

## Immunoepitidome profiling of human coronavirus

## OC43-infected cells identifies CD4 T cell epitopes specific to seasonal coronaviruses or cross-reactive with SARS-CoV-2

4

## 5 Short title: Naturally-processed T cell epitopes of human seasonal coronavirus OC43

6

7 Aniuska Becerra-Artiles<sup>1\*</sup>, Padma P. Nanaware<sup>1\*</sup>, Khaja Muneeruddin<sup>2</sup>, Grant C. Weaver<sup>1</sup>, Scott  
8 A. Shaffer<sup>2,3</sup>, J. Mauricio Calvo-Calle<sup>1</sup>, and Lawrence J. Stern<sup>1,3,¶</sup>

9

10 <sup>1</sup>Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass  
11 Chan Medical School, Worcester MA.

12 <sup>2</sup>Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury MA.

13 <sup>3</sup>Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School,  
14 Worcester, MA 01655, USA

15 <sup>1</sup>Corresponding author. E-mail: [lawrence.stern@umassmed.edu](mailto:lawrence.stern@umassmed.edu) (LJS)

16 \*These authors contributed equally to this work.

17

18 **Abstract**

19 Seasonal “common-cold” human coronaviruses are widely spread throughout the world and are  
20 mainly associated with mild upper respiratory tract infections. The emergence of highly  
21 pathogenic coronaviruses MERS-CoV, SARS-CoV, and most recently SARS-CoV-2 has  
22 prompted increased attention to coronavirus biology and immunopathology, but identification and

23 characterization of the T cell response to seasonal human coronaviruses remain largely  
24 uncharacterized. Here we report the repertoire of viral peptides that are naturally processed and  
25 presented upon infection of a model cell line with seasonal human coronavirus OC43. We  
26 identified MHC-I and MHC-II bound peptides derived from the viral spike, nucleocapsid,  
27 hemagglutinin-esterase, 3C-like proteinase, and envelope proteins. Only three MHC-I bound  
28 OC43-derived peptides were observed, possibly due to the potent MHC-I downregulation induced  
29 by OC43 infection. By contrast, 80 MHC-II bound peptides corresponding to 14 distinct OC43-  
30 derived epitopes were identified, including many at very high abundance within the overall MHC-  
31 II peptidome. These peptides elicited low-abundance recall T cell responses in most donors  
32 tested. In vitro assays confirmed that the peptides were recognized by CD4+ T cells and identified  
33 the presenting HLA alleles. T cell responses cross-reactive between OC43, SARS-CoV-2, and  
34 the other seasonal coronaviruses were confirmed in samples of peripheral blood and peptide-  
35 expanded T cell lines. Among the validated epitopes, S<sub>903-917</sub> presented by  
36 DPA1\*01:03/DPB1\*04:01 and S<sub>1085-1099</sub> presented by DRB1\*15:01 shared substantial homology  
37 to other human coronaviruses, including SARS-CoV-2, and were targeted by cross-reactive CD4  
38 T cells. N<sub>54-68</sub> and HE<sub>128-142</sub> presented by DRB1\*15:01 and HE<sub>259-273</sub> presented by  
39 DPA1\*01:03/DPB1\*04:01 are immunodominant epitopes with low coronavirus homology that are  
40 not cross-reactive with SARS-CoV-2. Overall, the set of naturally processed and presented OC43  
41 epitopes comprise both OC43-specific and human coronavirus cross-reactive epitopes, which can  
42 be used to follow T cell cross-reactivity after infection or vaccination and could aid in the selection  
43 of epitopes for inclusion in pan-coronavirus vaccines.

44

45 **Author Summary**

46 There is much current interest in cellular immune responses to seasonal common-cold  
47 coronaviruses because of their possible role in mediating protection against SARS-CoV-2  
48 infection or pathology. However, identification of relevant T cell epitopes and systematic studies  
49 of the T cell responses responding to these viruses are scarce. We conducted a study to identify  
50 naturally processed and presented MHC-I and MHC-II epitopes from human cells infected with  
51 the seasonal coronavirus HCoV-OC43, and to characterize the T cell responses associated with  
52 these epitopes. We found epitopes specific to the seasonal coronaviruses, as well as epitopes  
53 cross-reactive between HCoV-OC43 and SARS-CoV-2. These epitopes should be useful in  
54 following immune responses to seasonal coronaviruses and identifying their roles in COVID-19  
55 vaccination, infection, and pathogenesis.

56

57 **Introduction**

58 Coronaviruses are single-stranded RNA viruses of the genus *Nidovirales*, family *Coronaviridae*  
59 that infect vertebrates. Seven species in the *Orthocoronavirinae* sub-family are known to infect  
60 humans, with a wide range of pathogenicity [1]. Human coronavirus (HCoV) 229E and NL63 in  
61 the *alpha-coronavirus* genus, and OC43 and HKU1 in the *beta-coronavirus* genus, are associated  
62 with mild upper-respiratory-tract infections and common colds. In contrast, SARS-CoV, MERS-  
63 CoV, and SARS-CoV-2, all in the *beta-coronavirus* genus, are associated with a severe  
64 respiratory syndrome [2]. Common-cold-associated seasonal HCoVs are widespread and infect  
65 humans in seasonal waves [3–5]. OC43 is closely related to bovine coronavirus (BCoV) and was  
66 initially isolated in 1967 from individuals with upper respiratory tract infections [6]. Among the  
67 seasonal human coronaviruses, OC43 is believed to have emerged most recently. Molecular  
68 clock analysis of the spike gene sequences suggests a relatively recent zoonotic transmission

69 event and dates their most recent common ancestor between 1890 to 1923 [7–9]. This led to the  
70 proposal that the 1898 pandemic (“Russian Flu”), which caused a worldwide multi-wave outbreak  
71 killing preferentially older individuals similar to COVID-19, may have been the result of the  
72 emergence of OC43 [10]. The OC43 reference genome (ATCC-VR-759) spans 30,738 kbp,  
73 encoding 10 ORFs which are translated into 24 proteins [11].

74 Before the emergence of the pandemic coronavirus SARS-CoV-2, few studies characterized the  
75 immune response to the seasonal HCoVs, which account for ~10-30% of common colds [12,13].  
76 Studies of T cell responses to HCoVs and the identification of epitopes driving them are scarce.  
77 Before the SARS-CoV-2 pandemic, Nilges et al. identified a coronavirus MHC-I epitope derived  
78 from the OC43 NS2 protein using MHC-binding prediction algorithms and showed that T cell  
79 responses were cross-reactive with a human papillomavirus 16 epitope [14]. Later, Boucher et al.  
80 studied T cell responses to OC43 and 229E viral antigens and to multiple sclerosis (MS)  
81 autoantigens in MS patients. Virus-specific T cell clones were isolated, including 34 clones  
82 responding to OC43, as well as 10 T cell clones cross-reactive with HCoV and MS autoantigens,  
83 but the specific viral epitopes were not identified [15]. More recently, after the rise of SARS-CoV-  
84 2, Woldemeskel et al [16] reported T cell responses to pools of spike, nucleoprotein, and  
85 membrane proteins of the four seasonal coronaviruses. Peptide responses to the spike protein of  
86 NL63 were deconvoluted resulting in the identification of 22 target peptides, of which 3 are SARS-  
87 CoV-2 cross-reactive and the remaining 19 are HCoV-specific novel epitopes.

88 Studies of T-cell responses to SARS-CoV and SARS-CoV-2 have reported that responding T cell  
89 populations are present in blood samples collected before the emergence of these viruses [17,18].  
90 This led to the suggestion that pre-existing immunity, potentially elicited by a previous infection(s)  
91 with seasonal HCoVs, could be responsible for these responses, and prompted a search for the  
92 cross-reactive epitopes responsible. In fact, most OC43 epitopes reported in the Immune Epitope  
93 Database [19] were identified in the context of HCoV/SARS-CoV-2 cross-reactivity studies.

94 Schmidt et al. used a highly conserved peptide derived from the SARS-CoV-2 nucleoprotein to  
95 identify cross-reactive MHC-I responses and found that homologous HCoV peptides, including  
96 one from OC43, also were recognized [20]. Mateus et al. used overlapping SARS-CoV-2 peptides  
97 to screen for cross-reactive responses in unexposed donors and identified six MHC-II epitopes  
98 from five source proteins, for which responses to the OC43 homologs could also be observed  
99 [21]. Keller et al. identified a cross-reactive OC43 epitope derived from the nucleocapsid, which  
100 induced responses in SARS-CoV-2 specific T cells expanded from COVID-19 recovered donors  
101 using SARS-CoV-2 antigens [22]. Ferretti et al. reported a cross-reactive MHC-I epitope derived  
102 from the nucleocapsid, highly conserved among beta-coronaviruses [23], and Lineburg et al.  
103 found that the immunodominant response to this peptide is widespread in HLA-B7+ individuals,  
104 both recovered COVID-19 and unexposed [24]. Our previous work [25] and other studies [21,26–  
105 30] identified a highly conserved and cross-reactive MHC-II SARS-CoV-2 epitope (S<sub>811-831</sub>),  
106 derived from a conserved region in the spike protein and presented in the context of HLA-DP4  
107 (DPA1\*01:03/DPB1\*04:01), HLA-DP2 (DPA1\*01:03/DPB1\*02:01), and HLA-DQ5  
108 (DQA1\*01:01/DQB1\*05:01) [25]. Despite these advances, an unbiased approach to the  
109 identification of OC43 T cell epitopes independent of SARS-CoV-2 reactivity has not been  
110 reported.

111 T cell epitope identification can be approached in different ways, including screening of  
112 overlapping peptide libraries, predicting potential epitopes using MHC-binding prediction  
113 algorithms, or identifying naturally processed and presented peptides eluted from purified MHC  
114 molecules isolated from infected cells. In this work, we used the latter method, which has proven  
115 to be very efficient in identifying immunogenic peptides in human T cell responses to vaccinia  
116 virus [31–33], HHV-6B [34], influenza [35], measles [36], EBV [37], and SARS-CoV-2 [38] and in  
117 mouse responses to vaccinia virus where this was validated extensively [39]. Here, we identified  
118 and characterized naturally-processed viral epitopes presented by HEK293 cells transfected with

119 master transcriptional regulator CIITA and infected with OC43. CIITA served to upregulate the  
120 expression of MHC-II molecules and associated antigen presentation machinery (reviewed in  
121 [40]), as in previous studies [34,41–43]. Overall, 83 naturally processed viral peptides were  
122 identified: 3 peptides were identified as associated with the MHC-I proteins HLA-A\*02:01 or HLA-  
123 B\*07:02, and 80 viral peptides representing length variants of 14 unique MHC-II epitopes were  
124 identified as associated with HLA-DRB1\*15:01, HLA-DRB5\*01:01, or HLA-  
125 DPA1\*01:03/DPB1\*04:02. T cell responses to 11 of the peptides were observed in partially HLA-  
126 matched donors, confirming the immunogenicity of these peptides. Among the naturally presented  
127 peptides identified was S<sub>901-920</sub>, orthologous to a highly conserved, frequently identified, cross-  
128 reactive SARS-CoV-2 epitope S<sub>811-831</sub>.

129

## 130 **Results**

### 131 Characterization of MHC-I and MHC-II immunopeptidomes presented in OC43-infected cells

132 Our experimental approach to the identification and characterization of naturally processed  
133 epitopes is diagrammed in Fig 1A. Peptide-MHC complexes carrying naturally processed and  
134 presented peptides were isolated by immunoaffinity from OC43-infected cells, and bound  
135 peptides were eluted and characterized by mass spectrometry. Next, peptides corresponding to  
136 the naturally processed epitopes were synthesized, tested for HLA binding, and used for  
137 evaluation of T cell responses in mononuclear cells from peripheral blood samples. We used the  
138 cell line HEK293, which is homozygous in all MHC-I and MHC-II loci and susceptible to being  
139 infected with the OC43 virus. The HLA alleles present in this cell line are: A\*02:01 (A2), B\*07:02  
140 (B7), C\*07:02 (C7), DRB1\*15:01 (DR2b), DRB5\*01:01 (DR2a), DPA1\*01:03/DPB1\*04:02  
141 (DP4.2), and DQA1\*01:02/DQB1\*06:02 (DQ6.2).

142 We measured the expression of MHC-I and MHC-II on the surface of HEK293 cells using  
143 antibodies recognizing the three MHC-I proteins HLA-ABC or the individual MHC-II proteins HLA-  
144 DR, HLA-DQ, and HLA-DP. Expression of HLA-ABC was detected, but levels of HLA-DR, HLA-  
145 DP, and HLA-DQ were very low or below detection limits (Fig 1B, wild type HEK293). To induce  
146 expression of MHC-II, HEK293 cells were transduced with CIITA, the MHC-II master  
147 transcriptional regulator that controls the expression of MHC-II genes along with MHC-II  
148 processing and editing factors such as HLA-DM and cathepsins (reviewed in[40]). Transduced  
149 cells successfully upregulated the expression of HLA-DR and DP (Fig 1B, HEK293.CIITA),  
150 although HLA-DQ levels remained low. To confirm the low HLA-DQ expression level, the relative  
151 amounts of total MHC proteins were measured using a quantitative proteomics analysis (Fig 1C,  
152 Table S1). The levels of HLA-DQ were ~20-fold lower than HLA-DR and HLA-DP. Thus, we  
153 restricted immunopeptidome analysis to HLA-ABC, HLA-DR, and HLA-DP.

154 HEK293.CIITA cells were infected with OC43 strain VR-759 at a multiplicity of infection of 0.1 and  
155 harvested on day 3 post-infection. Intracellular staining for OC43 nucleoprotein (N) showed a  
156 clear positive population of virus-infected cells at harvest, as compared to non-infected cells (Fig  
157 1D). In 6 biological replicates, we observed that 11-68% of the HEK293.CIITA cells were positive  
158 for OC43 nucleoprotein expression.

159 Viruses have evolved many mechanisms to evade the immune system, including the  
160 downregulation of MHC proteins [44–46]. To assess the effect of OC43 infection on the  
161 expression of MHC-I and II on HEK293.CIITA cells, we evaluated the surface expression of HLA-  
162 ABC, HLA-DR, and HLA-DP after infection. The levels of HLA-ABC were significantly reduced  
163 after infection (an average of 60% reduction in median fluorescence intensity (MFI)), while the  
164 expression of HLA-DR and HLA-DP were mostly not affected (less than 10% reduction in MFI)  
165 (Fig 1E). This suggests that OC43 has a specific effect on the expression of MHC-I. While no

166 apparent effect was observed for MHC-II, it is possible that CIITA transfection counteracts any  
167 effect of virus infection in our system as reported for SARS-CoV-2 and Ebola viruses [47].

168 We used a conventional immunoaffinity peptidomics workflow to identify peptides presented by  
169 MHC molecules in the infected cells. We purified MHC-bound complexes of two independent  
170 infections (62 and 116 x10<sup>6</sup> cells) using immunoprecipitation after detergent solubilization of the  
171 membrane fraction of OC43-infected HEK293.CIITA cells. We used sequential immunoaffinity  
172 purification with anti-HLA-DR (LB3.1), anti-HLA-DP (B7/21), and anti-HLA-ABC (W6/32)  
173 antibodies, collecting three immunoprecipitated samples, one from each antibody, per biological  
174 replicate infection. The MHC-bound peptides were released from the purified MHC complexes by  
175 acid treatment, separated from the MHC protein subunits, and the resulting peptide mix was  
176 analyzed by LC-MS/MS for sequence identification. A database containing human and OC43  
177 protein sequences was used for peptide assignment, with false-discovery rate (FDR) of 4.2%.  
178 The total immunopeptidome of infected cells consisted of 1,744 unique peptides (613 HLA-ABC,  
179 629 HLA-DR, and 502 HLA-DP, Table S2a-c). The eluted peptides showed the expected length  
180 distribution peaking at 9 aa for HLA-ABC and 15-16 aa for HLA-DR and -DP, although HLA-DP  
181 showed a small peak of 8-11 residue peptides that might include non-specifically bound species  
182 [48] (Fig 1F). The immunopeptidome comprises both viral and host protein-derived peptides, with  
183 ~96% of host-derived peptides.

184  
185 The eluted peptide pools contain contributions from multiple MHC proteins. HLA-ABC eluted  
186 peptides were a mix of peptides eluted from the three MHC-I proteins present in HEK293.CIITA.  
187 cells. Likewise, HLA-DR peptides were a mix of peptides eluted from the genetically-linked  
188 DRB1\*15:01 and DRB5\*01:01 proteins. To help deconvolute these mixtures of peptides, we used  
189 unsupervised Gibbs clustering [49] of the eluted sequences in each sample. This analysis showed

190 the presence of 2 motifs for MHC-I, representing 42 and 41% of the sequences (Fig 1F, HLA-  
191 ABC). These motifs closely matched those previously characterized for A\*02:01 and B\*07:02 by  
192 NetMHCpan [50,51], as shown in Figure S1. The characteristic C\*07:02 motif [50,52] was not  
193 observed in the clustering analysis. We observed 2 motifs for HLA-DR, representing 73 and 24%  
194 of the sequences (Fig 1F, HLA-DR). The more abundant motif closely matched that previously  
195 characterized for DRB1\*15:01 (DR2b), and the less abundant motif matched that for DRB5\*01:01  
196 (DR2a) [50,53] (Figure S1). For HLA-DP, one motif representing 87% of the sequences was  
197 observed (Fig 1F, HLA-DP), closely matching the expected DPA1\*01:03/DPB1\*04:02 motif  
198 [50,54] (Figure S1). Sequences not present in these clusters could represent non-canonical  
199 binders, ambiguities in the clustering for motif analyses, or the presence of non-specific peptides.  
200 For each eluted peptide, binding predictions for the relevant MHC-I (NetMHCpan 4.1), or MHC-II  
201 (NetMHCIIpan 4.0) proteins are shown in Table S2a-c. For DP4 we include predictions for both  
202 DPA1\*01:02/DPB1\*04:01 (DP4.1) and DPA1\*01:02/DPB1\*04:02 (DP4.2); peptides were eluted  
203 from DP4.2 cells, but the closely related DP4.1 protein was used for MHC-peptide binding studies  
204 and both DP4.1 and/or DP4.2 expressing donors were used for T cell studies (see below).

