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ABSTRACT 
 

Brain networks exist within the confines of resource limitations. As a result, a brain network must 

overcome metabolic costs of growing and sustaining the network within its physical space, while 
simultaneously implementing its required information processing. To observe the effect of these 

processes, we introduce the spatially-embedded recurrent neural network (seRNN). seRNNs learn 

basic task-related inferences while existing within a 3D Euclidean space, where the communication of 

constituent neurons is constrained by a sparse connectome. We find that seRNNs, similar to primate 
cerebral cortices, naturally converge on solving inferences using modular small-world networks, in 

which functionally similar units spatially configure themselves to utilize an energetically-efficient 

mixed-selective code. As all these features emerge in unison, seRNNs reveal how many common 
structural and functional brain motifs are strongly intertwined and can be attributed to basic biological 

optimization processes. seRNNs can serve as model systems to bridge between structural and 

functional research communities to move neuroscientific understanding forward.  
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INTRODUCTION 
 

As they develop, brain networks learn to achieve objectives, from simple functions like autonomic 

regulation, to higher-order processes like solving problems. Many stereotypical features of networks 
are downstream consequences of resolving challenges and trade-offs they face, across their lifetime 

(Fair et al., 2009; Kaiser, 2017) and evolution (Bosman & Aboitiz, 2015; Heuvel et al., 2016; Hiratani 

& Latham, 2022). One example is the optimization of functionality within resource constraints; all 

brain networks must overcome metabolic costs to grow and sustain the network in physical space, 
whilst simultaneously optimizing that network for information processing. This trade-off shapes all 

brains within and across species, meaning it could be why many brains converge on similar 

organizational solutions (Heuvel et al., 2016). As such, the most basic features of both brain 
organization and network function – like its sparse and small-world structure, functional modularity, 

and characteristic neuronal tuning curves – might arise in unison as a result of this basic optimization 

problem. 

 
Our understanding of how the brain’s structure and function interact largely comes from observing 

differences in brain structure, such as across individuals (Miai� et al., 2016) or following brain injury 

(Smith et al., 2022), and then systematically linking these differences to brain function or behavioral 
outcomes. But how do these relationships between structure, function and behavior emerge in the first 

place? To address this question, we need to be able to manipulate experimentally how neural 

networks form, as they learn to achieve behavioral objectives, in order to establish the causality of 
these relationships. Computational models allow us to do this. They have shown that network 

modularity can arise through the spatial cost of growing a network (Kaiser & Hilgetag, 2004), how 

orthogonal population dynamics can arise purely through optimizing task performance (Mante et al., 

2013) and how predictive coding can arise through limiting a brain’s energy usage (Ali et al., 2021). 
But we have yet to incorporate both the brain’s anatomy and function into a single coherent model, 

allowing a network to dynamically trade-off its different structural, functional, and behavioral 

objectives in real time. 
 

To achieve this, we introduce spatially-embedded recurrent neural networks (seRNNs). An seRNN is 

optimized to solve a task, making decisions to achieve functional goals. However, as it learns to 
achieve these goals its constituent neurons face the kind of resource constraints experienced within 

biological networks. Neurons must balance their finite resources to grow or prune connections, whilst 

the overall network attempts to optimize intra-network communication and behavioral performance. 

By allowing seRNNs to dynamically manage both their structural and functional objectives 
simultaneously, while they learn to behave, multiple simple and complex hallmarks of biological 

brains naturally emerge.  
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RESULTS 
 

How to spatially embed a recurrent neural network 

 
We created an optimization process for a general recurrent neural network (RNN). This optimization 

allows flexible trade-offs between improving task performance within the resource constraints of 

existing in a biophysical space. Specifically, this biophysical space acts as a prior, incentivizing the 
network to prune long distance connections in 3D physical space while supporting its intra-network 

communication of signals. 

 
In a canonical supervised RNN, all the network’s trainable parameters are optimized to minimize the 

difference between the predicted value and correct value. To achieve this, we define a task loss 

function (�) which defines the prediction error to be minimized to optimize task performance. To 

produce a network that generalizes well to unseen data, we can add a regularization term. 
Regularization incentivizes networks to converge on sparse solutions and is commonly applied to 

neural networks in general (Hardt & Recht, 2022) and neuroscientific network models (Kietzmann et 

al., 2019; Yang et al., 2019). For a regularized network, the loss function becomes a combination of 
both the task loss and the regularization loss. One example of a commonly applied regularization is 

the L1 regularization, which is also used in LASSO regression (Tibshirani, 1996) and incentivizes the 

network to maximize task performance while concurrently minimizing the sum of all absolute weights 

in the neural network. If we want to regularize the recurrent weight matrix (�) with the dimensions �×� where � is number of units in the recurrent layer, the loss function would be: 

� = �&'() + �1( = �&'() + �.|�|. (1) 
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An RNN with this loss function would learn to solve the task with a sparse weight matrix, where � 
would determine the extent to which the network is forced to converge on a sparse solution. This 

parameter is called the regularization strength. 

 
Unlike regular RNNs, real brain networks are embedded in a physical space (Barthélemy, 2011; 

Bassett & Stiso, 2018; Bullmore & Sporns, 2012). To simulate the pressures caused by existing in a 

biophysical space, we manipulated the regularization term. We hypothesized that incorporating 

constrains that appear common to any biological neural system, we could test whether these local 
constraints are sufficient to drive a network architecture that more closely resembles observed brain 

networks. Specifically, we included spatial constraints in two forms – Euclidean and network 

communication – that we argue are integral to any realistic neural network. 
 

The Euclidean embedding makes sure that neurons are not mathematically abstract computational 

nodes, but instead exist within a physical locality in which space is meaningful. This is important, 

because the physical distance between neurons is a critical influence on their connectivity (Akarca et 
al., 2021; Bullmore & Sporns, 2012; Song et al., 2014). To implement this, we embed units within a 

3D space, such that each unit has a corresponding x, y, and z coordinate. Using these coordinates, we 

can generate a Euclidean distance matrix which describes the physical distance between each pair of 

nodes (Figure 1a). This allows to minimize weights multiplied by their Euclidean distance (�2,4), 
thereby incentivizing the network to minimize (costly) long distance connections. The element-wise 

matrix multiplication is denoted with the Hadamard product ». Adding this to our optimization term 

gives us: 
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The above formalization provides a spatial context for RNN training. However, a further critical 

feature found in physical neural systems is that their communication dynamics are constrained 
(Avena-Koenigsberger et al., 2018; Laughlin & Sejnowski, 2003). That is, neurons communicate with 

each other as a function of how their signals propagate through the network to their neighbors (and 

their neighbors' neighbors, and so on). Intra-network communication becomes a central factor in the 

pruning process of networks, as weaking connections in a fully connected network will always reduce 
how well information can flow through a network (Crofts & Higham, 2009; Griffa et al., 2022; 

Seguin, Mansour L, et al., 2022). So, network communicability is an important prior to guide a 

network’s pruning process while it learns to solve a task. 
 

How can we model this communication constraint? In the above equation, despite accounting for the 

spatial location, topological communication has no influence on connection updates. We can impose 

the influence of communication via a network communicability term (C; Crofts & Higham, 2009), 
which computes the extent to which, under a particular network topology, any two nodes are likely to 

communicate both directly and indirectly over time (Figure 1b). Now taking this topological 

communication into account, we get the following loss function: 

� = �&'() + �.|�»� »�|. (5) 

� = �>?@A|B|>?@A (6) 

Supplementary Figures 1-6 provides a walk-through explanation of how this term works and expand 

on the logic of how constraining the network’s topology can serve as a prior for intra-network 

communication in sparse networks. Supplementary Figure 6 specifically highlights the role that 
communicability has within the network optimization process in terms of both global (i.e., the whole 

network) and local (i.e., connections within a network) communication. Note in Equation 6 that � is a 

diagonal matrix with the degree of unit � (���2) on the diagonal (i.e., the node strength) which simply 
acts as a normalization term preventing any one single edge having undue influence (Crofts & 

Higham, 2009). This is explained in Supplementary Figure 4, 5. 

