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Highlights 10 

- We assess how diffusion preprocessing affects hubs across 1760 pipeline variations 11 
- Many preprocessing pipelines do not show a high concentration of connectivity within hubs 12 
- When present, hub location and distribution vary based on preprocessing choices 13 
- Use of probabilistic or deterministic tractography has a major impact on hub location and strength 14 
- Node strength in weighted networks can correlate highly with node size 15 

Abstract 16 

Recent years have seen a surge in the use of diffusion MRI to map connectomes in humans, paralleled by a similar increase 17 
in pre-processing and analysis choices. Yet these different steps and their effects are rarely compared systematically. Here, 18 
in a healthy young adult population (n=294), we characterized the impact of a range of analysis pipelines on one widely 19 
studied property of the human connectome; its degree distribution. We evaluated the effects of 40 pipelines (comparing 20 
common choices of parcellation, streamline seeding, tractography algorithm, and streamline propagation constraint) and 44 21 
group-representative connectome reconstruction schemes on highly connected hub regions. We found that hub location is 22 
highly variable between pipelines. The choice of parcellation has a major influence on hub architecture, and hub connectivity 23 
is highly correlated with regional surface area in most of the assessed pipelines (ρ>0.70 in 69% of the pipelines), particularly 24 
when using weighted networks. Overall, our results demonstrate the need for prudent decision-making when processing 25 
diffusion MRI data, and for carefully considering how different pre-processing choices can influence connectome 26 
organization. 27 
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Introduction 41 

A major priority for neuroscience is to robustly and accurately map the connections of the human brain (Sporns et al., 2005). 42 
These connections are thought to be distributed heterogeneously across different brain regions, with putative 8hub9 areas 43 
having stronger and more preavent connectivity with other regions (Arnatkevičiūtė et al., 2021; Oldham et al., 2019; van den 44 
Heuvel & Sporns, 2013b). Hub connectivity is viewed as playing an integral role in supporting coordinated dynamics (Mišić 45 
et al., 2015; van den Heuvel & Sporns, 2013a). It has a distinct developmental trajectory (Fan et al., 2011; Oldham et al., 46 
2022; Oldham & Fornito, 2019); is important for cognitive function (Fagerholm et al., 2015; Sleurs et al., 2021); is under 47 
strong genetic influence (Arnatkevic̆iūtė et al., 2018, 2019, 2021; Fulcher & Fornito, 2016); and is implicated in a diverse 48 
range of clinical disorders (Crossley et al., 2014; de Lange et al., 2019; Fornito et al., 2015; Gollo et al., 2018). In humans, 49 
the anatomical connectivity of hub and non-hub brain regions is most commonly mapped using tractographic analysis of 50 
diffusion magnetic resonance imaging (MRI) data (Betzel & Bassett, 2017; Sotiropoulos & Zalesky, 2019). One challenge of 51 
such analyses is that diffusion MRI data are noisy and the final generation of a tractographic estimate of connectivity 3 a 52 
tractogram 3 depends on many different preprocessing steps, each relying on multiple user-selected options (Jones & 53 
Cercignani, 2010; Oldham et al., 2020; Sarwar et al., 2021). As a result, different investigators make different choices, resulting 54 
in connectome models that arise from data processed in different ways.  55 

Amongst the numerous available preprocessing choices, commonly varied steps include: the algorithms used to seed, 56 
propagate, and prune tractography streamlines in individuals (Jeurissen et al., 2019; Sarwar et al., 2019); the cortical 57 
parcellations used to delineate distinct regions and facilitate computational tractability (Lawrence et al., 2021); and the 58 
approaches used to generate a group-representative network (Betzel et al., 2019). One recent preliminary investigation found 59 
that changing preprocessing steps can shift the location of hubs from parietal/cingulate cortex to temporal cortex (Oldham 60 
et al., 2020). Other work has similarly found a high variability in the validity of streamline reconstruction between research 61 
groups utilizing different preprocessing pipelines (Maier-Hein et al., 2017). Valid inferences about the structure and function 62 
of human connectome hubs critically depend on our ability to reliably identify them, but a detailed examination of precisely 63 
how variations in connectome-generation pipelines affect classifications of network hubs has not yet been conducted. Here, 64 
we evaluate how such variations influence hub identification, focusing on three key steps in the connectome generation 65 
pipeline: tractography algorithm, cortical parcellation, and group reconstruction.  66 

Tractography refers to the process by which white matter streamlines are generated based on anisotropic water diffusivity. 67 
An indirect marker of connectivity with many distinct steps (Jeurissen et al., 2019), it is dependent on user-defined parameters 68 
that include (amongst others) where the streamlines are seeded, how they propagate, and where they can terminate. One 69 
well-known, significant choice is between probabilistic and deterministic tractography. In some instances, probabilistic 70 
tractography has been shown to match more closely with ex vivo anatomical tract dissections than deterministic tractography 71 
(Lilja et al., 2014), while other work has reported that probabilistic tractography is more prone to generating false positive 72 
connections (Sarwar et al., 2019). Indeed, there is a general trade-off between the sensitivity and specificity of different 73 
tractography algorithms, with probabilistic tractography being more sensitive but less specific compared to deterministic 74 
tractography (Thomas et al., 2014). Moreover, the use of a particular tractography algorithm may interact with other choices 75 
in diffusion MRI pipelines, further contributing to connectome variability. For instance, Li et al. (2012) found that 50% of 76 
hubs are re-categorized when streamline seeds (the locations from where streamlines are propagated) are located at the grey 77 
matter-white matter interface rather than deep in the white matter. Methods to differentially retain anatomically probable 78 
streamlines have also been suggested (Schiavi et al., 2020; Smith et al., 2012), and manual inclusion/exclusion of streamlines 79 
for a given bundle have been shown to increase reconstruction accuracy from 73% to 91% compared to template-generated 80 
dissections (Schilling et al., 2020). As such, changing the parameters used for generating tractograms in individuals can result 81 
in connectomes with significantly different architecture, a phenomenon which has not been extensively characterized.   82 

