

SARS-CoV-2 exposure in Norway rats (*Rattus norvegicus*) from New York City

Yang Wang^{1,2,3}, Julianna Lenoch⁴, Dennis Kohler⁴, Thomas J. DeLiberto^{5*}, Cynthia Tang¹, Tao Li⁶, Yizhi Jane Tao⁷, Minhui Guan^{1,2,3}, Susan Compton⁸, Caroline Zeiss⁸, Jun Hang⁶, and Xiu-Feng Wan^{1,2,3,9,*}

¹Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA; ²Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA; ³Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA; ⁴USDA APHIS Wildlife Services National Wildlife Disease Program, Fort Collins, Colorado, USA; ⁵USDA APHIS Wildlife Services, Fort Collins, Colorado, USA; ⁶Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; ⁷Department of BioSciences, Rice University, Houston, TX, USA; ⁸School of Medicine, Yale University, New Haven, Connecticut, USA; ⁹Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, Missouri, USA.

* Xiu-Feng Wan; Thomas J. DeLiberto

Email: wanx@missouri.edu; thomas.j.deliberto@usda.gov

Author Contributions: XFW, JL, DK, and TD conceived the experiments. XFW, JL, DK, TD, and YW designed the experiments. JL, DK, and TD contributed to the wild rat capture. YW, TL, JT, and MG performed the experiments. SC and CZ provided study materials. YW, CT, JT, TL, and JH analyzed the data. YW and XFW prepared the original draft. All authors did substantial contribution to revision of this paper.

Competing Interest Statement: The authors have declared that no competing interests exist.

Keywords: SARS-CoV-2, rat, surveillance, infection

This file includes:

Main Text
Figures 1 to 4
Tables 1
Table S1-S3

1 **Abstract**

2 Millions of Norway rats (*Rattus norvegicus*) inhabit New York City (NYC), presenting the
3 potential for transmission of SARS-CoV-2 from humans to rats and other wildlife. We evaluated
4 SARS-CoV-2 exposure among 79 rats captured from NYC during the fall of 2021. Results showed
5 that 13 of 79 rats (16.5%) tested IgG or IgM positive, and partial genomes of SARS-CoV-2 were
6 recovered from four rats that were qRT-PCR positive. Using a virus challenge study, we also
7 showed that Alpha, Delta, and Omicron variants can cause robust infections in wild-type Sprague
8 Dawley (SD) rats, including high level replications in the upper and lower respiratory tracts and
9 induction of both innate and adaptive immune responses. Additionally, the Delta variant resulted in
10 the highest infectivity. In summary, our results indicated that rats are susceptible to infection with
11 Alpha, Delta, and Omicron variants, and rats in the NYC municipal sewer systems have been
12 exposed to SARS-CoV-2. Our findings highlight the potential risk of secondary zoonotic
13 transmission from urban rats and the need for further monitoring of SARS-CoV-2 in those
14 populations.

15

16

17

18 **Importance**

19 Since its emergence causing the COVID-19 pandemic, the host tropism expansion of
20 SARS-CoV-2 raises a potential risk for reverse-zoonotic transmission of emerging variants
21 into rodent species, including wild rat species. In this study, we presented both genetic
22 and serological evidence for SARS-CoV-2 exposure in wild rat population from New York
23 City, and these viruses are potentially linked to the viruses during the early stages of the
24 pandemic. We also demonstrated that rats are susceptible to additional variants (i.e.,
25 Alpha, Delta, and Omicron) predominant in humans and that the susceptibility to different
26 variants vary. Our findings highlight the potential risk of secondary zoonotic transmission
27 from urban rats and the need for further monitoring of SARS-CoV-2 in those populations.

28

29 **Introduction**

30

31 As of October 10, 2022, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus
32 responsible for coronavirus disease 2019 (COVID-19), has caused approximately 621 million
33 human cases and 6.6 million deaths globally (1). In addition to humans, a wide range of wild,
34 domestic, and captive animals were documented with exposure to SARS-CoV-2, such as deer,
35 mink, otters, ferrets, hamsters, gorillas, cats, dogs, lions, and tigers (2-4). SARS-CoV-2 in farmed
36 mink was shown to cause infections in humans (5), highlighting mink as a potential reservoir for
37 secondary zoonotic infections.

38

39 SARS-CoV-2 has undergone rapid evolution, and a large number of genetic variants have been
40 identified, including several variants of concern (VOC), such as Alpha (B.1.1.7 lineage), Beta
41 (B.1.351 lineage), Gamma (P.1 lineage), Delta (B.1.617.2 and AY sublineages) and Omicron
42 (B.1.1.529 and BA sublineages). The Alpha, Beta, and Gamma variants were reported to have
43 acquired substitutions at the receptor-binding domain (RBD) of the spike protein that allowed for
44 infectivity in mice and/or rats (6-9). The tropism expansion of SARS-CoV-2 raises a potential risk
45 for reverse-zoonotic transmission of emerging variants into rodent species, including wild mouse
46 and rat species (10). Two independent SARS-CoV-2 serosurveillance studies among wild rats from
47 sewage systems in Belgium (late fall of 2020) and Hong Kong (spring of 2021) suggested possible
48 exposure of these animals to SARS-CoV-2, but no viral RNA was detected (11, 12). With new
49 SARS-CoV-2 variants continuing to emerge, it is still unknown whether the more recent variants of
50 concern (e.g., Delta and Omicron) are infectious to rats.

51

52 In this study, we evaluated the capability of Delta and Omicron variants to infect rats (*Rattus*
53 *norvegicus*) and investigated the exposure of rats to SARS-CoV-2 in New York City (NYC), New
54 York, United States.

55

56 **Results**

57

58 **Detecting SARS-CoV-2 virus in NYC rats.**

59 To evaluate whether wild rats have been exposed to SARS-CoV-2, we conducted SARS-CoV-2
60 surveillance in Norway rats (*Rattus norvegicus*) in NYC from September 13-November 16, 2021,
61 when the Delta variant was predominant in humans. A total of 79 rats inhabiting three sampling
62 sites in Brooklyn, NYC were captured and sampled. Using ELISA, we identified 9 out of 79 (11.4%)
63 IgG-positive rat serum samples and 4 IgM-positive samples (5.1%) against both Wuhan-Hu-1 spike
64 protein and RBD (Table 1). All 13 seropositive samples were subjected to microneutralization
65 assays against the B.1 lineage and the Alpha and Delta variants. However, all samples were
66 negative for neutralizing antibodies. As a negative control, we used ELISA to examine 9 negative
67 serum samples from uninfected SD rats and 6 serum samples from SD rats infected with rat
68 coronaviruses, Sialodacryoadenitis Virus or Parker's Rat Coronavirus (13); none exhibited IgG or
69 IgM positivity against either spike protein or RBD (Data not shown).

70

71 Of all the tissues analyzed from the 79 rats, only four lung samples were positive by qRT-PCR
72 against both N1 and N2 primers using the CDC SARS-CoV-2 diagnostic panel (Table 1). The
73 control group with RNA from 6 different strains of rat coronaviruses remained negative. It is
74 noteworthy that two out of these four rats (Rat #2 and #19) were both seropositive and viral RNA-
75 positive. In addition, we had seven inconclusive samples which were tested positive on either N1
76 or N2 primer but not both. However, viruses failed to be recovered from Vero E6,
77 293FT/hACE2+TMPRSS, rat lung epithelial (L2), or rat lung tracheal epithelial cell lines.

78

79 After subjecting these four qRT-PCR-positive samples to SARS-CoV-2 genome sequencing, partial
80 SARS-CoV-2 genome was identified in all samples with a viral genome coverage of 1.6% to 21.3%
81 (Table S1). Both molecular characterization and phylogenetic analyses on these partial genomes

82 suggested that viruses in these rats are associated with genetic lineage B, which was predominant
83 in NYC in the spring of 2020 during the early pandemic period (Fig. 1).