 

We now have constructed a loss function bringing together task control with both spatial and 
communication network constraints into a single optimization term. To understand how this spatial 

embedding impacts a network’s optimization process, we set up a population of 2000 networks. All 

networks are standard Recurrent Neural Networks, with 100 units in the hidden layer and Rectified 
Linear Unit (ReLU) activation functions (Figure 1c). They are optimized using Adam for 10 epochs. 

Half of the networks (1000 networks) are regularized using the custom seRNN regularizer described 

above, which we term seRNNs. For this, we spatially embed the 100 units of the recurrent layer by 
assigning them locations on a 5x5x4 grid, which defines the Euclidean D term. The other half (1000 

networks) are regularized using a standard L1 regularizer as we outlined above (the baseline model). 

In both cases, the regularizer is only applied to the hidden recurrent layer of the network and the 

regularization strength is systematically varied within each subgroup of networks to cover a wide 
spectrum of regularization strength which is matched across subgroups (Figure 1d, see Methods; 

Regularization strength setup and network selection). All our networks start strongly connected 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 18, 2022. ; https://doi.org/10.1101/2022.11.17.516914doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.17.516914
http://creativecommons.org/licenses/by/4.0/


 

 

6 

(using an orthogonal initialization) and learn through a guided pruning process (Ducharme et al., 
2016; Huttenlocher, 1979; Tamnes et al., 2017). We trained all RNNs on a simple one-choice 

inference task which required networks to develop two fundamental functions of recurrent networks: 

Remembering and integration of information (Figure 1e, see Methods; Task paradigm). On an 

abstract level, networks needed to first store a stimulus, integrate it with a second stimulus, and make 
a predefined correct choice. Our task setup can also be interpreted as a simple one-choice maze 

inference task. In this interpretation, networks were trained to observe a goal location in one of four 

possible locations (the corners of a 3x3 grid), before a short delay period in which the goal location is 
removed and needs to be remembered. After the delay, two possible directions are given as choice 

options. The choice option closer to the goal location is the correct target. Both the task input and 

choice options are One-Hot encoded, with a low level of Gaussian noise added to the task inputs. 
When training all networks, we find that both types of networks successfully manage to learn the task 

with high accuracy (both can achieve > 95% average accuracy; Figure 1f).  

 

We tested whether and how spatially embedding the RNNs influences the structure and function of 
the networks which successfully solve the task (> 90% task accuracy, see Methods; Regularization 

strength setup and network selection). Specifically, using L1 networks as a baseline, we tested 

whether seRNNs show features we commonly observe in the brain – especially in primate cerebral 
cortices. Initially we look at purely structural motifs, including modularity (Bertolero et al., 2015; 

Park & Friston, 2013; Sporns & Betzel, 2016) and small-worldness (Bassett & Bullmore, 2017; 

Sporns & Zwi, 2004), and then progress to testing whether functionally similar units cluster in space, 
as they usually do in brains (Bassett & Bullmore, 2017; Sporns & Zwi, 2004). Following this, we 

tested whether the impact of the spatial embedding goes beyond the structural and functional 

organization of networks and influences how a network’s units work together to achieve high task 

performance. Task solving networks in the brain often implement an energy efficient mixed selective 
code (Johnston et al., 2020; Rigotti et al., 2013). We wanted to see whether this would occur seRNNs. 

In short, we wanted to test if established organization properties of complex brain networks arise 

when we impose local biophysical constraints. 
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Figure 1. Task structure and spatially-embedded recurrent neural networks (seRNNs). a We 

embed RNN in Euclidean space by assigning each of the 100 units a location on an evenly spaced 5x5x4 grid. 

We show a schematic demonstration of a small six-node network and show an analogous Euclidean distance 
matrix. b We also provided topological communication constraints to the RNN to guide the pruning process 

towards good intra-network communication. This topological constrain is the weighted communicability 

measure, which is equivalent to an infinite random walk across the network on a weighted connectivity matrix. 

The weighted communicability term of the matrix is shown for the same simple six-node network. c A recurrent 

neural network (RNN) was trained to complete a task. Each unit of the 100-unit RNN was provided with a 

vector of input information at the relevant step points. Each neural unit consisted of a ReLU activation function, 

which also simultaneously took all weighted recurrent connections and provided a non-linear output. d For the 

main part of the study, we trained 1000 standard L1-regularized RNNs as a baseline comparison to 1000 

spatially-embedded RNNs (seRNNs) which entails both the Euclidean and topological constraints. The training 

was undertaken such that Euclidean distances and weighted communication were minimized. To the right we 

provide a demonstration on a simple network how the W, D and C matrix all change over training epochs. The 
distance matrix is static due to fixed locations of units, but the communicability matrix changes as the structure 

of the network (represented by the weight matrix) changes. e The one-step inference task solved by networks 

consists of an initial period of 20 steps in which a goal is presented in one of four locations on the grid space: 

top left, top right, bottom left, or bottom right. This is depicted in light blue in the top right corner of the grid. 

Subsequently, there is a 10-step delay period in which this goal location must be kept in memory. Then two 

choice options are provided for 20 steps. Using the goal location information from before, agents must choose 

the choice option which is closer to the goal. In this example, as a left and right choice option are provided, the 

correct decision at the end of this 20-step choice presentation period is to select right. f The validation accuracy 

of all converging neural networks is shown across L1 RNNs (blue) and seRNNs (pink), showing the equivalent 

performance is achieved on the one-step inference task.  
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Modular small-world recurrent networks emerge from Euclidean and 

communication constraints 
 

We first investigated the structural topology of our trained networks. In Figure 2a we show a 
representative example of an seRNN network depicted in the 3D Euclidean space it was trained in, 

showing sparse connectivity. In accordance with the training regime, both L1 and seRNN networks 

develop a sparse connectome due to the objective function minimizing weights. In both cases this 
sparsity increases over the course of the training time (Figure 2b, left). However, seRNN networks - 

due to being embedded in a physical space - penalize their weights such that connections which are 

further away tend to become weaker. This is commonly found in empirical brain networks across 
species and scales (e.g., Betzel et al., 2018) (Figure 2b, right).  

 

We next investigated two key topological characteristics that are commonly found in empirical brain 

networks across spatial scales and proposed to facilitate brain function: modularity (Bertolero et al., 
2015; Park & Friston, 2013; Sporns & Betzel, 2016) and small-worldness (Bassett & Bullmore, 2017; 

Sporns & Zwi, 2004). Modularity denotes dense intrinsic connectivity within a module but sparse 

weak extrinsic connections between modules and is commonly measured via a Q statistic (denoting 
how well sub-communities within the network can be partitioned (Newman, 2006)). In contrast, 

small-worldness indicates a short average path length between all node pairs, with high local 

clustering – whereby networks reside somewhere between random and ordered networks (see 

Methods; Topological analysis). We tested if these properties emerged in both our L1 and seRNN 
model systems. 

 

Computing modularity Q statistics and small-worldness relative to appropriate null models (see 
Methods; Topological analysis) shows that seRNNs consistently exhibit both increased modularity 

(Figure 2c) and small-worldness (Figure 2d) relative to L1 networks over the course of training. 