205

206 Identification of viral peptides presented by HLA-ABC, HLA-DR, and HLA-DP

207 Within the immunopeptidome eluted from OC43-infected HEK293.CIITA cells, a total of 83  
208 peptides corresponded to sequences from the OC43 virus (Table S2d). Among the viral peptides,  
209 3 were eluted from HLA-ABC, 35 from HLA-DR, and 45 from HLA-DP, representing 0.6, 5.6, and  
210 9.4% of the peptides isolated from each type of MHC protein. The average length of the viral  
211 peptides was consistent with that observed for the total peptides, with a peak at 9 residues for the  
212 MHC-I and around 15-16 residues for the MHC-II (Fig 2A).

213 The three MHC-I-binding viral peptides were identified at relatively low abundances within the  
214 overall MHC-I peptidome (Fig 2B, HLA-ABC, Table S2d). Peptide P17 (Fig 2C), derived from the  
215 spike protein, was assigned to HLA-A2 by motif analysis, with predicted binding in the top 0.5%  
216 (Table S2d). Peptides P15 and P16 (Fig 2C) were derived from the 3C-like proteinase of the ORF  
217 1ab polyprotein and were assigned to HLA-B7 and HLA-A2 respectively, based on predicted  
218 binding within the top 0.5% for these alleles, although weak binding of peptide P16 to HLA-C7  
219 was also predicted (1.5%-tile) (Table S2d). The low abundance of virus-derived peptides within  
220 the overall MHC-I peptidome might be a result of MHC-I immune-evasion mechanisms, similar to  
221 those reported for SARS-CoV-2 [45,55,56].

222 Eighty MHC-II-binding viral peptides were identified, derived from nucleoprotein, spike,  
223 hemagglutinin esterase (HE), and envelope proteins (Table S2d). Some of these were among the  
224 most abundant peptides identified in the MHC-II peptidomes: the most abundant peptide for HLA-  
225 DR and the third most abundant peptide for HLA-DP were virus-derived peptides (Fig 2B, HLA-  
226 DR and HLA-DP). Most of the MHC-II peptides were detected as part of nested sets of overlapping  
227 peptides, as characteristic of MHC-II peptidomes Fig 2D. The 35 HLA-DR peptides comprise five  
228 nested sets and one individual peptide (Fig 2D, P8-P13) and the 45 HLA-DP peptides comprise  
229 five nested sets and two individual peptides (Fig 2D, P1-P7, P14). The most abundant viral MHC-  
230 II peptides were derived from spike (P3, P4, P11) and nucleoprotein (P2, P10), with HE- and E-  
231 derived peptides present at lower abundance Fig 2B.

232 To relate the abundance of eluted peptides to the overall abundance of the source proteins, we  
233 performed proteomics analysis of intact proteins present in the infected cell lysate. Four viral  
234 proteins were detected: nucleoprotein, spike, HE, and the accessory protein N2. Label-free  
235 quantitative analysis showed that the most abundant protein was the nucleoprotein, followed by  
236 spike, and HE (Fig 2E). Spike, nucleoprotein, and HE proteins were also the major source proteins  
237 for the eluted peptides (Fig 2F).

238

239 MHC-II allele restriction of eluted peptides

240 The nested sets of peptides characteristic of MHC-II peptidomes are comprised of length variants  
241 surrounding a 9-residue core epitope that includes the major sites of MHC-peptide interaction.  
242 This is believed to result from variable trimming of MHC-bound peptides by endosomal proteases,  
243 leaving different numbers of residues flanking the core regions. As expected, for each of the  
244 nested sets of peptides, the predicted core epitope (underlined in Fig 2D) was found in the center  
245 of the overlapping set. Core epitopes for the eluted peptides were among the top-ranked predicted  
246 binders for each protein (Fig S3A-C), helping to explain why these particular peptides were  
247 selected for presentation. For instance, the top-ranked predicted peptides for nucleoprotein,  
248 spike, and envelope contain the binding core from the HLA-DP-eluted peptides P2, P5, and P14,  
249 respectively (Fig S3A). Similarly, the top-ranked predicted peptides for nucleoprotein, spike, and  
250 HE contain the binding core from the HLA-DR-eluted peptides P10, P11, and P8, respectively  
251 (Fig S3B-C).

252 For HLA-DR, peptides were tentatively assigned to DR2a or DR2b by motif analysis. In some  
253 cases, one allele was clearly preferred, with predicted binding in the top 5th percentile to DR2b  
254 but not DR2a as for P8, P9, P10, and P11 peptides (Table S2d). P12 peptides were predicted  
255 to bind in the top 5<sup>th</sup> percentile for both DR2b and DR2a, and P13 peptides were not predicted  
256 to bind to either DR2b or DR2a. For HLA-DP predicted binding was in the top 5<sup>th</sup> percentile for  
257 P2, P3, P5, P6, P7, and P14 peptides, but P1 and P4 were below this threshold. To  
258 experimentally assess MHC-II peptide binding for the eluted peptides, we used a fluorescence  
259 polarization competition binding assay [57,58] with synthetic peptides and purified recombinant  
260 MHC proteins. For each set of nested peptides, we selected one abundant peptide containing  
261 the predicted binding core for the nested set and the allele of interest (Table S2d). These

262 peptides are listed in Table 1. For DR2b, IC<sub>50</sub> values were below 1 μM for all the HLA-DR-eluted  
263 peptides except P12, including P13 which was not predicted to bind (Fig S3D and Table S2d).  
264 For DR2a, IC<sub>50</sub> values were below 1 μM for P12, as predicted, and also for P9. For DP4.1, only  
265 P1 and P5 of eight representative eluted peptides tested showed IC<sub>50</sub> values below 1 μM,  
266 although all but P2 and P6 exhibited IC<sub>50</sub> values below a more relaxed 10 μM criterion (Table  
267 S3).

268

269 T cell recognition of eluted HLA-DR and HLA-DP viral peptides

270 We evaluated whether the naturally processed and presented viral peptides were recognized by  
271 circulating CD4 T cells in blood from healthy donors. We selected donors with a partial HLA match  
272 to HEK293 cells (donors expressing DRB1\*15:01 and DRB5\*01:01 for DR peptides, and donors  
273 expressing DPA1\*01:03/DPB1\*04:02 or DPB1\*04:01 for DP peptides, Table S4). We expected  
274 prior exposure of these donors to OC43 or other seasonal coronaviruses, but serum was not  
275 available from these donors to confirm exposure serologically. We first assessed T cell responses  
276 directly ex vivo in PBMC samples using ELISpot assays with the same set of peptides as tested  
277 for MHC-II binding. Ex-vivo IFN-γ responses were measured in donors expressing at least one of  
278 the alleles of interest, by stimulating PBMCs with a pool of all DP or all DR peptides (Fig 3A).  
279 Positive responses were observed in most donors tested (6/9 for DP and 8/9 for DR). Responding  
280 T cells were present at low frequencies, which varied considerably between donors (0.007-  
281 0.057% for DP; 0.001-0.011% for DR). Note that in this assay other HLA alleles are present in  
282 the donors besides the HEK293 alleles used for the elution studies, but with very few exceptions  
283 these alleles are the best predicted binders among the HLA-DR, HLA-DP, and HLA-DQ alleles  
284 present in each donor (Table S5).

285 To increase the frequency of OC43-responding cells for detailed assessment of the responses to  
286 individual peptides, we expanded peptide-specific T cells in vitro. Using the expanded T cell  
287 populations, we measured IFN- $\gamma$  production in response to re-stimulation with the same peptides,  
288 individually presented by single-allele antigen presenting cells (DPA1\*01:03/DPB1\*04:01 for P1-  
289 P7 and P14, DRB1\*15:01 for P8-P13, and DRB5\*01:01 for P9 and P12). Eleven peptides (all  
290 except P8, P13 and P14) showed individual positive responses by IFN- $\gamma$  ELISpot in at least one  
291 of the donors analyzed (Fig 3B-C, bars and filled symbols), validating the presence of T cell  
292 responses to the peptide. Not every donor responded to every peptide, and different donors  
293 showed different patterns of responses. The fraction of donors who are positive for each of the  
294 responding peptides ranged from 60-100% (Fig 3B-C, pies). In general, responses were more  
295 frequently observed ( $p=0.006$ ) in DR15 donors (80-100%) than in DP4 donors (60-88%), while  
296 responses were slightly stronger for DP peptides ( $3.7 \pm 2.1 \times 10^3$  SFU/ $10^6$  cells) than DR peptides  
297 ( $2.2 \pm 1.8 \times 10^3$  SFU/ $10^6$  cells) when tested at 1  $\mu$ g/mL peptide concentration, although this  
298 difference is not significant (Fig 3D). There was a weak but significant correlation between the  
299 eluted peptide abundance (sum of precursor ion intensities by nested set) and the observed T  
300 cell response ( $r= 0.64$ ,  $p= 0.009$ , Spearman). No correlation was observed between binding  
301 (predicted or experimental) and T cell responses, nor between binding and peptide abundance.

302 To explore the overall sensitivity of the different peptide-expanded T cells, dose-response  
303 experiments were performed, and the minimal activating peptide concentrations were determined  
304 (Fig 3E-F). In general, a wide range of minimal concentrations was observed. For instance, for  
305 P2 and P3 the minimal concentrations were  $10^{-6}$   $\mu$ g/mL and  $10^{-7}$   $\mu$ g/mL, respectively for expanded  
306 cells from donor 61, while for P11 (donor 07) and P9 (donor 40), the minimal concentration was  
307 1  $\mu$ g/mL. This indicates that T cells responding to P2 and P3 in donor 61 were more sensitive to  
308 lower peptide concentrations and may be able to respond more efficiently to infection. Within  
309 donors, differences in minimal concentration were observed for different peptides, suggesting a

310 heterogeneous population that responds to different antigens with different efficiencies. In some  
311 cases, different donors showed similar sensitivity to a particular peptide, as is the case of P10 in  
312 donors 18, 22, and 40, which all responded at  $10^{-5}$   $\mu$ g/mL. However, in other cases, there was  
313 heterogeneity in the responses to a given peptide. For instance, for P4 the minimal concentration  
314 varied between 0.1 and  $10^{-5}$   $\mu$ g/mL in 4 donors. All these results may reflect the different history  
315 of exposure to OC43 and other coronaviruses and the evolution of the responding T cell repertoire  
316 in each individual, which translates to a lack of a clear hierarchy of functional avidity and  
317 immunodominance for most of the eluted peptides.

318 To characterize the T cells producing these responses, we performed intracellular cytokine  
319 staining (ICS) assays using the single-peptide-expanded T cell lines. As in the ELISpot assays,  
320 peptides P8, P13, and P14 did not produce a response. For the remaining 11 peptides, IFN- $\gamma$   
321 responses were observed exclusively in CD4+ T cell populations. Results from one representative  
322 cell line per peptide are shown in Fig 3G, with a summary of all results in Fig 3H-I. For 9 of these  
323 peptides, we were able to measure CD107a mobilization along with IFN- $\gamma$  production (Fig S2B),  
324 and production of low levels of TNF- $\alpha$  was observed for 1 peptide (Fig S2C). No IL-2 or IL-10  
325 production was observed for any peptide (not shown). This suggests that the CD4 T cells  
326 responding to the eluted OC43 peptides could be polyfunctional and have cytotoxic potential.

327 Altogether, these results present clear evidence of CD4+ T cells that recognize and respond to  
328 OC43-derived, DR2b, DR2a, and DP4.1/4.2-presented peptides, confirming the immunogenicity  
329 of these peptides in natural settings, showing that some of these peptides may be recognized by  
330 T cells at very low antigen concentrations in some donors, and highlighting the complexity of these  
331 responses.

332

333 T cell cross-reactivity between OC43 and other human coronaviruses

334 The substantial sequence homology between OC43 and the other HCoVs (Fig S4A) raises the  
335 question of whether responding T cells could cross-react between the different orthologs.  
336 Sequence alignments of the naturally processed OC43 peptides with homologous sequences  
337 from other HCoVs are shown in Fig S4B, and a heatmap of conservation indices is shown in Fig  
338 S4C. Overall, the highest conservation is between OC43- and HKU1-derived peptides, with less  
339 for the other beta-coronaviruses MERS-CoV, SARS-CoV, and SARS-CoV-2, and even less for  
340 the alpha-coronaviruses 229E and NL63. Among the eluted peptides, P4, P6, and P11 are the  
341 most conserved across the 7 viruses and would be expected to have a high potential for cross-  
342 reactivity. The remaining peptides (P1, P2, P3, P5, P7, P8, P9, P10, P12, P13, and P14) were  
343 less conserved. Note that the HE protein, the source of the P1, P8, and P9 epitopes, is expressed  
344 by OC43 and HKU1 but does not have a homolog in any other HCoVs [7].

345 To evaluate experimentally the potential for cross-reactivity we initially focused on OC43 and  
346 SARS-CoV-2. We measured responses to the eluted OC43 peptides and their SARS-CoV-2  
347 homologs, using T cell populations expanded with individual OC43 peptides from PBMC samples  
348 banked pre-pandemic before the outbreak of SARS-CoV-2 into the human population. Peptides  
349 with no homolog in SARS-CoV-2 (P1, P8, P9), or with no response in our donor pool (P8, P13,  
350 P14) were excluded. We measured T cell responses in single-peptide-expanded T cell lines using  
351 IFN- $\gamma$  ELISpot assays, using partial-HLA-matched donors as before. Only the P4 and P11 SARS-  
352 CoV-2 homologs induced cross-reactive T cell responses in the single-peptide expanded lines  
353 (Fig 4A). Across a larger set of donors, similar cross-reactive responses were observed, with  
354 somewhat lower responses to the heterologous SARS-CoV-2 homologs than the OC43 peptides  
355 used for expansion (average 2-fold,  $p=0.044$  for P4 and average 3.5-fold,  $p=0.011$  for P11; paired  
356 t-test; Fig 4B). This indicates that a substantial proportion of T cells responding to the OC43-P4  
357 and OC43-P11 peptides can cross-react with their SARS-CoV-2 homologs. To evaluate the

358 sensitivity of these T cell lines to cross-reactive stimulation, we measured the dose-response to  
359 cognate and heterologous peptides. Robust cross-reactivity to heterologous stimulation was  
360 observed across the dose-response range for both P4 and P11 homologs in all donors tested,  
361 including pre-pandemic (Fig 4C) and those with recent COVID-19 infection (Fig 4D), with minimal  
362 stimulatory peptide concentrations in a wide range but similar for OC43 and SARS-CoV-2  
363 homologs (Fig 4E).

364 To explore factors that could have resulted in the observed pattern of OC43 and SARS-CoV-2  
365 cross-reactive responses, we measured MHC binding of the SARS-CoV-2 homologs and  
366 compared them to the OC43 peptides (Fig 4F). We found weaker binding for most of the SARS-  
367 CoV-2 homologs, with the exception of P4, for which DP4.1 binding was 10-fold greater for the  
368 SARS-CoV-2 homolog. In addition to altering MHC binding affinity, amino acid substitutions can  
369 cause shifting of the preferred binding register, which would interfere with T cell recognition of  
370 homologous peptides. Of the nine peptides tested, only P3, P4, and P11 retain the predicted  
371 binding register in the SARS-CoV-2 homologs (Fig 4G), and only for P4 and P11 are the predicted  
372 T cell contacts completely or mostly conserved (shaded in Fig 4G).

373 We extended this analysis to the other seasonal human coronaviruses, using the T cell lines  
374 expanded in vitro with P4 and P11 peptides from pre-pandemic and COVID-19 donors. The P4  
375 and P11 homologs from the seasonal coronaviruses mostly retained binding to DP4.1 (for P4)  
376 and DR2a/DR2b (for P11) (Fig 4H), and we measured the cross-reactive T response to these  
377 peptides. In general, all the P4- and P11-expanded T cell lines recognized each of the homologs,  
378 with the exception of P11 from 229E, which was recognized poorly by T cell lines expanded with  
379 SARS-CoV-2 or OC-43 homologs (Fig 4I).

380

381 **Discussion**

382 The immune response to seasonal human coronaviruses is largely understudied and few T cell  
383 epitopes have been identified, although interest in this area has increased with the COVID-19  
384 pandemic. To help fill this gap we identified naturally processed and presented viral epitopes  
385 expressed in OC43-infected cells using immunoaffinity purification of MHC-peptide complexes  
386 followed by mass spectrometry of eluted peptides. Only three viral peptides presented by MHC-I  
387 molecules were identified within the overall immunopeptidome of CIITA-transfected OC43-  
388 infected HEK293 cells, possibly due to virus-induced down-regulation of MHC-I expression. A  
389 total of 83 viral peptides presented by MHC-II molecules were identified, representing 14 distinct  
390 core epitopes present in nested sets characteristic of MHC-II processing. Eleven of these OC43-  
391 derived epitopes were recognized by recall responses in partially-HLA-matched donors. Almost  
392 all of the OC43-derived MHC epitopes identified in this work are reported here for the first time,  
393 although T responses to the two highly-cross-reactive epitopes P4 and P11 have been reported  
394 previously in studies characterizing seasonal coronavirus cross-reactivity to identified SARS-  
395 CoV-2 epitopes [21,25,27,28,59].

