

1 Title:

2 Repeated evolution of bedaquiline resistance in *Mycobacterium tuberculosis* is driven
3 by truncation of *mmpR5*

4

5 Authors:

6 Leah W Roberts^{1,2}, Kerri M Malone^{1,3}, Martin Hunt^{1,3}, Lavania Joseph⁴, Penelope
7 Wintringer¹, Jeff Knaggs^{1,3}, Derrick Crook³, Maha R Farhat^{5,6}, Zamin Iqbal^{1*} and
8 Shaheed V Omar^{4*}

9

10 * Contributed equally

11

12 Affiliations:

13 1. European Molecular Biology Laboratory, European Bioinformatics Institute
14 (EMBL-EBI), Hinxton, United Kingdom (UK)

15 2. Department of Medicine, University of Cambridge, Cambridge, United Kingdom
16 (UK)

17 3. Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
18 (UK)

19 4. Centre for Tuberculosis, National Institute for Communicable Diseases,
20 Johannesburg, South Africa

21 5. Department of Biomedical Informatics, Harvard Medical School, Boston, MA,
22 USA

23 6. Division of pulmonary and Critical Care, Massachusetts General Hospital,
24 Boston, USA

25

26

27

28

29

30

31

32

33

34

35 Abstract:

36

37 The antibiotic Bedaquiline (BDQ) is a key component of new WHO regimens for drug
38 resistant tuberculosis (TB) but predicting BDQ resistance (BDQ-R) from genotypes
39 remains challenging. We analysed a collection (n=505) of *Mycobacterium tuberculosis*
40 from two high prevalence areas in South Africa (Cape Town and Johannesburg, 2019-
41 2020), and found 53 independent acquisitions of 31 different mutations within the
42 *mmpR5* regulatory gene, with a particular enrichment of truncated *MmpR5* in BDQ-R
43 isolates by either frameshift or introduction of an insertion element. Truncations
44 occurred across three *M. tuberculosis* lineages, impacting 66% of BDQ-R isolates.
45 Extending our analysis to 1,961 isolates with minimum inhibitory concentrations
46 (MICs) revealed that *mmpR5*-disrupted isolates had a median BDQ MIC of 0.25 mg/L,
47 compared to the wild-type median of 0.06 mg/L. By matching *mmpR5*-disrupted
48 isolates with phylogenetically close control isolates without the disruption, we were
49 able to estimate the impact on MIC of individual mutations. In conclusion, as the MIC
50 increase borders the ECOFF threshold for BDQ-R, we recommend the continued use
51 of MICs and detection of *MmpR5* truncations to identify modest shifts in BDQ-R.

52

53 Keywords: bedaquiline resistance, tuberculosis, South Africa, Rv0678, *mmpR5*,
54 truncation

55

56 Introduction:

57

58 Tuberculosis (TB), caused by *Mycobacterium tuberculosis*, is one of the oldest
59 transmissible diseases in human history and remains a public health priority. While the
60 incidence of TB in developed countries has improved substantially (to less than 1
61 death per 100,000 population per year), the global burden remains high, with an
62 estimated 10 million infections and 1.5 million deaths annually (WHO 2022 Report).
63 Our ability to treat TB is limited by the ability of *M. tuberculosis* to develop resistance
64 to prescribed treatment regimens over time. As such, rapid understanding of the *M.*
65 *tuberculosis* resistance profile is critical to administering the best drug combination for
66 successful treatment.

67

68 Bedaquiline (BDQ) is a new TB drug that was approved for use in 2012; the first new
69 TB drug in more than 40 years¹. BDQ is an ATP synthase inhibitor with strong
70 bacteriocidal activity that has been successfully used in combination to treat
71 rifampicin-resistant/multidrug-resistant TB (RR/MDR-TB)^{2,3}. Early BDQ usage was
72 conservative in cases where other treatment strategies were ineffective or unavailable.
73 However, recent evidence has led to the World Health Organisation (WHO)
74 recommending BDQ as part of combination therapies (such as the BPaLM regimen)
75 to treat RR/MDR-TB (WHO May 2022). As of 2022, 124 countries were using BDQ as
76 part of treatment for drug-resistant TB (DR-TB) (WHO Report 2022).

77

78 In 2020, eight countries contributed two thirds of the global TB incidence (WHO report
79 2021). One of these countries, South Africa, accounted for 3.3% of the global total,
80 and was one of 30 countries listed by the WHO to have high rates of RR/MDR-TB
81 (WHO 2021 report). Routine use of BDQ began in South Africa in 2015 and accounts
82 for over >50% of global BDQ use by 2020⁴. Although BDQ has been widely successful
83 in reducing mortality in patients with RR/MDR-TB^{5,6}, emerging resistance threatens to
84 hamper the successful treatment and management of TB globally.

85

86 Several studies have attempted to identify the genetic determinants of BDQ
87 resistance. One of the earliest reports of resistance identified a target-based mutation
88 in the gene *atpE*, however, mutations in *atpE* are rarely seen *in vivo* due to deleterious
89 effects to overall fitness². Further studies have since identified the regulatory gene
90 *mmpL5* (or *rv0678*) as a common site for mutations in BDQ-R isolates^{4,7,8}. The
91 translated protein MmpR5 is a 165 amino acid (aa) transcriptional repressor of the
92 efflux pump MmpS5-MmpL5, which has been associated with resistance to both BDQ
93 and clofazimine. So far, no single mutation in *mmpR5* appears strongly linked to BDQ
94 resistance in *M. tuberculosis* isolates⁹⁻¹¹, with most leading to only modest MIC
95 increases between 2- and 4-fold¹⁰. Mutations in *mmpR5* have also been found without
96 prior BDQ or clofazimine treatment¹², suggesting that they are naturally occurring.

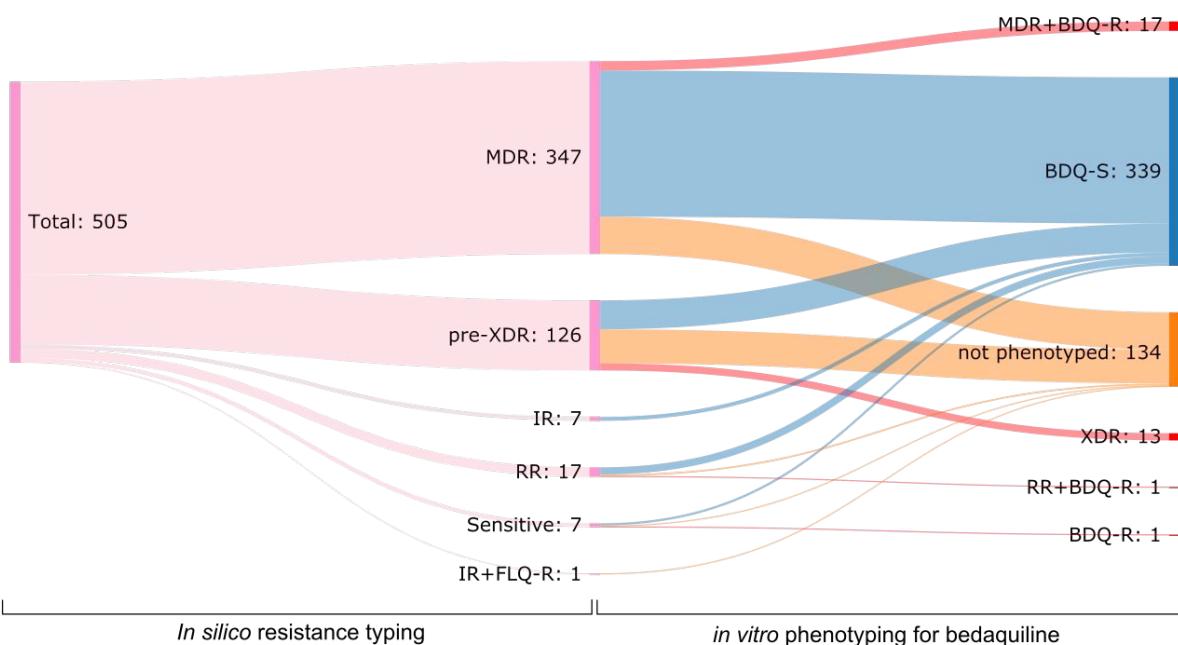
97

98 Here, we use whole genome sequencing (WGS) to analyse a collection of *M.*
99 *tuberculosis* sampled randomly from patients in Johannesburg and Cape Town (South
100 Africa) between 2019-2020. We use local assembly to show that truncation of *mmpR5*
101 via several mechanisms explains almost 70% of BDQ-R isolates. We further extend

102 our study to include all publicly available WGS of South African *M. tuberculosis* to date,
103 including a set of ~2,000 phenotyped *M. tuberculosis* from the CRyPTIC consortium¹³.
104 Assessment of isolate MICs in relation to MmpR5 truncation showed a clear shift in
105 BDQ susceptibility, while truncation of MmpL5 produced a hypersensitive phenotype.
106 As this shift in BDQ MIC is unrecognisable with binary phenotypes, a combination of
107 MICs and MmpR5 truncations could give more insight into BDQ resistance in *M.*
108 *tuberculosis*.

