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Abstract

Germinal centers (GCs) are specialized compartments within the secondary lymphoid organs
where B cells proliferate, differentiate, and mutate their antibody genes in response to the presence
of foreign antigens. They play a central role in generating an effective immune response against
infectious pathogens, and failures in their regulating mechanisms can lead to the development
of autoimmune diseases and cancer. While previous works study experimental systems of the
immune response with mouse models that are immunized with specific antigens, our study focuses
on a real life situation, with an ongoing GC response in a human lymph node (LN) involving
multiple asynchronized GCs reacting simultaneously to unknown antigens. We combined laser
capture microdissection (LCM) of individual GCs from human LN with next-generation repertoire
sequencing (Rep-seq) to characterize individual GCs as distinct evolutionary spaces. In line with
well-characterized GC responses in mice, elicited by immunization with model antigens such
as NP-CGG, we observe a relatively low sequence similarity, as well as heterogeneous clonal
diversity across individual GCs from the same human LN. Still, we identify shared clones in
several individual GCs, and phylogenetic tree analysis combined with paratope modeling suggest
the re-engagement and rediversification of B-cell clones across GCs as well as expanded clones
exhibiting shared antigen responses across distinct GCs, indicating convergent evolution of the
GCs. Finally, our study allows for the characterization of non-functional clones, where frequencies
of V(D)J or SHM induced stop codons are quantified.

Germinal centers (GCs) are specialized microanatomi-

cal structures within the secondary lymphoid organs where

B cells proliferate, differentiate, and mutate their antibody

genes in response to the presence of foreign antigens [1, 2].

Through the GC lifespan, interclonal competition between

B cells leads to an increased affinity of the B-cell receptors

(BCRs) for antigens accompanied by a loss of clonal diversity

in rodents [3] and humans [4]. Throughout the GC reac-

tion, B cells with improved affinity for antigens as a result

of these mutations are continuously selected. By compet-

ing for antibody-mediated antigen capture and subsequent

acquisition of T-cell help the mutated B cells gain affinity,

and the selected B cells with improved affinity for the anti-

gen differentiate into memory B cells and plasma cells [1,

5]. GCs thus play a central role in generating an effective

immune response against infectious pathogens, and failures

within their tightly regulated environment can lead to the

development of autoimmune diseases [6] and cancer [7].

In vivomouse experiments have shown that individual GCs

exhibit variable degrees of clonal imbalance and dominance,

even when induced synchronously by immunization with var-

ious antigens (CGG, chicken gamma globulin; OVA, chicken

ovalbumin; HA, influenza hemagglutinin (H3); NP-OVA, 4-

hydroxy-3-nitrophenylacetyl-OVA) [3]. In particular, a sub-

set of GCs underwent a massive expansion of higher-affinity

B-cell variants (clonal bursts), leading to a loss of clonal di-

versity at a significantly faster rate than other GCs. These

differences in clonal dynamics among GCs could partially be

explained by the differences in affinity between competing

B cells but also by other factors unrelated to affinity [3].

Moreover, the temporal resolution of GC reactions through

intravital microscopy revealed substantial heterogeneity in

the evolution of both foreign-antigen induced and autore-

active GCs over time [8]. Interestingly, initially dominant
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clones were observed to suddenly lose competitive momen-

tum allowing for the emergence of other clones (inversion

event) [8]. GC computational models suggest that these

chaotic dynamics were likely the consequences of initially

small stochastic advantages in the affinity to antigens [9],

amplified through the selection and proliferation of higher

affinity clones. A research question of interest is to which

extent these observations are applicable to a typical ongoing

GC response in human LN, which involves multiple asynchro-

nized GCs to unknown antigens.

During lymphocyte development, the antigen receptors ex-

pressed by B and T lymphocytes are assembled in an antigen-

independent fashion by ordered variable gene segment re-

combination (V(D)J recombination) [10]. The antigen re-

ceptors of B cells are then further diversified in the GCs

through somatic hyper mutation (SHM) [11] which is in-

duced by activation-induced cytidine deaminase (AID), both

Base Excision Repair (BER) and Mismatch Repair (MMR) are

necessary for those processes [12, 13]. Affinity maturation

through SHM is critical for antibodies to reach high affinity

for the target antigen [11]. During V(D)J recombination

and SHM, stop codons or frameshifts of the B-cell receptor

(BCR) sequences may occur, leading to non-functional BCR

sequences. GC B cells that concur SHM-derived crippling

mutations, resulting in failure to express a functional BCR,

undergo apoptosis [14]. On the other hand, non-functional

BCR sequences derived from V(D)J recombination may be

propagated in the GC but are not subjected to selection [1]. A

recent study focusing on mice Peyer patches [15] sequenced

both functional and non-functional V(D)J rearrangements

from genomic DNA, which they used to identify positively se-

lected mutations by comparing SHM mutation rates between

functional and non-functional sequences. SHM selection was

identified for some shared clonotypes among mice under

different gnotobiotic conditions, but not for all of them [15].