Cortical parcellations 3 the atlases used to define the boundaries between brain areas acting as network nodes 3 are also a 83 
source of variability in connectome architecture. Such parcellations have been undergoing continual revision since at least 84 
the time of Brodmann (Brodmann, 1909; Zilles, 2018) and the methods used to generate them are highly variable (Arslan et 85 
al., 2018). For example, parcellations have been generated using manual segmentation based on sulcal and gyral anatomy 86 
(Desikan et al., 2006); using network models based on functional connectivity (Schaefer et al., 2018); and on multimodal 87 
combinations of anatomical, microstructural, and functional features (Genon et al., 2018; Glasser et al., 2016; Wang et al., 88 
2015). Parcellations are also difficult to compare due to differences in the number of regions delineated (Fornito et al., 2010; 89 
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Zalesky et al., 2010), variability in the surface areas of regions (Van Essen et al., 2012), and inter-hemispheric (a)symmetry 90 
(Yan et al., 2022). 91 

After the connectomes of individuals have been constructed, it is common practice to aggregate the data to derive a group-92 
representative network (de Reus & van den Heuvel, 2013a; Yeh et al., 2016). At this stage it is important to define which 93 
connections (edges) should be maintained and how these connections should be weighted. Different methods have been 94 
proposed for the former, including retaining edges that are the strongest or most frequently occurring across individuals (de 95 
Reus & van den Heuvel, 2013a), retaining edges that are the least variable across people (Roberts et al., 2017), or retaining 96 
edges that preserve a specific proportion of connections in different distance bins (Betzel et al., 2019). Complicating the 97 
methodological differences of these approaches, the specific thresholds used are often chosen heuristically (Bordier et al., 98 
2017), making it difficult to compare studies using different thresholds.  99 

Here, we compare the effects of different choices at these three key steps 33 tractography, parcellation, and group 100 
reconstruction 33 on properties of hub connectivity in a sample of 294 healthy young adults. The different options examined 101 
at each step resulted in 1760 different group-representative connectomes. We evaluate the effects of each of these choices 102 
on measures of binary and weighted node degree, given that these measures are fundamental to many other network 103 
measures and to the definition of network hubs. In particular, we focus on both the distribution of degree measures across 104 
nodes and their spatial topography, evaluating the consistency with which hubs are localized to the same anatomical 105 
positions.   106 
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1. Methods 107 

1.1. Participants 108 
294 healthy participants (mean age 23.12 ± 5.18 years, 162 females) were recruited at Monash University. All participants 109 
self-reported right-handedness and had reported no significant neurological/psychiatric history (i.e., no personal history of 110 
neurological or psychiatric disorders, no loss of consciousness or memory due to head injury, and no history of drug use 111 
disorder). Further information on sample characteristics is provided elsewhere (Sabaroedin et al., 2019). The study was 112 
conducted in accordance with the Monash University Human Research Ethics Committee (reference number 2012001562).  113 

1.2. Image Acquisition 114 

T1-weighted (T1w) and diffusion MRIs were acquired on a Siemens (Munich, Germany) Skyra 3T scanner with a 32-channel 115 
head coil at Monash Biomedical Imaging in Clayton, Victoria, Australia. T1w structural scans were acquired with the 116 
following parameters: 1 mm3 isotropic voxels, TR = 2300 ms, TE = 2.07 ms, TI = 900 ms, and a FOV of 256 mm. Diffusion 117 
scans were obtained using an interleaving acquisition with the following parameters: 2.5 mm3 isotropic voxels, TR = 8800 118 
ms, TE = 110 ms, FOV of 240 mm, 60 directions with b = 3000 s/mm2, and seven b = 0 s/mm2 vol. In addition, a single 119 
b = 0 s/mm2 was obtained with reversed phase encoding direction for susceptibility field estimation.  120 

1.3. Image processing common to all pipelines 121 

Imaging data were processed using the Multi-modal Australian ScienceS Imaging and Visualisation Environment 122 
(MASSIVE) high performance computing infrastructure (Goscinski et al., 2014) as described by (Oldham et al., 2020). The 123 
analysis evaluated the efficacy of 240 different diffusion MRI processing pipelines in mitigating motion-related artifacts in 124 
connectivity estimates, with the pipelines generated by varying choices at each of seven steps (distortion correction, 125 
tractography algorithm, propagation constraints, streamline seeding, tractogram re-weighting, edge weighting, and 126 
parcellation). We adopted recommendations of Oldham et al. (2020) for three of these (distortion correction, tractogram re-127 
weighting, and edge weighting), as specific options in these steps were shown to reduce the correlation between head 128 
movement and structural connectivity. We evaluated effects of the four remaining factors, three of which pertain to the 129 
tractography algorithm (probabilistic versus deterministic algorithm, propagation constraints, streamline seeding) and the 130 
last of which pertains to parcellation. We further considered how these steps interact with different thresholding and group-131 
aggregation methods. A visual schematic of our pipeline variations is presented in Figure 1. Further details about the choices 132 
made at each step are provided in the following sections. 133 

1.3.1. DWI and T1w preprocessing 134 
MRtrix version 3.0.15 (Tournier et al., 2019) and FSL version 5.0.11 (Jenkinson et al., 2012) were used to process the 135 
diffusion MRI data. First, FSL9s topup was used to estimate the susceptibility-induced off-resonance field using the forward 136 
and reverse phase-encoded b = 0 s/mm2 images (Andersson et al., 2003; Smith et al., 2004). Then, FSL9s eddy tool was used 137 
for motion and eddy current correction, which has been shown to successfully mitigate motion-related artifact in connectivity 138 
estimates (Oldham et al., 2020), and which incorporates both (i) a Gaussian process-based generative model for volume 139 
prediction and realignment (Andersson & Sotiropoulos, 2016) and (ii) reconstruction and replacement of slices with 140 
significant signal dropout (Andersson et al., 2016, 2017). The following parameters were used for slice-to-volume correction: 141 
temporal order of movement = 30, iterations = 5, strength of temporal regularization = 6, and trilinear interpolation. Finally, 142 
FAST in FSL was used to correct for B1 field inhomogeneities (Smith et al., 2004; Zhang et al., 2001).  143 