396 We identified only a few OC43-derived peptides presented by MHC-I molecules, and these were  
397 present at very low abundance within the overall MHC-I peptidome. One peptide from the spike  
398 protein and one from the 3C-like proteinase encoded by the ORF1ab polyprotein, both likely  
399 presented by HLA-A2, and a second 3C-like proteinase peptide likely presented by HLA-B7, were  
400 observed. These epitopes have not been previously reported, although a different OC43 spike  
401 epitope presented by HLA-24 [60,61] and two OC43-derived epitopes from other ORF1ab-derived  
402 proteins, both presented by HLA-A2 [62], have been described in studies of SARS-CoV-2 cross-  
403 reactive CD8 T cell responses. We observed potent MHC-I down-regulation after OC43 infection,  
404 which may have limited presentation of viral epitopes on MHC-I molecules. MHC-I down-  
405 regulation has not been previously reported for OC43, but is a common feature of many viruses

406 [44–46], including SARS-CoV-2 [45,46,56,63]. Current understanding of SARS-CoV-2-induced  
407 MHC-I down-regulation points to a complex mechanism, with the involvement of several gene  
408 products: ORF3a reduces global trafficking of proteins including MHC-I [45], ORF6 inhibits  
409 induction of MHC-I by targeting the STAT1-IRF1-NLRC5 axis [63], ORF7a reduces cell-surface  
410 expression of MHC-I [45,46] by acting as  $\beta$ 2-microglobulin mimic to interact with MHC-I heavy  
411 chain and slow its egress through the endoplasmic reticulum [45], and ORF8 also has been  
412 reported to down-regulate surface MHC-I through a direct interaction, although the specific  
413 mechanism is unclear [56]. However, none of these SARS-CoV-2 gene products have significant  
414 homology with OC43, and elucidating the mechanism by which OC43 down-regulates MHC-I  
415 expression will require further investigation.

416 By contrast, eighty OC43-derived peptides presented by MHC-II molecules were found at high  
417 abundance within the overall MHC-II peptidome. Indeed, three of the top four most intense ions  
418 in the HLA-DR peptidome mass spectrum, and the third and fourth most intense ions in the HLA-  
419 DP peptidome mass spectrum, correspond to OC43-derived peptides. Most of the OC43-derived  
420 MHC-II-bound peptides were from spike and nucleoprotein, the major coronavirus structural  
421 proteins, consistent with the over-representation of these proteins we observed in the whole-cell  
422 proteome of infected cells. Several peptides derived from the hemagglutinin-esterase protein,  
423 which is believed to be required for cleavage of sialic acid residues to promote the release of  
424 progeny virus from infected cells, similarly to hemagglutinin-esterase proteins from influenza C  
425 and certain toroviruses and orthomyxoviruses [64]. Finally, one set of low-abundance peptides is  
426 derived from the small envelope protein. All the OC43-derived MHC-II-bound peptides were found  
427 as nested sets, except for three very low abundance peptides found as singletons. In each case,  
428 the nested sets surrounded the predicted nine-residue core epitope, with 1-9 residue extensions,  
429 consistent with endosomal protease trimming of MHC-bound peptides as expected in the MHC-II  
430 antigen-presentation pathway. We selected one representative peptide from each nested set to

431 confirm binding to MHC-II, and to assign presenting MHC allotypes to the HLA-DR peptides,  
432 which could derive from either DR2a (DRB5\*01:01) or DR2b (DRB1\*05:01), both of which are  
433 expressed by HEK293 cells and co-purified with the LB3.1 antibody that we used for  
434 immunoaffinity. Each of the eight representative HLA-DP eluted peptides bound to DP4.1,  
435 although with varying affinity not entirely predicted by NetMHCIIpan4.1. Of the six representative  
436 HLA-DR peptides, one (P12) bound exclusively to DR2a, four exclusively to DR2b, and one to  
437 both allotypes (P9). As previously observed in another study of naturally processed MHC-II  
438 peptides in virus-infected cells [34], the eluted peptides generally were among the top predicted  
439 binders for each viral protein, one exception being P1 from the hemagglutinin-esterase protein.

440 We tested representative eluted peptides for recognition by T cells from HLA-matched donors.  
441 Of fourteen peptides tested, we observed robust T cell responses to eleven. In other systems,  
442 characterization of naturally-processed, MHC-bound peptides by mass spectrometry of infected  
443 cells has proven to be an efficient route for T cell epitope discovery [31,32,32–39,65,66]. We  
444 observed a correlation between the observed T cell response and epitope abundance in the  
445 overall immunopeptidome, whereas a significant correlation was not observed for the predicted  
446 or even observed peptide binding affinity. Thus, characterization of naturally-processed peptides  
447 from virus-infected cells can be a highly efficient epitope discovery approach, particularly  
448 compared to screening comprehensive overlapping peptides libraries or large sets of predicted  
449 MHC binders, where typically T cell responses are observed to only a small fraction of the  
450 candidate epitopes. A similar trend relating T cell response to epitope abundance has been  
451 observed in some [39] but not all [32,65,66] previous studies, although it should be noted that all  
452 of these previous studies involved CD8 T cell responses. Three eluted peptides (P8, P14, and  
453 P13) were not recognized by T cells from HLA-matched donors. These peptides were present at  
454 relatively low abundance in the peptidomes, although in some cases (P6, P7, P9) peptides with  
455 even lower abundance were recognized. We examined whether these peptides might not be

456 immunogenic because of homology to self-peptides [67]. The peptides that were not recognized  
457 had similar homology scores to the closest matching self-peptides as did peptides that were  
458 recognized, although the number of exact matches in the core epitope region was somewhat  
459 larger for peptides that were not recognized (mean 6.3 vs 4.6, p=0.016).

460 Among human and animal coronaviruses, the approach of characterizing naturally-processed  
461 peptides presented by MHC proteins in infected cells to date has only been applied to SARS-  
462 CoV-2 [38,68]. Weingarten-Gabbay et al [38] eluted MHC-I bound peptides from SARS-CoV-2-  
463 infected A549 and HEK293 cell lines, and identified 28 canonical epitopes from spike,  
464 nucleoprotein, membrane, ORF7a, and several Orf1ab-derived nonstructural proteins, together  
465 with 9 non-conventional epitopes derived from out-of-frame transcripts in spike and nucleoprotein.  
466 Nagler et al [68] similarly identified two MHC-I epitopes derived from out-of-frame viral transcripts  
467 together with 11 conventional epitopes from spike, nucleoprotein, NSP1, and NSP3. We searched  
468 for such out-of-frame peptides in the OC43-derived immunopeptidome but did not find convincing  
469 evidence (see methods). As an alternative to infection, Pan et al [69] transfected cell lines with  
470 membrane or NSP13 genes and identified five MHC-I epitopes. In addition to the infection studies  
471 mentioned above, Nagler et al [68] also characterized MHC-bound peptides derived from cell lines  
472 transfected with individual nucleoprotein, envelope, membrane, and nsp6 genes, and identified  
473 additional MHC-I and also HLA-DR epitopes. Using a somewhat different experimental approach,  
474 Knierman et al [70] and Parker et al [71] added purified recombinant SARS-CoV-2 spike protein  
475 to monocyte-derived dendritic cells, which might simulate physiological antigen uptake by  
476 professional antigen-presenting cells at sites of infection. Peptides containing SARS-CoV-2  
477 homologs of the OC43 P4 and P11 epitopes that we characterized here were among the many  
478 MHC-II-bound peptides that derived from the added recombinant proteins [70,71].

479 Several previous studies of the T cell response to SARS-CoV-2 in pre-pandemic donors have  
480 identified T cell responses that are cross-reactive with homologous epitopes from seasonal

481 coronaviruses including OC43 [16,21,26,27,59,72–75]. However, there is still not a consensus on  
482 the involvement of the cross-reactive response in the clinical outcome, although recent studies  
483 have pointed to a role for cross-reactive CD8 T cell responses in protection from SARS-CoV-2  
484 infection [62] and severe COVID-19 [76]. To identify additional cross-reactive epitopes, we tested  
485 the reactivity of T cell lines expanded with the eluted OC43 peptides for cross-reactivity with  
486 SARS-CoV2 homologs. Among the nine naturally processed CD4 T cell epitopes that were  
487 robustly recognized by donors in our cohorts, only two (P4 S<sub>903-917</sub> and P11 S<sub>1085-1099</sub>) were  
488 targeted by T cells cross-reactive with SARS-CoV-2. Dose-response curves were similar for both  
489 SARS-CoV-2 and OC43 versions of the cross-reactive P4 and P11 epitopes, in both pre-  
490 pandemic and COVID-19 donors. This suggests that T cells might respond similarly during  
491 infections with either virus. Notably, these same epitopes were observed previously in an  
492 unbiased screen of SARS-CoV-2-derived peptides targeted by HCoV cross-reactive T cells [25],  
493 as well as in other studies of T cell responses cross-reactivity between SARS-CoV-2 and HCoVs  
494 [21,26–28,77–80]. For both the P4 and P11 epitopes, the OC43 and SARS-CoV-2 homologs are  
495 predicted to bind to the respective MHC-II proteins using the same binding frame, and peptide  
496 residues at the predicted T cell contact positions are identical or conserved. For the seven OC43-  
497 derived naturally processed T cell epitopes with SARS-CoV-2 homologs that were not targeted  
498 by cross-reactive responses, six had predicted shifts of the MHC-II binding frame caused by  
499 peptide substitutions at MHC-II contact positions. The one epitope for which the predicted MHC-  
500 II binding frame was preserved (P3 S<sub>97-111</sub>) has substitutions at each of the TCR contact positions,  
501 which would be expected to abrogate cross-reactive T cell binding. Thus, the pattern of observed  
502 CD4 T cell cross-reactivity can be explained by a simple model in which the key parameters are  
503 the preservation of the MHC-II binding frame and conservation of T cell receptor contact residues.  
504 For studies of the differential response to SARS-CoV-2 and seasonal coronaviruses, epitopes  
505 specific to the seasonal coronaviruses are required. Among the OC43-eluted peptides for which

506 cross-reactive T cell responses to SARS-CoV-2 homologs were not observed, P10 N<sub>54-68</sub> elicited  
507 recall responses in all donors tested. Responding CD4 T cells showed a high sensitivity, with  
508 minimal peptide concentrations of about 10 pg/mL. This epitope is not strongly conserved among  
509 the HCoVs (Suppl Fig S4) and may be a good candidate to study and follow OC43-specific  
510 responses. In addition, epitopes P1 HE<sub>259-273</sub>, and P9 HE<sub>128-142</sub> both are recognized by strong  
511 responses in a large majority of donors tested. human coronaviruses, only OC43 and HKU-1  
512 express HE proteins, consistent with their use of 9-O-acetylated sialic acids as an entry receptor.  
513 Neither SARS-CoV-2 nor MERS-CoV, SARS-CoV, 229E, or NL63 express HE homologs. No HE-  
514 derived T cell epitopes have been reported from any other organism (although neutralizing  
515 antibodies to influenza C HE have been reported [81,82]. Thus, T cell responses to P1 HE<sub>259-273</sub>  
516 and P9 HE<sub>128-142</sub> would be expected to mark specific exposure to HCoVs (OC43 and/or HKU1)  
517 and might be useful in evaluating the contribution of HCoV exposure in SARS-CoV-2 incidence  
518 or pathogenesis.

519 There are some limitations to this study. The HEK cells used for immunopeptidome  
520 characterization were manipulated to ensure stable expression of MHC-II proteins by introducing  
521 the CIITA gene, which may favor the processing and presentation in the MHC-II compartment. In  
522 addition, these cells may not be representative of the natural targets of infection in the respiratory  
523 tract. Also, we assumed that the pre-pandemic donors would have been exposed to OC43. We  
524 did not consider T cell responses restricted by the mismatched MHC molecules. Finally, T cell  
525 responses not associated with IFN- $\gamma$ , not able to expand with peptide stimulation in vitro, or below  
526 our detection level would have been missed by our approach.

527 In summary, we characterized the spectrum of naturally-processed viral peptides presented by  
528 MHC molecules in HEK293.CIITA cells infected with the human seasonal coronavirus OC43.  
529 MHC-II presented peptides dominated the OC43-derived viral immunopeptidome, possibly due to  
530 the potent down-regulation of MHC-I molecules in infected cells. The spike protein is the major

531 source of OC43-derived epitopes, with contributions from nucleoprotein and hemagglutinin-  
532 esterase. Most of the naturally-processed peptides are recognized by T cells from HLA-matched  
533 donors. Three seasonal-coronavirus-specific CD4 T cell epitopes and two SARS-CoV-2-cross-  
534 reactive CD4 epitopes were identified. These epitopes provide a basis for studies of the cellular  
535 immune response to OC43, and for evaluating the role of pre-existing seasonal coronavirus  
536 immunity in SARS-CoV-2 infection and vaccination.

537

538 **Materials and Methods**

539 Cell lines:

540 HEK293 cells were kindly provided by Dr. Kenneth Rock (UMass Chan Medical School). Cells  
541 were maintained in DMEM medium supplemented with L-glutamine (2 mM), sodium pyruvate (1  
542 mM), non-essential amino acids (1 mM), and 10%FBS 37°C/5% CO<sub>2</sub>. HEK293 cells were  
543 transduced using the LentiORF® clone of CIITA (OriGene RC222253L3). The cells were selected  
544 using puromycin selection marker for 2 passages over the period of 7 days. The cells were further  
545 transduced using human ace2 containing lentiviral particles, a kind gift from Dr. Rene Mehr  
546 (UMass Chan Medical School), to facilitate future work with other coronaviruses. The cells were  
547 stained for anti-HLA-DR, HLA-DP and HLA-DQ to confirm the MHC-II expression. These cells  
548 were further enriched by flow-based sorting for ACE2 expression and HLA-DR expression.

549 DP4.1-transfected cell line (M12C3, DPA1\*0103/DPB1\*0401, Williams et al., 2018) was kindly  
550 provided by Dr. S. Kent (UMass Chan Medical School). Cells were maintained in RPMI 1640  
551 medium supplemented with L-glutamine (2 mM), penicillin (100 U/mL), streptomycin (100 mg/mL)  
552 and 10% FBS at 37°C/5% CO<sub>2</sub>.

553 Single HLA class II-transfected cell lines L466.2 (derived from the DRB1\*15:01 cell line L466.1)  
554 and L416.3 (DRB5\*01:01) [83] were kindly provided by Dr. Cecilia Sofie Lindestam Arlehamn (La  
555 Jolla Institute for Immunology). Cells were maintained in RPMI supplemented with L-glutamine (2  
556 mM), penicillin (100 U/mL), streptomycin (100 mg/mL), non-essential amino acids (1 mM), Sodium  
557 Pyruvate (1 mM), G418 (200 µg/mL), and 10% FBS at 37°C/5% CO<sub>2</sub>. Sodium butyrate (100  
558 mg/mL, Sigma B5887) was added the day before harvest to induce MHC expression.

559 Virus production and cell infection:

560 Human coronavirus OC43 strain VR-759 was obtained from ATCC (beta-coronavirus-1, #VR-  
561 1558). The virus was propagated in the lung fibroblast cell line MRC-5 (ATCC# CCL-171) at a  
562 multiplicity of infection (MOI) of 0.01 and the virus was collected after 5 days. Virus stocks were  
563 titrated using a standard TCID<sub>50</sub> assay. HEK293.CIITA cells were infected at a MOI of 0.1 for 3  
564 days, at which time the cells were collected, washed with PBS, and the cell pellets were frozen at  
565 -80°C until use. Percentage of infected cells were measured by intracellular staining for the  
566 nucleoprotein (mouse anti-coronavirus OC43 nucleoprotein clone 542-70, Millipore).

567 Isolation of MHC Class I and Class II bound peptides:

568 Detergent-solubilized fractions isolated from OC43 infected HEK293.CIITA cells were used for  
569 elution experiments. Cells were suspended in ice-cold hypotonic buffer (10 mM Tris-HCl, pH 8.0,  
570 containing protease inhibitors) and lysed using bath sonicator (Misonix S-4000 Ultrasonic Liquid  
571 Processor) maintained at 4°C with the amplitude of 70. The sonication was done for 3 mins with  
572 a cycle of pulse for 20 secs followed by resting cells on ice for 10 secs. Unlysed cells, nuclei,  
573 cytoskeleton, and cell debris were removed by centrifuging the lysate at 2000 ×g for 5 min at 4  
574 °C. The supernatant was collected and further centrifuged at 100,000 ×g for 1 h at 4 °C to pellet  
575 the membrane/microsome fraction. This fraction was solubilized in ice-cold 50 mM Tris-HCl, 150  
576 mM NaCl, pH 8.0 and 5% β-octylglucoside in a dounce homogenizer and incubated on ice for 1  
577 hour. Benzonase (50 U/mL), 2 mM MgCl<sub>2</sub>, and protease inhibitor cocktail, were added to inactivate  
578 virus, and the mixture was rotated slowly overnight at 4 °C. Solubilized membranes were  
579 centrifuged at 100,000 ×g for 1 hour at 4 °C and the supernatant used for MHC-peptide isolation  
580 and immunopeptidome characterization. The supernatant was equilibrated with protein A agarose  
581 beads and isotype antibody conjugated beads sequentially for 1 hour each at 4 °C and allowed  
582 to mix slowly to remove nonspecific binding proteins. The precleared membrane fraction was then

583 incubated sequentially with immunoaffinity beads of protein A agarose-LB3.1 antibody (HLA-DR),  
584 protein A agarose-B7/21 antibody (HLA-DP), and protein A agarose-W6/32 (HLA-ABC) antibody  
585 sequentially for 2 hours each at 4 °C and allowed to mix slowly. The beads were washed with  
586 several buffers in succession as follows: (1) 50 mM Tris-HCl, 150 mM NaCl, pH 8.0, containing  
587 protease inhibitors and 5% β-octylglucoside (5 times the bead volume); (2) 50 mM Tris-HCl, 150  
588 mM NaCl, pH 8.0, containing protease inhibitors and 1% β-octylglucoside (10 times the bead  
589 volume); (3) 50 mM Tris-HCl, 150 mM NaCl, pH 8.0, containing protease inhibitors (30 times the  
590 bead volume); (4) 50 mM Tris-HCl, 300 mM NaCl, pH 8.0, containing protease inhibitors (10 times  
591 the bead volume); (5) PBS (30 times the bead volume); and (6) HPLC water (100 times the bead  
592 volume). Bound complexes were acid-eluted using 2% TFA. Detergent, buffer components, and  
593 MHC proteins were removed using a Vydac C18 microspin column (The Nest Group, Ipswich,  
594 MA). The mixture of MHC and peptides were bound to the column, and after washes with 0.1%  
595 TFA, the peptides were eluted using 30% acetonitrile in 0.1% TFA. Eluted peptides were  
596 lyophilized using a SpeedVac and were resuspended in 25 µL of 5% acetonitrile and 0.1% TFA.