109

110

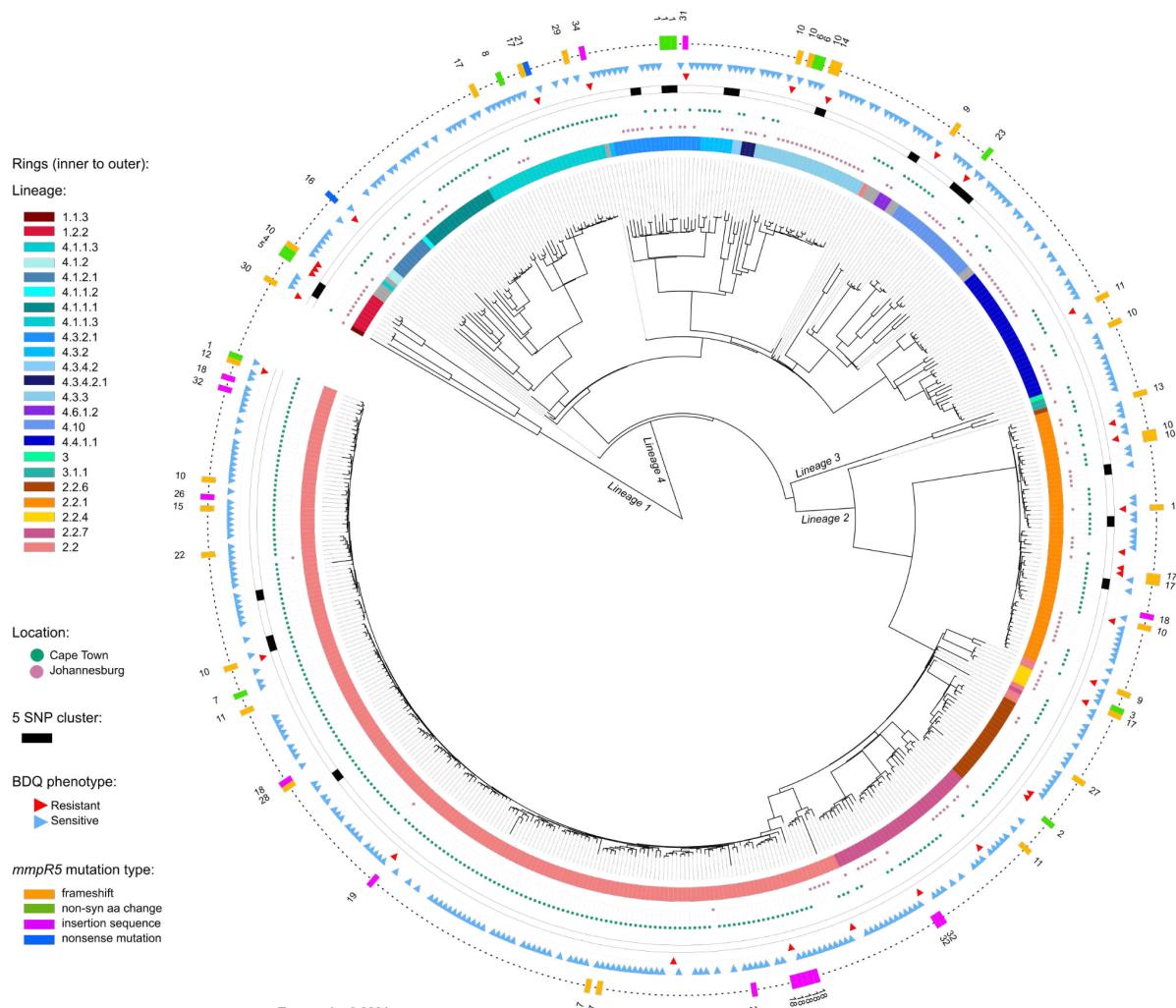

111 **Results:**

112

113 We collected 505 *M. tuberculosis* samples from 483 patients in South Africa between
114 2019 to 2020 (hereafter referred to as **SA1**). *In silico* antimicrobial resistance (AMR)
115 typing found the majority of isolates to be multidrug-resistant (MDR) with resistance to
116 both rifampicin and isoniazid but susceptible to fluoroquinolones (n=347, 69%) (**Figure**
117 **1**). A small number of isolates were rifampicin-mono resistance (RR-TB; n=17, 3%) or
118 isoniazid-mono resistant (IR-TB; n=7, 1%). 126 isolates (25%) were pre-extensively
119 drug-resistant (pre-XDR) with MDR-profiles plus resistance to fluoroquinolones.
120 Seven isolates were susceptible to rifampicin, isoniazid, and fluoroquinolone drugs. A
121 single isolate was isoniazid- and fluoroquinolone-resistant (including moxifloxacin), but
122 susceptible to rifampicin. Comparison of *in silico* typing to available phenotypes
123 showed 84-96% concordance between phenotypic and genotypic predictions
124 (**supplementary dataset 1**).

125

126 A random subset of the SA1 dataset (n=371) was available at the time for phenotyping,
127 which identified 32 isolates resistant to bedaquiline (BDQ-R). When combined with the
128 *in silico* AMR predictions, 13 (10%) pre-XDR isolates could be reclassified as
129 extensively-drug resistant (XDR), while 52 remained pre-XDR (41%), and 61 were not
130 tested (49%) (**Figure 1**). Additionally, 17 MDR-TB, one RR-TB and one sensitive TB
131 also had BDQ-R phenotypes.


132

133 **Figure 1:** Antimicrobial resistance typing using *in silico* and phenotypic methods. AMR
134 profiles were determined for each *M. tuberculosis* isolate in the SA1 dataset using
135 Mykrobe (left panel). A subset were also phenotyped for resistance to bedaquiline
136 (BDQ) (right panel). The right panel adds phenotypic information (i.e. bedaquiline
137 susceptibility) to the *in silico* resistance typings (e.g. a pre-XDR isolate with phenotypic
138 bedaquiline resistance would then be classed as XDR). Abbreviations are consistent
139 with the WHO guidelines for *M. tuberculosis* resistance typing. IR = isoniazid resistant,
140 RR = rifampicin resistant, BDQ-R = bedaquiline resistant, XDR = extensively drug
141 resistant, MDR = multidrug resistant.

142

143

144 To predict how BDQ resistance emerged (clonally from a single event, or multiple
145 times independently), we first created a maximum-likelihood phylogeny using core
146 single nucleotide polymorphisms (SNPs) from the SA1 dataset. This revealed a mix of
147 lineages, with lineage 2 the most common (n=314), followed by lineage 4 (n=178),
148 lineage 1 (n=10) and lineage 3 (n=3). Very few incidents of recent transmission
149 (defined as within 5 SNPs) were identified (13 incidents involving 33 samples) (**Figure**
150 **2**), although there were notable clonal expansions within lineages 2.2 and 2.2.1
151 (**detailed further in the supplementary materials**). Phenotypically BDQ-R isolates
152 were spread throughout the phylogeny, where we predict at least 28 independent
153 events leading to resistance (**Figure 2**).

154
155 **Figure 2:** SA1 dataset from Cape Town and Johannesburg collected between 2019-
156 2020. Phylogeny built using core SNPs with IQTree v1.6.12. Outer ring (with numbers)
157 denotes *mmpR5* variant identifier as used in **Table 1**.

158
159
160 *BDQ-R is associated with truncation of the regulatory gene mmpR5*
161
162 To identify mutations that could be associated with BDQ-R, we investigated two genes
163 previously reported to have a role in BDQ-R: the target gene *atpE* and the efflux pump
164 regulator *mmpR5*. None of the isolates in SA1 had variants in *atpE*. Additionally, the
165 vast majority of isolates had no variants in *mmpR5* (n=441, 87%). However, 13 isolates
166 (3%) had non-synonymous mutations in *mmpR5*, of which three were BDQ-R isolates
167 (G41D, n=1; R72W, n=1; L117V n=1; note 4/13 were not phenotyped) (**Table 1**). Of
168 the remainder (n=51), 33 were found to have frameshift mutations. In order to interpret

169 the effect of these frameshifts, we obtained the predicted protein sequence for *mmpR5*
170 for all isolates (using *de novo* assemblies) to assess possible truncation events.
171 Overall, we identified 48 isolates (9.5%) with a truncated MmpR5 protein (**Figure 3**).
172

173 The length of truncation varied from 3 to 154 amino acids (from a total length of 165
174 amino acids for MmpR5). 33/48 isolates were found to have one of 14 different
175 frameshift mutations (**Table 1**). Further inspection of the *de novo* assemblies revealed
176 a number of isolates with suspected insertion sequences (IS) disruptions. To
177 investigate this, we ran ISMapper¹⁴ looking for IS6110 insertions within or upstream of
178 *mmpR5*. We found 12 isolates with IS6110 interrupting *mmpR5* (at 5 sites), and 4 with
179 IS6110 in the promoter region (at 2 sites). Two isolates had different nonsense
180 mutations, and one isolate had an unknown truncation (which we did not include
181 further; see Methods) (**Table 1**).
182