The diffusion images were then co-registered to the T1w images via a rigid-body transformation using FSL9s FLIRT 144 
(Jenkinson et al., 2002; Jenkinson & Smith, 2001) and the inverse of this transformation was used to map the T1w image to 145 
the subject9s native diffusion space, where all tractography was performed. FreeSurfer version 5.3 (Fischl, 2012) was used to 146 
extract cortical surface models (grey/white matter surface and grey/CSF surface) from T1w images. All outputs were visually 147 
inspected and manually corrected, if required. Parcellation schemes (detailed in 1.4.4) were applied to the cortical surface 148 
models; these were then projected to the T1w image grid and used to define network nodes.  149 
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Figure 1: Workflow of preprocessing steps used in group connectome construction. Outer gray boxes group 
related steps, inner gray boxes indicate a step common across all pipelines, and blue boxes indicate a step where 
multiple options were compared. The first three boxes (diffusion processing, structural processing, and tractography) 
refer to the reconstruction of streamlines within one individual. The fourth box (group connectome construction) 
refers to the process by which the connectome matrices of individuals are used to generate the group representative 
connectome. Note that structural processing is also used to inform individual network reconstruction. 
DWI = Diffusion Weighted Imaging; ROIs = Regions of Interest; FACT = Fibre Assignment by Continuous 
Tractography; iFOD2 = second-order Integration over Fibre Orientation Distributions. Adapted from (Oldham et 
al., 2020), licensed under CC-BY-4.0.  
 150 

1.4. Pipeline-specific image processing 151 
In this section, we outline the key pipeline variations considered in our analysis. 152 

1.4.1. Streamline seeding algorithm 153 
Streamline seeding is the process by which voxels are selected to be the propagation points for streamlines. As in Oldham 154 
et al., (2020), we compare three streamline seeding algorithms:  155 

1) White matter (WM): voxels coded as white matter are randomly chosen as streamline seeds. 156 
2) Grey matter-white matter interface (GMWMI): voxels containing a gradient between grey matter and white matter 157 

are chosen as streamline seeds, with the aim of improving the tractography of shorter fibers (Smith et al., 2013, 158 
2015a). 159 

3) Dynamic: the relative difference between the predicted fiber density (based on the diffusion model) and the current 160 
density is used to inform the probability of choosing a particular location as a seed, with the aim of correcting for 161 
under- or over-sampling of a given fiber tract (Smith et al., 2015b). 162 

1.4.2. Streamline tractography algorithm 163 
Most tractography algorithms are classified as being either deterministic or probabilistic. Deterministic algorithms tend to 164 
be more conservative and thus prone to false negatives, whilst probabilistic algorithms are more sensitive but can be prone 165 
to false positives (Reveley et al., 2015; Sarwar et al., 2019; Thomas et al., 2014). We compared an exemplar of each class, 166 
both of which were implemented in MRtrix3 (Tournier et al., 2019): 167 

1) Deterministic tractography was performed using the Fibre Assignment by Continuous Tractography (FACT) 168 
algorithm (Mori et al., 1999; Mori & van Zijl, 2002).  169 

2) Probabilistic tractography was performed using Second-order integration over Fibre Orientation Distributions 170 
(iFOD2) (Tournier et al., 2007, 2010, 2012).  171 

For both tractography algorithms, 2,000,000 streamlines were generated with a maximum length of 400 mm, a maximum 172 
curvature of 45° per step, the default step size (1.25 mm for FACT; 0.25 mm for iFOD2), and the default termination 173 
criterion (0.05 amplitude of the primary eigenvector for FACT; 0.05 FOD amplitude for iFOD2).  174 

1.4.3. Streamline propagation constraint 175 
Tractography algorithms often track streamlines through anatomically implausible areas (e.g., ventricles), which can be 176 
addressed by imposing some constraints on streamline propagation. We examined two spatial constraints:  177 

1) Grey and white matter masking (GWM), involving the use of a binary mask (combining the grey and white matter 178 
masks from the FreeSurfer segmentation) that ensures streamlines only travel through brain parenchyma.  179 

2) Anatomically Constrained Tractography (ACT), which uses a multi-tissue segmentation (cortical grey matter, 180 
subcortical grey matter, white matter, and CSF) and a series of propagation rules to ensure that streamlines follow 181 
anatomically viable paths (Smith et al., 2012).  182 

Because the implementation of GMWMI seeding in MRtrix3 requires ACT, pipelines combining GWM and GMWMI were 183 
excluded. The above combinations therefore resulted in a total of ten different tractography pipelines for comparison. 184 
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1.4.4. Parcellation 185 
A wide variety of parcellations have been used in the connectomics literature (Arslan et al., 2018; de Reus & van den Heuvel, 186 
2013b; Lawrence et al., 2021), which can affect various network properties (Eickhoff et al., 2015; Fornito et al., 2010; Zalesky 187 
et al., 2010). We compared four different cortical parcellation schemes derived using three different approaches: 188 

1) The Desikan-Killiany parcellation (DK68), comprising 34 cortical nodes in each hemisphere delineated using sulcal 189 
and gyral landmarks (Desikan et al., 2006). 190 

2) The Human Connectome Project MMP1 parcellation (HCP360), comprising 180 cortical nodes per hemisphere 191 
defined using a semi-automated pipeline that leverages information on regional cortical architecture, function, 192 
connectivity, and topography (Glasser et al., 2016). 193 

3) The Schaefer et al. (Schaefer et al., 2018) 200 and 500 node parcellations (S200 and S500), generated based on local 194 
gradients of global profile similarities in regional functional coupling estimates. 195 

These parcellations represent both (i) distinct technical and methodological approaches relying different biological 196 
properties; and (ii) diversity in the sizes and shapes of parcels produced. Each parcellation was generated using surface 197 
models estimated by FreeSurfer using fsaverage coordinates; these were registered to each individual9s surface and then 198 
projected out to the T1w volume. The combination of ten tractography pipelines and four parcellations resulted in a total 199 
of 40 pipelines for reconstructing individual connectomes.  200 

1.4.5. Group aggregation 201 
Having generated individual connectomes using the above parameters, we compared four methods for aggregating the data 202 
to obtain a group-representative connectome:  203 

1) Edge weight, which retains edges with the largest mean weight, up to a specified density. 204 
2) Edge coefficient of variation (CV), which retains edges with the smallest CV across participants (Roberts et al., 205 

2017), up to a specified density. 206 
3) Edge consistency, which retains edges that are present (i.e., with non-zero weight) in the greatest number of 207 

participants (de Reus & van den Heuvel, 2013a), up to a specified density. Whilst this can be formulated by selecting 208 
consistency thresholds which must be met, here we equivalently specify density thresholds and retain the most 209 
consistent edges to ensure that connectomes are density-matched, which facilitates comparisons across pipelines 210 
(see 1.4.6).  211 

4) Edge distance-dependent binning, which bins edges according to their length, using a specified number of bins, and 212 
retains edges that are most frequently present within each bin (Betzel et al., 2019). 213 