597

598 Liquid Chromatography–Mass Spectrometry (MS):

599 For LC/MS/MS analysis, peptide extracts were reconstituted in 7 µL of 5% acetonitrile containing  
600 0.1% (v/v) trifluoroacetic acid and separated on a nanoACQUITY (Waters Corporation, Milford,  
601 MA). A 3.5 µL injection was loaded in 5% acetonitrile containing 0.1% formic acid at 4.0 µL/min  
602 for 4.0 min onto a 100 µm I.D. fused-silica precolumn packed with 2 cm of 5 µm (200 Å) Magic  
603 C18AQ (Bruker-Michrom, Auburn, CA) and eluted using a gradient at 300 nL/min onto a 75 µm  
604 I.D. analytical column packed with 25 cm of 3 µm (100 Å) Magic C18AQ particles to a gravity-  
605 pulled tip. The solvents were A) water (0.1% formic acid); and B) acetonitrile (0.1% formic acid).  
606 A linear gradient was developed from 5% solvent A to 35% solvent B in 60 min. Ions were

607 introduced by positive electrospray ionization via liquid junction into a Orbitrap Fusion™ Lumos™  
608 Tribrid™ Mass Spectrometer. Mass spectra were acquired over m/z 300–1,750 at 70,000  
609 resolution (m/z-200), and data-dependent acquisition selected the top 10 most abundant  
610 precursor ions in each scan for tandem mass spectrometry by HCD fragmentation using an  
611 isolation width of 1.6 Da, collision energy of 27, and a resolution of 17,500.

612

613 Peptide Identification:

614 Raw data files were peak processed with Proteome Discoverer (version 2.1, Thermo Fisher  
615 Scientific) prior to database searching with Mascot Server (version 2.5, Matrix Science, Boston,  
616 MA) against a combined database of UniProt\_Human, UniProt\_hCoV-OC43 and an out-of-frame  
617 OC43 unconventional ORF database constructed according to Stern-Ginossar et al [84]. Search  
618 parameters included no-enzyme specificity to detect peptides generated by cleavage after any  
619 residue. The variable modifications of oxidized methionine and pyroglutamic acid for N-terminal  
620 glutamine were considered. The mass tolerances were 10 ppm for the precursor and 0.05 Da for  
621 the fragments. Search results were then loaded into the Scaffold Viewer (Proteome Software,  
622 Inc., Portland, OR) for peptide/protein validation and label-free quantitation. Scaffold assigns  
623 probabilities using PeptideProphet or the LDPR algorithm for peptide identification and the  
624 ProteinProphet algorithm for protein identification, allowing the peptide and protein identification  
625 to be scored on the level of probability. An estimated FDR of 5% was achieved by adjusting  
626 peptide identification probability. Peptides identified in a blank run were excluded from the  
627 peptidomes. Peptides with Mascot Ion score below 15 were also excluded. Only one match to the  
628 OC43 unconventional ORF database was identified for an HLA-DP-bound peptide. This  
629 sequence (LTILYLWVGIILSVIVL), derived from an out-of-frame ORF in the membrane gene, did

630 not match the HLA-DP binding motif and the single-ion spectrum was poor, so this sequence was  
631 not considered further.

632

633 Label-free proteomic analysis:

634 Flow-through samples from the affinity columns used for immunopeptidome studies were  
635 collected and used for label-free proteomics analysis studies. 1 µg of the flow-through was trypsin  
636 digested using S-Trap™ Mini Spin Column (PROTIFI). An injection of ~200 ng was loaded by a  
637 Waters nanoACQUITY UPLC in 5% acetonitrile (0.1% formic acid) at 4.0 µl/min for 4.0 min onto  
638 a 100 µm I.D. fused-silica precolumn packed with 2 cm of 5 µm (200 Å) Magic C18AQ (Bruker-  
639 Michrom). Peptides were eluted at 300 nL/min from a 75 µm I.D. gravity-pulled analytical column  
640 packed with 25 cm of 3 µm (100 Å) Magic C18AQ particles using a linear gradient from 5–35% of  
641 mobile phase B (acetonitrile + 0.1% formic acid) in mobile phase A (water + 0.1% formic acid) for  
642 120 min. Ions were introduced by positive electrospray ionization via liquid junction at 1.5kV into  
643 a Orbitrap Fusion™ Lumos™ Tribrid™ Mass Spectrometer. Mass spectra were acquired over  
644 m/z 300–1,750 at 70,000 resolution (m/z 200) with an AGC target of 1e6, and data-dependent  
645 acquisition selected the top 10 most abundant precursor ions for tandem mass spectrometry by  
646 HCD fragmentation using an isolation width of 1.6 Da, max fill time of 110 ms, and AGC target of  
647 1e5. Peptides were fragmented by a normalized collisional energy of 27, and fragment spectra  
648 acquired at a resolution of 17,500 (m/z 200). Raw data files were peak-processed with Proteome  
649 Discoverer (version 1.4, Thermo Scientific) followed by identification using Mascot Server (version  
650 2.5, Matrix Science) against an UniProt\_Human, UniProt\_hCoV-OC43 and out-of-frame hCoV-  
651 OC43 databases. Search parameters included Trypsin/P specificity, up to 2 missed cleavages, a  
652 minimum of two peptides, a fixed modification of carbamidomethyl cysteine, and variable  
653 modifications of oxidized methionine, pyroglutamic acid for Q, and N-terminal acetylation.

654 Assignments were made using a 10-ppm mass tolerance for the precursor and 0.05 Da mass  
655 tolerance for the fragments. All nonfiltered search results were processed by Scaffold (version  
656 4.4.4, Proteome Software, Inc.) utilizing the Trans-Proteomic Pipeline (Institute for Systems  
657 Biology) with a 1% false-discovery rate. The data was processed using MaxQuant as well which  
658 uses Andromeda search engine and search parameters were kept the same as Mascot Server.  
659 The search was performed against a concatenated target-decoy database with modified reversing  
660 of protein sequences. For MHC protein quantitation, HLA-ABC heavy (alpha) chains and HLA-  
661 DR, HLA-DQ, HLA-DP beta chains were considered. Intensities of HLA-DRB1\*15:01 and HLA-  
662 DRB1\*01:01 were summed to provide an HLA-DR value. Peptides unique to HLA-C or HLA-E, a  
663 non-classical class I MHC bound by W6/32 along with HLA-ABC [85], were not detected, although  
664 two peptides identical in HLA-C and HLA-A were detected and assigned to HLA-A, and two  
665 peptides identical in HLA-E and HLA-B were detected and assigned to HLA-B.

666

667 Gibbs Clustering:

668 GibbsCluster-2.0 [86] within DTU Health Tech server, was used to align the eluted peptide  
669 sequences and analyze the motifs, which were displayed with Seq2Logo 2.0 [87]. We allowed the  
670 software to include cluster sizes of 1-5 with a motif length of 9 amino acids and clustering  
671 sequence weighting. Default values were used for other parameters: number of seeds =1, penalty  
672 factor for inter-cluster similarity =0.8, small cluster weight =5, no outlier removal, iterations per  
673 temperature step =10, Monte Carlo temperature =1.5, intervals for indel, single peptide and  
674 phase-shift moves = 10, 20, and 100, respectively, and Uniprot amino acid frequencies were used.  
675 For each sample, we selected the cluster that included the largest number of peptides analyzed.  
676 For HLA-DR and HLA-DP peptides, a preference for hydrophobic residue at P1 was used to align  
677 the motifs at the P1 position. For HLA-ABC peptides, MHC-I ligands of length 8-13 residues

678 parameters were loaded. The fraction of sequences that contributed to each cluster is shown in  
679 the figures.

680

681 Peptide binding assay:

682 We used a fluorescence polarization competition binding assay, modified from one developed for  
683 MHC-I peptide binding [57], to measure peptide binding affinity to soluble recombinant MHC-II  
684 molecules. Soluble DRB1\*15:01 and DRB5\*01:01 with a covalently linked CLIP peptides [88]  
685 were a gift of Drs. John Altman and Richard Willis (Emory University and NIH Tetramer Core  
686 Facility). Soluble DP4 (HLA-DPA1\*01:03/DPB1\*04:01) with a covalently-linked CLIP peptide was  
687 prepared essentially as described [88]. Human oxytocinase EKKYFAATQFEPLAARL, MBP  
688 peptide NPVVHFFKNIVTPR and influenza hemagglutinin PRFVKQNTLRLAT peptide were  
689 labeled with Alexa Fluor 488 (Alexa488) tetrafluorophenyl ester (Invitrogen, Carlsbad, CA) and  
690 used as probe peptides for DP4.1, DR2b and DR2a binding. Binding reactions were carried out  
691 at 37°C in 100 mM sodium citrate, 50 mM sodium chloride, 0.1% octyl β-D-glucopyranoside, 5  
692 mM ethylenediaminetetraacetic acid, 0.1% sodium azide, 0.2 mM iodoacetic acid, 1 mM  
693 dithiothreitol as described [58] for peptide-free HLA-DR1, but with 1 U/μg thrombin (DP4.1) or 3C  
694 protease (DR2b and DR2a) added to cleave the CLIP linker and HLA-DM included to initiate  
695 peptide exchange. Thrombin or 3C protease enzymes was inactivated after 3 hours of reaction  
696 using protease cocktail inhibitor, and the reaction was continued for 24 hours at 37 °C before FP  
697 measurement using a Victor X5 Multilabel plate reader (PerkinElmer, Shelton, CT). DP4.1-Clip  
698 (250 nM), DR2b-CLIP (500 nM) and DR2a-CLIP (250 nM) concentrations were selected to  
699 provide 50% maximum binding of 25 nM probe peptide in the presence of 500 nM soluble HLA-  
700 DM. Binding reactions also contained serial dilutions of test peptides with 5-fold dilutions. The  
701 capacity of each test peptide to compete for binding of probe peptide was measured by the

702 fluorescence polarization (FP) after 24 hours at 37 °C. FP values were converted to fraction bound  
703 by calculating  $[(FP_{\text{sample}} - FP_{\text{free}})/(FP_{\text{no\_comp}} - FP_{\text{free}})]$ , where FP\_sample represents  
704 the FP value in the presence of test peptide; FP\_free represents the value for free Alexa488-  
705 conjugated respective peptide; and FP\_no\_comp represents values in the absence of competitor  
706 peptide. We plotted fraction bound versus concentration of test peptide and fit the curve to the  
707 equation  $y = 1/(1 + [\text{pep}]/IC_{50})$ , where [pep] is the concentration of test peptide, y is the fraction of  
708 probe peptide bound at that concentration of test peptide, and IC<sub>50</sub> is the 50% inhibitory  
709 concentration of the test peptide.

710

711 ELISpot assay:

712 IFN- $\gamma$  ELISpots were performed using Human IFN gamma ELISpot KIT (Invitrogen, San Diego,  
713 CA) and MultiScreen Immobilon-P 96 well filtration plates (EMD Millipore, Burlington, MA),  
714 following the manufacturer's instructions. Assays were performed in CST™ OpTmizer™ T cell  
715 medium (Gibco, Grand Island, NY). Peptides or peptides pools were used at a final concentration  
716 of 1  $\mu\text{g}/\text{mL}$  per peptide (10 -  $10^{-7}$   $\mu\text{g}/\text{mL}$  for dose-responses curves); as negative controls were  
717 used DMSO (DMSO, Fisher Scientific, Hampton, NH) and a pool of human self-peptides (Self-1  
718 [34]), and PHA-M (Gibco, Grand Island, NY) was used as a positive control. For ex vivo assays,  
719 PBMC were incubated with peptides or controls for ~48 hours. We used  $4 \times 10^5$  cells per well. For  
720 assays with cells expanded in vitro,  $\sim 5 \times 10^4$  cells per well were incubated with an equal number  
721 of irradiated single allele APCs in the presence of peptides or controls for ~18 hours. Two to four  
722 wells of each peptide, pool of peptides, or PHA-M, and at least 6 wells for DMSO were usually  
723 tested. Secreted IFN- $\gamma$  was detected following the manufacturer's protocol. Plates were analyzed  
724 using the CTL ImmunoSpot Image Analyzer (ImmunoSpot, Cleveland, OH) and ImmunoSpot 7

725 software. Statistical analysis to determine positive responses was performed using the  
726 distribution-free resampling (DFR) method described by Moodie et al [89].

727

728 Intracellular cytokine secretion assay (ICS)

729 ICS was performed using in vitro expanded T cells as previously described [34] with minor  
730 modifications. Briefly, single allele APCs were resuspended in CRPMI (w/o phenol red) +10%  
731 fetal bovine serum (FBS, R&D Systems) containing 1 µg/mL of each peptide and incubated  
732 overnight. On the day of the assay, T cell lines were collected, washed, and resuspended in the  
733 same medium and added to the pulsed APCs (1:1 ratio); at this time, anti-CD107a-CF594 was  
734 added, followed by the addition of brefeldin A and monesin at the suggested concentrations (Golgi  
735 plug / Golgi stop, BD Biosciences, San Jose, CA). After 6 hours of incubation, cells were collected,  
736 washed, and stained using a standard protocol, which included: staining for dead cells with  
737 Live/Dead Fixable Aqua Dead Cell Stain Kit<sup>TM</sup> (Life Technologies, Thermo Fisher Scientific,  
738 Waltham, MA); blocking of Fc receptors with human Ig (Sigma-Aldrich, St. Louis, MO); surface  
739 staining with mouse anti-human CD3-APC-H7, CD4-PerCPCy5.5, CD8-APC-R700, CD14-  
740 BV510, CD19-BV510, CD56-BV510; fixation and permeabilization using BD Cytofix/Cytoperm<sup>TM</sup>;  
741 and intracellular staining with mouse anti-human IFN- $\gamma$ -V450, TNF- $\alpha$ -PE-Cy7, IL-2-BV650, (all  
742 from BD Biosciences, San Jose, CA). Data were acquired using a BD LRSII flow cytometer  
743 equipped with BD FACSDiva software (BD Biosciences, San Jose, CA) and analyzed using  
744 FlowJo v.10.7 (FlowJo, LLC, Ashland, OR). The gating strategy consisted in selecting  
745 lymphocytes and single cells, followed by discarding cells in the dump channel (dead, CD14+,  
746 CD19+, and CD56+ cells), and selecting CD3+ cells in the resulting population.

747

748 Peptides and HLA binding predictions:

749 Peptides for these studies were obtained from 21<sup>st</sup> Century Biochemicals (Marlborough, MA) and  
750 BEI Resources (Manassas, VA). Peptide sequences used in the assays are shown in Table S6.  
751 HLA-peptide binding prediction was performed with NetMHCpan4.1 or NetMHCIIpan4.0  
752 (Reynisson et al., 2020) for peptides eluted from MHC-I and MHC-II proteins, respectively.  
753 Sequence logo of predicted motifs obtained using Motif Viewer in NetMHCpan or NetMHCIIpan.  
754 The Immune Epitope Database IEDB [19] was used to search for T cell responses to seasonal  
755 and pandemic coronavirus epitopes.

756

757 Sequence conservation analysis:

758 We selected one representative strain from each human coronavirus: OC43 strain VR759  
759 (NC\_006213), HKU1 Isolate N1 (NC\_006577), Human beta-coronavirus 2c EMC/2012  
760 (JX869059), SARS coronavirus Tor2 (NC\_004718), SARS-CoV-2/human/USA/WA-CDC-  
761 02982585-001/2020 (MT020880), Human coronavirus 229E (AF304460), and NL63 strain  
762 Amsterdam I (NC\_005831). Sequence alignment of spike, nucleoprotein, hemagglutinin esterase,  
763 and envelope proteins were generated using Clustal Omega v1.2.4 [90]. Conservation indices for  
764 each position of the alignment were calculated using the AL2CO algorithm [91] using the  
765 alignment previously generated and the default settings. Human Peptides sequences Eluted  
766 peptides sequences were searched against the whole human proteome to find potential human  
767 homologs

768

769

770 **Acknowledgements:** The authors wish to thank Dr. John Altman and Dr. Richard Willis (Emory  
771 University) for DRB1\*15:01 and DRB5:01:01 proteins used for peptide binding studies, Liying Lu  
772 for antibodies used for immunoaffinity purification, Dr. Rene Mehr for ACE2 lentivirus, and Dr.  
773 Kenneth Rock for HEK293 cells. We acknowledge the assistance of Nadia Sultana and the  
774 UMass Chan Medical School Flow Cytometry and Mass Spectrometry Facilities.