In vivo studies in mice have revealed that recently activated

B and T cells could constantly enter ongoing GC reactions [16,

17, 18], thus indicating that GC seeding is an ongoing process

governed by a competitive advantage in antigen-binding

affinity of naive B cells [16, 2]. In addition, in vivo time

resolution of single GCs in mouse models demonstrated a

possible reentry of output memory B-cell clones to ongoing

GCs [8]. In line with these results in mice, we demonstrated

reoccurring B-cell clones in multiple GCs within the human

LNs [19], suggesting the migration of antigen-responsive

B cells in human lymphoid tissue. Those findings support the

hypothesis that high affinity BCRs do not necessarily arise

during a single GC passage, but potentially after successive

GC responses [19]. Nevertheless, such phenomena were

shown to be infrequent in mouse models under typical boost

regimens [20], with less than 10% of the clones found in

multiple GCs, and secondary germinal centers consisting

predominantly of B cells without prior GC experience.

Importantly, while mouse immunization models represent

controlled environments in which B cells from all GCs react

to the same antigen, a major question is to which extent

observations in such experimental models are applicable to a

typical ongoing GC response in a human LN that involves mul-

tiple asynchronized GCs reacting simultaneously to unknown

antigens.

We have developed a method to study the BCR repertoire

at the GC scale by combining LCM of individual GCs from

human LNs with next generation sequencing (NGS)-based

immunoglobulin heavy chain variable region (IGHV) reper-

toire analysis (Rep-seq) from genomic DNA. Our study goes

beyond most of the previous GC mouse studies [8, 20] in

several aspects. Firstly, the use of genomic DNA, as opposed

to more commonly used RNA, gives a direct and unbiased

reflection of clonal frequency, since one V(D)J rearrangement

equals one B-cell, which is not the case with mRNA analysis.

Secondly, it allows the analysis of the source and the fate of

the non-functional BCR sequences. Furthermore, it enables

the analysis of the effects of affinity-based selection on the

specific mutational spectrum during SHM, at the individual

GC scale. Such analyse were performed previously in mouse

models in bulk naive and GC B cells from the spleen or Peyer’s

patches [15], but not in individual GCs. Importantly, the use

of NGS-based Rep-seq of individual GCs enables the sequenc-

ing of more than 104 B cells in each GC, which considerably

strengthens the quantitative and statistical analysis of the

GC repertoires, with regards to clonal representation and

diversity. Finally, phylogenetic analysis provide insights into

the functional convergence of dominant clones across GCs

by identifying shared clones, which represent reactivated

B cells as well as expanded clones across distinct GCs.

Results

Heterogeneous Clonal Diversity Across GCs. We

performed LCM on 10 individual GCs from a human LN (Sup-

plementary Figure S9) and we applied Rep-seq in order to

obtain sequencing data of the IGHV of the BCR, obtaining

approximately 100.000 sequences per sample (Figure 1A

and E). Two replicate PCR amplifications were performed for

each GC and analyzed in order to verify the reliability and

reproducibility of our PCR amplification and NGS approach,

and to quantify the variance intrinsic to our measurement

protocol. Mutation analysis revealed that all samples were

very similar in terms of mutation rate and the nature of these

mutations (Supplementary Section 1.1). Following previous

conventions [3, 15, 21], sequences were grouped together

into clones by shared V, J gene segments and CDR3 length, as

well as more than 84% junction nucleotide sequence identity,

as optimized from the distance to the nearest distribution

model [22] (Supplementary Section 2). We analyzed the

similarity between the clonal repertoire of each sample and

observed a high similarity between samples from the same

GC (Figure 1B and C), confirming the reliability of our se-

quencing protocol, showing a low overlap between IGHV

sequences obtained from different GCs (< 0.1), suggesting
that GCs are distinct evolutionary environments and thus

relatively independent from each other.

We then classified sequences into three categories accord-

ing to their frequency, corresponding to the dominant clone

(i.e. most abundant clone), an expanded clone (frequency

> 1%) or a non-expanded clone (frequency < 1%, typically

involving less than 1000 sequences belonging to that clone in

our data). As highlighted in Figure 1D, the clonal abundance

within different GCs is heterogeneous.