Note that for each method, the final weight of the retained edges is equal to the mean of the edge weights across all 214 
participants; it is only the choice of which edges to retain that changes.  215 

1.4.6. Group thresholding 216 
Having generated a group connectome using one of the above approaches, we thresholded the resulting matrix at different 217 
levels using one of two approaches, depending on the aggregation method: 218 

1) Density thresholds were used for group connectomes aggregated using edge weight, edge CV, and edge consistency, 219 
retaining the top-ranked edges according to each measure, evaluating densities spanning 5% to 30%, in increments 220 
of 2.5%. 221 

2) The number of bins was used for the group connectome generated with edge distance-dependent binning, in which 222 
we changed the number of bins from 10 to 110, in increments of 10. In general, increasing the number of bins 223 
increases the density of the group connectome, resulting in networks with densities spanning 2% to 94%. Note that 224 
connectomes generated in this way were evaluated separately when evaluating how network properties depend on 225 
connectome density.  226 

The combination of four group aggregation methods and eleven thresholds for each threshold resulted in a total of 44 group 227 
reconstruction regimes for comparison. 228 
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1.5. Statistical analysis 229 

We first evaluated how the above preprocessing choices affect properties of the degree distribution of the connectome. The 230 
degree distribution defines the extent to which connectivity is concentrated in network hubs. Distributions with a heavy tail 231 
imply the existence of highly connected hubs, whereas distributions with an approximately exponential fall-off imply that 232 
the concentration of connections on putative hubs does not exceed the expectations of a random network (Fornito et al., 233 
2016).  We therefore concentrated on the properties of the distribution tails. Distributions of both binary and weighted node 234 
degree in brain networks have been previously described as heavy-tailed (taken here to mean that the tail decays sub-235 
exponentially), but the precise distribution they follow has been the subject of debate (Buzsáki & Mizuseki, 2014; Fornito et 236 
al., 2016; Roberts et al., 2015; Zucca et al., 2019). Moreover, parametric modelling of these distributions is dependent on 237 
user-defined inputs, such as the choice of the models under consideration or the model fitting procedures used, resulting in 238 
another source of variability when comparing computational pipelines.  239 

Fitting the empirical degree distribution to the generalized extreme value distribution and obtaining a tail-decay index can 240 
mitigate these problems (Gomes & Guillou, 2015; Haan & Ferreira, 2006; Hill, 1975). However, this approach often requires 241 
a large number of data points (Németh & Zempléni, 2020) and still depends on heuristic measures to define the start and 242 
end of the tail (Bauke, 2007; Gomes et al., 2009; Paulauskas & Vaičiulis, 2017). We therefore used the non-parametric 243 
approach described by (Jordanova & Petkova, 2017), which more directly focuses on the question of heavy-tailedness.  244 

In brief, to determine if the distribution of a random variable X has a heavier right tail than the exponential distribution, we 245 

calculate the empirical first and third quartiles, Ā̂1 and Ā̂3 respectively, and the interquartile range, �Ā̂ā =  Ā̂3 2 Ā̂1. We 246 
then define the "right-tailedness" of the distribution as the probability that a random drawn observation from the distribution 247 

is greater than the value given by Ā̂3 + 3�Ā̂ā (i.e. ��(�) = ÿ(� > Ā̂3 + 3�Ā̂ā)), utilizing the commonly used definition 248 
of extreme outliers (McGill et al., 1978). This value can be compared to the right-tailedness of the exponential distribution 249 

(� ~ �−��), which is invariant to the shape parameter �, such that ��(�) = exp(2� ∙ ln(33 ∙ 4) �⁄ ) = 1 108⁄ j 0.009 250 
(Jordanova & Petkova, 2017). This analytic solution offers a convenient threshold for determining whether a distribution 251 
has a heavier right tail than the exponential distribution, with heavy-tailedness implied if the empirical �� > 0.009. 252 

Additionally, we quantified the asymmetry of the whole distribution using the skewness (the third standardized moment), 253 
which is also constant for the exponential distribution (skewness = 2). Finally, for completeness, we calculated the excess 254 
kurtosis (the fourth standardized moment), which provides an alternative method for capturing the behavior at the tails 255 
(DeCarlo, 1997; Westfall, 2014). This measure has been shown to be robust for detecting outliers in small samples (Hayes 256 
et al., 2007; Livesey, 2007) and is also independent of the shape parameter of the exponential distribution (excess kurtosis = 257 
6). We note that other methods are available, including tail index estimation (Caers & Dyck, 1998; Németh & Zempléni, 258 
2020), parametric fitting (Zucca et al., 2019), and skewness-free kurtosis measures (Critchley & Jones, 2008; Eberl & Klar, 259 
2022; Jones et al., 2011; Oja, 1981). However, as with parametric modelling, these methods rely on user-defined algorithms 260 
or parameters (such as the number of quantiles to be used or the cut-off point for initialization of the tail), similarly making 261 
comparisons difficult.  262 

After characterizing the statistical properties of the degree distribution, we examined the spatial distribution of inter-regional 263 
connectivity by considering the degree sequence. The degree sequence encodes the assignment of degree values to specific 264 
nodes, hence capturing the spatial position or topography of network hubs. Within parcellations, we compared the 265 
consistency of hub topography and the effects of surface area on hubness. Between parcellations, we examined the 266 
consistency of hub topography across different pipelines qualitatively, as the lack of region-to-region correspondence 267 
precludes a direct comparison.   268 
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2. Results 269 

The preprocessing steps that we independently varied are summarized in Figure 1. In total, we compared 1760 distinct 270 
pipelines (40 pipelines for reconstructing individuals9 connectomes, and 44 pipelines for combining these into a group-271 
representative connectome). The Results section is organized as follows: first, we examine the effects of different 272 
preprocessing steps on statistical properties of the weighted degree distributions. Second, we compare the spatial distribution 273 
of node degrees across the different pipelines. Finally, we examine how specific properties of each parcellation are associated 274 
with node degree. We focus in the main text on analyses of weighted node degree (also called node strength) distributions 275 
and report results for unweighted (binary) distributions in the Supplementary Material. 276 

2.1. Statistical properties of node degree distributions  277 

Figure 2 shows how properties of the node strength distributions vary as a function of parcellation and tractography 278 
parameters. For simplicity, we focus on networks thresholded at a connection density of 20% and aggregated using edge 279 
CV, since different density thresholds and aggregation methods did not substantially alter the shape of the distribution 280 
(Figures S1-4).  281 