84
85 In addition, we subjected these four qRT-PCR-positive and two additional inconclusive samples to
86 pan-viral target hybridization enrichment sequencing. Presence of SARS-CoV-2 sequences were
87 found in three out of four sequenced qRT-PCR-positive samples (Rats# 2, 19, and 43) and one of
88 two inconclusive samples (Rat# 38). No sequence data was obtained for the qRT-PCR-positive
89 sample from Rat# 46. Of interest, rat coronavirus was detected in another inconclusive sample
90 (Rat# 30) (Table S2). The identified SARS-CoV-2 or rat coronavirus reads aligned with a number
91 of genes across the genomes.

92
93 ***Rats displayed varying susceptibility to SARS-CoV-2 variants.***

94 The Alpha variant emerged in late 2020 and quickly became a dominant SARS-CoV-2 variant in
95 NYC; subsequently, the Delta and Omicron variants predominated in NYC starting in June 2021
96 and December 2021, respectively (Fig. 1A). To investigate whether these SARS-CoV-2 variants
97 are capable of infecting rats, we intranasally challenged 6-week-old wild-type SD rats with Alpha,
98 Delta, or Omicron variants and collected tissues at 2- and 4-days post-infection (dpi) (Fig. 2B).
99 Compared to the Wuhan-Hu-1 strain, the Omicron variant used in the challenge study possesses
100 the same N501Y substitution as the Alpha variant and 16 additional substitutions, whereas the
101 Delta variant does not possess N501Y, but contains the L452R and T478K substitutions (Fig. 2C).

102
103 At 2 and 4 dpi, high levels of viral RNA were detected in both turbinate and lungs, and infectious
104 viral titers were detected in turbinate and/or lungs, although no body weight loss or other clinical
105 signs were observed in the rats with any of the variants (Fig. 2D-F). In particular, the lungs from
106 the rats infected with the Delta variant showed both the highest RNA copies and the highest
107 infectious viral titers at 2 dpi (RNA copies: $p=0.0081$ and 0.0060 for Delta vs. Alpha and Delta vs.
108 Omicron, respectively; infectious viral titers: $p=0.0287$ and 0.0283 for Delta vs. Alpha and Delta vs.
109 Omicron, respectively). In addition, antigen expression was detected in the lungs of all rats infected
110 with any variant at 2 or 4 dpi (Fig. 2F). In line with the viral titers, the rats infected with the Delta
111 variant showed the highest antigen expression in the lungs compared to those infected with other
112 variants (Fig. 2G).

113
114 To assess the innate and adaptive immune response induced by the virus infection in rats, we
115 determined the cytokine/chemokine expression in the lungs at 2 and 4 dpi and the antibody titers
116 at 21 dpi. The results showed that all infections induced pro-inflammatory cytokine/chemokine
117 expression (i.e., IFN- β , IFN- γ , TNF- α , IL-1 α , IL-1 β , IL-6, CCL-2, IP-10, IL-10) particularly at 2 dpi
118 (Fig. 3A). The expression of all the cytokines/chemokines induced by the Delta variant was higher
119 than those induced by Alpha and/or Omicron variants.

120
121 Regarding the adaptive immune response, both IgG antibodies and neutralizing antibodies were
122 detected for all three variants at 21 dpi; however, IgM antibodies were not detected in any rats
123 regardless of the variant used (Figures 3B and 3C). There was no significant difference between
124 Alpha and Delta variants in the IgG antibody titers against Wuhan-Hu-1 spike protein or RBD.
125 However, Delta showed significantly higher anti-RBD IgG titers than Omicron. The homologous
126 neutralizing antibody titers induced by the Delta variant were significantly higher than those induced
127 by Alpha or Omicron ($p=0.0441$ and 0.0040, respectively). These results indicated that all the three
128 variants can infect SD rats and induce innate and adaptive immune responses, and among these
129 three variants, the Delta variant replicates more efficiently than the Alpha and Omicron variants in
130 rats.

131
132 To detect potential host-adapted mutations, we sequenced the lung tissues from the rats
133 challenged with Alpha, Delta, and Omicron. Results suggested there were no adapted amino acid
134 substitutions along the RBDs across the three testing variants. However, N74K (N-terminal domain)
135 on the spike protein was observed in all animals challenged by Alpha, and P681R (SD1/2) and

136 D950N (heptapeptide repeat sequence 1) of spike in all animals challenged by Delta (Table S2). In
137 addition, additional amino acid substitutions in non-structural proteins NSP6, NSP13, and
138 nucleoprotein were observed in some animals challenged by Alpha or Delta. Of interest, no
139 adapted mutations were observed in the animals challenged by Omicron.
140

141 ***Structural modeling between RBD of SARS-CoV-2 variants and rat, mouse, and human***
142 ***ACE2.***

143 To explain the relative replication efficiency of the three SARS-CoV-2 viruses in SD rats, we
144 computationally modeled the interaction between rat ACE2 and RBD from Alpha, Delta and
145 Omicron variants (Fig. 4), as virus-receptor interaction is often an important virulence determinant.
146 In our structural models, residue 452 does not directly engage with rat ACE2, but it is surrounded
147 by a large number of residues nearby (Fig. 4C). Therefore, the L452R mutation in the Delta variant
148 could alter the structure conformation of the adjacent β -strand at the ACE2 interface and thus
149 indirectly modulate ACE2 binding affinity (Fig. 4C). Indeed, in vitro binding assays indicated that
150 the RBD of the Delta variant, which has L452R/T478K double mutations, binds rat ACE2 with a >2-
151 fold stronger affinity than RBD of the prototype virus (14). The enhanced binding of the Delta RBD
152 to rat ACE2 is likely due to L452 alone, because residue 478 is distant from other amino acids, and
153 T478K was found to have no significant effect on binding to mouse ACE2, which is a close homolog
154 of rat ACE2 (15). The Alpha variant also replicates well in rats but is slightly less efficient than Delta.
155 Our structure model shows that the single mutation N501Y in Alpha RBD makes a favorable
156 interaction with H353 in the rat ACE2, with the aromatic side chain of Y501 stacked against the
157 side chain of H453 (Fig. 4D). In vitro binding assays confirmed that the Alpha RBD binds rat ACE2
158 with a >2-fold stronger affinity than RBD of the prototype virus (14), consistent with our structural
159 analysis.
160

161 The Omicron variant has many mutations in its RBD compared to the prototype virus (Fig. 2C).
162 Among these mutations, eight are located near the ACE2 binding interface, including residues 405,
163 452, 477, 478, 486, 498, 501, and 505. Close inspection of these residues shows favorable
164 interactions by residues R452, N477, R498, Y501, and H505 compared to their corresponding ones
165 in the prototype strain. Residues D405 and K478 are somewhat distant from ACE2, while V486
166 appears to weaken the interaction with rat ACE2 compared to F486 in other SARS-CoV-2 viruses
167 (Fig. 3D).
168

169 Taken together, the Alpha, Delta and Omicron variants seem to have enhanced binding to the rat
170 ACE2 compared to the prototype virus.
171

172 **Discussion**

173 Both serological and molecular data from this study suggested the rats from NYC were exposed to
174 SARS-CoV-2. We found that of the tested rats, 16.5% were seropositive and 5.1% were qRT-PCR
175 positive to SARS-CoV-2, which showed a higher exposure frequency than previous reports (11,
176 12). Genomic analyses suggested that the viruses in the rats that we collected were associated
177 with the B lineage virus. We speculate SARS-CoV-2 exposure could have occurred during the early
178 stages of the pandemic when the B lineage virus was predominant in NYC. This is supported by a
179 recent study that reported that the Wuhan-Hu-1-like virus can infect SD rats (16), although an
180 earlier study showed that the prototype Wuhan-Hu-1-like SARS-CoV-2 cannot infect SD rats (6).
181 Such a discrepancy may be due to variation in additional mutations in the challenge Wuhan-Hu-1-
182 like strains or genetic variations in the SD rats used in these studies. Thus, further surveillance is
183 needed to understand the virological prevalence in NYC rats, particularly for several emerging
184 variants with high infectivity among rats, including those that circulated in NYC during the past two
185 years of the COVID-19 pandemic.
186