Differences are smaller initially, but later in training, the effect size for differences in modularity are 
large (at epoch 9, modularity p = 2.24x10-82, Cohen’s d = 1.07; Figure 2c, right) and for small-

worldness moderate-to-large (p = 2.82 x 10-19, Cohen’s d = 0.59; Figure 2d, right). It is of note that, 

while there is variability across empirical brain networks depending on species, modality and scale, 

seRNNs achieve modularity Q statistics within ranges commonly found in empirical human cortical 
networks (Hilger et al., 2017). Both L1 and seRNNs achieve the technical definition of small-

worldness of >1 (Watts & Strogatz, 1998), but seRNNs exhibit a higher value more consistent with 

empirical networks (for review, see Bassett & Sporns, 2017). Supplementary Figure 7 shows how 
the subparts of the regularization interact with the task optimization to shape these structural effects. It 

is important to note that within the population of seRNNs we find varying degrees of modularity and 

small-worldness (Figure 2c, right; Figure 2d, right) – some seRNNs in fact show lower modularity 
values than some L1 networks. We will return to this variability in a later section and provide an 

explanation for how it can be understood. 

 

Beyond observing topology alone, in recent years generative network models (Kaiser & Hilgetag, 
2004) have been employed to uncover what wiring rules can be used to best simulate empirical 

network topology in silico (Akarca et al., 2021; Betzel et al., 2016; Vértes et al., 2012). These models 

work by simulating the formation of networks over time within a 3D space, by probabilistically 
adding connections. This is determined by a probabilistic wiring equation, which balances the costs of 

forming connections with a particular topological wiring rule (see Methods; Generative network 

models). Recently, one particularly successful type of wiring rule has been homophily – where nodes 

preferentially wire with other nodes that are similar to themselves in terms of their shared 
connectivity. These rules have been shown to very effectively simulate the statistical topology of both 

empirical structural and functional connectivity, across scales and species (Akarca et al., 2021, 2022; 

Betzel et al., 2016; Carozza et al., 2022; Oldham et al., 2022; Vértes et al., 2012). While it has been 
observed that homophily resonates with Hebbian-like mechanisms (Akarca et al., 2022; Goulas et al., 

2019; Vértes et al., 2012) it still remains unclear how or why such rules would be implemented in 

neurobiological networks. To address this, we next tested the possibility that this homophily 
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phenomenon can be explained simply by the spatial and communication constraints intrinsic to 
biological neural networks under task-control. That is, the fact that homophily mechanisms produce 

realistic topology is an epiphenomenon of the underlying basic physical constraints that brain 

networks are under. If so, we should expect that, just as in empirical brain networks, the topology of 

seRNNs should also be best recapitulated by a homophily generative rule.  
 

By fitting generative network models (see Methods; Model fitting) to functioning seRNNs (g90% 
validation accuracy) we indeed find that the topology of seRNNs are uniquely best simulated by 

homophily generative models (One-way ANOVA F(12,2730) = 814.3, p < 10-90; all Tukey HSD 

comparisons to other rules, p < 3x10-7) (Figure 2e). This is not the case for L1 networks (one-way 
ANOVA F(12,3783) = 546.4, p < 10-90; both Tukey HSD comparisons with the matching model, 

p<3x10-4; Supplementary Figure 8) and, when comparing seRNNs and L1 networks directly, 

seRNNs are approximated by homophily generative models better with a large effect size (p = 
1.02x10-40, Cohen’s d = 0.80). In Figure 2e we further show direct comparisons data to macroscopic 

findings in children’s structural connectomes (left; Akarca et al., 2021) and high-density 

multielectrode arrays of rodent cortical neuronal networks at micrometer scales (right; Akarca et al., 

2022). In Supplementary Figure 9, we demonstrate how homophily models increasingly 
approximate topology with time and regularization constraints. 

 

To summarize so far: by incorporating spatial and communication constraints within a neural 
network, we produce structural topologies very reminiscent of empirical brain network architectures: 

modularity, small-worldness and homophilic generative properties.  
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Figure 2. Spatially embedded recurrent neural networks (seRNNs) exhibit a brain-like 

structural topology. a Left, an example of a representative seRNN network in the 3D space in which it was 

trained. This network was taken from epoch 9 at a regularization of 0.08 and is the network used for 

visualizations for the rest of this paper. Middle, we show the negative relationship between the connection 

weights of seRNN versus the Euclidean distances of the connections. Right, we show the weight matrix of this 

seRNN. b Left, weights decline for both L1 and seRNN networks over the course of epochs/training. Right, 

seRNNs have a negative correlation between weight and Euclidean distance over the course of epochs/training, 

but in L1 networks there is no relationship between weights and Euclidean distance. These results are across all 

networks. c Left, a schematic illustration of the concept of modularity in networks. While both L1 and seRNN 
networks exhibit increasing modularity over epochs/training, there is a consistently greater modularity in 

seRNNs compared to L1 networks. Right, we show very large (Cohen‘s d = 1.07) statistical differences in 

modularity distributions for functioning (validation accuracy g 90%) epoch 9 networks in L1 and seRNN 

networks. d Left, a schematic illustration of the concept of small-worldness in networks. While both L1 and 

seRNN networks exhibit a similar trajectory shape of small-worldness over epochs/training, there is a 

consistently greater small-worldness in seRNNs compared to L1 networks. Right, we show moderate-to-large 

(Cohen’s d = 0.59) statistical differences in small-worldness distributions for functioning epoch 9 networks in 

L1 and seRNN networks. e For a range of generative network models, we present the model fit of the top 

performing simulations fit (see Methods; Voronoi tessellation parameter fitting procedure) to seRNNs. 

Results show that homophily models achieve the best model fits. These findings are congruent with published 

data from adolescent whole-brain diffusion-MRI connectomes (bottom, left) and high-density functional 
neuronal networks at single-cell resolution (bottom, right).  
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Functionally related units spatially organize in seRNNs 

 
So far, we have explored how imposing biophysical constraints within seRNNs produces structures 

that mimic observed networks. However, this says nothing about the functional role of neurons or 
their patterning within the network. We next examined this by exploring the configuration of 

functionally related neurons in 3D space (Figure 3a). In brain networks, neurons sharing a tuning 

profile to a particular stimulus tend to spatially group within a spatial structure (Kanwisher, 2010; 
Thompson & Fransson, 2017). This occurs across spatial and functional scales, such as fine-grained 

cortical surfaces with preferences for stimuli features (Waskom & Wagner, 2017) (Figure 3b) to 

whole-brain functional connectivity which form regular modular network patterns (Ji et al., 2019) 
(Figure 3c). Additionally, large-scale high-resolution recordings in rodents show how the brain keeps 

many variable codes localized but also distributes some across the network (Steinmetz et al., 2019). 

To test if seRNNs recapitulate functional co-localization, we decoded how much variance of unit 

activity can be explained by the goal location or available choice options, over the course of each trial 
(see Methods; Decoding). In Figure 3d we show a visualization in a representative network and unit-

specific preferences over the course of a single trial.  

   
By taking the relative preference for goal versus choice (calculated simply as the goal explained 

variance minus the choice explained variance) for each unit, we tested whether sensitivity to task-

relevant information was concentrated in parts of the network. We did this via simple spatial 

permutations, testing if the Euclidean distance between highly “goal” or “choice” neurons was 
significantly less or more than would be expected by chance (see Methods; Spatial embedding 

permutation test). A small pperm value corresponds to the observation that functionally similar neurons 

tend to also be significantly clustered in 3D space and a large pperm corresponds to functionally similar 
neurons being distributed in space (Figure 3e, top).  