Figure 2A indicates that all pipeline variations qualitatively show some evidence of skewness and a heavy tail. The DK68 282 
and HCP360 parcellations show the largest positive skews, whereas the S200 and S500 parcellations show much smaller 283 
tails, consistent with a lower likelihood of finding very highly connected hubs. The exception is the use of Pipeline 3 284 
(ACT/WM seeding/FACT), which shows an extended tail across all parcellations.  285 

The right-tailedness and skewness of the node strength distributions are shown in Figures 2B and 2C, respectively, as 286 
functions of parcellation, pipeline, and density. 692 of 1760 pipelines (39%) have more right-sided outliers than an equivalent 287 
exponential degree distribution (Figure S2). The skewness is always positive (Figure S3), ranging between 0.42 and 6.04. 288 
However, only 25% of pipelines (432 of 1760) demonstrate a greater skew than the exponential distribution (skewness = 2), 289 
which is the benchmark for determining whether there is a concentration of connectivity in hub nodes. Excess kurtosis 290 
(Figure S4) is greater than 0 (i.e., more kurtotic than the Gaussian distribution) in 94% of the pipelines (1654 of 1760) and 291 
greater than 6 in 25% of the pipelines (445 of 1760). Thus, despite the widely-held belief that connectomes contain network 292 
hubs, a property that should be reflected in a heavy-tailed degree distribution, only ~25% to ~40% of the preprocessing 293 
pipelines examined here displayed distributions with properties that align with this hypothesis, depending on how heavy-294 
tailedness is quantified. 295 

There are three further key findings that are evident in Figures 2B-C. First, tractography algorithm has a major effect on the 296 
properties of the node strength distribution, with evidence of a skewed, heavy-tailed distribution only obtained when using 297 
specific processing steps in combination with deterministic tractography (FACT). More specifically, the most skewed 298 
distributions are observed when combining FACT with ACT (pipelines 1, 3, and 5), with the additional use of white matter 299 
seeding yielding the highest skewness (pipeline 3). This effect is apparent across connection densities and persists regardless 300 
of the method used for group aggregation (Figures S2-4). In contrast, probabilistic tractography (iFOD2) only yields evidence 301 
of a right-tailed distribution when combined with the HCP360 parcellation.  302 

The second key finding in Figures 2B-C is that parcellation type affects the strength distributions. The skewness, kurtosis, 303 
and right-tailedness of connectomes using the HCP360 parcellation are generally higher than other parcellations, regardless 304 
of the preprocessing steps. Skewness, kurtosis, and right-tailedness only exceed those of an exponential distribution when 305 
using the HCP360 parcellation for all pipelines using probabilistic tractography.  306 

The third key finding in Figures 2B-C is that skewness and right-tailedness change minimally as connection density is varied. 307 
Thus, connection density does not have a large impact on the tails of the strength distributions of weighted connectomes.  308 

The results for binarized connectomes show some differences relative to weighted connectomes (Figures S5-8). Specifically, 309 
the skewness, right-tailedness, and kurtosis of binarized connectomes are more stable than weighted connectomes when 310 
different data processing parameters are varied. Only 2.1% of connectomes (37 of 1760) are more skewed than the 311 
exponential distribution (all using the HCP360 parcellation; Figure S6). Similarly, 2.2% (39 of 1760) are more kurtotic (Figure 312 
S7) and 6.2% (109 of 1760; Figure S8) show evidence of greater right-tailedness than the exponential distribution. Notably, 313 
the skewness of the binarized connectomes was more sensitive to changes in connection density, particularly when edge 314 
consistency and CV-based thresholding were used with the HCP360 parcellation. In these specific cases, the distributions 315 
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showed supra-exponential skewness and right-tailedness at thresholds of 5310% but not at thresholds of 20330%. Evidence 316 
of strong skewness, kurtosis, or right-tailedness in connectomes using parcellations other than HCP360 was weak and only 317 
occurred in rare instances. 318 

 
Figure 2: Effect of preprocessing on weighted connectome strength distributions. (A) Strength distributions from 
each parcellation and pipeline at a connection density of 20%, with group connectomes constructed using the edge 
coefficient-of-variation (CV). (B, C) Skewness (B) and right-tailedness (C) of strength distributions in each parcellation as 
a function of tractography and density threshold. The range of cool/warm colors correspond to a skewness and right-
tailedness less than/greater than those of the exponential distribution.  
Parcellation: DK68 = Desikan-Killiany 68 nodes, S200 = Schaefer 200 nodes, HCP360 = Glasser 360 nodes, S500 = 
Schaefer 500 nodes. Tractography: SptlCons = spatial constraints on streamline propagation, ACT = anatomically 
constrained tractography, GWM = grey-white masking; Seed = streamline seeding algorithm, dynamic = dynamic seeding, 
WM = white matter seeding, GMWMI = grey matter-white matter interface seeding; TractAlgor = Streamline tractography 
algorithm, FACT = fiber assignment by continuous tractography, iFOD2 = second-order integration over fiber orientation 
distributions.  
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2.2. Topographical properties of node degree sequences 319 

Our analysis of strength distributions indicates that conclusions about the degree to which connectivity is concentrated in 320 
network hubs can vary substantially depending on how the data are preprocessed, with tractography algorithm (i.e., 321 
deterministic or probabilistic) and parcellation type having particularly large impacts. We now turn our attention to how 322 
different preprocessing choices affect the spatial embedding of degree; i.e., we evaluate whether different pipelines produce 323 
network hubs localized to consistent anatomical regions.  324 

For each parcellation separately, we first calculated the partial rank correlations between the degree distribution of each pair 325 
of pipelines, controlling for regional surface area. The resulting matrices (one for each parcellation) represent the similarity 326 
in spatial location of hubness between tractography pipelines. Hierarchical agglomerative clustering of these matrices was 327 
used to group similar pipelines together (Figures 3A-D). Taking the S200 parcellation as an example, Figure 3B shows that 328 
there are substantial differences in the node strength correlation between pairs of pipelines, spanning the range 20.11 <329 � < 1.00, with an average of 0.47 (Figure 3E). As per prior work (Oldham et al., 2020), two large clusters are evident, 330 
separating pipelines using deterministic tractography from those using probabilistic tractography. The average correlation 331 
within the cluster corresponding to deterministic tractography is 0.64 (0.19 < � < 1.00) and is 0.67 within the probabilistic 332 

tractography cluster (0.32 < � < 0.99), with the average correlation between clusters being 0.30 (20.11 < � < 0.57). 333 
Within the deterministic tractography cluster, there is a further split as a function of spatial constraint (i.e., ACT versus 334 
GWM) with further subdivisions according to seeding strategy. Within the probabilistic tractography cluster, smaller clusters 335 
can also be defined as a function of spatial constraint and seeding strategy, but these sub-clusters are less homogeneous than 336 
those in the deterministic tractography cluster. The basic cluster structure was largely consistent across parcellations, with 337 
some minor variations. For instance, with the DK68 atlas, connectomes generated using dynamic seeding, probabilistic 338 
tractography, and a grey-white mask (pipeline 7) formed their own sub-cluster. The group aggregation algorithm and 339 
threshold density have minimal impact on the clustering (Figure S9).  340 