187 A number of studies suggested that fragments of SARS-CoV-2 genomes were identified in sewage
188 water systems, and that the prevalence of SARS-CoV-2 in sewage water systems coincides with
189 outbreaks in resident human populations (17). However, no evidence has shown that SARS-CoV-

190 2 viruses in sewage water is infectious (18), suggesting that sewage rats may have been exposed
191 to the virus through unknown fomites, e.g. those contaminated with human food wastes. In a recent
192 study, Zeiss et al. (13) showed that, in a controlled laboratory setting studying transmission of
193 another rat respiratory beta coronavirus, SDAV, approximately one-quarter of naïve rats shed virus
194 following fomite exposure. Notably, previously exposed seropositive rats became reinfected with
195 SDAV at similar rates following fomite exposure 114-165 days later, indicating that immunity is
196 temporary. Two of four rats (Rat #2 and #19) in our study were both seropositive and viral RNA-
197 positive, implying that previously exposed seropositive animals may still contract and shed SARS-
198 CoV-2, consistent with lack of sterilizing immunity in humans exposed to SARS-CoV-2 or rats given
199 SDAV. These data imply that rats previously exposed to SARS-CoV-2 can still contribute to
200 propagation of subsequent variants.

201
202 By using animal models, we further demonstrated that, in addition to Alpha and Beta variants
203 reported earlier (6-9), Delta and Omicron variants can also cause robust infections in SD rats. The
204 tested variants caused robust replication in both upper and lower respiratory tracts of rats, although
205 they did not cause any body weight loss or other clinical signs. Of the three testing variants, Delta
206 replicated the most efficiently. The omicron variant showed a lower viral replication than both Alpha
207 and Delta, although the difference did not reach a statistically significant level between Omicron
208 and Alpha. This finding is in line with earlier reports that Omicron replicated less efficiently and
209 caused less lung pathology in wildtype or human ACE2 transgenic mice or hamsters compared
210 with other variants (19, 20).

211
212 Structural modeling showed that all three variants Alpha, Delta and Omicron have enhanced
213 binding to the rat ACE2 compared to the prototype Wuhan-Hu-1-like virus. In light of the
214 biochemical data that Alpha and Delta RBDs bind to rat ACE2 equally well (14), the difference in
215 the replication efficiency of the three viruses could be due to factors other than receptor binding
216 affinity. It is also interesting to note that many RBD mutations observed in the three variants, such
217 as N501Y in Alpha and L452R/T478K in Delta, interact with ACE2 residues that vary between
218 human and rat/mouse (Fig. 4E). Therefore, rats and mouse likely play an important role in the
219 evolution of Alpha, Delta, Omicron variants, as previously proposed by Zhang et al (15).

220
221 In addition to receptor binding, a number of other studies suggested that other structural and non-
222 structural proteins may play a critical role in the viral replication *in vivo* and the host tropism of
223 SARS-CoV-2 viruses. Syed et al. showed that, despite envelope protein substitutions inhibiting
224 virus assembly, Omicron has an overall higher assembly efficiency than the original SARS-CoV-2,
225 similar to Delta variant (21). Bojkova et al. showed that the Omicron variant is less effective in
226 antagonizing the interferon response and has higher sensitivity in interferon treatment than the
227 Delta variant which may be relevant with the substitutions on NSP3, NSP12, NSP13, nucleocapsid,
228 and ORF3 proteins (22, 23). Of interest, Omicron did not have any observed amino acid
229 substitutions throughout the course of virus challenge in SD rats, whereas Alpha and Delta did for
230 spike, nucleoprotein, or non-structural proteins NSP6 and NSP13. The roles of these amino acid
231 substitutions on virus fitness needs to be further studied.

232
233 In summary, we found that the rats in NYC sewage system have been exposed to SARS-CoV-2,
234 and that the Delta and Omicron variants can infect rats in addition to the Alpha and Beta variants.
235 Our findings highlight the potential risk of secondary zoonotic transmission from rats and the need
236 for further monitoring of SARS-CoV-2 in wild rat populations.

237
238 **Materials and Methods**

239 **Cells.**

240 Vero E6 cells (CRL-1586, American Type Culture Collection [ATCC]) and 293FT/hACE2+TMPRSS
241 (17) were cultured in Dulbecco's Modified Eagle medium (DMEM, Gibco) supplemented with 10%
242 fetal bovine serum (FBS) at 37°C with 5% CO₂. Rat lung epithelial cells L2 (CCL-149, ATCC) were
243 cultured in F-12K Medium (ATCC) supplemented with 10% FBS at 37°C with 5% CO₂. Rat primary

244 tracheal epithelial cells (Cell Biologics) were grown on culture flasks or plates pre-coated with
245 gelatin-based coating solution (Cell Biologics) in Complete Epithelial Cell Medium (Cell Biologics)
246 at 37°C with 5% CO₂.

247

248 **Viruses.**

249 The SARS-CoV-2/USA/CA_CDC_5574/2020 (B.1.1.7, NR-54011, BEI resources), and SARS-
250 CoV-2/human/USA/MD-HP05285/2021 (B.1.617.2, NR-55671, BEI resources) were propagated
251 on Vero E6 cells. The SARS-CoV-2/USA/MO-CV40709/2022 (BA.5.5, GIAID access No.
252 EPI_ISL_15823386) were recovered from human nasopharyngeal swabs and propagated on Vero
253 E6 cells.

254

255 **Virus challenge in rats.**

256 Six-week-old female SAS outbred Sprague Dawley (SD) rats (Charles River Laboratories) were
257 housed in individually ventilated cages. SD rats were anesthetized with isoflurane, followed by
258 intranasal inoculation with 2 × 10⁴ PFU/rat of SARS-CoV-2 diluted in 50 µl PBS. Clinical evaluation
259 was performed daily, and body weight was determined daily through 10 dpi. At 2, 4, and 21 dpi,
260 animals were euthanized for blood and tissue collection for seroconversion evaluation, viral load
261 titration, and histology staining, respectively.

262

263 **Wild rat capture and sample collection.**

264 In the fall of 2021, APHIS Wildlife Services conducted sampling of Norway rats (*Rattus norvegicus*)
265 in New York City (NYC) to look for evidence of SARS-CoV-2 infection. Methodology included
266 trapping and collecting biological samples from rats around wastewater systems. Two trapping
267 efforts during September and November were conducted with permission from the NYC
268 Department of Parks and Recreation. Each effort consisted of three days of pre-baiting followed by
269 four nights of trapping. Most animals were captured in city parks within the borough of Brooklyn,
270 although some were captured near buildings outside of park boundaries. Once the animals were
271 euthanized, biologists collected and processed fresh blood samples. Over the course of eight
272 trapping nights, 79 rats were trapped and sampled. Blood samples along with the carcasses were
273 shipped to the Wildlife Services National Wildlife Disease Program in Fort Collins, Co where tissues
274 were extracted and sent to the University of Missouri for additional testing.

275 **Infectious viral titration by TCID₅₀.**

276 Animal tissue were homogenized in DMEM with 0.3% bovine serum albumin (Sigma-Aldrich) and
277 1% penicillin/streptomycin (Gibco, Thermo Fisher Scientific) for 1 min at 6,000 rpm by using a
278 homogenizer (Bertin, Precellys), and debris were pelleted by centrifugation for 10 min at 12,000 ×
279 g. Their infectious virus titers were determined by TCID₅₀ with Vero E6 cells.

