfoVAE
synthetic variants. (G-I) Scatterplots of r.e. vs. sequence identity (ID) to the nearest
natural homolog or S. Cerevisiae Shol5H3 for the 5299 natural sequences (G), 4880 global
and local vanilla VAE synthetic sequences (H) and 2987 global and local InfoVAE synthetic
sequences (I).
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203 they return to the environment from which they were sampled (Figs. 5 and
20¢  S5C), a quality check on the robustness of the VAE model in these regions.
205 Experimental testing shows that indeed, local sampling produces a much
26 higher density of fully functional synthetic orthologs (Fig. 4D, 4F). An inter-
7 esting observation is that natural Sho15%3 orthologs fall into phylogenetically
28 defined radially organized sub-regions within an overall space filled out by
200 functional synthetic sequences Fig. 5. Thus, locality in latent space corre-
s0  sponds to locality in function, even for models trained on sequence data alone
s and no prior knowledge of function.

302 We selected five synthetic orthologs that show full function in wvivo for
303 in-depth biochemical characterization. These proteins were expressed in Fs-
sa  cherichia coli as His6-tagged fusions, purified to homogeneity, and assayed
w5 for (1) binding to the S. cerevisiae Pbs2 target peptide using a standard
w5 tryptophan fluorescence assay [49] and (2) thermal stability by differential
s07  scanning calorimetry. The data show that the synthetic proteins are well ex-
ws  pressed, soluble, and display a range of binding affinities that are comparable
w0 to, or stronger than, the value for wild-type S.cerevisiae Shol"® (Table 1,
s0 Fig. S6). Thermal denaturation experiments show that the synthetic proteins
su show cooperative unfolding transitions with half-maximal melting tempera-
a2 tures (75,) and enthalpies of unfolding that span a range around the wild-type
a1z protein. Thus, the synthetic variants display biochemical properties similar
s to natural Shol5™ domains.

315 What is the diversity of the new synthetic variants with respect to nat-
a6 ural SH3 domains? For comparison, Fig. 4G shows the distribution of top
a7 sequence identities of natural sequences to their nearest natural counterpart
us or to S. cerevisiae Shol5"3. Functional Shol5%3 orthologs are more sequence
a0 similar to each other (>60% top-hit identity) than to SH3 paralogs, but can
2 be quite diverged from S. cerevisiae Shol®"® (as low as 40% identity). The
;21 vanilla- and info-VAE methods approximate the same diversity, both in terms
2 of distance from all Sho1%"3 orthologs and from the S. cerevisiae variant (Fig.
23 4H-I). The ability to reproduce the sequence diversity of natural homologs
34 suggests that the models learn the physical constraints on orthologs without
»s  extensive overfitting on irrelevant idiosyncrasies of extant variants.

2 Spatial characteristics of Shol%% function in the infoVAE latent space

307 The generative efficiency of the infoVAE latent space inspires a deeper
2 study of how Shol13™ function maps to latent space position. As noted, the
2o functional natural Shol1%"® and synthetic orthologs are tightly localized to
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Figure 5: The sequence-function relationship in the infoVAE latent space. Re-
embedding all synthetic functional sequences in the infoVAE latent space shows that they
return to the local environment from which they were sampled, a test of robustness of

the model. Natural sequences occupy phylogenetically structures trajectories within an
overall wedge-like space that defines Sho15H3-like function.
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;0 a radially extended wedge-like structure in the VAE latent space (Fig. 5).
s 'To make this quantitative, we defined a minimal polygon in the latent space
s (a so-called ”convex hull”) that bounds the natural sequences displaying full
53 function in the S. cerevisiae Shol pathway (Fig. 6A). The majority of Sho15H3
s orthologs in the fungal kingdom (155/172) lie within the hull, and very few
135 sequences within the hull are not functional (Fig. 6B). Also, synthetic or-
136 thologs embedding inside the hull show the same distribution of function as
37 their natural counterparts (Fig. 6C-D). Thus, the hull represents a bounding
1 box that defines the space of extant and synthetic functional Shol%"3-like
19 orthologs.