Figure 4 shows how the spatial distribution of node strengths varies across pipelines and parcellations. First, for a fixed 341 
parcellation (e.g., the S200 parcellation), the location of putative hubs varies considerably across maps under different 342 
processing variations. When using deterministic tractography (FACT), the highest strength nodes are located in the vicinity 343 
of the paracentral lobule and supplementary motor area, compared to be located in primary visual areas when using 344 
probabilistic tractography (iFOD2). The enhanced skewness associated with the combination of ACT/WM/FACT (pipeline 345 
3) is also apparent in these maps. Notably, the DK68 and HCP360 atlas appear more robust to processing variations, which 346 
may be driven by the large variability in the size of the parcels comprising these atlases. We consider issue in more detail in 347 
the next section. 348 

Second, for a fixed pipeline, Figure 4 shows variations across parcellations. Such comparisons across parcellations can only 349 
be performed qualitatively as the lack of region-to-region correspondence precludes direct comparison. Once again, 350 
conclusions about the locations of hub regions vary dramatically. The highest strength nodes for the DK68 atlas are located 351 
in the medial prefrontal cortex (PFC), whereas this area is associated with relatively low strength in the other parcellations. 352 
The S200, HCP360, and S500 parcellations show a greater degree of consistency, with higher strength nodes located in 353 
visual, lateral prefrontal, anterior insula, and inferior parietal regions. The major discrepancy between these parcellations is 354 
in the primary sensorimotor cortex, which has a high strength in HCP360, but not in S200 or S500 parcellations. The group 355 
aggregation algorithm and threshold density have a small effect on these variations, affecting only the absolute strength 356 
values but not the relative node rankings (Figure S10).  357 

Similarities between node degree distributions in binarized connectomes are shown in Figures S11 and S12. The results show 358 
a major difference between probabilistic and deterministic tractography across all parcellations (Figure S11). The locations 359 
of the strongest nodes are similarly variable: for example, using the S200 parcellation, the highest degree node is consistently 360 
found in the insula, but other high-degree nodes are located in the occipital cortex when using FACT and in temporal areas 361 
when using iFOD2 (Figure S12).  362 
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Figure 3: Comparison between tractography pipelines for each parcellation. (A-D) Similarity of degree distributions 
between tractography pipelines and group reconstruction metrics in each parcellation (A) DK68, (B) S200, (C) HCP360, 
(D) S500, with density 20%. Each heatmap shows partial rank correlations, corrected for surface area. Pipelines are 
reordered using hierarchical clustering. Pipeline numbers refer to tractography parameters; each pipeline occurs three 
times as three density-matched group reconstruction thresholding metrics are compared. (E) Distribution of correlation 
coefficients within each heatmap. Each row represents one parcellation. The first column shows the frequency of 
correlation coefficients across each heatmap. The subsequent columns show the subset of correlation coefficients when 
comparing deterministic pipelines only (second column), probabilistic pipelines only (third column), and deterministic 
versus probabilistic only (fourth column). 
Parcellation: DK68 = Desikan-Killiany 68 nodes, S200 = Schaefer 200 nodes, HCP360 = Glasser 360 nodes, S500 = 
Schaefer 500 nodes. Tractography: SptlCons = spatial constraints on streamline propagation, ACT = anatomically 
constrained tractography, GWM = grey-white masking; Seed = streamline seeding algorithm, dynamic = dynamic seeding, 
WM = white matter seeding, GMWMI = grey matter-white matter interface seeding; TractAlgor = Streamline 
tractography algorithm, FACT = fiber assignment by continuous tractography, iFOD2 = second-order integration over 
fiber orientation distributions. Group aggregation: ThrMetric = group-reconstruction thresholding metric, Weight = edge 
weight, CV = edge coefficient-of-variation, Con = edge consistency. 
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Figure 4: Spatial maps of node strength for each cortical parcellation and tractography pipeline. The colormap is 
scaled independently for each image for visual purposes. Group reconstructions use edge coefficient of variation (CV) 
and a density of 20%. 
 
Parcellation: DK68 = Desikan-Killiany 68 nodes, S200 = Schaefer 200 nodes, HCP360 = Glasser 360 nodes, S500 = 
Schaefer 500 nodes. Tractography: SptlCons = spatial constraints on streamline propagation, ACT = anatomically 
constrained tractography, GWM = grey-white masking; Seed = streamline seeding algorithm, dynamic = dynamic seeding, 
WM = white matter seeding, GMWMI = grey matter-white matter interface seeding; TractAlgor = Streamline 
tractography algorithm, FACT = fiber assignment by continuous tractography, iFOD2 = second-order integration over 
fiber orientation distributions. 
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2.3. The effect of variations in regional surface area 366 

The effects of parcellation on node strength seem, in some cases at least, related to the node surface area (here, node surface 367 
area is defined as the average surface area of the given node across all participants). For instance, the most skewed strength 368 
distributions were observed for the DK68 and HCP360 parcellations, which have a much wider variance in regional surface 369 
areas than the S200 and S500 parcellations (Figure S13). Moreover, the medial PFC in the DK68 parcellation falls under the 370 
superior_frontal_gyrus anatomical label, which is largest region in this parcellation. In the other parcellations, the medial 371 
PFC is sub-divided into smaller parcels. It is also evident from Figure 4 that the degree sequences of the DK68 and HCP360 372 
atlases are fairly robust to processing variations, which is notable since these are the atlases with the greatest variance in 373 
regional surface area. Areas with larger surface area will be able to accommodate more incoming and outgoing connections, 374 
and we should thus expect node strength/degree to be related with surface area. This raises the possibility that node degree 375 
will largely be driven by regional size variations, particularly in atlases with a high variance of parcel surface area. We therefore 376 
examined the degree to which the size of a node in a given parcellation determines its hubness by correlating node strength 377 
with surface area across parcellations, pipelines, and group reconstruction methods.  378 