775

776 **Data Availability:** LC-MS/MS data have been deposited to the ProteomeXchange Consortium  
777 via the MassIVE repository with the dataset identifier MSV000090595. To access the files, use  
778 login web access as MSV000090595\_reviewer. All other relevant data are within the manuscript  
779 and its Supporting Information files

780

781 **Funding:** This work was supported by grants from NIH (R01-AI13798, UL1-TR001453) and the  
782 UMass Medical School COVID-19 Pandemic Research Fund. The funders had no role in study  
783 design, data collection and analysis, decision to publish, or preparation of the manuscript.

784

785 **Competing Interests:** The authors have declared that no competing interests exist.

786

787 **Author Contributions:**

788 ABA: Conceptualization, Formal Analysis, Investigation (virology, T cell studies, cross-reactivity  
789 analysis), Methodology, Validation, Visualization, Writing – original draft preparation, Writing-  
790 review & editing

791 PPN: Conceptualization, Formal Analysis, Investigation (HEK293/CIITA/Ace3 generation,  
792 immunopeptidome analysis, label-free proteomic analysis, binding studies), Methodology,  
793 Validation, Visualization, Supervision, Writing-original draft preparation, Writing-review & editing.

794 JMCC: Conceptualization, Data Curation, Formal Analysis, Investigation (T cell studies, cross-  
795 reactivity analysis), Methodology, Supervision, Validation, Writing – original draft preparation,  
796 Writing-review & editing

797 MK: Methodology (immunopeptidomics)

798 GCW: Investigation (protein biochemistry)

799 SAS: Methodology (mass spectrometry), Writing – Review and Editing

800 LJS: Funding Acquisition, Conceptualization, Methodology, Project Administration, Supervision  
801 Visualization, Writing – original draft preparation, Writing-review & editing.

802 **Table 1. Naturally processed OC43 peptides**

| Epitope <sup>a</sup> | Representative peptide <sup>b</sup> | Source protein         | Position <sup>c</sup> | HLA restriction | SARS-CoV-2 cross-reactivity <sup>d</sup> |
|----------------------|-------------------------------------|------------------------|-----------------------|-----------------|------------------------------------------|
| P1                   | YLAI <u>SNELLLTV</u> PTK            | Hemagglutinin esterase | 259-273               | DP4             |                                          |
| P2                   | GAFF <u>FGSRLELA</u> KVQN           | Nucleoprotein          | 321-336               | DP4             |                                          |
| P3                   | LSDF <u>INGIFAKV</u> KNTK           | Spike                  | 97-111                | DP4             |                                          |
| P4                   | RSAI <u>EDLLFDKV</u> KLS            | Spike                  | 903-917               | DP4             | yes                                      |
| P5                   | IT <u>TYRFTNFE</u> PTT              | Spike                  | 760-773               | DP4             |                                          |
| P6                   | APY <u>GLYFIHFSY</u> PTK            | Spike                  | 1140-1155             | DP4             |                                          |
| P7                   | IHF <u>SYVPTK</u> YVTARVSPG         | Spike                  | 1147-1164             | DP4             |                                          |
| P8                   | EGQQ <u>IIFYEGVN</u> FTP            | Hemagglutinin esterase | 93-107                | DR2b            |                                          |
| P9                   | LFY <u>TQVYKNM</u> AVYRS            | Hemagglutinin esterase | 128-142               | DR2a,DR2b       |                                          |
| P10                  | PSGGN <u>VVPYYSW</u> FSG            | Nucleoprotein          | 54-68                 | DR2b            |                                          |
| P11                  | LT <u>ALNAYVSQQL</u> SDS            | Spike                  | 1085-1099             | DR2b            | yes                                      |
| P12                  | DF <u>INGIFAKV</u> KNTKVIK          | Spike                  | 98-114                | DR2a,DR2b       |                                          |
| P13                  | SRQY <u>LLAFNQDG</u> IIFN           | Spike                  | 271-286               | DR2b            |                                          |
| P14                  | NRGR <u>QFYEFYNDV</u> KPP           | Envelope               | 62-78                 | DP4             |                                          |
| P15                  | KPG <u>ETFTVL</u>                   | 3C-like proteinase     | 107-115               | B7              | N/A                                      |
| P16                  | LIQDY <u>IQSV</u>                   | 3C-like proteinase     | 193-201               | A2              | N/A                                      |
| P17                  | KLSDVGFEA                           | Spike                  | 915-924               | A2-             | N/A                                      |

803

804

<sup>a</sup> Identifier for individual epitope or set of nested peptide as shown in Figure 2.

805  
806

<sup>b</sup> Peptide selected for biochemical and immunological studies; predicted core epitope underlined. For MHC-I peptides the full sequence is shown.

807

<sup>c</sup> Position of first and last residues in source protein.

808

<sup>d</sup> N/A, T cell reactivity not assessed

809 **Figure Legends**

810

811 **Figure 1. Immunopeptidome workflow and HLA-ABC, HLA-DR, and HLA-DP**  
812 **immunopeptidomes in OC43-infected HEK293 cells. A.** Experimental approach: HEK293  
813 cells transduced with CIITA were infected with OC43. After 3 days, cells were collected  
814 and pMHC complexes were purified by immunoaffinity. Peptides were eluted from pMHC  
815 and analyzed by LC-MS/MS for identification. Identified peptides were used in  
816 biochemical and immunological assays. **B.** MHC expression on the surface of HEK293  
817 cells. Four panels corresponding to the surface expression of HLA-ABC, HLA-DR, HLA-  
818 DQ, and HLA-DP are shown. HLA levels on wild-type cells are shown by grey histograms.  
819 HLA levels after transduction with CIITA are shown by colored histograms: HLA-ABC  
820 (blue), HLA-DR (purple), HLA-DQ (green), and HLA-DP (yellow). Isotype control staining  
821 is shown as an open histogram with dotted lines, following the same color scheme. **C.**  
822 Levels of total HLA-DR, HLA-DP, and HLA-DQ proteins in CIITA-transfected HEK293  
823 cells measured by label-free quantitative proteomics. **D.** Representative dot plots of  
824 intracellular staining for OC43 nucleoprotein in non-infected cells (top) and at 3 days after  
825 infection (bottom). **E.** Representative histograms showing the comparison of surface  
826 levels of HLA-ABC, HLA-DR, and HLA-DP on non-infected (dark histograms) and infected  
827 (light histograms) cells. Graphs show the MFI in non-infected (non) and infected (oc43)  
828 cells from 3-6 independent infections. Statistical analysis in D and E by paired t-test, \*  
829 p<0.05, \*\* p<0.01, ns: not significant. **F.** Length distribution of HLA-ABC, HLA-DR, and  
830 HLA-DP eluted immunopeptidomes (histograms). **G.** Sequence logos of clusters obtained  
831 using the Gibbs clustering analysis of HLA-ABC, HLA-DR, and HLA-DP eluted

832 immunopeptidomes; percentage of peptides in each cluster and probable allele are  
833 shown.

834

835 **Figure 2: OC43 virus-derived peptides in the HLA-ABC, HLA-DR, and HLA-DP**  
836 **immunopeptidomes.** **A.** Length distribution of virus-derived peptides within the HLA-ABC, HLA-  
837 DR, and HLA-DP immunopeptidomes of OC43-infected cells. **B.** Ranking of all HLA-ABC, HLA-  
838 DR, and HLA-DP eluted peptides according to their precursor ion intensity; viral peptides are  
839 shown by colored circles. Sequences are shown for the top five most abundant viral peptides.  
840 Lines show the position of the two most abundant peptides in each nested set. **C.** HLA-ABC eluted  
841 viral peptides. A schematic representation of each source protein and the location of the eluted  
842 sequence is shown (first and last residues indicated). **D.** HLA-DR and HLA-DP eluted viral  
843 peptides. A schematic representation of each source protein with the location of each eluted  
844 sequence is shown (first and last residues indicated); the predicted core epitope in each sequence  
845 is underlined. Nested sets of eluted peptides comprising length variants with the same core  
846 epitope are shown by lines below the sequence. The peptide sequence highlighted in red was  
847 used for biochemical and immunological assays (see Table 1). In C and D, each eluted sequence  
848 or nested set was identified by “P” followed by a number. **E.** Label-free quantification of proteins  
849 present in infected cells; proteins were ranked from most to least abundant, with viral proteins  
850 highlighted in color. **F.** Relationship between viral protein abundance and eluted peptide  
851 abundance. For each source protein, the sum of intensities of all eluted peptides derived from it  
852 was used to calculate the peptide abundance.

853

854 **Figure 3: T cell recognition of eluted HLA-DR and HLA-DP viral peptides.** **A.** Ex vivo T cell  
855 responses to OC43 eluted peptides (pooled by HLA allele) in pre-pandemic PBMC samples from

856 donors with a partial HLA match to HEK293 cells. The plot shows IFN- $\gamma$  production measured by  
857 ELISpot (SFU/10<sup>6</sup> cells); pie graphs show the percentage of donors responding to the pool. **B-C**.  
858 Responding T cells from partially HLA-matched pre-pandemic donors were expanded in vitro by  
859 stimulation with each of the eluted peptides presented by a single allele antigen-presenting cells  
860 (APC). IFN- $\gamma$  responses by expanded T cell populations from the same set of donors are shown  
861 in (B) for the HLA-DP peptides presented by DPA1\*0301/DPB1\*0401(DP4.1) and in (C) for the  
862 DR peptides presented by DRB1\*1501 (DR2b) or DRB5\*0101 (DR2a); pie graphs show the  
863 percentage of donors responding to the peptide. **D**. Summary of responses of single-peptide in  
864 vitro expanded T cells to the peptides, grouped by allele. **E-F**. Lowest peptide dose (10 – 10<sup>-7</sup>  
865  $\mu$ g/mL) eliciting a positive response to each eluted peptide, in experiments where the single-  
866 peptide in-vitro expanded T cells were tested for IFN- $\gamma$  response to HLA-DP (E) or HLA-DR (F)  
867 eluted peptides presented by single allele APC (as in B-C). Each symbol represents a different  
868 donor. **G**. Response of single-peptide in-vitro expanded T cells to peptide stimulation followed in  
869 IFN- $\gamma$  intracellular cytokine secretion (ICS) assay. Dot blots show CD4 expression (x-axis) and  
870 IFN- $\gamma$  production (y-axis). DMSO, negative control. Responses > 3-fold background (DMSO) were  
871 considered positive. The gating strategy is presented in Figure S2. **H-I**. Summary of IFN- $\gamma$   
872 producing cell percentages in ICS assays for multiple donors for HLA-DP (H) and HLA-DR (I)  
873 peptides; only positive responses are shown. In A-C, statistical analysis to determine positive  
874 ELISpot responses was done by distribution-free resampling (DFR) method [89]; the size of the  
875 filled symbols indicates positive responses by DFR2x or DFR1x, while negative responses are  
876 shown as empty symbols. In A and D, statistical analysis was done by unpaired t-test (ns: not  
877 significant).

878

879 **Figure 4: Epitope-specific T cell cross-reactivity between OC43 and other human**  
880 **coronaviruses. A.** Screening of cross-reactive T cell responses in partially HLA-matched pre-

881 pandemic donors. IFN- $\gamma$  responses (SFU/10<sup>6</sup> cells) to OC43 (green) or SARS-CoV-2 (blue)  
882 peptides using T cell lines expanded in vitro by stimulation with the eluted OC43 peptides and  
883 single allele APC. Pies show the fraction of responding donors to each peptide. **B.** For the two  
884 cross-reactive peptides (P4, P11), the screening was extended to more donors. **C.** Dose-  
885 response assay for the two cross-reactive peptides (P4, P11) in pre-pandemic donors. T cells  
886 were expanded in vitro with the OC43 peptide (TCL vs OC43, top row) or SARS-CoV-2 peptide  
887 (TCL vs CoV2, bottom row) and IFN- $\gamma$  responses of each line to the OC43 peptide (green) or  
888 SARS-CoV-2 peptide (blue) were tested using single allele APC as before. **D.** Same as C but for  
889 COVID-19 convalescent donors. **E.** Lowest observed dose for a positive response for the cross-  
890 reactive peptides (tested in panels C and D). Pre-pandemic donors shown as circles and COVID-  
891 19 donors as triangles. **F.** Experimental binding of OC43 peptides (green) and the SARS-CoV-2  
892 homologs (blue) to the relevant alleles. Half-maximal inhibitory concentration (IC<sub>50</sub>) values are  
893 shown. **G.** Sequence alignment of OC43 peptides and their SARS-CoV-2 homologs. OC43  
894 sequences shown on top, with predicted core epitope shown in magenta and flanking regions in  
895 green; SARS-CoV-2 sequences on bottom, with residues different from OC43 shown and dots  
896 indicating identical residues. Predicted SARS-CoV-2 core epitope highlighted in turquoise with  
897 flanking regions shown in blue. Positions within the 9mer core epitope are indicated by numbers  
898 shown below the sequences; major T cell contacts are enclosed in circles. Arrowheads indicated  
899 gaps in the aligned sequences. If OC43 and SARS-CoV-2 epitopes are different both are shown.  
900 Gray bars show positions of identical residues at T cell contacts positions. **H.** Experimental  
901 binding of P4 and P11 OC43 peptides and their homologs in other coronaviruses to the relevant  
902 alleles. **I.** IFN- $\gamma$  responses of T cell lines expanded in vitro with OC43 peptides (TCL vs OC43,  
903 top row) or with SARS-CoV-2 peptides (TCL vs CoV2, bottom row), to P4 and P11 peptides from  
904 OC43, SARS-CoV-2, and the other seasonal coronaviruses, presented by relevant single allele  
905 APC. In A-D and I, ELISpot statistical analysis by DFR method [89]; positive responses shown as

906 filled symbols and negative responses as empty symbols. In B and E, statistical analysis was  
907 done by unpaired t-test. \* p<0.05).

908

909 **References**

910 1. Perlman S, Dandekar AA. Immunopathogenesis of coronavirus infections: implications  
911 for SARS. *Nat Rev Immunol.* 2005;5: 917–927. doi:10.1038/nri1732

912 2. Kesheh MM, Hosseini P, Soltani S, Zandi M. An overview on the seven pathogenic  
913 human coronaviruses. *Rev Med Virol.* 2022;32: e2282. doi:10.1002/rmv.2282

914 3. Killerby ME, Biggs HM, Haynes A, Dahl RM, Mustaquim D, Gerber SI, et al. Human  
915 coronavirus circulation in the United States 2014–2017. *J Clin Virol.* 2018;101: 52–56.  
916 doi:10.1016/j.jcv.2018.01.019

917 4. Gaunt ER, Hardie A, Claas ECJ, Simmonds P, Templeton KE. Epidemiology and clinical  
918 presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3  
919 years using a novel multiplex real-time PCR method. *J Clin Microbiol.* 2010;48: 2940–2947.  
920 doi:10.1128/JCM.00636-10

921 5. Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, Genetic  
922 Recombination, and Pathogenesis of Coronaviruses. *Trends Microbiol.* 2016;24: 490–502.  
923 doi:10.1016/j.tim.2016.03.003

924 6. McIntosh K, Becker WB, Chanock RM. Growth in suckling-mouse brain of “IBV-like”  
925 viruses from patients with upper respiratory tract disease. *Proc Natl Acad Sci U S A.* 1967;58:  
926 2268–2273. doi:10.1073/pnas.58.6.2268

927 7. Lang Y, Li W, Li Z, Koerhuis D, van den Burg ACS, Rozemuller E, et al. Coronavirus  
928 hemagglutinin-esterase and spike proteins coevolve for functional balance and optimal virion  
929 avidity. *Proc Natl Acad Sci U S A.* 2020;117: 25759–25770. doi:10.1073/pnas.2006299117

930 8. Vijgen L, Keyaerts E, Moës E, Thoelen I, Wollants E, Lemey P, et al. Complete genomic  
931 sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent  
932 zoonotic coronavirus transmission event. *J Virol.* 2005;79: 1595–1604.  
933 doi:10.1128/JVI.79.3.1595-1604.2005

934 9. Forni D, Cagliani R, Pozzoli U, Mozzi A, Arrigoni F, De Gioia L, et al. Dating the  
935 Emergence of Human Endemic Coronaviruses. *Viruses.* 2022;14: 1095. doi:10.3390/v14051095

936 10. Brüssow H, Brüssow L. Clinical evidence that the pandemic from 1889 to 1891  
937 commonly called the Russian flu might have been an earlier coronavirus pandemic. *Microb  
938 Biotechnol.* 2021;14: 1860–1870. doi:10.1111/1751-7915.13889

939 11. Chibo D, Birch C. Analysis of human coronavirus 229E spike and nucleoprotein genes  
940 demonstrates genetic drift between chronologically distinct strains. *J Gen Virol.* 2006;87: 1203–  
941 1208. doi:10.1099/vir.0.81662-0

942 12. Monto AS. Medical reviews. Coronaviruses. *Yale J Biol Med.* 1974;47: 234–251.