280

281 **Viral RNA detection.**

282 The RNA was extracted from the tissue homogenates by using GeneJet viral DNA/RNA purification
283 kit (Thermo Fisher) or MagMax Pathogen RNA/DNA Kit (Thermo Fisher). The viral RNA was
284 detected and quantified by qRT-PCR following the SARS-CoV-2 diagnosis panels by N1 (Forward
285 primer sequence: 5'-GAC CCC AAA ATC AGC GAA AT-3', Reverse primer sequence: 5'-TCT GGT
286 TAC TGC CAG TTG AAT CTG-3', Probe sequence: 5'-ACC CCG CAT TAC GTT TGG TGG ACC-
287 3') and/or N2 primer/probe mix (Forward primer sequence: 5'-TTACAAACATTGGCCGAAA-3',
288 Reverse primer sequence: 5'-GCGCGACATTCCGAAGAA-3', Probe sequence: 5'-
289 ACAATTGCCCCAGCGCTTCAG-3'). The RT-qPCR was performed according to the
290 manufacturer's protocol using TaqMan Fast Virus 1-Step Master Mix (Thermo Fisher). Fluorescent
291 signals were acquired using QuantStudio 6 Real-time PCR system (Thermo Fisher).

292

293 **Measurement of cytokine/chemokine expression.**

294 Total RNA was extracted from rat tissues by using a combination method of Trizol (Thermo Fisher
295 Scientific) and RNeasy Mini kit (Qiagen) (24). The genomic DNA was removed by on-column
296 DNase I (Qiagen) treatment during the RNA extraction. The RNA then was reverse transcribed into

297 cDNA with SuperScript III Reverse Transcriptase (Thermo Fisher Scientific) with random hexamer
298 primers (Thermo Fisher Scientific). The cDNA was used in real-time PCR with PowerUp SYBR
299 Green Master Mix (Thermo Fisher Scientific) for specific targets (Table S4). The expression of
300 housekeeping gene GAPDH was used to normalize the amount of RNA isolated from tissues. The
301 $2^{-\Delta\Delta Ct}$ methods were used to compare the differential gene expressions between testing samples.
302 The mean fold change ($2^{-\Delta\Delta Ct}$) values of triplicates and standard deviation are represented.
303

304 **Genome sequencing.**

305 SARS-CoV-2 whole-genome sequencing was performed by using QIAseq DIRECT SARS-CoV-2
306 Kit (QIAGEN). The quality of paired-end reads obtained from MiSeq sequencing was analyzed by
307 using Qiagen CLC Genomics Workbench 22.0.1 and the Identify ARTIC V3 SARS-CoV-2 Low
308 Frequency and Shared Variants (Illumina) workflow was used in genetic variant analyses.
309 Nucleotide sequences were aligned using MAFFT v7.471, and the mutations were analyzed using
310 nextclade (<https://clades.nextstrain.org>). Pan-viral target hybridization enrichment sequencing was
311 performed by using RNA Prep with Enrichment (L) Tagmentation Kit (Illumina) and Comprehensive
312 Viral Research Panel (Twist Biosciences).

313 **Phylogenetic analyses and molecular characterization.**

314 Time-scaled phylogenetic trees were generated using the two rat samples containing > 10%
315 coverage (Rat# 2 and 19), five reference sequences for each variant of concern (Alpha, Beta, Delta,
316 Gamma, and Omicron), five reference sequences for lineage A and lineage B viruses, and three
317 randomly selected NYC sequences from each month. Phylogenetic analyses were performed using
318 BEAST v2.7.0 with the Hasegawa, Kishino, and Yano (HKY)+ γ_4 substitution model, an exponential
319 coalescent growth prior, and a strict molecular clock. Independent runs were performed with chain
320 lengths of 10,000,000 steps and sampled every 5,000 steps per run with a 10% burn-in. The
321 resulting trees were summarized with TreeAnnotator and visualized using FigTree. A posterior
322 probabilities cutoff of 0.70 was used to assess tree topology.

323 All publicly available sequences and associated metadata used in this dataset are published in
324 GISAID's EpiCoV database. All sequences in this dataset are compared relative to hCoV-
325 19/Wuhan/WIV04/2019 (WIV04), the official reference sequence employed by GISAID
326 (EPI_ISL_402124). Learn more at <https://gisaid.org/WIV04>. To view the contributors of each
327 individual sequence with details such as accession number, virus name, collection date, originating
328 lab and submitting lab, and the list of authors, please visit the doi listed with each dataset.
329

330 **Data availability for GISAID samples included in our analyses:**

331 GISAID Identifier: EPI_SET_221019xq
332 doi: 10.55876/gis8.221019xq EPI_SET_221019xq is composed of 49 individual genome
333 sequences. The collection dates range from 2019-12-24 to 2021-11-17; Data were
334 collected in 11 countries and territories.

335

336

337 **Virus isolation.**

338 Virus isolation was done on Vero E6 cells, 293FT/hACE2+TMPRSS, L2, or rat primary tracheal
339 epithelial cells. 200 μ l of supernatant from homogenized tissues were mixed with an equal volume
340 of cell culture medium and then inoculated onto pre-seeded cells in 6-well plates. After 1 hour of
341 adsorption, the inoculum was removed, and the cells were washed with PBS and covered with
342 fresh cell culture medium. The cells were monitored daily for cytopathogenic effects (CPE) and the
343 supernatants were harvested at 3~5 dpi. The supernatants were inoculated to fresh cells for a
344 maximum of 3 times until CPE was observed. The supernatants from the last inoculation were
345 subjected to viral RNA extraction and SARS-CoV-2 specific real-time RT-PCR using SARS-CoV-2
346 diagnosis panels.
347

348 **ELISA.**

349 Anti-SARS-CoV-2 spike and anti-SARS-CoV-2 receptor binding domain (RBD) IgG or IgM
350 antibodies were determined by using stabilized spike protein (NR-53524, BEI resources) or RBD
351 (NR-53366, BEI resources) of SARS-CoV-2, respectively. The proteins were coated to 96-well
352 ELISA plates (Nunc-Immuno, Thermo Scientific) at a concentration of 1 μ g/ml in PBS. The plates
353 were then blocked with 100 μ l of 1% Bovine Serum Albumin (BSA, Research Products
354 International) buffered in PBS containing 0.1% Tween 20 (PBST) and incubated at room
355 temperature for 1 h. 1:100 diluted rat serum samples were added to the plates for 1 h incubation at
356 37 °C. After extensive washing with PBST, horseradish peroxidase (HRP)-conjugated goat anti-rat
357 IgG (1:8,000, Thermo Scientific) or anti-rat IgM (1:8,000, Thermo Scientific) was added for 1 h at
358 37 °C. Following five-time washes with PBST, 100 μ L of TMB-ELISA substrate (1-Step; Thermo
359 Fisher Scientific) was added into each well. After 15 min incubation, the reaction was stopped by
360 adding 100 μ L of 1 M H₂SO₄ solution and optical densities were read at 450 nm (OD₄₅₀) using
361 Cytation 5 Cell Imaging Multimode Reader (Bio-Tek Instruments). Cutoff value was determined
362 based on the mean background reactivity of all serum samples from naïve SD rats multiplied by 3.
363

364 **Microneutralization assay.**

365 The serum samples were heat-inactivated at 56 °C for 1 hour and then were two-fold serially diluted
366 with a starting dilution of 1:5. The serum dilutions were mixed with equal volumes of 100 TCID₅₀ of
367 SARS-CoV-2 as indicated. After 1 h of incubation at 37 °C, 3.5 \times 10⁴ Vero E6 cells were added into
368 the serum-virus mixture in 96-well plates. The plates were incubated for 2 days at 37 °C in 5% CO₂
369 and then the cells were fixed in 10% paraformaldehyde, penetrated by 0.1% TritonX-100, and
370 strained with monoclonal rabbit antibody against SARS-CoV-2 nucleocapsid (Sino Biological). This
371 was subsequently detected by the addition of HRP-conjugated goat anti-rabbit IgG (Thermo Fisher
372 Scientific) and TMB-ELISA substrate (Thermo Fisher Scientific). OD₄₅₀ was measured by Cytation
373 5 (Bio-Tek). The serum neutralizing titer is the reciprocal of the highest dilution resulting in an
374 infection reduction of >50%.