Figure 5A show spatial maps of node strengths obtained for two example parcellation and pipeline combinations (S200 + 379 
GWM/dynamic seeding/iFOD2 and HCP360 + ACT/GMWMI/FACT) and Figure 5B shows the scatterplot of the 380 
association between node surface area and strength for each. Figure 5C shows the correlation coefficients for all tractography 381 
parameters and threshold densities for the S200 and HCP360 parcellations using edge CV (all 382 
tractograms/parcellations/group reconstructions are in Figure S14). Across all processing and parcellation combinations, 383 
the correlations between node strength and node surface area spanned the range 0.10 < r < 0.96, with a median of 0.82. 384 
Correlations for pipelines using probabilistic tractography (iFOD2) were all above r = 0.78 with a median correlation 385 
coefficient of 0.88. This high correlation persists regardless of thresholding algorithm or connection density (Figure S14). 386 
Correlations for pipelines using deterministic tractography (FACT) were somewhat lower, with a median value of 0.67 (0.10 387 
< r < 0.91). The relationship between node strength and surface area was slightly weaker when using either of the Schaefer 388 
parcellations (S200 or S500) or the combination of ACT/WM/FACT (or both; Figure S14). Note that while node strength 389 
is highly correlated with node surface area, the same is not true of individual edges: Figure S15 shows that the weight of 390 
individual edges is not related to the total surface area of their endpoint nodes. 391 

We next investigated whether removing the dependence of node strength on size changes the spatial distribution of the 392 
former measure. Figure 5D shows an example of the spatial distributions of the residual node strength values obtained after 393 
removing their dependence on regional surface area via linear regression. In the S200 parcellation, the nodes with the highest 394 
residuals tend to be those that are originally of medium-high strength (e.g., insula and inferior temporal gyrus). Thus, the 395 
locations of the most strongly connected nodes remain approximately similar. In contrast, in the HCP360 parcellation, the 396 
retrosplenial and pre-supplementary motor area cortices show disproportionately high strengths relative to surface area. 397 

The relationship between the residuals and the original strength of each node is shown in Figure 5E. The residuals remain 398 
highly correlated with the original strengths (mean correlation across all pipelines r = 0.63 ± 0.20). Whilst the distribution 399 
of residuals may change in location (mean) and scale (variance), the skewness, right-tailedness, and kurtosis are preserved 400 
(Figure 5F). Qualitatively similar results were obtained for all parcellations and group reconstructions (Figure S16).  401 

Figure S17 shows the relationship between node surface area and degree in binarized connectomes. Similar to weighted node 402 
strength, the correlation is stronger when using probabilistic than deterministic tractography. In contrast with node strength, 403 
binary node degree generally has a lower correlation with surface area but a greater dependence on threshold density than in 404 
weighted connectomes (Figure S17). Across all parcellations and pipelines, the median correlation was 0.44 (compared to 405 
0.82 for the weighted connectomes). However, this relationship weakened as connection density increased. For example, in 406 
the Schaefer parcellations (S200 and S500), a correlation coefficient above 0.5 occurred only when the density was below 407 
20%. Taken together, these findings suggest that atlas-specific variations in parcel size can influence, but not fully explain, 408 
statistical and topographical properties of node strength and degree.   409 
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Figure 5: Relationship between node strength and node surface area. (A) Spatial maps of node strengths in two 
example parcellations/tractography pipelines. In this example, connection density is 20% with group connectomes 
constructed using the edge coefficient-of-variation (CV). For ease of visualization, only the left hemisphere is shown. (B) 
Relationship between node strength and node surface area for all nodes shown in panel A. (C) Pearson9s correlation 
coefficient between node strength and node surface area as a function of tractography pipeline and density threshold. The 
outlined areas (boxes) correspond to the plots in panel B. (D) Spatial maps of residual strengths when the linear relationship 
in panel B is removed. (E) Relationship between residual strengths shown in panel D and original strengths shown in panel 
A. (F) Frequency distribution of residual strengths shown in panel D and original strengths shown in panel A.  
 
Parcellation: S200 = Schaefer 200 nodes, HCP360 = Glasser 360 nodes. Tractography: SptlCons = spatial constraints on 
streamline propagation, ACT = anatomically constrained tractography, GWM = grey-white masking; Seed = streamline 
seeding algorithm, dynamic = dynamic seeding, WM = white matter seeding, GMWMI = grey matter-white matter interface 
seeding; TractAlgor = Streamline tractography algorithm, FACT = fiber assignment by continuous tractography, iFOD2 
= second-order integration over fiber orientation distributions. 
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3. Discussion 411 

We characterized the effects of several key preprocessing steps of diffusion MRI on the distribution and location of the 412 
most strongly connected regions of the human connectome. In total, we examined 1760 group connectomes (40 pipelines 413 
for individual connectome construction, and 44 group reconstruction schemes) which represent common choices and 414 
techniques in diffusion MRI preprocessing. However, this analysis still encompasses only a fraction of the flexibility and 415 
variability that is possible in diffusion preprocessing pipelines.  416 

We found that, across all the investigated pipelines, evidence of concentrated connectivity in hubs (i.e., degree distribution 417 
properties that differ from the exponential case) was apparent in only a minor fraction of pipeline variations. When relying 418 
on node strength to define hubs, variations in tractography algorithm and parcellation had a much greater effect than changes 419 
in group reconstruction method and connection density. The use of binary degree yielded a less pronounced concentration 420 
of connectivity in network hubs and the resulting connectomes are more sensitive to connection density. When considering 421 
the spatial topography of hubs, the choice between probabilistic and deterministic tractography resulted in the largest 422 
difference and, in some circumstances, led to anti-correlated weighted degree sequences. Finally, although hubs were often 423 
the regions with the largest surface area, particularly in weighted connectomes, removal of this dependence of degree on 424 
region size generally retained a similar hub topography. Together, these findings raise concerns about the consistency with 425 
which hubs can be identified in the literature and suggest that careful consideration must be paid to preprocessing choices 426 
when mapping connectomes with diffusion MRI.  427 