To quantify the heterogeneity between different GCs, we

computed the clonal diversity in terms of dominance (pro-

portion of the most abundant clone), evenness (homogeneity

of the clonal abundance), richness (number of clones) and

Shannon entropy, an alternative measure of diversity that

is less sensitive to singletons (clonal group with a unique

sequence). In agreement with previous mouse models [3, 8]

that identified heterogeneous clonal dominance across GCs,
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Figure 1: Sample diversity analysis. (A) Experimental framework combining laser capture microdissection (LCM) and

Rep-seq from Human Lymph Node (LN) GC’s genomic DNA to analyze F (functional) and NF (non-functional) rearrangements

via Semi-Nested PCR amplifying the Leader (LD) and Frame work region 1 (FR1). Details of the experimental approach

are provided in the methods section. The area within the dashed lines corresponds to the area that was isolated by LCM

and used for genomic DNA extraction. H & E staining performed in parallel with LCM is shown (10X magnification) (B)

Sørensen–Dice similarity between each sample in terms of clonal abundance. (C) Clone abundance across samples, denoted as

Vgene_JunctionLength_Jgene (only the 20 most abundant clones are shown in the legend for visual clarity). (D) Proportion

of sequences belonging to the dominant clone, expanded clones and non-expanded clones in each sample. (E) Number of

sequencing reads in each sample (in units of 1000). (F) diversity analysis across samples in terms of dominance, richness,

Shannon entropy and evenness, where qD corresponds to Hill’s unified notation. To highlight the relevance of studying GCs

individually, each sample (blue) is compared to an artificial sample of equivalent size sub-sampled from combining all the

obtained sequences (grey).

we show that the clonal diversity within each GC takes a

wide range of values (Figure 1C and F). As an example in our

setting, the clonal dominance ranged from 5% (GC9) to 30%

(GC10). In order to study the role of sample size in the GC

heterogeneity quantification, we paired each sample with an

artificial sample of equivalent size, obtained from randomly

selecting sequences from all the GCs combined. As high-

lighted in Figure 1F, differences related to sample size are

not statistically significant compared to the diversity varia-

tion across samples. These findings highlight the importance

of studying individual GCs and prove that the heterogeneity

is not a result of sub-sampling. In Supplementary Figure S10

we show that the variability in the diversity metrics between

samples is consistent across different clonal identification

methods, where the same conclusion can be obtained when

quantifying diversity in terms of CDR3 abundance only.

Heterogeneous V Gene Repertoire Usage Across
GCs. Analyzing the abundance of V genes in each sam-

ple reveals that GCs differ significantly in terms of their V

gene usage (Figure 2C and Supplementary Section 3). In-

terestingly, three genes in particular stand out with regards

to their frequency across all samples: IGHV1-2, IGHV2-5

and IGHV1-18 (Figure 2E). While these genes were shown

to be the most frequently found in the peripheral blood aof

adult patients suffering from end-stage renal disease [24],

they were still found in a higher abundance in our data than

in other LNs and the bone marrow of healthy donors [23]

(Figure 2E), suggesting that these V genes may have been

positively selected during the GC reaction in the reactive

lymph node used in our study. This is further supported by

the fact that these genes are found at a higher frequency than

the most abundant V genes in non-functional BCR sequences

(Figure 2F), which are not subjected to selection. The same

figure with functional and non-functional V gene abundances

for the same V gene label is provided Supplementary Figure

S11.

Next, we analyzed the V gene usage in the top 15 dom-

inant clones from each individual GC. We found that the

frequencies of the IGHV1-2, IGHV2-5 and IGHV1-18 genes

varied significantly between the GCs (Figure 2D). As an ex-

ample, in GC6, the IGHV1-18 or IGHV2-5 genes were not

found in the top 15 clones, while they were present in 7

and 5 of the top 15 clones from GC9, respectively. Similar

results were obtained when using different thresholds for
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Figure 2: V gene repertoire usage across samples. (A) Histogram expressing the number of GCs for which a given V gene is

used by the 15 most abundant clones of that GC, ranked from most to least abundant. (B) Heatmap where a pixel represents

the frequency (in %) with which a given V gene has been observed in a given GC’s 15 most abundant clones. (C) V gene

abundance across samples. (D) Histogram showing the V gene usage by the 15 most abundant clones in each GC. The 3 most

abundant V genes (IGHV1-18, IGHV1-2, IGHV2-5) are depicted. (E) Comparison of V genes frequency in our samples (all GCs

combined) and in B-cells from a public dataset [23]. (F) V genes frequencies in functional and non-functional B-cells, ranked

from the most to the least abundant. The V gene labels are not the same for non-functional and functional sequences, as we

are only interested in comparing the shape of the V gene distribution. The same figure with common labels is provided as