375

376 **Structure modeling.**

377 The tertiary structure of the rat ACE2 (NP_001012006.1) was predicted by AlphaFold2 using the
378 Google colab server (<https://colab.research.google.com/>) (25). The RBD structure of alpha (SARS-
379 CoV-2/USA/CA_CDC_5574/2020, B.1.1.7), delta (SARS-CoV-2/human/USA/MD-HP05285/2021,
380 B.1.617.2) and omicron (SARS-CoV-2/USA/MO-CV40709/2022, BA.5.5) was taken from the PDB
381 ID 7FBK, 7URQ, and 7XWA, respectively. To model the rat ACE2:RBD complex structure, rat
382 ACE2 structural model and the structure of each of the three RBD domains were superposed onto
383 their respective homologs in PDB ID 7XO9, the SARS-CoV-2 Omicron BA.2 variant RBD
384 complexed with human ACE2 (26) using Pymol (The PYMOL Molecular Graphics System, Version
385 2.0 Schrödinger, LLC). The resulting complex structures were subjected to energy minimization
386 using Phenix (27). Structure figures were prepared using Pymol.

387 **Statistical analysis.**

388 Statistical significance was tested using a one-way ANOVA with Tukey's multiple comparisons by
389 Graphpad Prism 9.1.0.

390

391 **Ethics statement.**

392 Rats were captured in Brooklyn under a wildlife damage management agreement between
393 USDA/APHIS Wildlife Services and the New York City Department of Parks and Recreation. The
394 animal experiments were performed under the protocol number #38742 approved by the Care and
395 Use of Laboratory Animals of the University of Missouri per the USDA Animal Welfare Regulations.
396 All experiments involved with live viruses were performed in an approved biosafety level 3 (BSL-3)
397 or animal biosafety level 3 (ABSL-3) facility at the Laboratory of Infectious Diseases, University of
398 Missouri-Columbia under protocol #20-14 in compliance with the Institutional Biosafety Committee
399 of the University of Missouri-Columbia.

400

401 **Acknowledgments**

402

403 This study was supported by USDA American Rescue Plan funding. The authors thank George
404 Sarafianos, Rebecca Patterson, Haley Hudson for their assistance in this study. We thank Marc
405 Johnson for suggesting the wastewater systems targeted in this study and Mark Jacking, John
406 Pistone, Raven Shuman, Deana Brabant Oatman, Maxwell Tanner, Jack Ramirez, Allen Gosser,
407 Bobby Corrigan, Tim Linder and Tom Gidlewski for for wild rat capture, sample collection and
408 necropsy/tissue processing. We also thank Samantha Gerb, Sarah Schlink, Charles Moley, and
409 Shakera Fudge for their technical supports in animal experiments.

410

411 The findings and conclusions in this publication are those of the author(s) and should not be
412 construed to represent any official USDA or U.S. Government determination or policy.

413

414

415 **References**

- 416 1. Medicine JHUo. 2022. Coronavirus Resource Center. <https://coronavirus.jhu.edu/data>.
417 Accessed March 4.
- 418 2. Cui S, Liu Y, Zhao J, Peng X, Lu G, Shi W, Pan Y, Zhang D, Yang P, Wang Q. 2022. An
419 Updated Review on SARS-CoV-2 Infection in Animals. *Viruses* 14.
- 420 3. Chandler JC, Bevins SN, Ellis JW, Linder TJ, Tell RM, Jenkins-Moore M, Root JJ,
421 Lenoch JB, Robbe-Austerman S, DeLiberto TJ, Gidlewski T, Kim Torchetti M, Shriner SA.
422 2021. SARS-CoV-2 exposure in wild white-tailed deer (*Odocoileus virginianus*). *Proc Natl
423 Acad Sci U S A* 118.
- 424 4. Hale VL, Dennis PM, McBride DS, Nolting JM, Madden C, Huey D, Ehrlich M, Grieser J,
425 Winston J, Lombardi D, Gibson S, Saif L, Killian ML, Lantz K, Tell RM, Torchetti M,
426 Robbe-Austerman S, Nelson MI, Faith SA, Bowman AS. 2022. SARS-CoV-2 infection in
427 free-ranging white-tailed deer. *Nature* 602:481-486.
- 428 5. Hammer AS, Quaade ML, Rasmussen TB, Fonager J, Rasmussen M, Mundbjerg K,
429 Lohse L, Strandbygaard B, Jorgensen CS, Alfaro-Nunez A, Rosenstierne MW, Boklund
430 A, Halasa T, Fomsgaard A, Belsham GJ, Botner A. 2021. SARS-CoV-2 Transmission
431 between Mink (*Neovison vison*) and Humans, Denmark. *Emerg Infect Dis* 27:547-551.
- 432 6. Shuai H, Chan JF, Yuen TT, Yoon C, Hu JC, Wen L, Hu B, Yang D, Wang Y, Hou Y,
433 Huang X, Chai Y, Chan CC, Poon VK, Lu L, Zhang RQ, Chan WM, Ip JD, Chu AW, Hu
434 YF, Cai JP, Chan KH, Zhou J, Sridhar S, Zhang BZ, Yuan S, Zhang AJ, Huang JD, To
435 KK, Yuen KY, Chu H. 2021. Emerging SARS-CoV-2 variants expand species tropism to
436 murines. *EBioMedicine* 73:103643.
- 437 7. Pan T, Chen R, He X, Yuan Y, Deng X, Li R, Yan H, Yan S, Liu J, Zhang Y, Zhang X, Yu
438 F, Zhou M, Ke C, Ma X, Zhang H. 2021. Infection of wild-type mice by SARS-CoV-2
439 B.1.351 variant indicates a possible novel cross-species transmission route. *Signal
440 Transduct Target Ther* 6:420.
- 441 8. Zhang C, Cui H, Li E, Guo Z, Wang T, Yan F, Liu L, Li Y, Chen D, Meng K, Li N, Qin C,
442 Liu J, Gao Y, Zhang C. 2022. The SARS-CoV-2 B.1.351 Variant Can Transmit in Rats
443 But Not in Mice. *Front Immunol* 13:869809.
- 444 9. Montagutelli X, Prot M, Levillayer L, Salazar EB, Jouvin G, Conquet L, Beretta M, Donati
445 F, Albert M, Gambaro FJB. 2021. Variants with the N501Y mutation extend SARS-CoV-2
446 host range to mice, with contact transmission. *BioRxiv*.
- 447 10. Bosco-Lauth AM, Root JJ, Porter SM, Walker AE, Guilbert L, Hawvermale D, Pepper A,
448 Maison RM, Hartwig AE, Gordy P, Bielefeldt-Ohmann H, Bowen RA. Survey of
449 peridomestic mammal susceptibility to SARS-CoV-2 infection.
- 450 11. doi:<https://doi.org/10.1101/2021.01.21.427629>.
- 451 11. Miot EF, Worthington BM, Ng KH, de Lataillade LG, Pierce MP, Liao Y, Ko R, Shum MH,
452 Cheung WY, Holmes EC, Leung KS, Zhu H, Poon LL, Peiris MJ, Guan Y, Leung GM, Wu

453 JT, Lam TT. 2022. Surveillance of Rodent Pests for SARS-CoV-2 and Other
454 Coronaviruses, Hong Kong. *Emerg Infect Dis* 28:467-470.

455 12. Colombo VC, Sluydts V, Marien J, Vanden Broecke B, Van Houtte N, Leirs W, Jacobs L,
456 Iserbyt A, Hubert M, Heyndrickx L, Goris H, Delputte P, De Roeck N, Elst J, Arien KK,
457 Leirs H, Gryseels S. 2022. SARS-CoV-2 surveillance in Norway rats (*Rattus norvegicus*)
458 from Antwerp sewer system, Belgium. *Transbound Emerg Dis* 69:3016-3021.