340 How does Shol®H3.like function change as one exits the convex hull?
s1  Consistent with the idea that the hull defines Sho1%"3 function, synthetic
sz orthologs re-embedding outside the convex hull are largely non-functional,
1z with the few that do show Shol%"3-like function occurring in the immediate
us  shell outside the hull (Fig. 6E-F). To quantitatively examine how Sho15H?
us  function varies across the boundary of the hull, we computed the probability
us of functional sequences in the S. cerevisiae Shol pathway as a function of
s scaled volume shells of the convex hull moving from within the hull to outside
us (Fig. 6G-H). The data show that Shol15"%-like function drops sharply across
s the boundary, supporting the idea that the hull largely encloses the sequence
50 rules for Shol8™3 function.

351 An interesting feature is that the immediate environment outside the
32 convex hull includes some bonafide Shol3™® synthetic orthologs (Fig. 6E,
353 yellow symbols). This demonstrates a principle of extrapolation in the VAE
s« model in which the space of designable functional sequences extends beyond
5 the limits defined by natural orthologs alone.

6 Locality in the latent space exposes global amino acid constraints

357 The finding that locality within the convex hull of the InfoVAE latent
s space defines Shol5%3 function provides an opportunity to examine the pat-
9 tern of amino acid constraints that specifically underlie orthologous function.
w0 A simple approach is to compare the conservation of sequence positions in
ss1 sequences sampled globally from the VAE latent space with that from se-
32 quences embedded within the convex hull (Fig. 7). In essence, this analysis
s provides as first-order view of where the ”extra” constraints to be a Shol5H3
s ortholog occur in the amino acid sequence. The conservation pattern for
35 globally sampled sequences is nearly the same as for the natural MSA (Fig.
%6 S7), a result consistent with the finding that global design reproduces the

16


https://doi.org/10.1101/2022.12.21.521443
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.21.521443; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
A available under ag-BY 4.0 International license.

number

o5 | (85.2%)
0 +——=if .
-05 00 05

r.e.

natural (in)
50 4 N=155, Ns= 132 I I
o
1.0

1.5

100 1 InfoVAE local (in)
5 N =368, Ny = 288
£ 50 (78.3%)
-
=

-0.5 0.0 0.5 1.0 1.5
r.e.

InfoVAE local (out)
N =596, N¢= 145
(24.3%)

number

-0.5 0.0 0.5 1.0 1.5
r.e.

1.0

T 081

5

'..64 0.6

c

2 041

o g2

113 2/3 1 4/3 513 2

z z scale of hull

Figure 6: Spatial localization of Sho15H3 function in the VAE latent space (A-
B) Convex hull (black lines) of the natural functional SH3 orthologs (red) defined as the
smallest convex polygon that encloses 132 functional SH3 homologs. A small number of 23
non-functional natural sequences (blue) are contained within the convex hull construction.
The preponderance 85.2% of sequences contained within the convex hull are functional,
indicating that localization within the region of latent space defined by the convex hull
is a good proxy for osmosensing function. (C-D) Analysis of the synthetic sequences
locally designed by the InfoVAE lying within the natural convex hull reveals 288 functional
(yellow) and 80 non-functional (blue) synthetic variants, indicating that 78.3% of synthetic
InfoVAE variants residing within the convex hull are functional. (E-F) Analysis of locally
designed InfoVAE synthetic sequences lying outside the natural convex hull reveals 145
functional (yellow) and 451 non-functional (blue) synthetic variants, indicating that 24.3%
of local InfoVAE variants residing in the vicinity of the convex hull are functional. (G)
Nlustration of the hulls scaled by 1/3, 2/3, 1, 4/3, 5/3, and 2 within 2D projections of
the InfoVAE latent space and superposed upon the 132 functional natural SH3 orthologs
(red), 468 functional synthetic proteins, and the rest of non-functional synthetic proteins
(blue) generated by the InfoVAE. (H) Probability (P) of functional natural and InfoVAE
designed sequences contained within each hull as a function of scaling factor.
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367 distribution of function in the natural MSA. However, it is quite different
¢ for sequences sampled within the convex hull bounding Shol5H3-like func-
w0 tion (Fig. TA). The differences in conservation can be modeled by a double
s Gaussian mixture model, providing a statistical basis to identify positions
s that contribute the most to Shol function (Fig. 7B). The extra constraints
sz for Shol15" function arise both at known specificity determining sites in the
w3 ligand binding pocket [50, 51] and at a set of weakly-conserved and solvent-
s exposed positions distributed throughout the protein structure (Fig. 7C).
ss  These findings illustrate the use of VAE models to provide new hypotheses
a6 for mechanisms of protein function in specific cellular contexts in vivo.