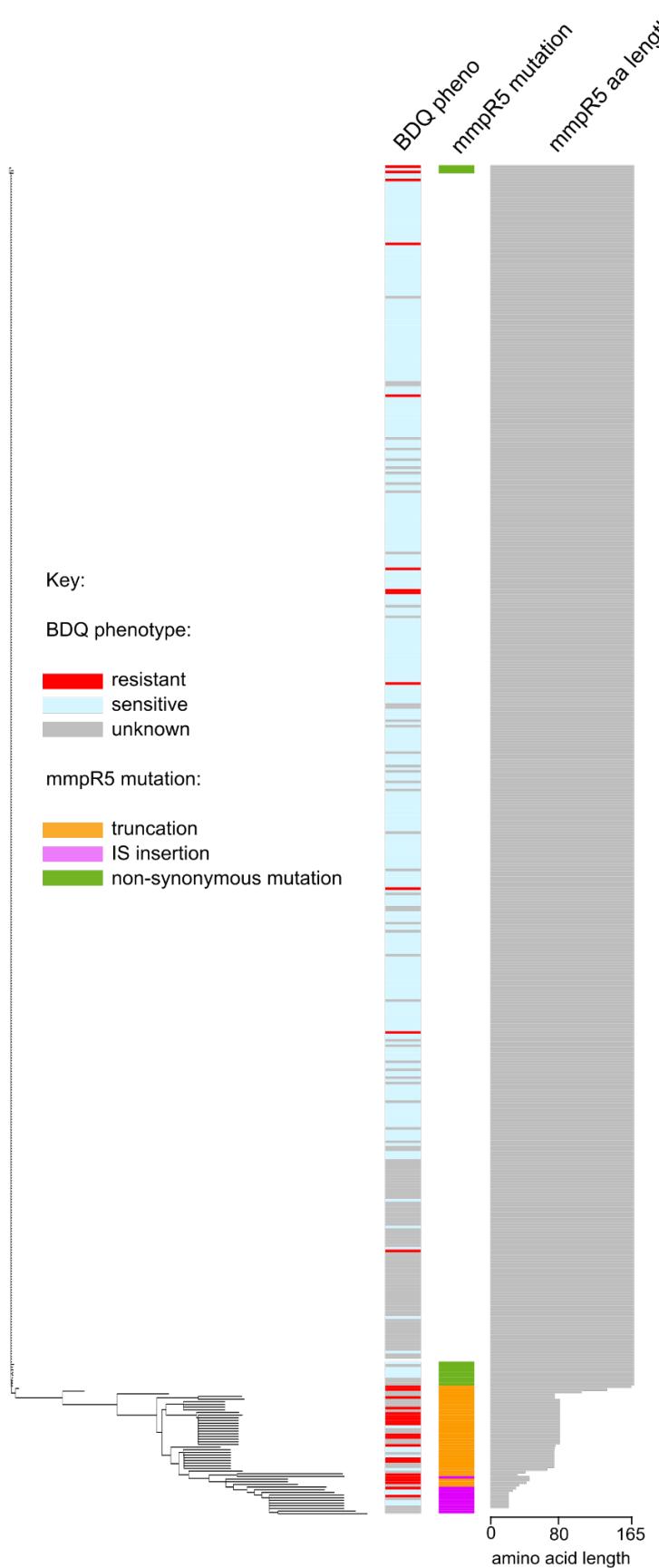
183 Based on isolates with BDQ phenotypes (n=371), mutation and truncation events in
184 *mmpR5* were more common in BDQ-R isolates (**Figure 3**). 24/32 (75%) resistant
185 isolates had mutations in *mmpR5*, of which 19 (79%) were predicted to result in
186 MmpR5 truncations. Only 5% (16/339) of sensitive isolates had mutations in *mmpR5*,
187 of which just 9 resulted in predicted MmpR5 truncations. There was little difference in
188 the types of mutations leading to truncations between BDQ-R and BDQ-S isolates.
189 Frameshifts were responsible for the most MmpR5 truncations (5 in BDQ-S isolates,
190 14 in BDQ-R isolates). IS6110 was responsible for 4 truncations in BDQ-S isolates
191 and 3 in BDQ-R isolates. The remainder of truncations were caused by nonsense
192 mutations (n=2).
193

194 Comparison of each unique *mmpR5* mutation (**Table 1**) to the phylogeny revealed
195 mostly independent acquisitions of the same mutations relatively recently in the tree
196 (**Figure 2**). Of the 64 isolates with *mmpR5* mutations (including promoter region IS),
197 we estimate 53 independent acquisitions (53/64=83%) of 31 different *mmpR5*
198 mutations.
199

200
201
202

203 **Table 1:** Summary of variants identified in *mmpR5* (SA1 dataset)

mutation number	isolate	accession	type	mutation	BDQ phenotype	aa length
1	S006	ERS14298562	non-syn aa	M139I	n.a.	165
1	S025	ERS14298581	non-syn aa	M139I	n.a.	165
1	S040	ERS14298596	non-syn aa	M139I	n.a.	165
1	S435	ERS14298991	non-syn aa	M139I	S	165
2	S063	ERS14298619	non-syn aa	A99V	n.a.	165
3	S135	ERS14298691	non-syn aa	R82W	S	165
4	S145	ERS14298701	non-syn aa	G41D	R	165
5	S198	ERS14298754	non-syn aa	R72W	R	165
6	S199	ERS14298755	non-syn aa	F100I	S	165
6	S200	ERS14298756	non-syn aa	F100I	S	165
7	S392	ERS14298948	non-syn aa	L95S	S	165
8	S454	ERS14299010	non-syn aa	F19V	S	165
9	S165	ERS14298721	frameshift	V45fs	R	45
9	S387	ERS14298943	frameshift	V45fs	R	45
10	S044	ERS14298600	frameshift	P48fs:RAAVL	n.a.	80
10	S094	ERS14298650	frameshift	P48fs:RAAVL	n.a.	80
10	S125	ERS14298681	frameshift	P48fs:RAAVL	R	80
10	S134	ERS14298690	frameshift	P48fs:RAAVL	R	80
10	S172	ERS14298728	frameshift	P48fs:RAAVL	n.a.	80
10	S194	ERS14298750	frameshift	P48fs:RAAVL	n.a.	80
10	S257	ERS14298813	frameshift	P48fs:RAAVL	S	80
10	S279	ERS14298835	frameshift	P48fs:RAAVL	R	80
10	S393	ERS14298949	frameshift	P48fs:RAAVL	R	80