459 13. Zeiss CJ, Asher JL, Vander Wyk B, Allore HG, Compton SR. 2021. Modeling SARS-CoV-
460 2 propagation using rat coronavirus-associated shedding and transmission. *PLoS One*
461 16:e0260038.

462 14. Yao W, Ma D, Wang H, Tang X, Du C, Pan H, Li C, Lin H, Farzan M, Zhao J, Li Y, Zhong
463 G. 2021. Effect of SARS-CoV-2 spike mutations on animal ACE2 usage and in vitro
464 neutralization sensitivity.
<https://www.biorxiv.org/content/101101/20210127428353v3fullpdf>.

465 15. Zhang W, Shi K, Geng Q, Ye G, Aihara H, Li F. 2022. Structural basis for mouse receptor
466 recognition by SARS-CoV-2 omicron variant. *Proc Natl Acad Sci U S A*
467 119:e2206509119.

468 16. Yu D, Long Y, Xu L, Han JB, Xi J, Xu J, Yang LX, Feng XL, Zou QC, Qu W, Lin J, Li MH,
469 Yao YG. 2022. Infectivity of SARS-CoV-2 and protection against reinfection in rats. *Zool
470 Res* 43:945-948.

471 17. Smyth DS, Trujillo M, Gregory DA, Cheung K, Gao A, Graham M, Guan Y,
472 Guldenpfennig C, Hoxie I, Kannoly S, Kubota N, Lyddon TD, Markman M, Rushford C,
473 San KM, Sompanya G, Spagnolo F, Suarez R, Teixeiro E, Daniels M, Johnson MC,
474 Dennehy JJ. 2022. Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater.
475 *Nat Commun* 13:635.

476 18. Robinson CA, Hsieh HY, Hsu SY, Wang Y, Salcedo BT, Belenchia A, Klutts J, Zemmer
477 S, Reynolds M, Semkiw E, Foley T, Wan X, Wieberg CG, Wenzel J, Lin CH, Johnson
478 MC. 2022. Defining biological and biophysical properties of SARS-CoV-2 genetic material
479 in wastewater. *Sci Total Environ* 807:150786.

480 19. Halfmann PJ, Iida S, Iwatsuki-Horimoto K, Maemura T, Kiso M, Scheaffer SM, Darling
481 TL, Joshi A, Loeber S, Singh G, Foster SL, Ying B, Case JB, Chong Z, Whitener B,
482 Moliva J, Floyd K, Ujie M, Nakajima N, Ito M, Wright R, Uraki R, Warang P, Gagne M, Li
483 R, Sakai-Tagawa Y, Liu Y, Larson D, Osorio JE, Hernandez-Ortiz JP, Henry AR,
484 Ciuoderis K, Florek KR, Patel M, Odle A, Wong LR, Bateman AC, Wang Z, Edara VV,
485 Chong Z, Franks J, Jeevan T, Fabrizio T, DeBeauchamp J, Kercher L, Seiler P,
486 Gonzalez-Reiche AS, Sordillo EM, Chang LA, van Bakel H, et al. 2022. SARS-CoV-2
487 Omicron virus causes attenuated disease in mice and hamsters. *Nature* 603:687-692.

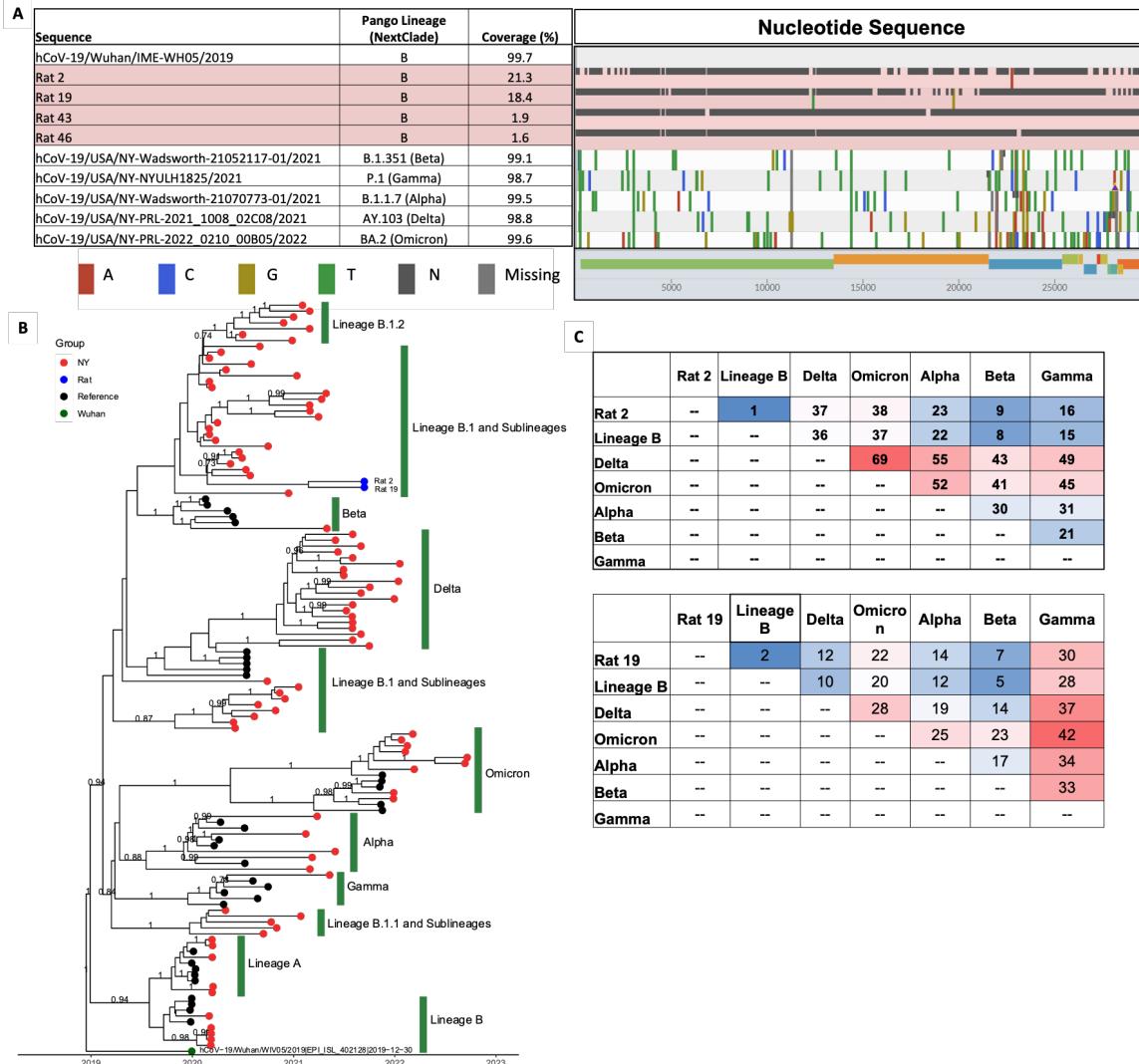
488 20. Yuan S, Ye ZW, Liang R, Tang K, Zhang AJ, Lu G, Ong CP, Man Poon VK, Chan CC,
489 Mok BW, Qin Z, Xie Y, Chu AW, Chan WM, Ip JD, Sun H, Tsang JO, Yuen TT, Chik KK,
490 Chan CC, Cai JP, Luo C, Lu L, Yip CC, Chu H, To KK, Chen H, Jin DY, Yuen KY, Chan
491 JF. 2022. Pathogenicity, transmissibility, and fitness of SARS-CoV-2 Omicron in Syrian
492 hamsters. *Science* 377:428-433.