3.1. The effects of tractography algorithm 428 

Degree distribution properties and hub strengths showed significant variations based on the tractography parameters used. 429 
Amongst the properties compared in our analysis, the choice of probabilistic versus deterministic tractography was shown 430 
to drive the greatest variation in degree distribution properties, as represented in the skewness, kurtosis, and right-tailedness 431 
of the degree distributions. In general, deterministic tractography resulted in more asymmetric distributions with heavier 432 
tails; in particular, the most skewed distributions in weighted connectomes resulted from the combination of white matter 433 
seeding, an anatomical streamline constraint, and deterministic tractography (ACT/WM/FACT). Given that these results 434 
were not consistently replicated across other pipelines, the results of this combination of parameters may be atypical. 435 
Whether this atypicality reflects a unique sensitivity of this pipeline combination in recovering the true underlying network 436 
architecture, or a result of interaction between processing steps, is unclear. 437 

Changes in the shape of the degree distribution were also reflected in changes in the location of the strongest nodes and the 438 
relationship to node surface area. Probabilistic tractography showed a strong correlation between node strength and node 439 
surface area in weighted connectomes. This was observed across all parcellations, seeding strategies, spatial constraints, and 440 
group reconstructions. As such, the locations of hubs derived from probabilistic tractography was slightly more consistent, 441 
and degree distributions were generally more correlated between pipelines.  442 

3.2. The effects of cortical parcellation  443 

Many different parcellations have been used in the literature to map connectomes . These parcellations vary with respect to 444 
two key factors relevant to connectome mapping: their spatial resolution and their variance in parcel sizes. Spatial resolution 445 
naturally affects the precision with which the connectivity of regions can be resolved and can lead to differences in the spatial 446 
topography of hubs. For instance, the medial PFC was a prominent hub in the DK68 atlas but not in the other parcellations, 447 
where this area is sub-divided into smaller regions. This variation is likely related to regional variations in surface area, since 448 
the medial PFC is among the largest in the DK68 parcellation. Such variations can interact with other preprocessing choices; 449 
for instance, degree distributions were highly skewed and kurtotic (sub-exponential decay) when using probabilistic, but not 450 
deterministic, tractography with the HCP360 parcellation, for which the largest parcel is more than 1.5× larger than the 451 
largest parcel in the S200 parcellation.  452 

3.3. The effects of regional variation in surface area 453 

To the extent that a given parcellation defines valid functional areas of the brain, the correlation between region size and 454 
degree may be an accurate reflection of biological reality33some regions may be more connected simply because of their 455 
size. However, it can be useful to determine whether a region9s hubness is simply a result of its surface area. It is somewhat 456 
reassuring that the relative degree rankings of different areas only changed moderately after controlling for the effects of 457 
size variations, but these effects should nonetheless be considered when drawing conclusions about the hub status of specific 458 
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brain regions. Further work could consider the mechanisms by which the weight of individual edges (which are uncorrelated 459 
with node surface area) contribute to total node strength (which is often highly correlated with node surface area).  460 

3.4. Effect of group reconstruction and connection density 461 

The specific method for aggregating individual connectomes into a group-averaged representation had minimal effect on 462 
node strength distributions or topographies. Binary degree was more susceptible to the effect of varying connectome density, 463 
which is likely because thresholding removes the weakest connections. Such connections make a small contribution to 464 
weighted degree but make an equal contribution to strong edges when estimating binary degree.  465 

3.5. Limitations 466 

We intentionally used model-free quantities to characterize network degree distributions to simplify and standardize 467 
measures across the various pipelines considered. An alternative is to fit specific distributions to the data. For example, 468 
previous studies have reported that weighted connectomes have a degree distribution that follows a power-law distribution 469 
(Varshney et al., 2011), a truncated power-law distribution (Modha & Singh, 2010), or a generalized Pareto distribution 470 
(Zucca et al., 2019). In the best case, these models can suggest a biological mechanism which may produce observed patterns 471 
of hub connectivity, but care should be taken in performing inference using such analyses (Clauset et al., 2009). Our approach 472 
offers a hypothesis-free way of quantifying the degree to which connectivity is concentrated in putative hub nodes, but 473 
future work could consider characterizing the precise forms of connectome degree distributions in more detail.  474 

The absence of a ground truth for diffusion MRI makes comparisons between pipelines challenging. Diffusion MRI results 475 
have been compared to tract tracing in animals (Calabrese et al., 2015; Girard et al., 2020) and to simulations (Farrher et al., 476 
2012; Maier-Hein et al., 2017), but the field is yet to converge on a gold standard pipeline.  477 

Finally, our analysis focused on group connectomes, as these are most commonly studied in the literature. Recent analyses 478 
of functional MRI data have suggested that there is considerable individual variability in network architecture that is 479 
behaviorally meaningful (Kong et al., 2019; Levakov et al., 2021; Sun et al., 2022). Developing better ways of capturing 480 
biologically meaningful individual differences, as distinct from measurement noise, remains an important challenge for the 481 
field. 482 

4. Conclusions 483 

Our findings indicate that different preprocessing choices affect inferences about network hubs, and that evidence for a 484 
concentration of connectivity in hubs occurs in a minor fraction of pipeline variations. Thus, our analysis suggests that it 485 
can be quite difficult to identify network hubs in a consistent way, at least across different tractography algorithms and 486 
parcellations. However, not all pipeline choices are equal. Although no gold standard pipeline currently exists, some choices 487 
are preferred over others. For instance, ACT (Smith et al., 2012) represents a reasonable constraint on tractography that can 488 
be used to remove biologically implausible streamlines. Furthermore, certain parcellations yield parcels that are more 489 
functionally homogeneous than others, supporting their biological validity. In this respect, the Schaefer parcellations 490 
generally perform quite well with respect to diverse benchmarks (Bryce et al., 2021; Schaefer et al., 2018). However, whether 491 
one should choose deterministic or probabilistic tractography is a difficult question to answer definitively. Deterministic 492 
tractography is more conservative, but may miss real long-range connections that are important for mapping hub 493 
connectivity (Arnatkevičiūtė et al., 2021; Fulcher & Fornito, 2016; van den Heuvel et al., 2012). Probabilistic tractography is 494 
better able to resolve such connections, but may be prone to false positives. The incorporation and improvement of sparsity 495 
constraints and filtering techniques (Schiavi et al., 2020; Smith et al., 2015b) will be important for improving the accuracy of 496 
these approaches. Until then, investigators should be mindful and aware of the effects that the choices they exercise in 497 
processing their data have on their final results.  498 
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