943 13. Heikkinen T, Järvinen A. The common cold. *Lancet.* 2003;361: 51–59.  
944 doi:10.1016/S0140-6736(03)12162-9

945 14. Nilges K, Höhn H, Pilch H, Neukirch C, Freitag K, Talbot PJ, et al. Human  
946 papillomavirus type 16 E7 peptide-directed CD8+ T cells from patients with cervical cancer are  
947 cross-reactive with the coronavirus NS2 protein. *J Virol.* 2003;77: 5464–5474.  
948 doi:10.1128/jvi.77.9.5464-5474.2003

949 15. Boucher A, Desforges M, Duquette P, Talbot PJ. Long-term human coronavirus-myelin  
950 cross-reactive T-cell clones derived from multiple sclerosis patients. *Clin Immunol.* 2007;123:  
951 258–267. doi:10.1016/j.clim.2007.02.002

952 16. Woldemeskel BA, Kwaa AK, Garliss CC, Laeyendecker O, Ray SC, Blankson JN.  
953 Healthy donor T cell responses to common cold coronaviruses and SARS-CoV-2. *J Clin Invest.*  
954 2020;130: 6631–6638. doi:10.1172/JCI143120

955 17. Moss P. The T cell immune response against SARS-CoV-2. *Nat Immunol.* 2022;23: 186–  
956 193. doi:10.1038/s41590-021-01122-w

957 18. Lipsitch M, Grad YH, Sette A, Crotty S. Cross-reactive memory T cells and herd  
958 immunity to SARS-CoV-2. *Nat Rev Immunol.* 2020;20: 709–713. doi:10.1038/s41577-020-  
959 00460-4

960 19. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al. The Immune  
961 Epitope Database (IEDB): 2018 update. *Nucleic Acids Res.* 2019;47: D339–D343.  
962 doi:10.1093/nar/gky1006

963 20. Schmidt KG, Nganou-Makamnop K, Tenbusch M, El Kenz B, Maier C, Lapuente D, et  
964 al. SARS-CoV-2-Seronegative Subjects Target CTL Epitopes in the SARS-CoV-2 Nucleoprotein  
965 Cross-Reactive to Common Cold Coronaviruses. *Front Immunol.* 2021;12: 627568.  
966 doi:10.3389/fimmu.2021.627568

967 21. Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez SI, Dan JM, et al. Selective and cross-  
968 reactive SARS-CoV-2 T cell epitopes in unexposed humans. *Science.* 2020;370: 89–94.  
969 doi:10.1126/science.abd3871

970 22. Keller MD, Harris KM, Jensen-Wachspress MA, Kankate VV, Lang H, Lazarski CA, et  
971 al. SARS-CoV-2-specific T cells are rapidly expanded for therapeutic use and target conserved  
972 regions of the membrane protein. *Blood.* 2020;136: 2905–2917. doi:10.1182/blood.2020008488

973 23. Ferretti AP, Kula T, Wang Y, Nguyen DMV, Weinheimer A, Dunlap GS, et al. Unbiased  
974 Screens Show CD8+ T Cells of COVID-19 Patients Recognize Shared Epitopes in SARS-CoV-2  
975 that Largely Reside outside the Spike Protein. *Immunity.* 2020;53: 1095–1107.e3.  
976 doi:10.1016/j.immuni.2020.10.006

977 24. Lineburg KE, Grant EJ, Swaminathan S, Chatzileontiadou DSM, Szeto C, Sloane H, et  
978 al. CD8+ T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope cross-react  
979 with selective seasonal coronaviruses. *Immunity.* 2021;54: 1055–1065.e5.  
980 doi:10.1016/j.immuni.2021.04.006

981 25. Becerra-Artiles A, Calvo-Calle JM, Co MD, Nanaware PP, Cruz J, Weaver GC, et al.  
982 Broadly recognized, cross-reactive SARS-CoV-2 CD4 T cell epitopes are highly conserved  
983 across human coronaviruses and presented by common HLA alleles. *Cell Rep.* 2022;39: 110952.  
984 doi:10.1016/j.celrep.2022.110952

985 26. Dykema AG, Zhang B, Woldemeskel BA, Garliss CC, Cheung LS, Choudhury D, et al.  
986 Functional characterization of CD4+ T cell receptors crossreactive for SARS-CoV-2 and  
987 endemic coronaviruses. *J Clin Invest.* 2021;131: 146922. doi:10.1172/JCI146922

988 27. Low JS, Vaqueirinho D, Mele F, Foglierini M, Jerak J, Perotti M, et al. Clonal analysis of  
989 immunodominance and cross-reactivity of the CD4 T cell response to SARS-CoV-2. *Science.*  
990 2021;372: 1336–1341. doi:10.1126/science.abg8985

991 28. Loyal L, Braun J, Henze L, Kruse B, Dingeldey M, Reimer U, et al. Cross-reactive CD4+  
992 T cells enhance SARS-CoV-2 immune responses upon infection and vaccination. *Science*.  
993 2021;374: eabh1823. doi:10.1126/science.abh1823

994 29. Tarke A, Sidney J, Kidd CK, Dan JM, Ramirez SI, Yu ED, et al. Comprehensive analysis  
995 of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19  
996 cases. *Cell Rep Med*. 2021;2: 100204. doi:10.1016/j.xcrm.2021.100204

997 30. Woldemeskel BA, Garliss CC, Blankson JN. mRNA Vaccine-Elicited Severe Acute  
998 Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-Specific T Cells Persist at 6 Months and  
999 Recognize the Delta Variant. *Clin Infect Dis*. 2022;75: e898–e901. doi:10.1093/cid/ciab915

1000 31. Strug I, Calvo-Calle JM, Green KM, Cruz J, Ennis FA, Evans JE, et al. Vaccinia peptides  
1001 eluted from HLA-DR1 isolated from virus-infected cells are recognized by CD4+ T cells from a  
1002 vaccinated donor. *J Proteome Res*. 2008;7: 2703–2711. doi:10.1021/pr700780x

1003 32. Meyer VS, Kastenmuller W, Gasteiger G, Franz-Wachtel M, Lamkemeyer T,  
1004 Rammensee H-G, et al. Long-term immunity against actual poxviral HLA ligands as identified  
1005 by differential stable isotope labeling. *J Immunol*. 2008;181: 6371–6383.  
1006 doi:10.4049/jimmunol.181.9.6371

1007 33. Johnson KL, Ovsyannikova IG, Mason CJ, Bergen HR, Poland GA. Discovery of  
1008 naturally processed and HLA-presented class I peptides from vaccinia virus infection using mass  
1009 spectrometry for vaccine development. *Vaccine*. 2009;28: 38–47.  
1010 doi:10.1016/j.vaccine.2009.09.126

1011 34. Becerra-Artiles A, Cruz J, Leszyk JD, Sidney J, Sette A, Shaffer SA, et al. Naturally  
1012 processed HLA-DR3-restricted HHV-6B peptides are recognized broadly with polyfunctional  
1013 and cytotoxic CD4 T-cell responses. *Eur J Immunol*. 2019;49: 1167–1185.  
1014 doi:10.1002/eji.201948126

1015 35. Nicholas B, Bailey A, Staples KJ, Wilkinson T, Elliott T, Skipp P. Immunopeptidomic  
1016 analysis of influenza A virus infected human tissues identifies internal proteins as a rich source  
1017 of HLA ligands. *PLoS Pathog*. 2022;18: e1009894. doi:10.1371/journal.ppat.1009894

1018 36. Ovsyannikova IG, Johnson KL, Naylor S, Muddiman DC, Poland GA. Naturally  
1019 processed measles virus peptide eluted from class II HLA-DRB1\*03 recognized by T  
1020 lymphocytes from human blood. *Virology*. 2003;312: 495–506. doi:10.1016/s0042-  
1021 6822(03)00281-2

1022 37. Herr W, Ranieri E, Gambotto A, Kierstead LS, Amoscato AA, Gesualdo L, et al.  
1023 Identification of naturally processed and HLA-presented Epstein-Barr virus peptides recognized  
1024 by CD4(+) or CD8(+) T lymphocytes from human blood. *Proc Natl Acad Sci U S A*. 1999;96:  
1025 12033–12038. doi:10.1073/pnas.96.21.12033

1026 38. Weingarten-Gabbay S, Klaeger S, Sarkizova S, Pearlman LR, Chen D-Y, Gallagher  
1027 KME, et al. Profiling SARS-CoV-2 HLA-I peptidome reveals T cell epitopes from out-of-frame  
1028 ORFs. *Cell*. 2021;184: 3962–3980.e17. doi:10.1016/j.cell.2021.05.046

1029 39. Croft NP, Smith SA, Pickering J, Sidney J, Peters B, Faridi P, et al. Most viral peptides  
1030 displayed by class I MHC on infected cells are immunogenic. *Proc Natl Acad Sci U S A*.  
1031 2019;116: 3112–3117. doi:10.1073/pnas.1815239116

1032 40. Downs I, Vijayan S, Sidiq T, Kobayashi KS. CITA/NLRC5: A critical transcriptional  
1033 regulator of MHC class I gene expression. *Biofactors*. 2016;42: 349–357. doi:10.1002/biof.1285

1034 41. Murphy SP, Choi JC, Holtz R. Regulation of major histocompatibility complex class II  
1035 gene expression in trophoblast cells. *Reprod Biol Endocrinol.* 2004;2: 52. doi:10.1186/1477-  
1036 7827-2-52

1037 42. Mortara L, Giuliani L, De Lerma Barbaro A, Accolla RS, Noonan DM. Experimental  
1038 therapeutic approaches to adenocarcinoma: the potential of tumor cells engineered to express  
1039 MHC class II molecules combined with naked DNA interleukin-12 gene transfer. *Surg Oncol.*  
1040 2007;16 Suppl 1: S33-36. doi:10.1016/j.suronc.2007.10.045

1041 43. Accolla RS, Tosi G. Adequate antigen availability: a key issue for novel approaches to  
1042 tumor vaccination and tumor immunotherapy. *J Neuroimmune Pharmacol.* 2013;8: 28–36.  
1043 doi:10.1007/s11481-012-9423-7

1044 44. Weaver GC, Arya R, Schneider CL, Hudson AW, Stern LJ. Structural Models for  
1045 Roseolovirus U20 And U21: Non-Classical MHC-I Like Proteins From HHV-6A, HHV-6B, and  
1046 HHV-7. *Front Immunol.* 2022;13: 864898. doi:10.3389/fimmu.2022.864898

1047 45. Arshad N, Laurent-Rolle M, Ahmed WS, Hsu JC-C, Mitchell SM, Pawlak J, et al. SARS-  
1048 CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to downregulate MHC-I  
1049 surface expression. *bioRxiv.* 2022; 2022.05.17.492198. doi:10.1101/2022.05.17.492198

1050 46. Zhang F, Zang TM, Stevenson EM, Lei X, Copertino DC, Mota TM, et al. Inhibition of  
1051 major histocompatibility complex-I antigen presentation by sarbecovirus ORF7a proteins. *Proc  
1052 Natl Acad Sci U S A.* 2022;119: e2209042119. doi:10.1073/pnas.2209042119

1053 47. Bruchez A, Sha K, Johnson J, Chen L, Stefani C, McConnell H, et al. MHC class II  
1054 transactivator CIITA induces cell resistance to Ebola virus and SARS-like coronaviruses.  
1055 *Science.* 2020;370: 241–247. doi:10.1126/science.abb3753

1056 48. Nanaware PP, Jurewicz MM, Clement CC, Lu L, Santambrogio L, Stern LJ.  
1057 Distinguishing Signal From Noise in Immunopeptidome Studies of Limiting-Abundance  
1058 Biological Samples: Peptides Presented by I-Ab in C57BL/6 Mouse Thymus. *Front Immunol.*  
1059 2021;12: 658601. doi:10.3389/fimmu.2021.658601

1060 49. Andreatta M, Lund O, Nielsen M. Simultaneous alignment and clustering of peptide data  
1061 using a Gibbs sampling approach. *Bioinformatics.* 2013;29: 8–14.  
1062 doi:10.1093/bioinformatics/bts621

1063 50. Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and  
1064 NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif  
1065 deconvolution and integration of MS MHC eluted ligand data. *Nucleic Acids Res.* 2020;48:  
1066 W449–W454. doi:10.1093/nar/gkaa379

1067 51. Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-4.0:  
1068 Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide  
1069 Binding Affinity Data. *J Immunol.* 2017;199: 3360–3368. doi:10.4049/jimmunol.1700893

1070 52. Falk K, Rötzschke O, Grahovac B, Schendel D, Stevanović S, Gnau V, et al. Allele-  
1071 specific peptide ligand motifs of HLA-C molecules. *Proc Natl Acad Sci U S A.* 1993;90: 12005–  
1072 12009. doi:10.1073/pnas.90.24.12005

1073 53. Wang J, Jelcic I, Mühlenbruch L, Haunerding V, Toussaint NC, Zhao Y, et al. HLA-  
1074 DR15 Molecules Jointly Shape an Autoreactive T Cell Repertoire in Multiple Sclerosis. *Cell.*  
1075 2020;183: 1264-1281.e20. doi:10.1016/j.cell.2020.09.054

1076 54. Castelli FA, Buhot C, Sanson A, Zarour H, Pouvelle-Moratille S, Nonn C, et al. HLA-  
1077 DP4, the most frequent HLA II molecule, defines a new supertype of peptide-binding specificity.  
1078 *J Immunol.* 2002;169: 6928–6934. doi:10.4049/jimmunol.169.12.6928

1079 55. Zhang F, Zang T, Stevenson EM, Lei X, Copertino DC, Mota TM, et al. Inhibition of  
1080 major histocompatibility complex-I antigen presentation by sarbecovirus ORF7a proteins.  
1081 *bioRxiv.* 2022; 2022.05.25.493467. doi:10.1101/2022.05.25.493467

1082 56. Zhang Y, Chen Y, Li Y, Huang F, Luo B, Yuan Y, et al. The ORF8 protein of SARS-  
1083 CoV-2 mediates immune evasion through down-regulating MHC-I. *Proc Natl Acad Sci U S A.*  
1084 2021;118: e2024202118. doi:10.1073/pnas.2024202118

1085 57. Jurewicz MM, Willis RA, Ramachandiran V, Altman JD, Stern LJ. MHC-I peptide  
1086 binding activity assessed by exchange after cleavage of peptide covalently linked to  $\beta$ 2-  
1087 microglobulin. *Anal Biochem.* 2019;584: 113328. doi:10.1016/j.ab.2019.05.017

1088 58. Yin L, Stern LJ. Measurement of Peptide Binding to MHC Class II Molecules by  
1089 Fluorescence Polarization. *Curr Protoc Immunol.* 2014;106: 5.10.1-5.10.12.  
1090 doi:10.1002/0471142735.im0510s106

1091 59. Johansson AM, Malhotra U, Kim YG, Gomez R, Krist MP, Wald A, et al. Cross-reactive  
1092 and mono-reactive SARS-CoV-2 CD4+ T cells in prepandemic and COVID-19 convalescent  
1093 individuals. *PLoS Pathog.* 2021;17: e1010203. doi:10.1371/journal.ppat.1010203

1094 60. Kuse N, Zhang Y, Chikata T, Nguyen HT, Oka S, Gatanaga H, et al. Long-term memory  
1095 CD8+ T cells specific for SARS-CoV-2 in individuals who received the BNT162b2 mRNA  
1096 vaccine. *Nat Commun.* 2022;13: 5251. doi:10.1038/s41467-022-32989-4

1097 61. Shimizu K, Iyoda T, Sanpei A, Nakazato H, Okada M, Ueda S, et al. Identification of  
1098 TCR repertoires in functionally competent cytotoxic T cells cross-reactive to SARS-CoV-2.  
1099 *Commun Biol.* 2021;4: 1365. doi:10.1038/s42003-021-02885-6

1100 62. Swadling L, Diniz MO, Schmidt NM, Amin OE, Chandran A, Shaw E, et al. Pre-existing  
1101 polymerase-specific T cells expand in abortive seronegative SARS-CoV-2. *Nature.* 2022;601:  
1102 110–117. doi:10.1038/s41586-021-04186-8

1103 63. Yoo J-S, Sasaki M, Cho SX, Kasuga Y, Zhu B, Ouda R, et al. SARS-CoV-2 inhibits  
1104 induction of the MHC class I pathway by targeting the STAT1-IRF1-NLRC5 axis. *Nat Commun.*  
1105 2021;12: 6602. doi:10.1038/s41467-021-26910-8

1106 64. Zeng Q, Langereis MA, van Vliet ALW, Huizinga EG, de Groot RJ. Structure of  
1107 coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. *Proc*  
1108 *Natl Acad Sci U S A.* 2008;105: 9065–9069. doi:10.1073/pnas.0800502105

1109 65. Croft NP, Smith SA, Wong YC, Tan CT, Dudek NL, Flesch IEA, et al. Kinetics of  
1110 antigen expression and epitope presentation during virus infection. *PLoS Pathog.* 2013;9:  
1111 e1003129. doi:10.1371/journal.ppat.1003129

1112 66. Wu T, Guan J, Handel A, Tscharke DC, Sidney J, Sette A, et al. Quantification of epitope  
1113 abundance reveals the effect of direct and cross-presentation on influenza CTL responses. *Nat*  
1114 *Commun.* 2019;10: 2846. doi:10.1038/s41467-019-10661-8

1115 67. Nelson RW, Beisang D, Tubo NJ, Dileepan T, Wiesner DL, Nielsen K, et al. T cell  
1116 receptor cross-reactivity between similar foreign and self peptides influences naive cell  
1117 population size and autoimmunity. *Immunity.* 2015;42: 95–107.  
1118 doi:10.1016/j.jimmuni.2014.12.022

1119 68. Nagler A, Kalaora S, Barbolin C, Gangaev A, Ketelaars SLC, Alon M, et al.  
1120 Identification of presented SARS-CoV-2 HLA class I and HLA class II peptides using HLA  
1121 peptidomics. *Cell Rep.* 2021;35: 109305. doi:10.1016/j.celrep.2021.109305