   

We tested for functional co-localization across three time-windows of the trial duration (the total 
duration of a trial was 50 steps; Figure 1e): (i) an early stage (goal presented, decoded from steps 15-

20); (ii) a middle stage (choice-options presented, decoded from steps 30-35) and (iii) a late stage 

(decision point, decoded from steps 45-50). At the early stage, when only goal information given to 

the network, neurons code only for the goal information (seen by wide-spread dark green nodes in 
Figure 3d, left). In seRNNs, there is a slight positive skew in pperm values, suggesting clustering of 

highly goal coding neurons (Figure 3e, middle-left). Subsequently, in the middle stage, when choice 

options are first presented, this goal information clusters within a concentrated area of space, leaving 
the choice information distributed (seen by clustering of green nodes and distribution of brown nodes 

in Figure 3d, middle). This is shown by a large positive skew in pperm values for the goal in seRNN 

networks (Figure 3e, middle-top) and correspondingly the opposite for choice information (Figure 

3e, middle-bottom). In the late stage, the clustering of goal information in space dissipates such that 

by the time a decision must be made the goal information has now spread out slightly more than 

before – although still retaining some clustering (Figure 3e, middle-right). At this point, the choice 

code has now become distributed (Figure 3e, bottom-right). This suggests that seRNNs use their 
highly modular structure to keep a strongly connected core with goal information which needs to be 

retained across the trial. It uses spatially proximal units to form this core. The presented choices 

information is then represented by units outside this core and dynamically integrates with the 
information in the core as the decision point approaches. Note that these findings are unique to 

seRNNs, shown by the distribution of seRNN pperm values being skewed. L1 pperm values remain 

uniform, indicative of no functional organization (no statistical effect). In Supplementary Figure 10 

we show that these findings are true when variables (goal, choices) are treated independently instead 
of relatively. 
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Figure 3. Functional clustering and distribution of coding in space. a An example of a representative 

seRNN network. The color of the nodes relates to the decoding preference of that neuron, where a preference for 

goal information are represented by green and choices information by brown. b Waskom, et al. (2017) 

highlights the spatial clustering of neuronal ensembles which are preferentially tuned for orientation (green) 

versus color (orange) in dorsolateral prefrontal cortex.  c Ji, et al. (2019) highlights the macroscopic spatial 

organization of functional networks. d We show decoding of neuronal units for goal (green) versus choice 

(brown) information at different points in the trial, within the representative seRNN network. e A schematic 

illustration of the spatial permutation test for determining functional clustering (top-left) or distribution (top-

right). The pperm values across RNNs are given for goal information (middle) and choice information (bottom) 

for seRNNs (pink) and L1 networks (blue). Goal information is shown to be clustered, as given by the positively 
skewed pperm distributions. Choice information is shown to be distributed, as given by the negatively skewed 

pperm distributions.  
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Mixed selectivity and energy efficient coding 

 
So far, we have shown that adding spatial constraints to a network as it learns gives rise to patterns of 

network connectivity which are highly reminiscent of observed biological networks. Nodes 
functionally co-localize, and the spatial embedding causes differences in how they code task-relevant 

information. This selectivity profile has been widely studied across species and brain regions. Studies 

show that neurons in task-positive brain regions tend to show a mixed selectivity profile, meaning that 
neurons do not only code for a single task variable but instead a mixture of them (Rigotti et al., 2013; 

Wallach et al., 2022; but see Hirokawa et al., 2019 and Whittington et al., 2022). A mixed selective 

code is assumed to support a network solving complex tasks by increasing the decodability of 
information from the network’s neurons (Fusi et al., 2016; Johnston et al., 2020). There are many 

ways to quantify selectivity profiles (e.g., see Bernardi et al., 2020 for recent implementations). One 

very simple method is to look at the correlation of explained variances per task variable across the 

population of neurons. These are expected to be uncorrelated, implying a neutrally mixed code where 
a neuron’s coding preference for one variable does not predict its code for another variable. In single 

unit recordings, correlations can be close to zero or sometimes slightly positive (Erez et al., 2022). In 

our analysis we next tested whether seRNNs show a similar uncorrelated code. 
 

In the first instance we looked at the correlation of selectivities of trained networks (epoch 9) for the 

goal and choices variables. At the time point in the trial when the network must make a choice, the 

median correlation falls on r = -0.057 for seRNN but r = -0.303 for L1, showing that L1 networks tend 
to produce an anti-correlated code while seRNNs have a nearly purely mixed selective code (Figure 

4a). It is possible that this effect is driven by the differential connectome structure of the two groups 

of networks. While a purely modular and separated network would not automatically also mix codes 
across variables evenly, we find a well-mixed code in seRNNs. The additional highly communicative 

connections between modules of the small-worldness characteristic might help seRNNs to organize 

units in space while retaining a mixed code across the population.  
 

Next, we explored the correlation of selectivities across epochs, regularization strengths and time 

points within the trials. Looking at the correlations across the regularization spectrum, corresponding 

to the strength of the spatial embedding, in epoch 9 (Figure 4b, lower row, ochre), stronger 
regularization led to an anti-correlated code in both L1 and seRNN, but seRNNs’ negative slope 

leveled off more quickly than L1, protecting them from becoming too anti-correlated. With regards to 

training time, codes became more anti-correlated with higher epoch number, as training duration is 
related to stronger regularization (Figure 4b, upper row with lower row). We also saw the 

correlation of selectivities changing within a trial, starting with an anti-correlated code which is 

becoming more mixed throughout the trial as the point of decision approaches (Figure 4b, compare 

blue lines with ochre lines). This likely is a good strategy for the network, as an initially segregated 

goal code makes sure that goal information does not vanish too quickly. As the trial goes on, the goal 

code gradually mixes with the choices code to arrive at a highly informative mixed selective code 

when the network needs to infer the correct choice. Like our structural results, we saw that there is 
significant variation across the population of networks for both L1 and seRNNs (see Figure 4a, b), 

where some networks fall neatly on r = 0 and others might show strongly correlated codes. The 

following section provides an analysis of which specific networks show mixed selective codes. 
 

The choice of a neuronal code in a population of neurons is strongly linked to the question of energy 

demand. As the firing of action potentials uses a significant portion of energy (Attwell & Laughlin, 

2001), a population of neurons should choose a code with a good trade-off of metabolic cost and 
information capacity (Johnston et al., 2020). We wanted to investigate whether the structural and 

functional differences identified so far have an impact on the amount of energy spent on signals sent 

through the network. To test this, we calculated the mean activation of each unit in a network’s 
recurrent layer (epoch 9 networks) during the period of information integration (after the onset of 

choices). Then we tested for the difference between seRNNs and L1 networks, controlling for the 

effect of the average weight strength in the recurrent layer (Figure 4c). seRNNs spend significantly 
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less energy on unit activations compared to L1 networks (p < 0.001). Sustaining a mixed-selective 
code at the time of choice might help the downstream integration units to decode information more 

easily so that fewer unit activations are needed to effectively communicate the correct choice. Note 

that the effect disappears for the networks with higher average weights as these are also the networks 

with relatively weak regularization and hence weaker spatial embedding. 
 

The seRNN, with its brain-like constraints, seems to automatically converge on a mixed selective 

code at the point of choice, as we would expect to observe in brains (Erez et al., 2022; Johnston et al., 
2020). The seRNN is not only closer to the brain’s code than we observe in L1 networks, but also 

achieves its functionality spending less energy on unit activations. The result is that seRNNs solve the 

task with a code that maximizes decoding performance while minimizing energy consumption. Put 
simply, it is not just that neurons functionally co-localize, their individual tuning properties are also 

shaped to minimize costs.  