s7 Conclusion

378 In this work, we show that the latent space of variational encoder models
;9 trained on homologs of the SH3 protein family capture the rules for spec-
0 ifying folding and function of specific orthologs of the family. Using this
1 approach, we generated hundreds of sequence-diverse synthetic orthologs of
s the Shol%"3 domain that support osmosensing in S. cerevisiae to an extent
;3 comparable to the wild-type domain. This result expands the use of gen-
s erative models to protein families in which functional diversification leaves
s only a small fraction of sequences in the input data (< 3%) that can operate
;s i a specific cellular and genome context. In addition, the data show that
w7 Shol™3 function is localized to a small volume of the VAE latent space, and
;s that localization to that volume is nearly necessary and sufficient to specify
;0 synthetic orthology. It is interesting that extant natural orthologs occupy
30 only sparse, phylogenetically-structured trajectories within the volume (red
;1 symbols and blue arrows, Fig. 2B and Fig. 5). A logical interpretation is
;2 that natural sequences are constrained not only by the need to fold and to
33 function, but also by the stochasticity and historical contingencies of natu-
s ral evolution. Thus, natural sequences are forced to organize into specific
35 sub-regions within a large design space controlled by the underlying selec-
36 tion pressures. In this sense, functional synthetic sequences arising from
;7 non-natural regions of latent space may be thought of as alternative histories
1 that could have occurred (but did not) in the history of evolution.

399 From a practical perspective, these findings suggest that even with no su-
wo pervision from experimental data, the VAE is distilling the essential physical
w1 constraints on folding and function and, at least to some extent, removing
w2 pure historical constraints. Thus, the model opens up a vast space of syn-
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Figure 7: The structural basis for Sho15#2 function. (A) Positional conservation
(measured by Kullback-Leibler relative entropy D) in sequences sampled globally from the
InfoVAE latent space (top panel),locally from the convex hull bounding functional natural
sequences (middle panel), and the difference of the two (bottom panel). This analysis
exposes the extra constraints in SH3 domains to be specifically functional in the Shol
osmosensing pathway. (B) The distribution of differences in conservation, with a fit to
a double Gaussian mixture model (blue). For illustrative puproses, the mixture model
helps to identify a population of 21 positions showing the largest change in conservation
(red curve). (C) The positions showing the largest change in conservation (red speheres)
are located at specificity determining regions of the ligand binding pocket and extending
throughout the tertiary structure. The imgages show three rotations of the SholSH3
structure, with the co-crystallized Pbs2 peptide ligand in yellow stick bonds.
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w03 thetic solutions that span a range of biochemical phenotypes with regard to
w0 binding affinity and stability. It may be possible to use the initial round
ws of synthetic design to iteratively train the models to recognize directions in
w6 multi-dimensional phenotypic space that deviate from the history of natural
w7 selection, but that may be of practical value. Such a semi-supervised design
w8 Pprocess might represent a practical approach to the design of optimized or
w0 even novel phenotypes [52, 37]. From a fundamental point-of-view, the study
a0 of iteratively trained models may provide insight about the capacity of natu-
a1 ral proteins for phenotypic innovation, a central property of systems evolving
a2 under fluctuating conditions of selection [53].