1122 69. Pan K, Chiu Y, Huang E, Chen M, Wang J, Lai I, et al. Mass spectrometric identification  
1123 of immunogenic SARS-CoV-2 epitopes and cognate TCRs. *Proc Natl Acad Sci U S A.*  
1124 2021;118: e2111815118. doi:10.1073/pnas.2111815118

1125 70. Knierman MD, Lannan MB, Spindler LJ, McMillian CL, Konrad RJ, Siegel RW. The  
1126 Human Leukocyte Antigen Class II Immunopeptidome of the SARS-CoV-2 Spike Glycoprotein.  
1127 *Cell Rep.* 2020;33: 108454. doi:10.1016/j.celrep.2020.108454

1128 71. Parker R, Partridge T, Wormald C, Kawahara R, Stalls V, Aggelakopoulou M, et al.  
1129 Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on  
1130 dendritic cells. *Cell Rep.* 2021;35: 109179. doi:10.1016/j.celrep.2021.109179

1131 72. Braun J, Loyal L, Frents M, Wendisch D, Georg P, Kurth F, et al. SARS-CoV-2-  
1132 reactive T cells in healthy donors and patients with COVID-19. *Nature.* 2020;587: 270–274.  
1133 doi:10.1038/s41586-020-2598-9

1134 73. da Silva Antunes R, Pallikkuth S, Williams E, Dawen Yu E, Mateus J, Quiambao L, et al.  
1135 Differential T-Cell Reactivity to Endemic Coronaviruses and SARS-CoV-2 in Community and  
1136 Health Care Workers. *J Infect Dis.* 2021;224: 70–80. doi:10.1093/infdis/jiab176

1137 74. Nelde A, Bilich T, Heitmann JS, Maringer Y, Salih HR, Roerden M, et al. SARS-CoV-2-  
1138 derived peptides define heterologous and COVID-19-induced T cell recognition. *Nat Immunol.*  
1139 2021;22: 74–85. doi:10.1038/s41590-020-00808-x

1140 75. Bacher P, Rosati E, Esser D, Martini GR, Saggau C, Schiminsky E, et al. Low-Avidity  
1141 CD4+ T Cell Responses to SARS-CoV-2 in Unexposed Individuals and Humans with Severe  
1142 COVID-19. *Immunity.* 2020;53: 1258-1271.e5. doi:10.1016/j.jimmuni.2020.11.016

1143 76. Mallajosyula V, Ganjavi C, Chakraborty S, McSween AM, Pavlovitch-Bedzyk AJ,  
1144 Wilhelmy J, et al. CD8+ T cells specific for conserved coronavirus epitopes correlate with milder  
1145 disease in COVID-19 patients. *Sci Immunol.* 2021;6: eabg5669.  
1146 doi:10.1126/sciimmunol.abg5669

1147 77. Deng J, Pan J, Qiu M, Mao L, Wang Z, Zhu G, et al. Identification of HLA-A2 restricted  
1148 CD8+ T cell epitopes in SARS-CoV-2 structural proteins. *J Leukoc Biol.* 2021;110: 1171–1180.  
1149 doi:10.1002/JLB.4MA0621-020R

1150 78. Saini SK, Hersby DS, Tamhane T, Povlsen HR, Amaya Hernandez SP, Nielsen M, et al.  
1151 SARS-CoV-2 genome-wide T cell epitope mapping reveals immunodominance and substantial  
1152 CD8+ T cell activation in COVID-19 patients. *Sci Immunol.* 2021;6: eabf7550.  
1153 doi:10.1126/sciimmunol.abf7550

1154 79. Tarke A, Sidney J, Kidd CK, Dan JM, Ramirez SI, Yu ED, et al. Comprehensive analysis  
1155 of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19  
1156 cases. *bioRxiv.* 2020; 2020.12.08.416750. doi:10.1101/2020.12.08.416750

1157 80. Woldemeskel BA, Garliss CC, Blankson JN. SARS-CoV-2 mRNA vaccines induce  
1158 broad CD4+ T cell responses that recognize SARS-CoV-2 variants and HCoV-NL63. *J Clin*  
1159 *Invest.* 2021;131: 149335. doi:10.1172/JCI149335

1160 81. Matsuzaki Y, Sugawara K, Furuse Y, Shimotai Y, Hongo S, Mizuta K, et al. Neutralizing  
1161 Epitopes and Residues Mediating the Potential Antigenic Drift of the Hemagglutinin-Esterase  
1162 Protein of Influenza C Virus. *Viruses*. 2018;10: E417. doi:10.3390/v10080417

1163 82. Matsuzaki M, Sugawara K, Adachi K, Hongo S, Nishimura H, Kitame F, et al. Location  
1164 of neutralizing epitopes on the hemagglutinin-esterase protein of influenza C virus. *Virology*.  
1165 1992;189: 79–87. doi:10.1016/0042-6822(92)90683-g

1166 83. McKinney DM, Southwood S, Hinz D, Oseroff C, Arlehamn CSL, Schulten V, et al. A  
1167 strategy to determine HLA class II restriction broadly covering the DR, DP, and DQ allelic  
1168 variants most commonly expressed in the general population. *Immunogenetics*. 2013;65: 357–  
1169 370. doi:10.1007/s00251-013-0684-y

1170 84. Stern-Ginossar N, Weisburd B, Michalski A, Le VTK, Hein MY, Huang S-X, et al.  
1171 Decoding human cytomegalovirus. *Science*. 2012;338: 1088–1093. doi:10.1126/science.1227919

1172 85. Braud V, Jones EY, McMichael A. The human major histocompatibility complex class Ib  
1173 molecule HLA-E binds signal sequence-derived peptides with primary anchor residues at  
1174 positions 2 and 9. *Eur J Immunol*. 1997;27: 1164–1169. doi:10.1002/eji.1830270517

1175 86. Andreatta M, Alvarez B, Nielsen M. GibbsCluster: unsupervised clustering and  
1176 alignment of peptide sequences. *Nucleic Acids Research*. 2017;45: W458–W463.  
1177 doi:10.1093/nar/gkx248

1178 87. Thomsen MCF, Nielsen M. Seq2Logo: a method for construction and visualization of  
1179 amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts  
1180 and two-sided representation of amino acid enrichment and depletion. *Nucleic Acids Res*.  
1181 2012;40: W281–287. doi:10.1093/nar/gks469

1182 88. Willis RA, Ramachandiran V, Shires JC, Bai G, Jeter K, Bell DL, et al. Production of  
1183 Class II MHC Proteins in Lentiviral Vector-Transduced HEK-293T Cells for Tetramer Staining  
1184 Reagents. *Curr Protoc*. 2021;1: e36. doi:10.1002/cpz1.36

1185 89. Moodie Z, Price L, Gouttefangeas C, Mander A, Janetzki S, Löwer M, et al. Response  
1186 definition criteria for ELISPOT assays revisited. *Cancer Immunol Immunother*. 2010;59: 1489–  
1187 1501. doi:10.1007/s00262-010-0875-4

1188 90. Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, et al. A new  
1189 bioinformatics analysis tools framework at EMBL-EBI. *Nucleic Acids Res*. 2010;38: W695–699.  
1190 doi:10.1093/nar/gkq313

1191 91. Pei J, Grishin NV. AL2CO: calculation of positional conservation in a protein sequence  
1192 alignment. *Bioinformatics*. 2001;17: 700–712. doi:10.1093/bioinformatics/17.8.700

1193

1194 **Supporting information**

1195 **Figure S1: MHC-I and MHC-II alleles present in HEK293 cells and sequence logos of the**  
1196 **predicted 9mer core epitope.** From Motif Viewer within NetMHCpan 4.1 and NetMHCIIpan4.0  
1197 (DTU Health Tech).

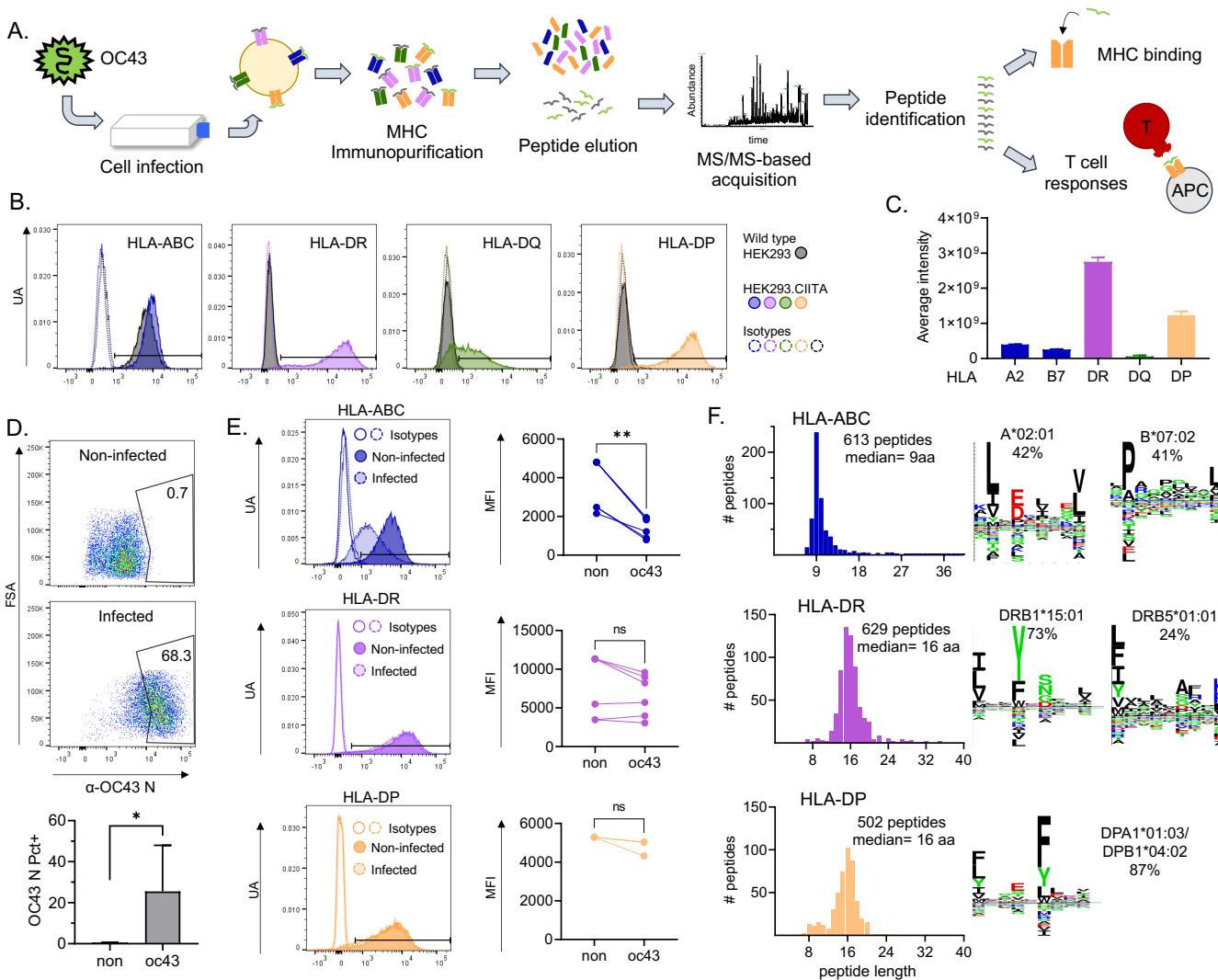
1198 **Figure S2: Polyfunctional response elicited by OC43 eluted peptides.** A. Gating strategy for  
1199 ICS experiments. B. CD107a staining of single-peptide in vitro expanded T cells responses to the  
1200 expanding peptide presented by single allele APC. Dot blots show CD4 (x-axis) and CD107a  
1201 expression on surface (y-axis). C. ICS for TNF- $\alpha$  production by single-peptide in vitro expanded  
1202 T cells responses to the expanding peptide presented by single allele APC. Dot blots show CD4  
1203 expression (x-axis) and TNF- $\alpha$  production (y-axis). Dot plots for DMSO and peptide are shown.  
1204 Responses > 3-fold background (DMSO) signal was considered positive.

1205 **Figure S3: Eluted peptides binding predictions and experimental binding.** Epitope prediction  
1206 on whole viral proteins / allele combination were obtained from NetMHCIIpan and sorted by score.  
1207 Peptides containing the predicted core of the eluted peptides are highlighted in each protein. A.  
1208 predictions for DP4.1 and DP4.2; B. predictions for DR2b; C. Predictions for DR2a. D.  
1209 Experimental binding of eluted peptides to relevant alleles; dark colors indicate strong binding.

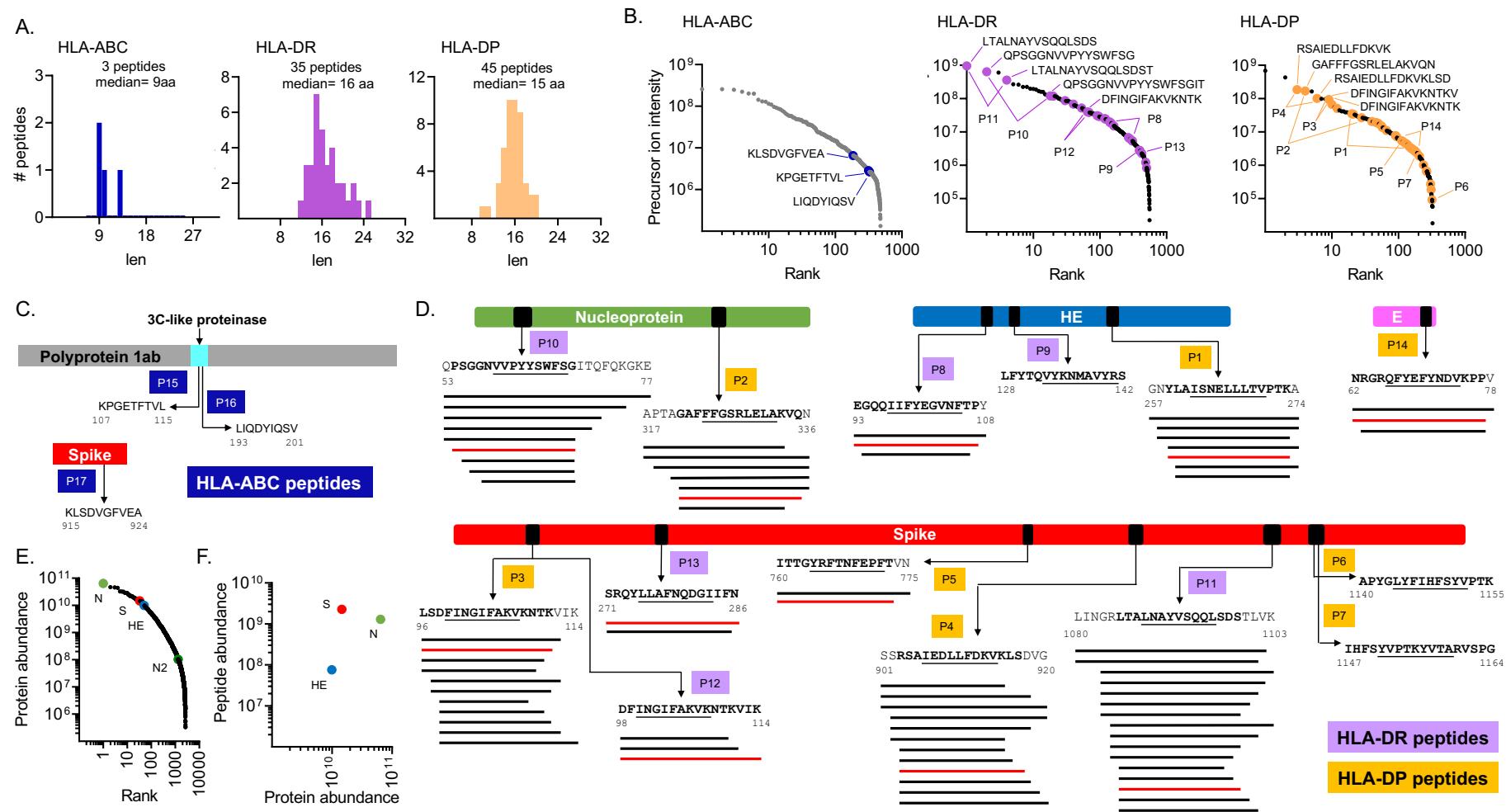
1210 **Figure S4: Homology between OC43 and other human coronaviruses.** A. Percentage identity  
1211 of OC43 proteins vs homologous proteins in other human coronaviruses  
1212 (<http://imed.med.ucm.es/Tools/sias.html>). B. Sequence alignment of the 14 OC43 eluted peptides  
1213 to positional homologs in other human coronaviruses. Whole OC43 sequence (with core epitope  
1214 underlined), and differences in the other sequences are shown. For each alignment, the  
1215 conservation score at each position was obtained using AL2CO algorithm and presented as a bar  
1216 graph, with the core epitope positions in black. C. Summary of conservation scores for each eluted  
1217 peptide to each of their homolog peptides in other human coronaviruses. Scores normalized to

1218 100% identity to OC43 peptide as 1, and no conservation as 0. An average per peptide is shown  
1219 at the bottom of the heatmap. NA indicates no homolog protein between OC43 and the  
1220 corresponding virus.