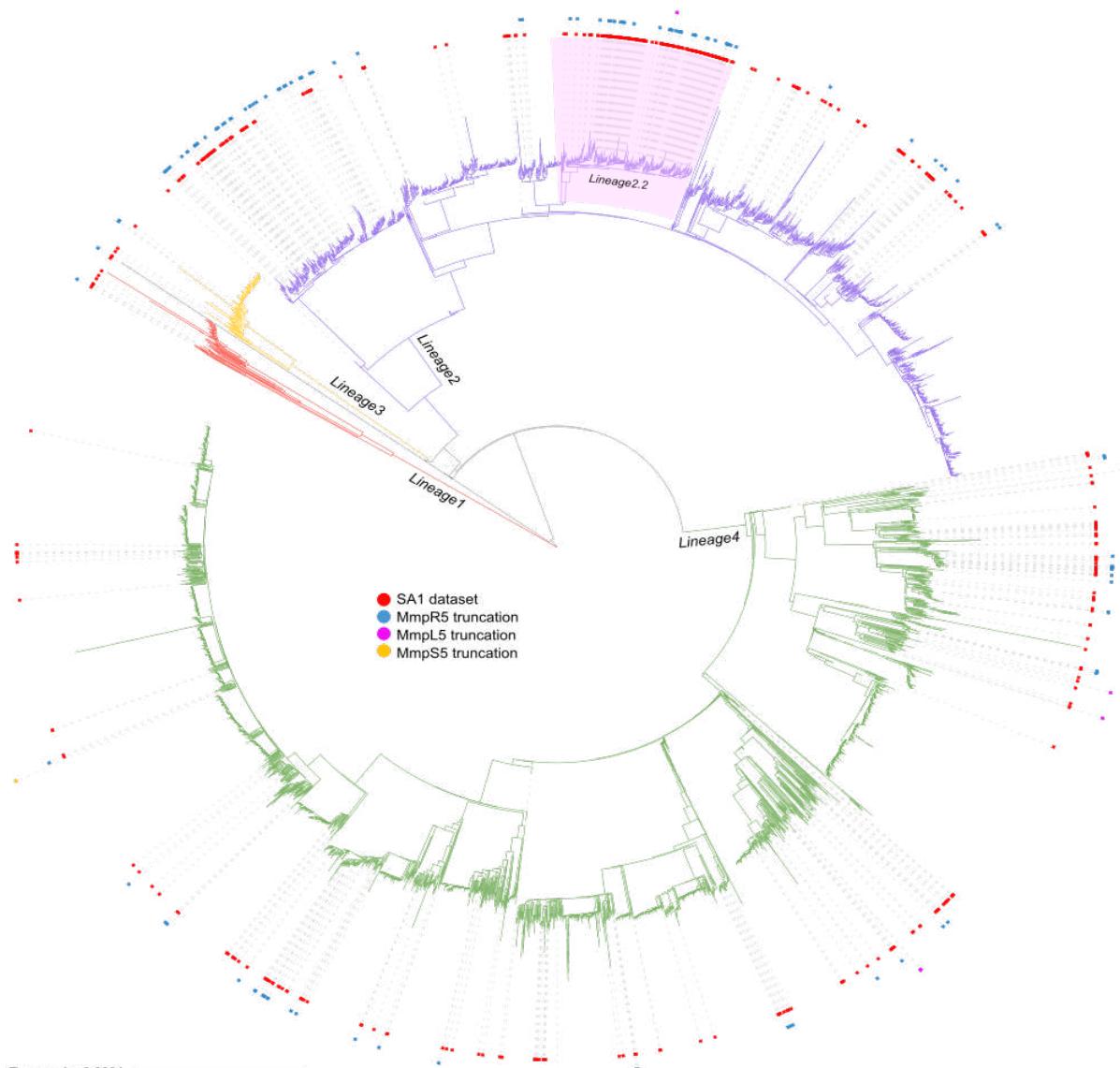

10	S425	ERS14298981	frameshift	P48fs:RAAVL	R	80
10	S426	ERS14298982	frameshift	P48fs:RAAVL	R	80
11	S033	ERS14298589	frameshift	G66fs:DQHQC	n.a.	80
11	S059	ERS14298615	frameshift	G66fs:DQHQC	R	80
11	S067	ERS14298623	frameshift	G66fs:DQHQC	n.a.	80
11	S082	ERS14298638	frameshift	G66fs:DQHQC	n.a.	80
12	S255	ERS14298811	frameshift	C46fs:GSRAA	R	80
13	S068	ERS14298624	frameshift	C46fs:DPERP	n.a.	80
14	S176	ERS14298732	frameshift	C46fs:VIPSG	R	74
15	S232	ERS14298788	frameshift	G66fs:RSAPM	S	74
16	S177	ERS14298733	nonsense	W42nonsense	R	41
17	S056	ERS14298612	frameshift	G66fs:SAPMP	n.a.	73
17	S085	ERS14298641	frameshift	G66fs:SAPMP	n.a.	73
17	S141	ERS14298697	frameshift	G66fs:SAPMP	R	73
17	S183	ERS14298739	frameshift	G66fs:SAPMP	R	73
17	S184	ERS14298740	frameshift	G66fs:SAPMP	S	73
17	S203	ERS14298759	frameshift	G66fs:SAPMP	n.a.	73
17	S300	ERS14298856	frameshift	G66fs:SAPMP	S	73
18	S011	ERS14298567	IS insertion	IS6110:779036	n.a.	16
18	S088	ERS14298644	IS insertion	IS6110:779043	n.a.	21
18	S124	ERS14298680	IS insertion	IS6110:779036	S	21
18	S295	ERS14298851	IS insertion	IS6110:779041	S	21
18	S370	ERS14298926	IS insertion	IS6110:779046	n.a.	21
18	S376	ERS14298932	IS insertion	IS6110:779045	R	21

18	S499	ERS14299055	IS insertion	IS6110:779045	S	21
18	S020	ERS14298576	IS insertion	IS6110:779042	n.a.	33
19	S321	ERS14298877	IS insertion	IS6110:779075	R	29
20	S432	ERS14298988	IS insertion	IS6110:779056	S	25
21	S449	ERS14299005	nonsense	Q76nonsense	R	75
22	S456	ERS14299012	frameshift	G65fs	S	65
23	S472	ERS14299028	Non-syn aa + unknown truncation*	L117V:R135stop	R	134
26	S042	ERS14298598	IS insertion	IS6110:779026	n.a.	11
27	S057	ERS14298613	frameshift	D47fs:LPSGS	n.a.	74
28	S075	ERS14298631	frameshift	P48fs	n.a.	40
29	S092	ERS14298648	frameshift	R89fs	n.a.	105
30	S095	ERS14298651	frameshift	G6fs	R	31
31	S108	ERS14298664	IS insertion	IS6110:779168	R	162
32	S043	ERS14298599	IS promoter	IS6110:778978	n.a.	165
32	S215	ERS14298771	IS promoter	IS6110:778978	R	165
32	S254	ERS14298810	IS promoter	IS6110:778978	S	165
34	S412	ERS14298968	IS promoter	IS6110:778945	R	165

204

** This isolate was not included in results relating to MmpR5 truncation

205


206

207 **Figure 3:** protein alignment and neighbour joining tree of MmpR5 predicted protein
208 sequences from the SA1 dataset

209
210 Overall, 21/32 (66%) BDQ-R isolates in our dataset had evidence of truncation (i.e.
211 shortened proteins) or promoter interruptions in *mmpR5*. However, despite being able
212 to correlate a large number of BDQ-R isolates with disruptions in *mmpR5*, we still
213 observed cases where *mmpR5* was truncated but the BDQ phenotype remained
214 sensitive, or BDQ-R isolates with an unaltered *mmpR5* gene. We therefore
215 investigated a number of other genes that have previously been implicated in BDQ-R
216 mechanisms in *M. tuberculosis* (*mmpL5*, *mmpL3*, *mmpS5*, *amiA2*, *pepQ*, *era*, *rv1816*,
217 *rv3249c*). We found a few lineage-specific mutations (**supplementary figure 1**), but
218 no mutations that further explained the BDQ-R isolates. To check for gene duplications
219 of *mmpR5*, *mmpL5* and *mmpS5*, we also mapped all reads to the reference genome
220 H37Rv and compared the average genome coverage to coverage at these specific
221 genes. We found no change in coverage that could suggest duplication of these genes
222 in any isolates. Finally, we looked for IS interruption of *mmpL5*, *mmpS5* or *atpE*, and
223 found no evidence of IS6110 insertion.

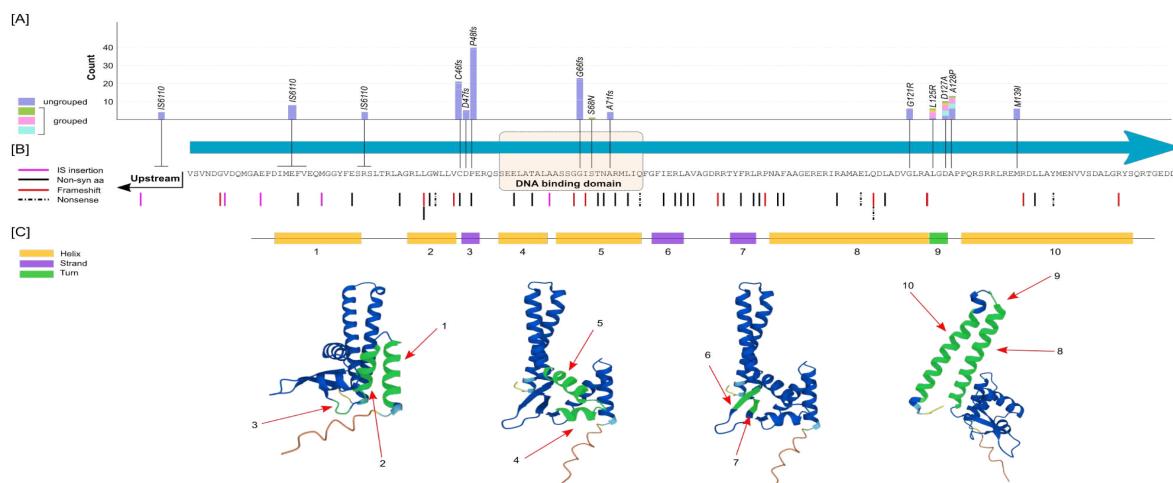
224
225 *Truncation of mmpR5 was observed in all lineages across a large South African*
226 *dataset*

227
228 To contextualise our SA1 dataset into a broader South African cohort with
229 accompanying MICs, we downloaded all publicly available South African *M.*
230 *tuberculosis* isolates from the ENA and CRyPTIC consortium¹³ datasets (n=5,253;
231 hereafter referred to as “SA2”). Overall, we found that our SA1 dataset was well-
232 sampled across the known diversity of *M. tuberculosis* in South Africa, with the
233 exception of a large lineage 2.2 clade primarily isolated in Cape Town (as noted
234 previously; **Figure 4**).
235

236

237 **Figure 4.** Maximum likelihood phylogeny of 5,253 publicly available South African *M.*
238 *tuberculosis* isolates (SA2) plus the SA1 dataset, built using core SNPs with IQTree
239 v2.2.0.

240


241 We used the antimicrobial resistance prediction tool ARIBA¹⁵ with a custom reference
242 gene set to rapidly identify truncated genes, including *mmpR5*. ARIBA was able to
243 identify 42/47 gene truncations (89%) from our exhaustively manually curated SA1
244 dataset. Three of the five missing calls were caused by IS insertions, and two had
245 ambiguous heterogeneous calls that ARIBA did not report. Nevertheless, as ARIBA
246 captured the majority of truncations, we used it to identify non-synonymous mutations
247 and truncations in *mmpR5*, *mmpL5* and *mmpS5* in the much larger SA2 dataset.