a13 Due to extensive past work documenting tight functional specificity in
sa  wvivo and great functional diversity [28, 51], the SH3 domain family serves
a5 as a productive model system for studying the generative potential of data-
as  driven models. However, the choice of the experimental system, algorithms
a7 for model construction, and assay technologies are otherwise unremarkable.
sz Thus, we expect the findings here to be of general impact for understanding
a0 and engineering diverse protein functions in specific environments. both in
w20 wvitro and in vivo.

a1 It is worth noting the conceptual distinction of evolution-based models
w22 from the extensive previous work in making models for proteins. All models
w3 for function and design represent a attempt to define rules of phenotypic
224 variation by locality in some space of representation. For example, inspired
s by the steep distance- and geometry-dependence of the fundamental forces
w6  between atoms, physics-based design often focuses on local environments of
w27 tertiary structure to vary biochemical activities. For example, computational
w8 redesign of enzyme function typically involves variation of residues in the im-
»9 mediate contact environment of target ligands [8], a strategy to contain the
«0 complexity of the search process. An alternative method - directed evolu-
i1 tion - uses rounds of mutagenesis to search locally in the sequence space
.32 surrounding a natural protein to design new activities. The logic that evolu-
.33 tionary constraints force the local sequence environment of natural proteins
s to be densely populated and functionally connected such that it is possible
a5 to transit to new phenotypes through paths of single-step variations [54].
a6 Thus, an iterative search of the local environment is a productive approach
s for discovery of novel functions [55]. The data presented here suggests an
a3 alternative principle of design - locality in the latent space of the evolution-
a0 based models. This principle does not limit variation to local primary or
a0 tertiary structure environments; instead, it is organized by the patterns of
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a1 epistatic interactions that underlie protein folding and function. Non-linear
w2 learning tools such as the VAE are specifically capable of abstracting these
w3 complex features of proteins from extant sequence data, and thus open up
ws an enormous new space for protein design. What is perhaps most surprising
ws is the ability of these models to learn generative rules for protein phenotypes
ws from the limited and biased sampling of available sequuences comprising a
w7 protein family [48]. The results speak to the relative simplicity of the infor-
ws  mation stored in natural protein sequences and provide a starting point to
wo understand how basic physical and evolutionary constraints acting on natural
450 pl"OteiIlS.
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Header Closest Sho1°#? ortholog ID (WT) ID (closest) K, [pM] T, [°C] AH [kJ/mol]
WT Saccharomyces cerevisiae 1.00 1.00 3.0+0.1 59.1 41.2+0.3
InfoVAE _local -1 Trichophyton rubrum 0.53 0.92 1.1£0.1 44.5 415+ 1.9
InfoVAE _local 2 Moesziomyces antarcticus 0.53 0.90 0.7+0.1 65.0 50.9+£0.7
InfoVAE _local 6 Fistulina hepatica 0.54 0.83 0.3+0.03 58.5 38.0+0.3
InfoVAE _local 10 Trichophyton rubrum 0.56 0.85 2.2+0.4 62.5 41.6 £1.1
InfoVAE local 11 Neurospora crassa 0.59 0.88 0.84+0.04 66.5 56.3 £ 0.6

Table 1: Biophysial study of five synthetic functional InfoVAE synthetic SH3 variants. ID (WT) = sequence
identity to wild-type Shol%H3 ([56]), ID (closest) = sequence identity to nearest natural SH3 homolog, K; = equilibrium
dissociation constant for binding the PBS2 target peptide ligand, T}, = half-maximal denaturation temperature (by DCS),

AH = enthalpy of unfolding at the T},.
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