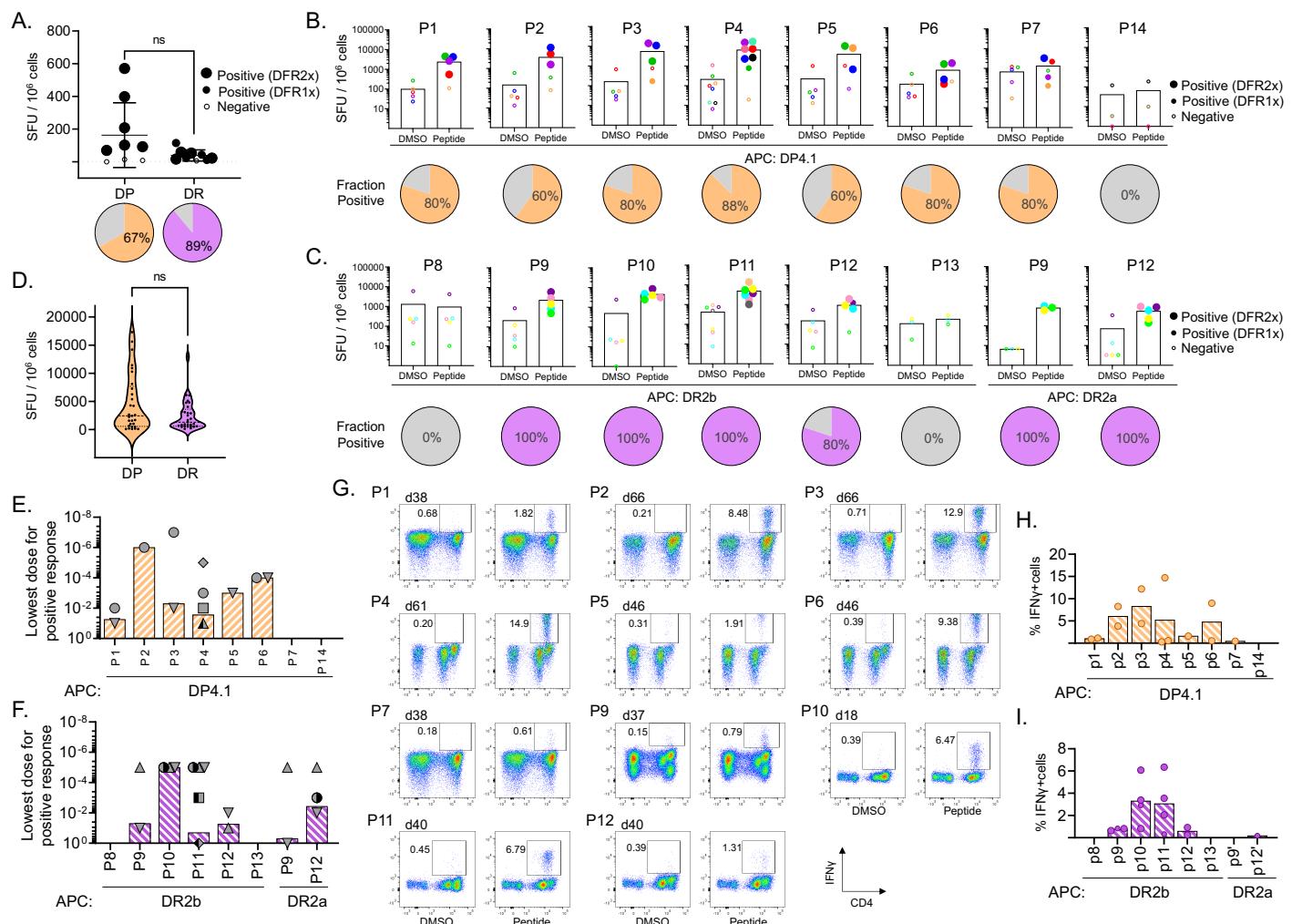
1221 **Table S1:** Cellular proteomics analysis on the OC43 infected and uninfected HEK293.CIITA cells.  
1222 S1a. Summary of host and viral protein identified in infected and/or uninfected cells. One  
1223 biological replicate of uninfected cells and two biological replicates of OC43-infected cells were  
1224 analyzed, with each having two technical replicates. Average and standard deviation of technical  
1225 / biological replicates are presented in the table. S1b. MHC-I and MHC-II levels in uninfected and  
1226 OC43-infected HEK293.CIITA cells as measured by proteomics quantitative analysis.


1227 **Table S2:** Immunopeptidome of OC43-infected HEK293.CIITA cells. S2a. HLA-ABC  
1228 immunopeptidome; S2b. HLA-DR immunopeptidome; S2c. HLA-DP immunopeptidome; S2d.  
1229 OC43 immunopeptidome. For each peptide, mass spectrometry identification parameters are  
1230 shown (eluted sequence, length, source protein, intensity, Scaffold identification probability, and  
1231 Mascot Ion and Identity scores). In addition, NetMHCpan 4.1 or NetMHCIIPan 4.0 predictions  
1232 were performed and predicted core for each relevant allele, score, and rank are shown for each  
1233 peptide.

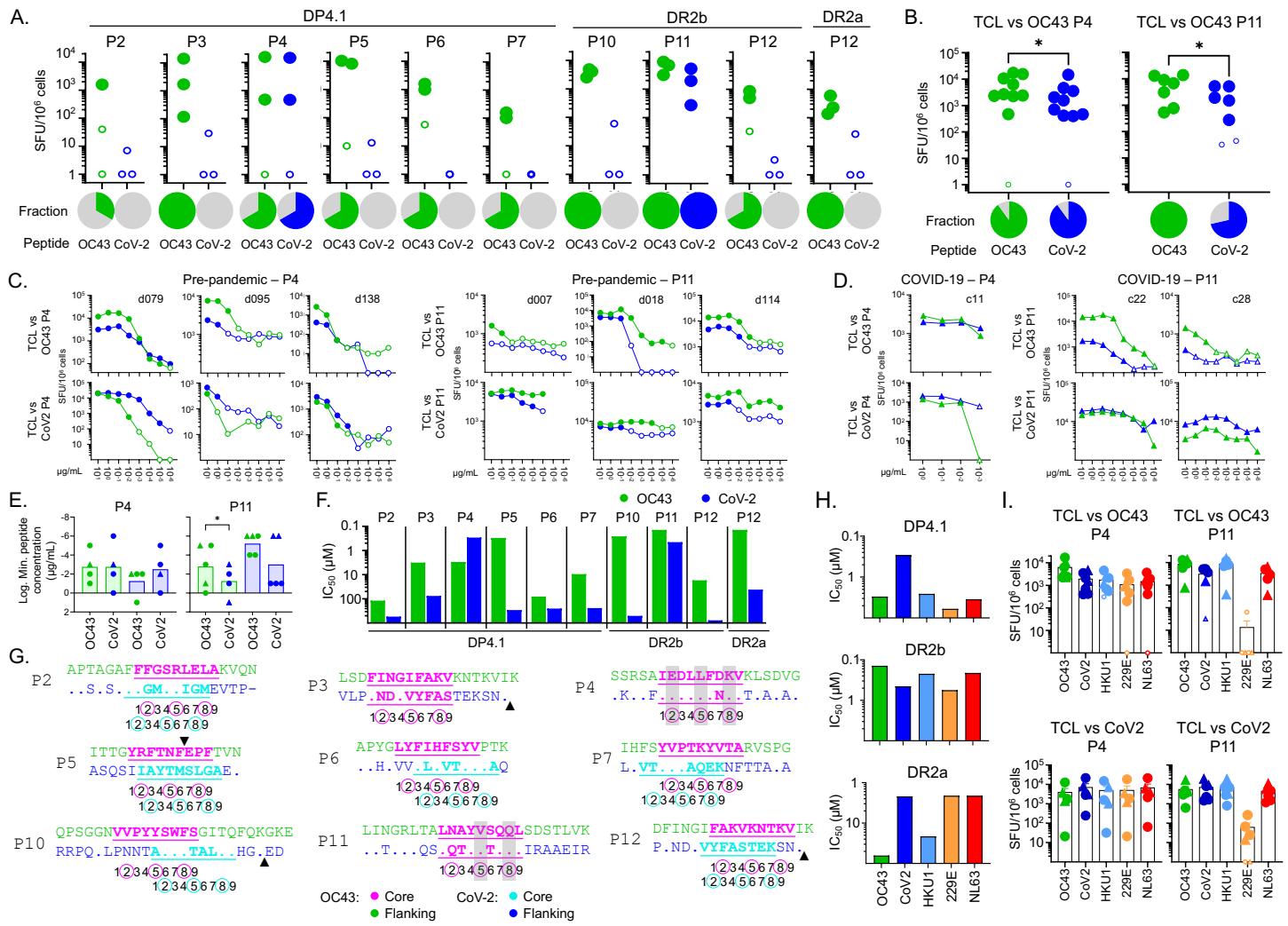
1234 **Table S3:** Binding affinities of OC43 eluted peptides and homologs. S3a. Binding affinities of  
1235 HLA-DR OC43 eluted peptides and homologs in other coronaviruses to DR2b and DR2a. S3b.  
1236 Binding affinities of HLA-DP OC43 eluted peptides and homologs in other coronaviruses to DP4.1.  
1237 In both tables: Binding affinities of OC43 eluted peptides and the corresponding homologs in other  
1238 coronaviruses are shown as IC<sub>50</sub> (μM) of each peptide to the indicated HLA. The mean and the  
1239 standard deviation (SD) of two independent experiments are presented.


1240 **Table S4:** Donors used in the study.

1241 **Table S5:** Binding predictions of OC43 eluted peptides to other alleles present in the donors used  
1242 in the study.


1243 **Table S6:** Synthetic peptides used in the study.




**Figure 1. Immunopeptidome workflow and HLA-ABC, HLA-DR, and HLA-DP immunopeptidomes in OC43-infected HEK293 cells. A.** Experimental approach: HEK293 cells transduced with CIITA were infected with OC43. After 3 days, cells were collected and pMHC complexes were purified by immunoaffinity. Peptides were eluted from pMHC and analyzed by LC-MS/MS for identification. Identified peptides were used in biochemical and immunological assays. **B.** MHC expression on the surface of HEK293 cells. Four panels corresponding to the surface expression of HLA-ABC, HLA-DR, HLA-DQ, and HLA-DP are shown. HLA levels on wild-type cells are shown by grey histograms. HLA levels after transduction with CIITA are shown by colored histograms: HLA-ABC (blue), HLA-DR (purple), HLA-DQ (green), and HLA-DP (yellow). Isotype control staining is shown as an open histogram with dotted lines, following the same color scheme. **C.** Levels of total HLA-DR, HLA-DP, and HLA-DQ proteins in CIITA-transfected HEK293 cells measured by label-free quantitative proteomics. **D.** Representative dot plots of intracellular staining for OC43 nucleoprotein in non-infected cells (top) and at 3 days after infection (bottom). **E.** Representative histograms showing the comparison of surface levels of HLA-ABC, HLA-DR, and HLA-DP on non-infected (dark histograms) and infected (light histograms) cells. Graphs show the MFI in non-infected (non) and infected (oc43) cells from 3-6 independent infections. Statistical analysis in D and E by paired t-test, \*  $p < 0.05$ , \*\*  $p < 0.01$ , ns: not significant. **F.** Length distribution of HLA-ABC, HLA-DR, and HLA-DP eluted immunopeptidomes (histograms). **G.** Sequence logos of clusters obtained using the Gibbs clustering analysis of HLA-ABC, HLA-DR, and HLA-DP eluted immunopeptidomes; percentage of peptides in each cluster and probable allele are shown.



**Figure 2: OC43 virus-derived peptides in the HLA-ABC, HLA-DR, and HLA-DP immunopeptidomes. A.** Length distribution of virus-derived peptides within the HLA-ABC, HLA-DR, and HLA-DP immunopeptidomes of OC43-infected cells. **B.** Ranking of all HLA-ABC, HLA-DR, and HLA-DP eluted peptides according to their precursor ion intensity; viral peptides are shown by colored circles. Sequences are shown for the top five most abundant viral peptides. Lines show the position of the two most abundant peptides in each nested set. **C.** HLA-ABC eluted viral peptides. A schematic representation of each source protein and the location of the eluted sequence is shown (first and last residues indicated). **D.** HLA-DR and HLA-DP eluted viral peptides. A schematic representation of each source protein with the location of each eluted sequence is shown (first and last residues indicated); the predicted core epitope in each sequence is underlined. Nested sets of eluted peptides comprising length variants with the same core epitope are shown by lines below the sequence. The peptide sequence highlighted in red was used for biochemical and immunological assays (see Table 1). In C and D, each eluted sequence or nested set was identified by “P” followed by a number. **E.** Label-free quantification of proteins present in infected cells; proteins were ranked from most to least abundant, with viral proteins highlighted in color. **F.** Relationship between viral protein abundance and eluted peptide abundance. For each source protein, the sum of intensities of all eluted peptides derived from it was used to calculate the peptide abundance.



**Figure 3: T cell recognition of eluted HLA-DR and HLA-DP viral peptides.** **A.** Ex vivo T cell responses to OC43 eluted peptides (pooled by HLA allele) in pre-pandemic PBMC samples from donors with a partial HLA match to HEK293 cells. The plot shows IFN- $\gamma$  production measured by ELISpot (SFU/10<sup>6</sup> cells); pie graphs show the percentage of donors responding to the pool. **B-C.** Responding T cells from partially HLA-matched pre-pandemic donors were expanded in vitro by stimulation with each of the eluted peptides presented by a single allele antigen-presenting cells (APC). IFN- $\gamma$  responses by expanded T cell populations from the same set of donors are shown in (B) for the HLA-DP peptides presented by DPA1\*0301/DPB1\*0401(DP4.1) and in (C) for the DR peptides presented by DRB1\*1501 (DR2b) or DRB5\*0101 (DR2a); pie graphs show the percentage of donors responding to the peptide. **D.** Summary of responses of single-peptide in vitro expanded T cells to the peptides, grouped by allele. **E-F.** Lowest peptide dose (10 – 10<sup>-7</sup>  $\mu$ g/mL) eliciting a positive response to each eluted peptide, in experiments where the single-peptide in-vitro expanded T cells were tested for IFN- $\gamma$  response to HLA-DP (E) or HLA-DR (F) eluted peptides presented by single allele APC (as in B-C). Each symbol represents a different donor. **G.** Response of single-peptide in-vitro expanded T cells to peptide stimulation followed in IFN- $\gamma$  intracellular cytokine secretion (ICS) assay. Dot blots show CD4 expression (x-axis) and IFN- $\gamma$  production (y-axis). DMSO, negative control. Responses > 3-fold background (DMSO) were considered positive. The gating strategy is presented in Figure S2. **H-I.** Summary of IFN- $\gamma$  producing cell percentages in ICS assays for multiple donors for HLA-DP (H) and HLA-DR (I) peptides; only positive responses are shown. In A-C, statistical analysis to determine positive ELISpot responses was done by distribution-free resampling (DFR) method [89]; the size of the filled symbols indicates positive responses by DFR2x or DFR1x, while negative responses are shown as empty symbols. In A and D, statistical analysis was done by unpaired t-test (ns: not significant).



**Figure 4: Epitope-specific T cell cross-reactivity between OC43 and other human coronaviruses.** **A.** Screening of cross-reactive T cell responses in partially HLA-matched pre-pandemic donors. IFN- $\gamma$  responses (SFU/10<sup>6</sup> cells) to OC43 (green) or SARS-CoV-2 (blue) peptides using T cell lines expanded in vitro by stimulation with the eluted OC43 peptides and single allele APC. Pies show the fraction of responding donors to each peptide. **B.** For the two cross-reactive peptides (P4, P11), the screening was extended to more donors. **C.** Dose-response assay for the two cross-reactive peptides (P4, P11) in pre-pandemic donors. T cells were expanded in vitro with the OC43 peptide (TCL vs OC43, top row) or SARS-CoV-2 peptide (TCL vs CoV2, bottom row) and IFN- $\gamma$  responses of each line to the OC43 peptide (green) or SARS-CoV-2 peptide (blue) were tested using single allele APC as before. **D.** Same as C but for COVID-19 convalescent donors. **E.** Lowest observed dose for a positive response for the cross-reactive peptides (tested in panels C and D). Pre-pandemic donors shown as circles and COVID-19 donors as triangles. **F.** Experimental binding of OC43 peptides (green) and the SARS-CoV-2 homologs (blue) to the relevant alleles. Half-maximal inhibitory concentration (IC<sub>50</sub>) values are shown. **G.** Sequence alignment of OC43 peptides and their SARS-CoV-2 homologs. OC43 sequences shown on top, with predicted core epitope shown in magenta and flanking regions in green; SARS-CoV-2 sequences on bottom, with residues different from OC43 shown and dots indicating identical residues. Predicted SARS-CoV-2 core epitope highlighted in turquoise with flanking regions shown in blue. Positions within the 9mer core epitope are indicated by numbers shown below the sequences; major T cell contacts are enclosed in circles. Arrowheads indicated gaps in the aligned sequences. If OC43 and SARS-CoV-2 epitopes are different both are shown. Gray bars show positions of identical residues at T cell contact positions. **H.** Experimental binding of P4 and P11 OC43 peptides and their homologs to other coronaviruses (OC43, CoV2, HKU1, 229E, NL63) for alleles DP4.1, DR2b, DR2a, and DR2a. **I.** IFN- $\gamma$  responses (SFU/10<sup>6</sup> cells) of T cell lines expanded in vitro with OC43 peptides (TCL vs OC43, top row) or with SARS-CoV-2 peptides (TCL vs CoV2, bottom row), to P4 and P11 peptides from OC43, SARS-CoV-2, and the other seasonal coronaviruses, presented by relevant single allele APC. In A-D and I, ELISpot statistical analysis by DFR method [89]; positive responses shown as filled symbols and negative responses as empty symbols. In B and E, statistical analysis was done by unpaired t-test. \*p<0.05).