248

249 We identified 76 isolates in the SA2 dataset with predicted truncations resulting from
250 18 mutations, 11 of which were unique to the SA2 dataset (including 7 frameshifts, 1
251 IS6110 insertion, and 3 nonsense mutations) (**supplementary dataset 1**). Three
252 additional isolates had one of two different frameshift mutations that resulted in altered
253 proteins but not truncation. Plotting truncations onto the large SA1+SA2 phylogeny
254 produced the same scattered prevalence as with the smaller SA1 dataset, confirming
255 that truncations of MmpR5 occurred independently (**Figure 4**).
256

257 We also identified 50 isolates with one of 30 additional non-synonymous variant
258 combinations in MmpR5. When assessing all variants in *mmpR5* across both datasets,
259 43 mutations were unique to the SA2 dataset, eight mutations were found in both the
260 SA1 and SA2 datasets, while 20 were unique to the SA1 dataset (not including the IS
261 promoter mutations, which were not identified in the SA2 dataset).
262

263 Across the SA1 and SA2 datasets we identified 73 separate variants in *mmpR5*
264 (**supplementary dataset 1**). 48/73 variants were represented by only a single isolate,
265 while 9/73 were represented by only 2 isolates (**Figure 5; B**). 15 variant sites
266 represented the majority of mutations, capturing 125/194 isolates with mutations in
267 *mmpR5* (**Figure 5; A**). The most common mutations were all frameshifts at positions
268 C46, G66 and P48, representing 40% (n=77/194) of the isolates (**Figure 5; A**). There
269 was also a concentration of amino acid substitutions at the final “turn” of the predicted
270 MmpR5 protein. In relation to the functional domains of the protein, we observed that
271 the more common mutations occur in the first half of the predicted protein, and resulted
272 in removal or disruption of the DNA-binding domain (**Figure 5; C, Supplementary**
273 **Figure 2**).
274

275

276 **Figure 5:** Summary of *mmpR5* mutations: [A]: all mutations that occurred in ≥ 3 isolates. Most mutations were found in separate samples (purple bars; ungrouped).
277 Green, light blue and pink bars represent mutations found together in a single sample.
278 [B]: all other mutations found in ≤ 2 isolates, and [C]: Uniprot/AlphaFold
279 prediction of protein structure (<https://www.uniprot.org/uniprotkb/I6Y8F7/entry>
280 accessed 19-08-2022)

282

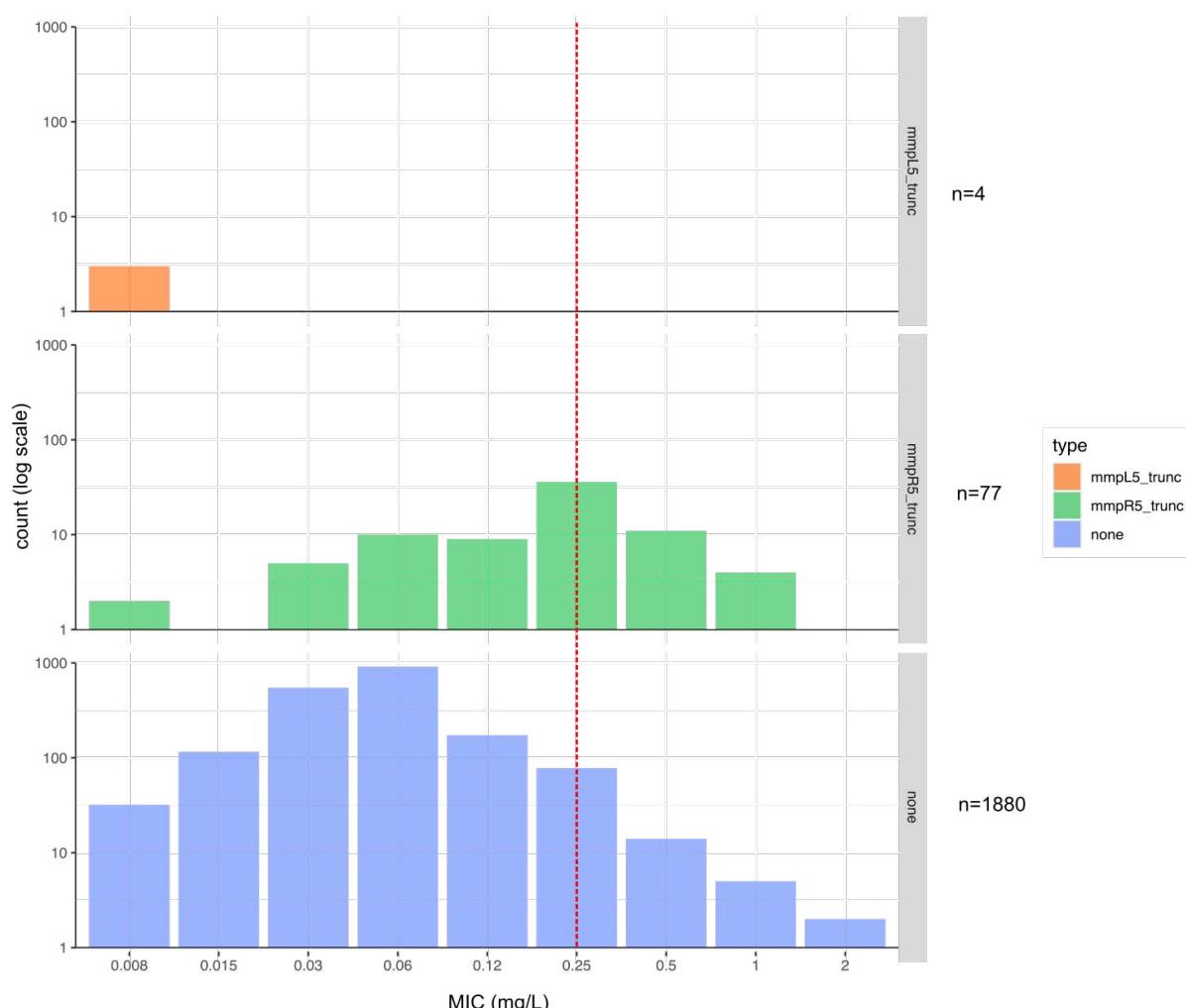
283

284 In addition to *mmpR5* truncations, we also looked for evidence of truncation in *mmpL5*
285 and *mmpS5* in the SA2 dataset. Overall we found 6 isolates with *MmpL5* truncations,
286 caused by 5 different mutations (Q333fs, Q702nonsense, R734fs, R115fs, and
287 G138fs). There was no evidence of IS6110 interruption within or upstream of *mmpL5*.
288 We only identified a single isolate with a mutation leading to a truncation in *mmpS5*
289 (P101fs). Importantly, we did not find any isolates that had multiple gene truncations
290 involving any combination of *mmpL5*, *mmpR5* or *mmpS5*. Five of the six *mmpL5*
291 truncations were phylogenetically distinct and the result of independent acquisitions
292 (**Figure 4**). We discuss the phenotypic impact of these below.

293

294 *The BDQ minimum inhibitory concentration (MIC) is increased in isolates with mmpR5*
295 *truncation*

296


297 Of the 79 *MmpR5*-truncated (or otherwise frameshifted) isolates found in the SA2
298 dataset, 75 were from the CRyPTIC dataset and had phenotypic data. 51 (68%) were
299 BDQ-R (based on an ECOFF threshold of 0.25 mg/L for resistance), while the

300 remainder were BDQ-S. Four of the six isolates with MmpL5 truncations had
301 phenotypic data and were all sensitive. The single isolate with MmpS5 truncated had
302 no phenotypic data.

303

304 As before, we found a number of BDQ-S isolates with predicted MmpR5 truncations.
305 To gain better insight into the effect of MmpR5 truncation on resistance beyond the
306 binary phenotypes, we plotted the BDQ minimum inhibitory concentrations (MIC) for
307 1,961 South African CRyPTIC isolates and separated them based on predicted
308 truncation of MmpR5 and MmpL5 (no MIC was available for the MmpS5 truncated
309 isolate). We found that the median BDQ MIC was elevated in isolates with MmpR5
310 truncated (0.25 mg/L, [stdev 0.22 mg/L]) compared to isolates without truncation of
311 MmpR5, MmpL5 or MmpS5 (median 0.06 mg/L [stdev 0.1 mg/L]) (**Figure 6**). MmpL5
312 truncation appeared to cause hypersensitivity (median 0.008 mg/L [stdev 0.004
313 mg/L]), although we had few samples to assess this effect (n=4).