 
Figure 4. Mixed selectivity and energy efficiency. a The histogram of correlations of selectivities at the 

decision point (correlation between explained variance for goal and explained variance for choices) shows how 

the distribution of seRNNs is more centered around the expected value r = 0 than the L1 networks. Colored lines 

mark the median of the distribution. The expected value corresponds to a fully mixed selective code. Colored 

lines indicate the median values of the distributions. b Longer training and stronger regularization both cause a 

more anti-correlated code. At the point of decision, seRNNs naturally center on a purely mixed selective code as 

they do not go far below r = 0, unlike L1 networks. c seRNN networks spend less energy on unit activations 

than L1 networks which are matched for mean weight strength in the recurrent layer. 
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Regularization leads to convergent brain-like topology and function 

 
So far, we have seen that seRNNs show a collection of features which are commonly observed in 

brains but have not been related to each other before. The caveat not addressed so far is that for any 
feature we observed in seRNNs we also see strong variation across the population of networks (e.g., 

Figure 2c for modularity or Figure 4a for mixed selectivity). This opens the possibility that these 

features do not actually arise in parallel in seRNNs but instead each feature could emerge in its unique 
subgroup of networks. This would be unlike biological brains which exist in a critical sweet-spot area 

(Beggs, 2008) where all the features described in this paper are observed. In this section we tested 

whether all these seRNN features co-appear in a similar subset of all trained networks, defined by a 
unique combination of training parameters. 

 

To study the co-occurrence of brain features in seRNNs we looked at the distribution of feature 

magnitude across the space of training parameters (regularization strength, number of training epochs 
passed). Figure 5a shows matrix plots for accuracy (left), total sum of weights (middle-left), 

modularity (middle-right) and small-worldness (right) across the entire spectrum of training epochs 

(x-axis) and regularization strengths (y-axis). As before, there is substantial variation in the magnitude 
of features across the population of networks, but now we also see that this variation is structured. 

Brain-like topology emerges in a sweet-spot of low to medium strength regularization and during the 

later training epochs (pink box). The schematic in Figure 5b highlights this space of sparse, highly 

accurate, modular small-world networks with an example network exhibiting all properties (Figure 

5b, middle-right). Above this space (i.e., networks with less regularization, highlighted in orange) 

networks can solve the task and exhibit small-worldness, but remain very dense and lack the modular 

organization found in empirical brain networks. Below this space (i.e., networks with more 
regularization, highlighted in light blue) networks exhibit extreme sparsity and modularity, but fail to 

functionally converge on the task and they lose their small-world topology. Example networks 

sampled from these spaces are highlighted (Figure 5b, top-right & bottom-right). 
 

In a next step we wanted to look at the same “sweet spot” in terms of the network’s functional 

properties. The decoding required us to focus this analysis on networks with high task performance 

(see Methods; Decoding from unit activations). We now present networks with an accuracy > 90% 
at epoch 9. Figure 5c shows the functional results across regularization strengths, highlighting the 

sweet-spot of regularization from Figure 5a with the pink box. In the first two plots from the top, we 

show two structural metrics (sparsity and short connection preference). We observed the same 
distribution when looking at the homophily generative wiring rule across the regularization spectrum 

(Supplementary Figure 8b). Looking at mixed selectivity (Figure 5c, 3rd from top) our analyses 

revealed that networks show a fully mixed-selective code at the decision point in the sweet-spot 
window identified before. Units here show a balanced code with information for both goal and 

choices (Figure 5c, bottom), whereas very dense or very sparse network show a preference for either 

goal or choices information. As such the density and related modular small-world structure influences 

the time horizon of information flowing through the network. Here dense networks show greater focus 
on past information which resonates with how functional networks reconfigure to support memory 

(Cohen & D’Esposito, 2016). Supplementary Figure 11 shows a detailed correlation matrix showing 

all pairwise relationships between features studied in the paper. 
 

Our findings show that there is a critical parameter window in which both structural and functional 

brain features jointly emerge in seRNNs. Brains are often said to live in a unique but critical niche 

where all characteristics needed to support their function can exist in parallel (O’Byrne & Jerbi, 
2022). seRNNs show the same preference for a critical parameter window but also give us the ability 

to study networks on their way to converging on brain-like characteristics in the critical parameter 

window or networks which lie outside the sweet-spot.  
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Figure 5. The spatially-embedded recurrent neural network (seRNN) parameter space 

converges on brain-like topology and function. a The white borders within the regularization-training 

parameter space delineate the conditions where seRNNs achieve robust accuracy (left), sparse connectivity 

(middle, left), modular networks (middle, right) and small-worldness (right). The pink box shows where all 

these findings can be found simultaneously. The color of the matrix corresponds to the relative magnitude of the 

statistic compared to the maximum. b This is further highlighted by a schematic representation which shows the 

space of possible seRNNs. The pink box shows the overlap of all findings, where accurate, sparse, modular, 

small-world networks are generated, which we term as being at the optimal trade-off. Network 1, 2 and 3 each 

represent example networks across the space. The nodes of the representative graph reflect the node's strength, 

defined as the total sum of the node's in- and out-connection weights. c In this pink window, networks are sparse 

(top), prefer short connections (middle-top), have a correlations of variable selectivities centering around zero, 

consistent with mixed selectivity (middle-bottom) and have equivalent explained variance for both the goal and 

the choice (bottom).   

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 18, 2022. ; https://doi.org/10.1101/2022.11.17.516914doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.17.516914
http://creativecommons.org/licenses/by/4.0/


 

 

17 

DISCUSSION 
 

Functioning brains have key organizational features endowing them with computational capacities in 

order to perform a broad range of cognitive operations efficiently and flexibly. These include sparse 
connectivity with a modular small-world structure (Bassett & Bullmore, 2017; Park & Friston, 2013; 

Yan & He, 2011) that are generatable via homophilic wiring rules (Akarca et al., 2021; Betzel et al., 

2016; Vértes et al., 2012) with spatially-configured functional units that implement a mixed-selective 

code (Fusi et al., 2016; Rigotti et al., 2013) which concurrently minimizes energy expenditure 
(Attwell & Laughlin, 2001; Johnston et al., 2020). We argue that these complex hallmarks can be, at 

least in part, attributed to three forces impacting virtually any brain network: Task control, structural 

costs and local communication constraints. In this work we have shown that spatially-embedded 
recurrent neural networks (seRNNs) allow us to experimentally manipulate these constraints, 

demonstrating that seemingly unrelated neuroscientific findings can emerge in unison and appear to 

have a strong codependence. 

 
The theoretical backdrop to this convergence of phenomena lies in conceptualizing the brain as 

having to resolve multiple “economic” challenges at once. That is, given limited metabolic resources, 

the brain must perform as well as possible given the environment it finds itself in (for related ideas on 
resource-rationality, see Gershman et al., 2015; Kool & Botvinick, 2018; Todd & Gigerenzer, 2012). 

We hypothesized that numerous structural and functional neuronal features found in brains across 

species could be the result of this very fundamental optimization and how it unfolds. Indeed, the 
predominant explanation for anatomical organization of the brain has focused on minimizing wiring 

costs while maximizing adaptive topological features (Bullmore & Sporns, 2012; Zhou et al., 2022). 