493 21. Syed AM, Ciling A, Taha TY, Chen IP, Khalid MM, Sreekumar B, Chen PY, Kumar GR,
494 Suryawanshi R, Silva I, Milbes B, Kojima N, Hess V, Shacreaw M, Lopez L, Brobeck M,
495 Turner F, Spraggan L, Tabata T, Ott M, Doudna JA. 2022. Omicron mutations enhance
496 infectivity and reduce antibody neutralization of SARS-CoV-2 virus-like particles. *Proc
497 Natl Acad Sci U S A* 119:e2200592119.

498 22. Bojkova D, Widera M, Ciesek S, Wass MN, Michaelis M, Cinatl J, Jr. 2022. Reduced
499 interferon antagonism but similar drug sensitivity in Omicron variant compared to Delta
500 variant of SARS-CoV-2 isolates. *Cell Res* 32:319-321.

501 23. Bojkova D, Rothenburger T, Ciesek S, Wass MN, Michaelis M, Cinatl J, Jr. 2022. SARS-
502 CoV-2 Omicron variant virus isolates are highly sensitive to interferon treatment. *Cell
503 Discov* 8:42.

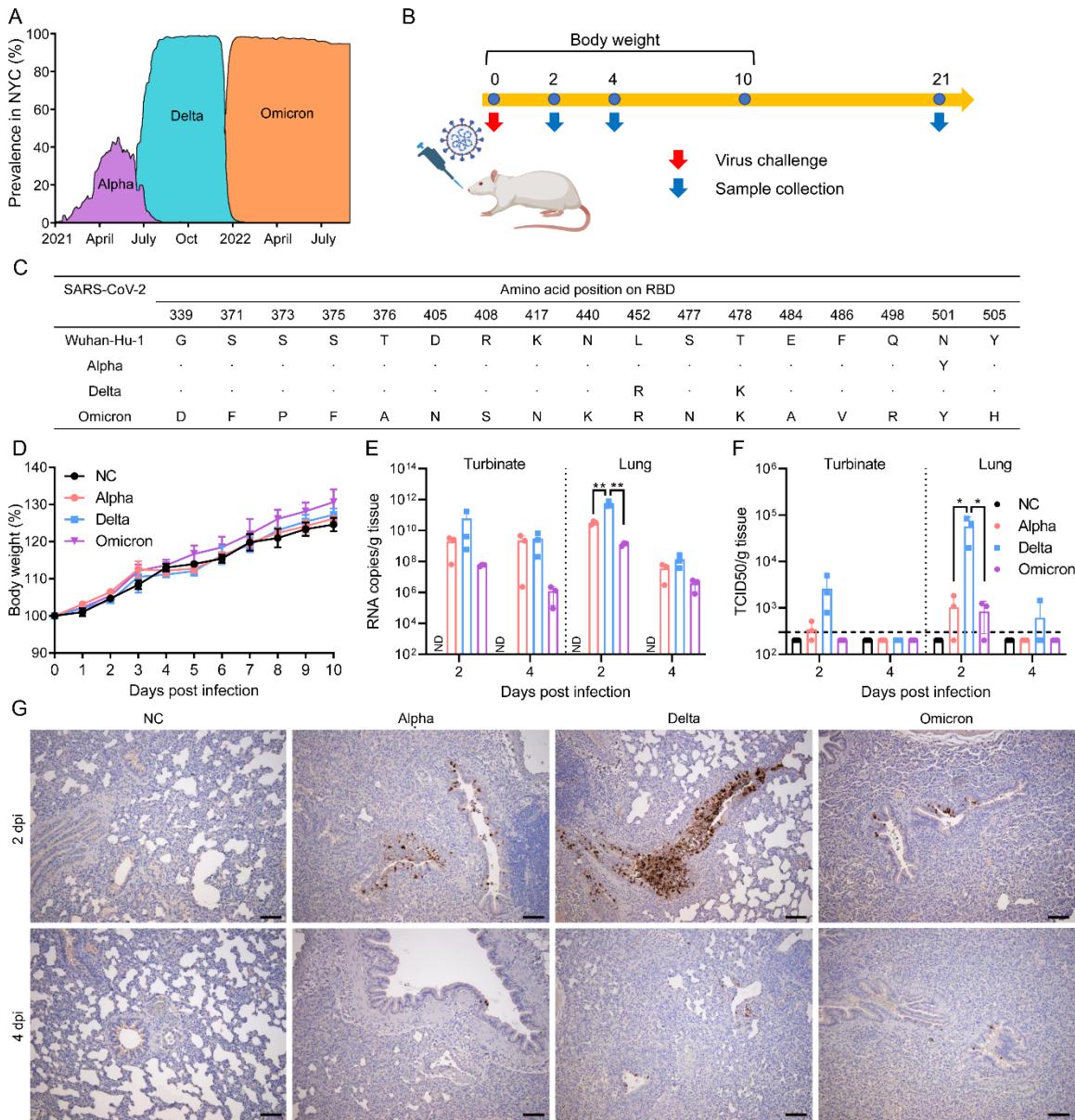
504 24. Untergasser A. 2008. RNAPrep - Trizol combined with Columns.
http://www.molbi.de/protocols/rna_prep_comb_trizol_v1_0.htm. Accessed April 13.


507 25. Mirdita M, Schutze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. 2022. ColabFold:
508 making protein folding accessible to all. *Nat Methods* 19:679-682.

509 26. Xu Y, Wu C, Cao X, Gu C, Liu H, Jiang M, Wang X, Yuan Q, Wu K, Liu J, Wang D, He X,
510 Wang X, Deng SJ, Xu HE, Yin W. 2022. Structural and biochemical mechanism for
511 increased infectivity and immune evasion of Omicron BA.2 variant compared to BA.1 and
512 their possible mouse origins. *Cell Res* 32:609-620.

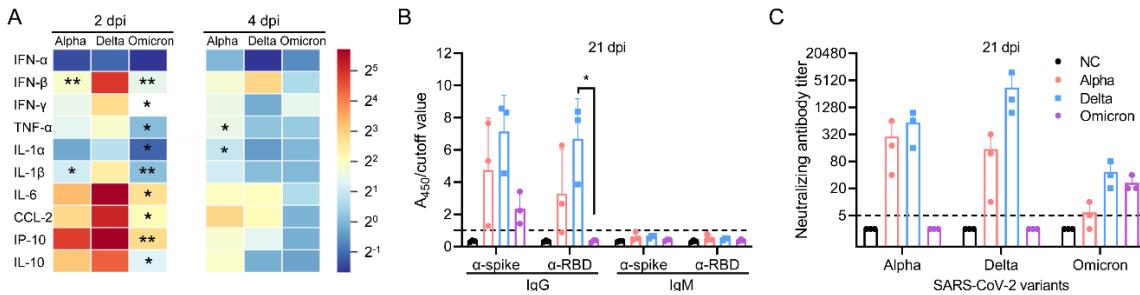
513 27. Liebschner D, Afonine PV, Baker ML, Bunkoczi G, Chen VB, Croll TI, Hintze B, Hung
514 LW, Jain S, McCoy AJ, Moriarty NW, Oeffner RD, Poon BK, Prisant MG, Read RJ,
515 Richardson JS, Richardson DC, Sammito MD, Sobolev OV, Stockwell DH, Terwilliger TC,
516 Urzhumtsev AG, Videau LL, Williams CJ, Adams PD. 2019. Macromolecular structure
517 determination using X-rays, neutrons and electrons: recent developments in Phenix. *Acta*
518 *Crystallogr D Struct Biol* 75:861-877.