314

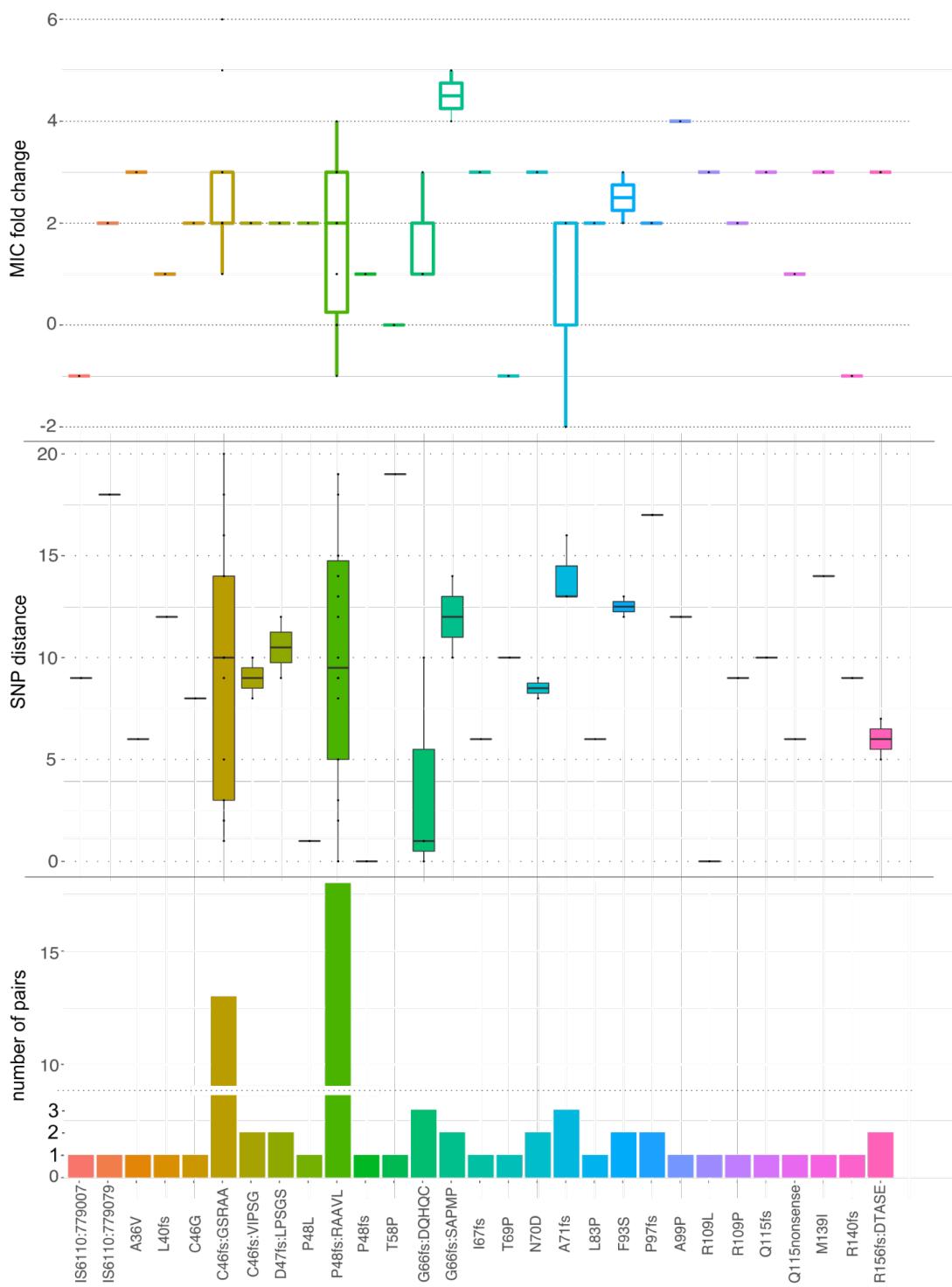
315

316 **Figure 6:** Bar plots of bedaquiline MIC based comparing truncation of MmpR5 and
317 MmpL5 to no truncations. X-axis = bedaquiline MIC (mg/L), y-axis: count (log scale).
318 Red dotted line: ECOFF cutoff (0.25 mg/L). mmpL5_trunc = isolates with MmpL5
319 truncated. mmpR5_trunc = isolates with MmpR5 truncated. None = isolates with no
320 truncation of MmpR5, MmpL5 or MmpS5.

321

322

323 *mmpR5 mutations led to a median 2-fold increase in BDQ MIC*


324

325 We next tried to assess the contribution of each mutation in *mmpR5* to BDQ resistance
326 by comparing the MICs of closely related pairs (at a threshold of 20 SNPs) where one
327 contained a mutation in *mmpR5* and the other contained no mutations in *mmpR5*,
328 *mmpL5* or *mmpS5*. Of 127 samples with mutations in *mmpR5* (including non-
329 synonymous mutations, IS, nonsense mutations, and frameshifts), 58 samples were

330 not assessed as they either had no closely related sample with MIC data within 20
331 SNPs (n=32) or the sample itself did not have MIC data (n=26).

332

333 Overall there was a median 2-fold increase in BDQ MIC in samples with mutations in
334 *mmpR5* compared to closely related samples without mutations (**Figure 7**). The
335 strongest effect overall was a frameshift at G66 (G66fs:SAPMP) which resulted in a 4-
336 5-fold increase in BDQ MIC, although it was only found in two samples. The two
337 positions with the highest number of samples (C46fs:GSRAA and P48fs:RAAVL) had
338 variable results; the frameshift at C46 resulted in a median 2-fold increase in BDQ-
339 MIC (ranging from 1-6 fold increase), while the frameshift at P48 also had a median 2-
340 fold increase but contained 4 pairs (22%) with no MIC increase, and one pair with a 1-
341 fold reduction in BDQ MIC. 18 out of 29 variant positions (62%) only had 1 pair that
342 we were able to assess (**Figure 7**).

343

344 Figure 7: Estimated impact on MIC of observed variants in *mmpR5*. For each "case" 345 isolate containing a variant (x axis) a control isolate is selected which does not have 346 that variant, and which differs by at most 20 SNPs from the original isolate. The 347 difference in MIC is a point estimate of the effect size. The distribution of effect on MIC 348 across all isolates is shown in the top panel, the SNP differences between case and 349 controls is in the middle panel and the number of case/control pairs is in the bottom 350 panel.

351

352 Discussion:

353

354 BDQ resistance was first observed in 2005 and has since been seen repeatedly in
355 South Africa, China, India, and elsewhere^{2,13}. There are multiple mechanisms causing
356 resistance; mutations in the target ATP synthase *atpE* cause extremely high levels of
357 resistance but are clinically extremely rare¹⁰. It is more common to see mutations in
358 the efflux pump regulator *mmpR5*, but so far it has not been possible to predict
359 resistance with any great success; most mutations are unique and not consistently
360 associated with resistance. In this study we analyse a collection of recent (2019-2020)
361 samples from Cape Town and Johannesburg and find a notable enrichment of *mmpR5*
362 truncations in BDQ-R samples. We then extend to a larger dataset consisting of 1,961
363 South African isolates with MICs, augmented with all other South African samples from
364 the ENA to provide context.

365

366 In line with previous studies, we identified mainly lineage 2 and lineage 4 isolates, with
367 few samples from lineages 1 and 3¹⁶. Using a strict threshold of 5 SNPs¹⁷ we found
368 little evidence of recent person-to-person transmission in our cohort. There was also
369 limited geographical clustering, with lineages identified across both sites
370 (Johannesburg and Cape Town). The exception was a large number of lineage 2.2
371 isolates collected mainly from Cape Town, with a median 6 SNPs to the nearest
372 neighbour (range 0-29 SNPs) indicating probable ongoing transmission at this site.
373 We identified truncation of *mmpR5* as a strong indicator of increased BDQ MIC in our
374 cohort and conclude that resistance evolved repeatedly across all lineages containing
375 isolates with phenotypic BDQ-R and not as a result of transmission¹⁸. *mmpR5* has
376 been the focal point of multiple BDQ-R-association studies^{4,10}, but few have looked at
377 truncation as an overall effect relating to BDQ-R. Our study also highlights the effect
378 of *mmpR5* truncation in a sizable cohort of *M. tuberculosis* samples, including not only
379 our primary SA1 dataset, but also a large number of publicly available *M. tuberculosis*
380 samples with paired MIC data (SA2)¹³.

381

382 We assessed disruption of *mmpR5* using local assembly to simultaneously identify
383 multiple means of truncation, including frameshifts, nonsense mutations, and also IS
384 elements, which have been reported previously in separate studies^{10,19}. We show that

385 the most common mutations occur prior to the predicted DNA binding region of
386 *mmpR5*, suggesting inactivation of the protein, although this remains to be confirmed
387 *in vitro*.

388

389 We found very few cases of *mmpL5* or *mmpS5* disruption, and no evidence of
390 combined inactivation of both the regulator *mmpR5* and the efflux pump *mmpL5/S5*.
391 This suggests that inactivation of the efflux pump is rare (although not impossible²⁰)
392 and may convey a negative fitness cost to the bacterium. As such, detecting variation
393 in *mmpR5* alone is not sufficient to predict BDQ resistance, and further work is required
394 to understand expression levels of *mmpR5/L5/S5* and fitness costs associated with
395 expression of this efflux pump *in vivo*.

396

397 We show that a majority of isolates with a truncated (or otherwise frameshifted)
398 *mmpR5* had a median 2-fold increase in MIC to BDQ. This modest increase in MIC is
399 in line with other studies looking at mutations in *mmpR5*¹⁰, and often places the BDQ
400 MIC at the threshold of resistance (based on the ECOFF cutoff of 0.25 mg/L). This
401 explains why binary phenotyping alone reports a mix of both sensitivity and
402 resistance²¹.

403

404 While we found that truncations in *mmpR5* were important, we were limited in our
405 ability to determine the specific contribution of certain mutations to BDQ susceptibility.
406 Like other studies, we found a number of mutations, many of which were only
407 represented by a single isolate^{4,10}. For each isolate with a truncation of *mmpR5* we
408 used a phylogenetically closely related control without the truncation, to estimate the
409 effect of the truncation on MIC. Most such pairs differed also by other SNPs than just
410 those in *mmpR5*, making it difficult to assess the contribution of the *mmpR5* mutation
411 alone.

412

413 In practical terms, we found that ARIBA is a robust tool for screening large datasets
414 and identifying gene truncations, which was only slightly less sensitive than exhaustive
415 manual curation. However, we found it highly sensitive to data quality (including at
416 regions of high GC content²¹ especially in *mmpL5*), so recommend that predictions be
417 separately and rigorously assessed.

418

419 We acknowledge some other limitations of this study. Firstly, we focused mainly on
420 truncations and disruptions of the predicted protein sequences, and so did not
421 rigorously assess synonymous mutations. While we looked for promoter disruptions in
422 the SA1 dataset, we did not look for promoter disruptions in the SA2 dataset as we
423 used ARIBA to screen genes only. Finally, we focused our IS analysis on IS6110 only,
424 and did not explore other IS movement.

425

426 Overall, we recommend the continued use of MICs to identify modest shifts in BDQ
427 resistance and local assembly tools, like ARIBA, to detect gene inactivations caused
428 by truncations or disruptions. The impact of elevated MIC on patient outcome is also
429 of great interest and warrants future study.

430

431

432 **Methods:**

433

434 *Study setting and sample selection:*

435 Isolates, cultured using the MGIT platform, included in this study were prospectively
436 collected between 2019 - 2020 from two high-volume laboratories (Gauteng and
437 Western Cape) in South Africa as part of surveillance activities in the Metropolitan
438 areas. These were a minimum of MDR-TB by WHO definition.