As such, we have seen considerations of space implemented in functional feedforward neural network 

models (Gozel & Doiron, 2022; Huang et al., 2019; Lee et al., 2020). Here we instantiated our core 
hypothesis mathematically within the seRNN model by providing two challenges to RNNs during 

supervised learning: (1) long connections should be minimized where possible – reflective of their 

metabolic cost (Kaiser & Hilgetag, 2006; Sporns, 2011), and (2) connections can only change their 
weights as a function of their underlying communication – reflective of signal propagation between 

neuronal units (Betzel et al., 2022; Seguin, Jedynak, et al., 2022; Seguin, Mansour L, et al., 2022; 

Shimono & Hatano, 2018). Both challenges are addressed at the local neuronal-level over the course 
of training which has the effect of continually shaping the networks global structural and functional 

properties over time. 

 

Our findings show that, within a critical window of regularization, seRNNs recapitulate numerous 
empirical structural and functional neuroscience observations simultaneously. This suggests that 

providing artificial neural networks with a topophysical structure (Bassett et al., 2010; Sperry et al., 

2017) can enhance our ability to directly link computational models of neural structure and function. 
Notably, recent work placing empirical connectomes within a reservoir framework made important 

steps towards this goal by partially fixing the structure of the network (Damicelli et al., 2021; Goulas 

et al., 2021; Suárez et al., 2021). In contrast, our seRNNs approach allows us to be very specific in 

defining the networks’ constraints and objectives, in both physical structure and function, while 
allowing the network’s connectivity to change over time and hence simulate more realistic 

interactions between network structure and function. 

 
Our findings extend beyond neuroscience and have implications for modern artificial intelligence (AI) 

research. A technical summary of our approach is that we have introduced a regularization function 

pushing RNNs to converge on brain-like sparse structure and function, while they are trained to 
optimize task function via a regular backpropagation algorithm. Importantly, sparse models also play 

a large role in machine learning and AI. One of the first widely used implementations of sparsity can 

be found in regression models, specifically LASSO regression (Tibshirani, 1996). Regularization can 

generally be interpreted as a prior over the space of possible parameter values (Hardt & Recht, 2022) 
and in the case of LASSO regression, the L1 regularization is nudging the model to converge on a 

generally sparse model. As modern neural network models increasingly have grown in size and 
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complexity (Ramesh et al., 2022; Reed et al., 2022), sparsity has received a new wave of attention 
because a reduced set of parameters can make training and storing a model more efficient (Hoefler et 

al., 2021) and allow for processing of longer input sequences (Zaheer et al., 2021). We have seen this 

development especially in vision models (Han et al., 2015; Zhang et al., 2022) and also recently in 

reinforcement learning (Graesser et al., 2022). Generally, these studies show that large neural 
networks can easily be pruned without negatively impacting task accuracy. Our findings expand this 

literature by demonstrating that neuroscience can inform the specific shape and structure of the 

trained model (Chechik et al., 1998; Lindsay et al., 2017). For example, our results and related 
simulations from other groups show how the network’s structure influences the selectivity profile of a 

network’s units (see Figure 5; Lindsay et al., 2017). seRNNs converge on a spatially structured code 

but preserve neural diversity of signals by keeping the signals of cells across the population mixed-
selective. Regular neural networks, like our L1 baseline models, can lack richness in the final learned 

representations (Papyan et al., 2020) which recently has been hypothesised to inhibit a model’s 

performance in solving complex problems (Ma et al., 2022). As such, seRNNs highlight how 

neuroscience can provide a lens by which to observe how concepts of biological structure and 
function can aid efforts to overcome limitations in neural networks. 

 

There are many areas that we wish to improve upon with future research. Principally, our models did 
not include a significant amount of biological detail that, while inevitably critical for neuronal 

functioning, do not speak to the specific observations we aimed to recapitulate in the present study. 

Nevertheless, implementing such details including specific molecular mechanisms that guide neural 
circuit development (Moons & De Groef, 2021) or heterogeneous spiking of neurons (Perez-Nieves et 

al., 2021) will likely provide a range of new insights into the trade-offs specific to biological brains. 

Indeed, the addition of such biological details will help us expand the applicability of our models to 

explore the effect of developmental time-courses (Baxter & Levy, 2020; Chechik et al., 1998), 
functional brain specialization (Johnson, 2011) and how network variability may underpin individual 

differences (Siugzdaite et al., 2020). Beyond biological detail, there are also numerous computational 

directions that are yet to be examined – for example, currently we do not allow units in the seRNNs to 
reposition themselves in space, nor do we train networks to make continuous choices in a multi-task 

environment. 

 

The development of spatially-embedded RNNs allowed us to observe the impact of task control, 
structural cost and communication constraints in a model system which is able to dynamically trade-

off its structural and functional objectives. This showed us how a wide selection of neuroscientific 

findings, which have not been linked to each other before, arise in unison during the same 
optimization process. These features are: Sparse connectivity, preference for short distance 

connections, modularity, small-worldness, homophily, the configuration of functionally similar units 

in space, mixed selectivity and an energy efficient code. We believe that the modelling approach 
shown to work in seRNNs will be able to speed up innovations in neuroscience by allowing us to 

systematically study the relationships between features which all have been individually discussed to 

be of high importance to the brain.  
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METHODS 

 
Task paradigm 

 
The task that networks are presented with is a one choice inference task. Networks first observe 

stimulus A for 20 time-steps, followed by a delay for 10 time-steps, followed by stimulus B for 20 

steps. Agents must then make one choice. This setup can be interpreted as a one-step navigation task, 
where agents are presented with the goal location (stimulus A) followed by possible choice directions 

(stimulus B). The choice to be made is the one moving closer to the goal. The following table outlines 

all possible trials and defines whether the given trial is included in the baseline version of the task, 
compared with the hard version (see Supplementary Figure 7). For the randomized version of the 

task we randomly shuffle the correct choice across the entire training set of trials so that networks 

cannot learn to make correct choices above chance. 

 

Problem Stimulus A Stimulus B Correct Choice Baseline Task 

1 (Right, up) Left, right Right No 

2 (Right, up) Right, down Right Yes 

3 (Right, up) Up, down Up No 

4 (Right, up) Up, left Up Yes 

5 (Right, down) Left, right Right Yes 

6 (Right, down) Up, right Right No 

7 (Right, down) Up, down Down No 

8 (Right, down) Left, down Down Yes 

9 (Left, up) Left, right Left Yes 

10 (Left, up) Left, down Left No 

11 (Left, up) Up, down Up No 

12 (Left, up) Up, right Up Yes 

13 (Left, down) Left, right Left No 

14 (Left, down) Up, left Left Yes 

15 (Left, down) Up, down Down No 

16 (Left, down) Right, down Down Yes 

 

All stimuli are One-Hot encoded with a vector of 8 binary digits. The first 4 define the goal locations 
and only one of the 4 digits would be set to one during the goal presentation. The second 4 binary 

digits each stand in for one allowed choice direction and two choice directions would be set to one 

during the choice options presentation. Gaussian noise with a standard deviation of 0.05 is added to 
all inputs.  

 

This task design is a simplified version of a multi-step maze navigation task we have recorded in 
macaques. The hard version of the task with an extended set of trials is equivalent to the first choice 

monkeys face in their version of the task. The monkeys then continue with a further step to reach the 

goal and collect the reward. As the goal of this study was to establish the emerging features of 

seRNNs, here we focus just on the first choice and leave questions relating to the multi-step task to 
future investigations. 