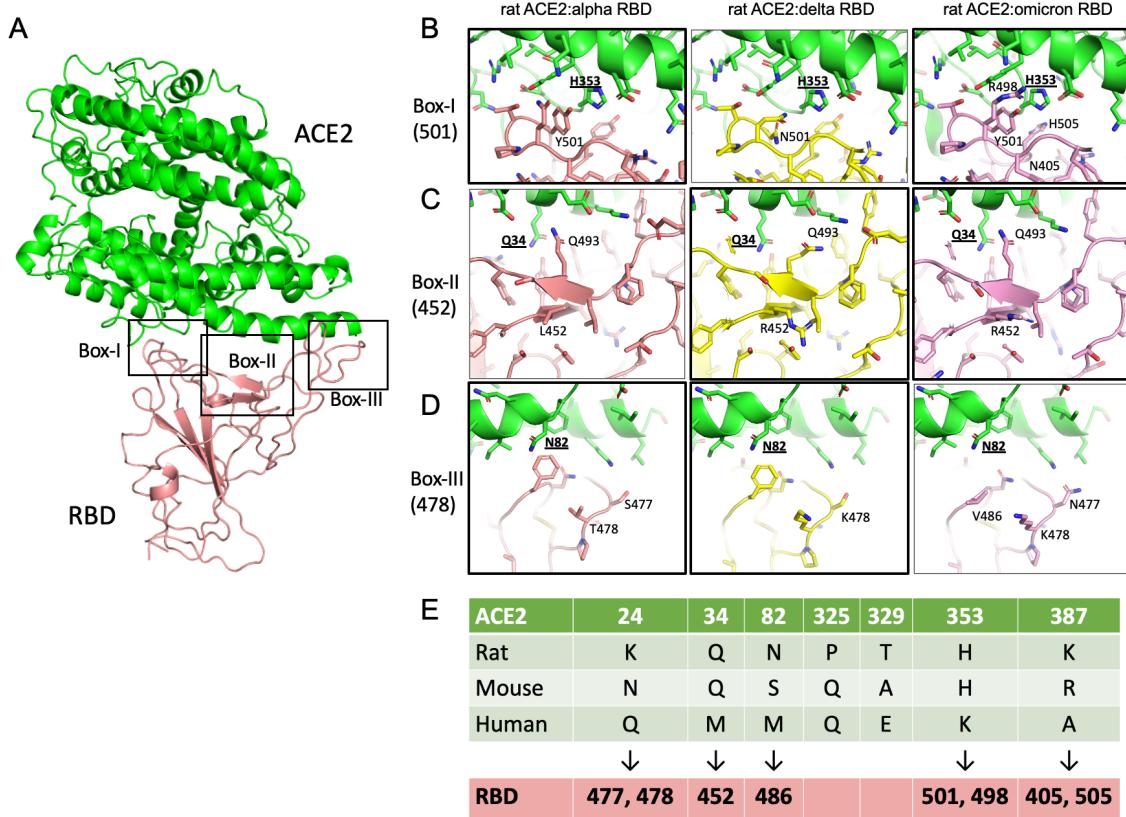
519
520


521 **List of Figures**
 522

523
 524

525 **Figure 1.** SARS-CoV-2 genomic sequencing in wild rats. (A) SARS-CoV-2 genomes found in rats
 526 in comparison with reference wild-type virus and variants of concern. Analyses were performed
 527 and visualized using <https://clades.nextstrain.org>. Reference sequences were downloaded from
 528 GISAID. (B) Phylogenetic tree of rat SARS-CoV-2 sequences with reference sequences from wild-
 529 type viruses and variants of concern. Branches with posterior probability ≥ 0.7 are labeled. (C)
 530 Distance matrices of regions covered by each rat-derived SARS-CoV-2 genome. Lineage B is
 531 represented by hCoV-19/Wuhan/IME-WH05/2019|EPI_ISL_529217|2019-12-30, Delta by hCoV-
 532 19/USA/NY-Wadsworth-21052117-01/2021|EPI_ISL_2278740|2021-05-01, Omicron by hCoV-
 533 19/USA/NY-NYULH1825/2021|EPI_ISL_2427410|2021-05-11, Alpha by hCoV-19/USA/NY-
 534 Wadsworth-21070773-01/2021|EPI_ISL_2868594|2021-05-31, Beta by hCoV-19/USA/NY-PRL-
 535 2021_1008_02C08/2021|EPI_ISL_5285364|2021-10-03.
 536


537
538


539
540

541 **Figure 2. SD rats are susceptible to infection of Alpha, Delta, and Omicron variants.** (A) The
542 prevalence of Alpha, Delta, and Omicron variants in NYC. The figure was adapted from
543 <https://outbreak.info>. (B) Scheme of the virus challenge experiment using 6-week-old SD rats.
544 (C) Amino acid changes of Alpha, Delta, and Omicron variants across RBD compared to Wuhan-Hu-1
545 (NCBI access No.: MN908947.3). (D) Body weight of rats mock infected or infected with either
546 Alpha, Delta, or Omicron variant, Viral RNA copies (E) and infectious viral titers (F) in the turbinate
547 and lungs from rats infected with either Alpha, Delta, or Omicron variant at 2 or 4 dpi. *, p < 0.05;
548 **, p < 0.01. (G) Detection of SARS-CoV-2 nucleocapsid protein at bronchial epithelial cells by
549 immunohistochemistry at 2 and 4 dpi. Scale bar, 100 μ m.

550
551
552

565

566
567

568 **Figure 4.** Interactions between the receptor binding domain (RBD) of SARS-CoV-2 variants Alpha,
569 Delta, and Omicron and the rat ACE2. (A) Rat ACE2 in complex with RBD. The three major contact
570 sites in box-1, box-2 and box-3 are shown in subpanels B, C, and D, respectively. Interactions
571 mediated by alpha, delta and omicron RBDs are compared side-by-side. Black thick outlines
572 highlighted favorable interactions. (E) A list of ACE2 amino acid variations between rat, mouse and
573 human at the RBD interface. Many RBD mutations in alpha, delta and omicron variants are located
574 near host-specific ACE2 residues, as indicated by black arrows.
575

576 **Tables**

577

578 **Table 1.** Information on rats collected in Brooklyn of NYC with conclusive seropositive or qRT-
579 PCR positive samples

580

Category	Rat code	Collection date	ELISA A ₄₅₀ /Cutoff ^a				qRT-PCR ^b	
			IgG against spike	IgG against RBD	IgM against spike	IgM against RBD	N1	N2
Seropositive	#4	Sep 13	1.046	1.001	0.459	0.772	n.d.	38.42
	#40	Sep 16	1.216	1.132	0.591	0.790	n.d.	n.d.
	#42	Sep 16	1.222	1.049	0.583	0.683	n.d.	n.d.
	#56	Nov 14	1.397	1.538	0.739	0.629	n.d.	n.d.
	#59	Nov 14	1.036	1.071	0.550	0.355	n.d.	n.d.
	#64	Nov 15	1.016	1.199	0.614	0.587	n.d.	n.d.
	#65	Nov 15	1.163	1.021	1.889	0.591	n.d.	n.d.
	#20	Sep 13	1.199	0.906	1.554	1.314	n.d.	n.d.
	#24	Sep 14	0.925	0.721	1.857	1.172	n.d.	n.d.
	#48	Nov 14	0.308	0.293	1.419	1.373	n.d.	n.d.
	#79	Nov 16	0.787	0.731	1.174	1.047	n.d.	n.d.
qRT-PCR positive	#2	Sep 13	0.238	0.207	0.552	1.063	33.95	34.61
	#43	Sep 16	0.573	0.481	0.296	0.323	32.27	34.28
Both seropositive and qRT-PCR positive	#19	Sep 13	1.001	1.000	0.480	0.569	36.36	35.83
	#46	Sep 16	1.104	1.144	0.587	0.850	35.23	37.31

581 ^a, A₄₅₀/Cutoff was interpreted as negative if ≤ 1.0 , and seropositive if >1.0 . The cutoff value was
582 3-fold of mean of negative serum samples. Triplicate was conducted and the mean was shown.

583 ^b, Ct value was interpreted as positive if <40 . Triplicate was conducted and the mean was shown.
584 n.d., undetectable.

585

586