439

440 *Culture, DNA extraction and whole genome sequencing:*

441 *M. tuberculosis* samples were cultured as previously described¹³. A 1.2ml aliquot of the
442 cultured isolate was heat-inactivated at 80°C for 20 minutes in a forced air oven. The samples
443 were pelleted by centrifugation at 8000 xg for 5 minutes, 600µL of the supernatant was
444 discard and the resultant pellet homogenized by vortexing at maximum speed for 10 minutes
445 in the remaining solution. DNA extraction was performed using 500µL of the sample on the
446 NucliSENS easyMAG automated extraction system (Biomerieux, France). The Generic protocol
447 was utilised with a final elution volume of 50 µL. Paired-end libraries were prepared using
448 the Nextera Flex DNA library preparation kit (Illumina, USA) and sequenced using the either
449 the MiSeq and NextSeq 550 instruments (Illumina, USA).

450

451 *Drug resistance phenotyping:*

452 Two-fold serial dilutions of 100x working solutions of BDQ (obtained through the NIH
453 HIV Reagent Program, Division of AIDS, NIAID, NIH: Bedaquiline Fumarate, ARP-
454 12702, contributed by Janssen Pharmaceuticals). A BDQ stock solution of 840 µg/ml
455 was prepared by adding 10.08 mg BDQ powder (fumarate salts) to 10 ml
456 dimethylsulfoxide (DMSO). These were stored at -70°C and on the day of testing,
457 thawed at ambient temperature. A working solution was prepared by a 1:10 dilution
458 with DMSO . DST was performed on the BACTEC™ MGIT™ 960 DST, a 100µl of the
459 working solution was added to the MGIT tubes giving a final concentration of 1µg/mL
460 (WHO tentative recommended critical concentration) and processed further as
461 described previously* with minor modification, i.e. the incubation time was extended
462 to 28 days.

463

464 *Quality control:*

465 All raw reads were run through the quality control and decontamination pipelines in
466 Clockwork v0.10.0 (<https://github.com/iqbal-lab-org/clockwork>) using the reference
467 genome H37Rv (accession: NC_000962.3). Samples that had <25x average coverage
468 and/or >5% contamination were removed, leaving 505 *M. tuberculosis* samples
469 (referred to as SA1).

470

471 *Variant calling and regenotyping:*

472 Per-sample variant calling was completed using Clockwork v0.10.0
473 (<https://github.com/iqbal-lab-org/clockwork>) against the reference genome H37Rv
474 (accession: NC_000962.3). Clockwork is a variant caller which runs two other
475 independent callers (SAMtools²², Cortex²³) on each isolate, and then builds a graph
476 genome of the (reference genome and) two sets of variant calls, and remaps the reads
477 to this graph, in order to adjudicate between the two callers where they disagree²⁴.
478 Having done this, Minos²⁴ v0.12.0 was used to collect a non-redundant list of all
479 segregating variants in the cohort, harmonise variant representation in positions where
480 indels overlap SNPs (or other indels), and then remap the decontaminated reads one
481 more time, to genotype all samples at all variants, providing consistent VCFs for all
482 samples.

483

484 *Publicly available South African TB:*

485 Raw sequencing reads for all publicly available South African *M. tuberculosis* samples
486 from the European Nucleotide Archive (ENA) until October 2020 and the CRyPTIC
487 dataset¹³ were downloaded (n=5,802). All samples underwent quality control
488 (described above), leaving 5,253 *M. tuberculosis* samples (referred to as SA2).
489 Specific isolate sets used for each analysis is given in **Supplementary Dataset 1**.

490

491 *In silico lineage assignment and resistance profiling:*

492 Mykrobe²⁵ v0.9.0 was run on default settings using the raw reads against the 2020-
493 01-14 TB panel. The output consisted of json files containing resistance predictions,
494 mutation evidence, and lineage predictions.

495

496 *Phylogenetic reconstruction:*

497 Single nucleotide polymorphisms (SNPs) were substituted into the H37Rv genome
498 using BCFtools²⁶ consensus (v1.10.2) to create a whole-genome alignment of all
499 samples (https://github.com/LeahRoberts/Mtb_South_Africa/tree/main/scripts).
500 Repeat regions (e.g. PE/PPE genes) and genes known to be involved in antimicrobial
501 resistance (including 100 base pairs upstream and downstream) were masked
502 (https://github.com/LeahRoberts/Mtb_South_Africa/tree/main/mask_files) in the
503 alignment. SNP-sites²⁷ (v2.5.1) using the '-c' flag was used to obtain all variant
504 positions, as well as all constant sites using the '-C' flag. The final alignment of variant
505 position and constant sites were then used to generate a phylogeny with IQTree²⁸⁻³⁰
506 (v2.2.0 or version 1.6.12, see figure legend) and ultrafast bootstrapping using the
507 parameters '-st DNA -nt AUTO -bb 1000 -m MFP'. Four variant sites with multiple
508 alleles (150321, 55533, 976889, 3741263) were removed from the large SA1+SA2
509 South African *M. tuberculosis* phylogeny.

510

511 *Variant association with phenotypic data:*

512 To evaluate the contribution of specific mutations to BDQ MIC, we used a custom
513 python script to combine the SNP distance matrix, ARIBA variant information (methods
514 below), and isolate MICs
515 (https://github.com/LeahRoberts/Mtb_South_Africa/tree/main/scripts).

516

517 *Investigation of bedaquiline-associated mutations:*

518 Several genes were investigated for their role in bedaquiline resistance based on
519 previous literature, which we refer to as “bedaquiline-R-associated” genes (*mmpL5*,
520 *mmpL3*, *mmpS5*, *atpE*, *amiA2*, *pepQ*, *era*, *rv1816*, *rv3249c*, *rv0678/mmpR5*)^{2,13,31,32}.
521 For the SA1 dataset, we performed *de novo* assembly of all isolates using Shovill
522 v1.1.0 (<https://github.com/tseemann/shovill>) (which uses SPAdes³³) with ‘--gsize 4.4M’
523 to investigate “bedaquiline-R-associated” genes variants and their effect on the
524 predicted proteins. We then used blastn³⁴ v2.9.0 and a custom script
525 (https://github.com/LeahRoberts/Mtb_South_Africa/tree/main/scripts) to determine
526 nucleotide similarity and the predicted amino acid translation of the “bedaquiline-R-
527 associated” genes from the *de novo* assemblies. The predicted protein sequences
528 were then aligned with MAFFT³⁵ v7 at default settings and visualised using a
529 neighbour joining tree created through Jalview³⁶ v2.11.2.5. We used ISMapper¹⁴ v2.0
530 to characterise IS6110 insertion sites in the isolate genomes using the
531 decontaminated reads and the reference genome H37Rv (accession: NC_000962.3).
532

533 To check for duplicated genes in our SA1 dataset, we mapped the decontaminated
534 isolate reads to the H37Rv genome using BWA-MEM³⁷ v0.7.17-r1188 and checked
535 coverage across the entire genome and at specific gene sites (*mmpR5*, *mmpL5*,
536 *mmpS5*) using pysamstats v1.1.2 (<https://github.com/alimanfoo/pysamstats>) and a
537 custom script (https://github.com/LeahRoberts/Mtb_South_Africa/tree/main/scripts) to
538 revise our conclusions to the appropriate rationale.

539 For the SA2 dataset, we used ARIBA¹⁵ v2.14.6 to broadly identify truncated or
540 interrupted genes by creating a database consisting of a multi-fasta of the
541 “bedaquiline-R-associated” genes, which were then used as the query database when
542 running ARIBA. We then used ARIBA summary to concatenate all results and identify
543 isolates where the gene prediction from ARIBA was “no”. Isolates with predicted
544 truncations were analysed with Shovill, blastn, MAFFT, Jalview and ISMapper (as
545 above). To control for poor quality data that could affect ARIBA’s local assembly, we
546 did not consider predicted truncations where the sample’s Shovill assemblies
547 generated >500 contigs. We also checked sample read quality using fastp³⁸ v0.22.0
548 with the following parameters: “--detect_adapter_for_pe --dedup --length_required
549 50”. Samples with >20% of reads removed were not considered for predicted
550 truncation events. Finally, we required predicted truncation events to be in agreement
551 between the *de novo* assembly and the ARIBA result for that isolate.

552

553 A small number of isolates (n=4) had a truncated *mmpR5* but we were unable to
554 determine the biological cause (no frameshift, no nonsense mutation, no IS, etc). This
555 could be due to poor quality sequencing data (resulting in a fragmented assembly) or
556 a biological event unresolvable with short-read sequencing (such as a large inversion,
557 or repetitive elements). As we could not discriminate between these two events, we
558 did not include results for these isolates in relation to BDQ-R.

559

560 *Plotting and figures:*

561 We used iTol³⁹ to visualise all phylogenies. We used ggplot2⁴⁰ with the plyr⁴¹ package
562 to visualise the BDQ MIC distributions.

563

564 *Role of the funding source:*

565 The funders of the study had no role in study design, data collection, data analysis,
566 data interpretation, or writing of the report.

567

568 *Contributions:*

569 LWR, ZI, SVO and MF contributed to the conceptualisation of the manuscript. SVO
570 and LJ contributed to the data collection and antimicrobial susceptibility testing. DC
571 contributed sequencing of the samples. LWR, KMM, PW, MH and JK contributed to
572 the sample processing. LWR, PW and ZI contributed to the methodology and formal
573 bioinformatic analysis. LWR contributed to the writing (original draft). ZI, KMM, MH
574 and MF contributed to the writing (review and editing). ZI, SVO and MF contributed to
575 the supervision of the study. All authors had access to the data presented in this study
576 and had final responsibility for the decision to submit for publication.