 

Recurrent neural network modelling 
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All recurrent neural networks in this project have 100 units in the hidden layer and are defined by the 
same basic set of equations: 

/I = ����(�L�I +�N 	/IO7 + �N) (7) 

�IR = ÃT�U/I + �UV (8) 

• �I: Input vector at time t (1x8) 

• �L: Input layer weight matrix (8x100) 
o Xavier initialization 

• /IO7: Activation of hidden layer at time t-1 (1x100) 

o Zeros initialization 

• �N: Hidden layer weight matrix (100x100) 

o Orthogonal initialization 

• �N: Bias of hidden layer (1x100) 

o Zeros initialization 

• /I: Activation of hidden layer at time t (1x100) 

• �U: Output layer weight matrix (100x8) 

o Xavier initialization 

• �U: Bias of network output (1x8) 

o Zeros initialization 

• �: Softmax activation function 

• �IR : Network output / prediction 

 

Networks differ in terms of which regularization was applied to its hidden layer (see Results; How to 

spatially embed a recurrent neural network) and with which regularization strength. Networks are 

optimized to minimize a Cross Entropy Loss on task performance combined with the regularization 

penalty using the Adam optimizer (hyper parameters: learning rate = 0.001, beta_1 = 0.9, beta_2 = 
0.999, epsilon = 1e-07) for 10 epochs. Note that the network’s choice is only read out once, at the 

very end of the trial. Each epoch consists of 5120 problems, batched in blocks of 128 problems. 

Networks trained on the randomized version of the task (see Supplementary Figure 7) are trained on 

epochs consisting of 3840 problems to avoid them becoming too sparse too quickly which would 
prohibit us from analyzing the trajectory of metrics.  

 

Regularization strength setup and network selection 

 
The most critical parameter choice in our analyses is the regularization strength. As shown across 

analyses (e.g., Figure 2 and Figure 5), the strength of the regularization has a major influence on all 

metrics analyzed here. While the L1 regularization and the purely Euclidean regularization could be 
matched by average strength of regularization of the hidden layer, the communicability term of 

seRNNs makes this challenging due to it being dependent on the current state of the hidden layer and 

hence changing throughout training. To match the spectrum of regularization strengths in L1 and 
seRNNs we used a functional approach. As performance in the task starts to break down as networks 

become too sparse to effectively remember past stimuli, we matched regularization strength using task 

performance before looking at any of the other structural or functional metrics. Specifically, we set 

the regularization spectrum on a linear scale and chose the boundary values so that task performance 
started to significantly deteriorate half-way through the set of networks (so around the 500th network 

for the sets of 1000 networks).  
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To make both groups comparable, we focus our analyses on networks which achieve >90% task 
accuracy. For the L1 networks these were 47.3% of all trained networks and for seRNN networks 

39.2%. Note that this difference in percentages is not meaningful per se and could be eliminated by 

matching the regularization spectra of both groups more closely. As we focus our analyses on highly 

functional networks with high task accuracy, matching the regularization spectra of both groups 
would have not influenced the results. The code repository has an overview file with regularization 

strengths chosen for different network types. We hope that future implementations of the seRNNs can 

provide a method for more precise numerical matching between regularization strengths. 
 

Topological analysis 
 

Graph theory network statistics were calculated using the Brain Connectivity Toolbox (Rubinov & 

Sporns, 2010), and the mathematical formalisms are provided. All network statistics were calculated 
on the hidden RNN weight matrix and all edges were enforced to be the absolute value of the element. 

When the measure in question was binary (e.g., small-worldness) a proportional threshold was 

applied, taking the top 10% of these absolute connections. 
 

Modularity. The modularity statistic, Q, quantifies the extent to which the network can be subdivided 

into clearly delineated groups: 

� = 1
� 0 Z�2,4 2 �2�,4

� ^ �5`5a2,4*c
 (9) 

where �2 is the module containing node �, and �5`5a  = 1 if �2 = �4, and 0 otherwise. In this work, 

we tested the modularity using the default resolution parameter of 1. 

 

Small-worldness. Small-worldness refers to a graph property where most nodes are not neighbors of 

one another, but the neighbors of nodes are likely to be neighbors of each other. This means that most 
nodes can be reached from every other node in a small number of steps. It is given by: 

� =	 d/dfghij/jfghi , (10) 

where c and �l'mn  are the clustering coefficients, and l and �l'mn  are the characteristic path lengths of 
the respective tested network and a random network with the same size and density of the empirical 

network. Networks are generally considered as small-world networks at Ã > 1. In our work, we 

computed the random network as the mean statistic across a distribution of n = 1000 random 

networks. The characteristic path length is given by: 

�2 = 1
�0

3 �2,44*c,4q2
� 2 12*c

 (11) 

 

Degree. The degree is the number of edges connected to a node. The degree of node i is given by: 

�2 	= 	0�2,4,
4*c

 (12) 

where �2,4 is the connection status between � and �. �2,4  =1 when link �, exists (when � and � are 

neighbors); �2,4 = 0 otherwise (�2,2 = 0 for all �). 
 

Clustering coefficient. The clustering coefficient is the fraction of a node’s neighbors that are 
neighbors of each other. The clustering coefficient for node i is given by: 
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�2 = 1
�0

2�2�2(�2 2 1)	,2*c
 (13) 

where �2 is the clustering coefficient of node � (�2 = 0 for �2 < 2). 

 

Betweenness centrality. The betweenness centrality is the fraction of all shortest paths in the network 
that contain a given node. Nodes with high values of betweenness centrality therefore participate in a 

large number of shortest paths. The betweenness centrality for node i is given by: 

�2 = 1
(� 2 1)(� 2 2) 0 �N4(�)

�N4 ,
N,4*c

 (14) 

where �N4 is the number of shortest paths between h and �, and �N4(�) is the number of shortest paths 

between h and � that pass through �. 
 

Edge length. The edge length is the total edge lengths connected to a node. It is given by: 

�2 	= 	0�2,4�2,4,
4*c

 (15) 

where �2,4	is the Euclidean distance between � and �. 
 

Global efficiency. The global efficiency is the average of inverse shortest path length. It is given by: 

 

�2 = 1
�0

3 �2,4O74*c,4q2
� 2 12*c

 (16) 

Matching. The matching index computes the proportion of overlap in the connectivity between two 

nodes. It is given by: 

�2,4 	= 	 |c`/a+ca/`|
|c`/a,ca/`|, (17) 

where �2/4  refers to neighbors of the node i excluding node j. Where global measures of matching 

have been used, we averaged across the upper triangle of the computed matching matrix. 

 

Generative network modelling 

 
To elucidate if the topology of our RNNs could be recapitulated via unsupervised wiring rules 

analogous to published works (Akarca et al., 2021; Betzel et al., 2016; Vértes et al., 2012) we 
attempted to simulate their topology via a generative network model.  

 

The generative network model (GNM) can be expressed as a simple wiring equation (Akarca et al., 
2021; Betzel et al., 2016; Kaiser & Hilgetag, 2004; Vértes et al., 2012) in which connections are 

probabilistically added to the network in discrete time-steps. Starting from an empty network, at each 

time point a connection is added probabilistically according to the following simple topological 

wiring equation:  

�2,4 ? 	T�2,4V}T�2,4V� , (18) 
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where �2,4  represents the Euclidean distance between nodes i and j (as outlined above), and Ki,j reflects 

some topological value in forming a connection. We tested 13 established Ki,j wiring rules that have 

been studied elsewhere extensively (Akarca et al., 2021, 2022; Betzel et al., 2016; Carozza et al., 

2022; Oldham et al., 2022) (Table 1). �2,4 represents the wiring probability as a function of the 

product of the parameterized costs and topological value. The end-result is a wiring probability matrix 

which updates over time as new connections are added. Wiring parameters � and � are each scalars 
which tune the relative influence of costs and value on the wiring probability. 