577

578 *Data sharing:*

579 Study samples and accessions are available in **supplementary dataset 1**.

580

581 *Declarations of interest:*

582 None to declare.

583

584

585

586 *Funding:*

587 LWR was supported by an EMBL Biomedical Postdoctoral Fellowship (EBPOD).
588 Financial support for next generation sequencing from the CDC – USA
589 (NU2GGH002194)

590

591 *Acknowledgements:*

592 The authors would like to acknowledge the CRyPTIC consortium for their collection
593 and open release of *M. tuberculosis* WGS samples with matched MIC phenotypes.

594

595 *References:*

596

- 597 1. Cohen, J. Approval of Novel TB Drug Celebrated—With Restraint. *Science* **339**, 130–
598 130 (2013).
- 599 2. Andries, K. *et al.* A Diarylquinoline Drug Active on the ATP Synthase of *Mycobacterium*
600 tuberculosis. *Science* **307**, 223–227 (2005).
- 601 3. Diacon, A. H. *et al.* Randomized Pilot Trial of Eight Weeks of Bedaquiline (TMC207)
602 Treatment for Multidrug-Resistant Tuberculosis: Long-Term Outcome, Tolerability, and
603 Effect on Emergence of Drug Resistance. *Antimicrob. Agents Chemother.* **56**, 3271–
604 3276 (2012).
- 605 4. Omar, S. V., Ismail, F., Ndjeka, N., Kaniga, K. & Ismail, N. A. Bedaquiline-Resistant
606 Tuberculosis Associated with Rv0678 Mutations. *N. Engl. J. Med.* **386**, 93–94 (2022).
- 607 5. Schnippel, K. *et al.* Effect of bedaquiline on mortality in South African patients with drug-
608 resistant tuberculosis: a retrospective cohort study. *Lancet Respir. Med.* **6**, 699–706
609 (2018).
- 610 6. Olayanju, O. *et al.* Long-term bedaquiline-related treatment outcomes in patients with
611 extensively drug-resistant tuberculosis from South Africa. *Eur. Respir. J.* **51**, (2018).
- 612 7. Hartkoorn, R. C., Uplekar, S. & Cole, S. T. Cross-resistance between clofazimine and
613 bedaquiline through upregulation of MmpL5 in *Mycobacterium tuberculosis*. *Antimicrob.*
614 *Agents Chemother.* **58**, 2979–2981 (2014).
- 615 8. Sonnenkalb, L. *et al.* Deciphering Bedaquiline and Clofazimine Resistance in
616 Tuberculosis: An Evolutionary Medicine Approach. 2021.03.19.436148 Preprint at
617 <https://doi.org/10.1101/2021.03.19.436148> (2021).
- 618 9. Nimmo, C. *et al.* Population-level emergence of bedaquiline and clofazimine resistance-
619 associated variants among patients with drug-resistant tuberculosis in southern Africa: a
620 phenotypic and phylogenetic analysis. *Lancet Microbe* **1**, e165–e174 (2020).
- 621 10. Kadura, S. *et al.* Systematic review of mutations associated with resistance to the new

622 and repurposed *Mycobacterium tuberculosis* drugs bedaquiline, clofazimine, linezolid,
623 delamanid and pretomanid. *J. Antimicrob. Chemother.* **75**, 2031 (2020).

624 11. Ismail, N. *et al.* Genetic variants and their association with phenotypic resistance to
625 bedaquiline in *Mycobacterium tuberculosis*: a systematic review and individual isolate
626 data analysis. *Lancet Microbe* **2**, e604–e616 (2021).

627 12. Villellas, C. *et al.* Unexpected high prevalence of resistance-associated Rv0678 variants
628 in MDR-TB patients without documented prior use of clofazimine or bedaquiline. *J.*
629 *Antimicrob. Chemother.* **72**, 684–690 (2017).

630 13. Consortium, T. Cr. A data compendium associating the genomes of 12,289
631 *Mycobacterium tuberculosis* isolates with quantitative resistance phenotypes to 13
632 antibiotics. *PLOS Biol.* **20**, e3001721 (2022).

633 14. Hawkey, J. *et al.* ISMapper: identifying transposase insertion sites in bacterial genomes
634 from short read sequence data. *BMC Genomics* **16**, 667 (2015).

635 15. Hunt, M. *et al.* ARIBA: rapid antimicrobial resistance genotyping directly from
636 sequencing reads. *Microb. Genomics* **3**, e000131 (2017).

637 16. Cohen, K. A. *et al.* Evolution of Extensively Drug-Resistant Tuberculosis over Four
638 Decades: Whole Genome Sequencing and Dating Analysis of *Mycobacterium*
639 tuberculosis Isolates from KwaZulu-Natal. *PLOS Med.* **12**, e1001880 (2015).

640 17. Walker, T. M. *et al.* Whole-genome sequencing to delineate *Mycobacterium tuberculosis*
641 outbreaks: a retrospective observational study. *Lancet Infect. Dis.* **13**, 137–146 (2013).

642 18. Ismail, N. A. *et al.* Assessment of epidemiological and genetic characteristics and clinical
643 outcomes of resistance to bedaquiline in patients treated for rifampicin-resistant
644 tuberculosis: a cross-sectional and longitudinal study. *Lancet Infect. Dis.* **22**, 496–506
645 (2022).

646 19. Acquired Resistance of *Mycobacterium tuberculosis* to Bedaquiline | PLOS ONE.
647 <https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102135>.

648 20. Vargas, R. *et al.* Role of Epistasis in Amikacin, Kanamycin, Bedaquiline, and
649 Clofazimine Resistance in *Mycobacterium tuberculosis* Complex. *Antimicrob. Agents*
650 *Chemother.* **65**, e01164-21 (2021).

651 21. Cohen, K. A., Manson, A. L., Desjardins, C. A., Abeel, T. & Earl, A. M. Deciphering drug
652 resistance in *Mycobacterium tuberculosis* using whole-genome sequencing: progress,
653 promise, and challenges. *Genome Med.* **11**, 45 (2019).

654 22. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
655 2078–2079 (2009).

656 23. Iqbal, Z., Turner, I. & McVean, G. High-throughput microbial population genomics using
657 the Cortex variation assembler. *Bioinformatics* **29**, 275–276 (2013).

658 24. Hunt, M. *et al.* Minos: variant adjudication and joint genotyping of cohorts of bacterial

659 genomes. *Genome Biol.* **23**, 147 (2022).

660 25. Hunt, M. *et al.* Antibiotic resistance prediction for *Mycobacterium tuberculosis* from
661 genome sequence data with Mykrobe. Preprint at
662 <https://doi.org/10.12688/wellcomeopenres.15603.1> (2019).

663 26. Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *GigaScience* **10**, giab008
664 (2021).

665 27. Page, A. J. *et al.* SNP-sites: rapid efficient extraction of SNPs from multi-FASTA
666 alignments. *Microb. Genomics* **2**, e000056.

667 28. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S.
668 ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat. Methods* **14**,
669 587–589 (2017).

670 29. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A Fast and
671 Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. *Mol.*
672 *Biol. Evol.* **32**, 268–274 (2015).

673 30. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2:
674 Improving the Ultrafast Bootstrap Approximation. *Mol. Biol. Evol.* **35**, 518–522 (2018).

675 31. Consortium, T. Cr. & Carter, J. J. Quantitative measurement of antibiotic resistance in
676 *Mycobacterium tuberculosis* reveals genetic determinants of resistance and
677 susceptibility in a target gene approach. 2021.09.14.460353 Preprint at
678 <https://doi.org/10.1101/2021.09.14.460353> (2021).

679 32. Consortium, T. Cr. Genome-wide association studies of global *Mycobacterium*
680 tuberculosis resistance to 13 antimicrobials in 10,228 genomes identify new resistance
681 mechanisms. *PLOS Biol.* **20**, e3001755 (2022).

682 33. Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes
683 De Novo Assembler. *Curr. Protoc. Bioinforma.* **70**, e102 (2020).

684 34. Camacho, C. *et al.* BLAST+: architecture and applications. *BMC Bioinformatics* **10**, 421
685 (2009).

686 35. Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7:
687 Improvements in Performance and Usability. *Mol. Biol. Evol.* **30**, 772–780 (2013).

688 36. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview
689 Version 2—a multiple sequence alignment editor and analysis workbench.
690 *Bioinformatics* **25**, 1189–1191 (2009).

691 37. Vasimuddin, Md., Misra, S., Li, H. & Aluru, S. Efficient Architecture-Aware Acceleration
692 of BWA-MEM for Multicore Systems. in *2019 IEEE International Parallel and Distributed*
693 *Processing Symposium (IPDPS)* 314–324 (2019). doi:10.1109/IPDPS.2019.00041.

694 38. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor.
695 *Bioinformatics* **34**, i884–i890 (2018).

696 39. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic
697 tree display and annotation. *Nucleic Acids Res.* **49**, W293–W296 (2021).

698 40. Villanueva, R. A. M. & Chen, Z. J. ggplot2: Elegant Graphics for Data Analysis (2nd ed.).
699 *Meas. Interdiscip. Res. Perspect.* **17**, 160–167 (2019).

700 41. Wickham, H. The Split-Apply-Combine Strategy for Data Analysis. *J. Stat. Softw.* **40**, 1–
701 29 (2011).

702

703

704

705

706