 

Generative model Generative rule class ��,�  

Spatial Spatial 1 

Neighbors Homophily 0 �2j�4jj  

Matching Homophily 
|�2/4 +�4/2|
|�2/4 ,�4/2| 

Clustering Average Clustering 
�22 +	

�
2 

Clustering Difference Clustering |�2 2 �4| 
Clustering Maximum Clustering max	(�2 , �4) 
Clustering Minimum Clustering min	(�2 , �4) 
Clustering Product Clustering �2�4 
Degree Average Degree 

�22 +	�42  

Degree Difference Degree |�2 2 �4| 
Degree Maximum Degree max	(�2 , �4) 
Degree Minimum Degree min	(�2 , �4) 
Degree Product Degree �2�4  

 

Table 1. Topological wiring rules used in the generative network model. 

 

Voronoi tessellation parameter fitting procedure 

 
To generative synthetic networks, we ran simulations across a defined a parameter space of 1000 

evenly spaced combinations (-3 f � f 3 and -3 f � f 3), for each of the 13 generative wiring rules 

(Table 1). This produced a total of 13,000 simulations that were compared to each of the RNNs. Of 
the 1000 RNNs for L1 and seRNNs (sorted by marginally increasing regularization), we constrained 

our analysis between the 100th network (which had been relatively weakly-regularized) to the 600th 

network (which had been relatively strongly-regularized) that were functional (as defined as having 

>90% validation accuracy), which left 455 and 379 networks for L1 and seRNN networks 
respectively. This left 834 RNNs for each of the sets, each with 13,000 simulations, leading to a total 

of 10,842,000 evaluated simulations in total. It is important to note that the generative modelling 

process is based on binary connections rather than weighted. As with the topological analysis, we 
enforced a 10% proportional threshold on the absolute weights of the RNN hidden layer to attain 

these binary networks. 

 

The parameter fitting for each network was done using a Voronoi tessellation procedure (Betzel et al., 
2016). This procedure works by first randomly sampling the parameter space and evaluating the 

model fits of the resulting simulated networks, via the energy equation. Following an initial search of 

200 parameters in this space, we performed a Voronoi tessellation, which establishes 2D cells of the 
space. We then preferentially sampled from cells with better model fits according to the energy 

equation (Betzel et al., 2016). Preference was computed with a severity of ³ = 2 which determines the 

extent to which cell performance led to preferential sampling in the next step. This procedure was 
repeated a further four times, leading to a total of 1000 simulations being run for each considered 

network across all generative rules (as stated above). 
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Generative model cost functions 

 
To evaluate the fitness of synthetic networks relative to our RNNs, we used two different cost 
functions which each compute a measure of dissimilarity between the synthetic network and the RNN. 

The first cost function, termed the energy equation, computes the Kolmogorov-Smirnov (KS) distance 

between the observed and simulated distributions of a range of network statistics (Betzel et al., 2016). 
It then takes the maximum of the four KS statistics considered so that, for any one simulation, no KS 

statistic is greater than the energy. This is acts as a measure of dissimilarity in terms of the global 

statistics individually:  

������ = ���(��) , ��d , ��� , ��n), (19) 

where KS is the Kolmogorov-Smirnov statistic comparing degree k, clustering coefficient c, 

betweenness centrality b and edge length e distributions of simulated and observed networks. 
 

Decoding from unit activations 

 
To analyze the internal function of our trained recurrent neural networks, we record the hidden state 

activity of every unit while the network solves a set of 640 trials. Each trial is constituted of 50 steps 

(as shown in Figure 1e). For decoding, the activity is averaged in step-windows of 5, so that there is a 
total of 10 time-windows. In animal electrophysiology researchers often look at the explained 

variance per task variable per unit. To allow for comparison of our networks to findings in the 

literature, we wanted to extract the same metric. Given the nature of our task (Goal, Choice Options, 
Correct Choice), variables in our recordings are highly correlated, so that the standard decoding with 

ANOVA would give biased results. Instead, we used a decoding algorithm based on L1 regression, as 

follows: 

 
1. Apply cross validated L1 regression with 5 K-Fold to set alpha term with best cross validation 

performance. 

2. Split the dataset via repeated k-fold (3 folds, 2 repeats). 
3. On each (train, test) dataset: 

1) Train L1 regression with the pre-set alpha term. 

2) Calculate explained variance in test dataset. 
3) Iteratively set all values of a given set of predictors (e.g., all goal predictors) to 0 and 

recalculate the explained variance and calculate the drop of explained variance per 

predictor group. 

4) Take mean of drop of explained variance for each group across splits of dataset. 
 

This algorithm results in every unit in every network being assigned an explained variance number for 

every task variable. Note that the decoding cannot reliably work in networks which make too many 
errors, so that we only functionally analyze networks with a task performance of 90% or above. 

 

Spatial permutation testing of task-relevant information 

 
To examine the spatial clustering of decoded task information of neuronal ensembles within the 

RNNs, we constructed a simple spatial permutation test as follows: 
 

1. Considering a single RNN hidden layer at a particular task time window (note, explained 

variances change over the course of the task), for each neuron, compute the relative 
preference for goal versus choice explained variance for each unit. This is calculated as the 

goal explained variance minus the choice explained variance. 
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2. Between all n “goal” neurons (i.e., positive difference from step 1), compute the Euclidean 
distance weighted by the decoding for goal information. This therefore captures the spatial 

proximity between goal neurons weighted by the magnitude of their “goal” information. 

Average this matrix to compute a summary statistic. This is the observed statistic. 

3. Then repeat this procedure for 1000 times, but for a random set of n neurons taken from the 
3D grid space. These 1000 summary statistics are the null distribution. 

4. Compute a permuted p-value (pperm) which is simply the location in which the observed 

statistic (step 2) sits within the null distribution (step 3) normalized to the range [0 1]. This 
value subsequently corresponds to how clustered or distributed the observed goal decoding 

information is clustered in space relative to random chance. A small pperm means that 

information is clustered more than chance and vice versa. 
5. Do step 1-4, but between all “choices” neurons (i.e., negative difference from step 1) 

6. Redo step 1-5 for all desired time windows that have been decoded. In the current work, we 

calculated pperm values for time window 3, time window 6 and time window 9 to reflect 

different aspects of the task over the sequence of the task. 
 

The above steps were done for all functional RNNs (>90% accuracy) for L1 and seRNNs. We 

presented distributions of these pperm values for goals and choices to highlight how goal and choices 
information is clustered, distributed or random at key points in the sequence of the task. To ensure 

that we did not bias our findings, we further computed a slight variation of the above statistical test 

which allows us to assess the clustering of coding information independently (i.e., without computing 
relative goal versus choice coding, as in step 1 above). As cluster size was now not determined by the 

direction of coding (as it was previously) we instead only considered nodes which coded for the top 

50% of the variable (equaling 50 nodes). This was selected because this approximately mirrors the 

cluster sizes achieved in the primary functional clustering analysis. Mirroring the permutation testing 
approach, we calculated the pperm by ranking the mean Euclidean distance between these nodes (top 

50% coding neurons) in a null distribution of Euclidean distance between 1000 permuted samples of 

50 nodes. This was done for goal, choice (to assess replication), but also the correct choice variable 
(which was not tested primarily, due to it being a relative measure between two variables). This test is 

advantageous in that it allows for testing variables independently, but disadvantageous in that it does 

not directly incorporate the coding magnitude into the test statistics. These findings are given in 

Supplementary Figure 9. 
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