Supplementary Figure S11.

dominance (Supplementary Section 3). Moreover, we ana-

lyzed the most abundant clones and their features with two

different sequence-grouping algorithms. We used the TRIP

tool [25] to group the sequences with identical CDR3 amino

acid sequences into clones. In parallel, we used the Hierar-

chical Agglomerative Clustering (HAC) algorithm to cluster

the junctional sequences [26], which was previously proven

to be effective at identifying clones [27]. This approach

requires identical V and J gene segments, identical CDR3

lengths, and more than 84% junction nucleotide sequence

overlap to assign two sequences to the same clone [27] (see

Methods Section ’Grouping clone sequences’ for more de-

tails). Both algorithms result in a similar identification of the

most abundant clones. We observed that the most abundant

clones exhibit common features in terms of CDR3 length and

V, D and J gene usage (Supplementary Section 4). These data

reveal different V genes expansions in individual GCs and

convergent evolution of the expanded and most abundant

clones.

Heterogeneous Clone Functionality Across GCs
And SHM Induced Crippling Mutations. We classi-

fied the sequences into four categories based on the identi-

fication of a frameshift or a stop codon. The categories are

the following: (i) functional sequences, (ii) out of frame non-

functional, and in frame non-functional due to an early stop

codon induced by (iii) V(D)J recombination or (iv) SHM. Out

of frame sequences were defined as having an out of frame

junction, with a frameshift detected by IMGT-V-Quest [28].

In frame non-functional sequences were assumed to arise ei-

ther from V(D)J recombination when having at least one stop

codon in the IMGT N-region or from SHM otherwise. More

specifically, the BCR junction is formed when the germline V,

D and J genes are associated during V(D)J recombination.

During this process, additional nucleotides are inserted be-

tween the V,D and D,J genes, which are referred to as the

N-regions [29]. Consequently, we assumed that stop codons

in N-regions are mostly derived from V(D)J recombination

errors.

We observe that the majority of sequences is functional (≈
90 %), and 78 % of the non-functional sequences result from

a frame-shift. The remaining sequences are roughly equally

divided between SHM-induced and V(D)J recombination-

related stop codons. The distribution appears consistent be-

tween GCs, with the proportion of non-functional sequences

ranging between 10 % and 25 % across samples (Figure 3B).

The frequency of non-functional sequences was found to be

relatively similar across samples from the same GC, except
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Figure 3: Analysis of functional and non-functional BCR sequences in GCs. (A) Diagram showing the possible fates of

functional and non-functional B-cell alleles prior to and during a GC reaction, (B) proportion of functional and non-functional

in frame and out of frame sequences in each sample. (C) Mutational spectrum regrouping the position-wise mutation frequency

across all sequences. The near zero mutation frequency zones in the middle of CDR1 and CDR2, shown in gray, are due to

gaps related to the IMGT numbering scheme that varies across sequences. Mutations were inferred by comparison to the

most common sequence segments among all sequences within a given clone. (D) Mapping of functional and non-functional

clones across samples. Each rectangle represents a functional clone. Dark blue rectangles represent functional alleles paired

with non-functional alleles, while light blue rectangles represent unpaired functional alleles. (E) Sample similarity in terms

of frequency of non-functional clones. (F) Phylogeny reconstruction and (G) mutational spectrum of a representative clone

including both functional and non-functional alleles (IGHV3-74_60_IGHJ5). Mutations associated with functional sequences

are depicted in blue, while non-functional ones are shown in red. The crippling mutation Y59* was probably caused by

SHM and made the BCRs non-functional. The distance between the majority of non-functional BCR sequences and the root

can be quantified in terms of number of mutations, highlighted in purple. The analysis of other F&NF clones is provided in

Supplementary Figure S12.

for GC5, where non-functional sequences were found in a

low abundance in one of the two NGS samples. The high

degree of similarity of the non-functional sequences in GCs

4-6 and GCs 2-8(Figure 3E) was related to shared clones

in these GCs, which also carried the non-functional allele,

supporting the notion that these are due to V(D)J recom-

bination errors. Studies in mouse models focusing on the

role of crippling mutations during SHM identified a limited

number of stop codons in the GC with a range of 2-5%, where

the crippling mutations were strikingly enriched in B-cells

expressing low surface BCR levels, being 7 times more abun-

dant (17.2%) [14] compared to our current analysis of a

human lymph node.

We computed the SHMmutational spectrum by regrouping

the position-wise mutation frequencies across all sequences.

Our data highlighted an expected increase in the mutation

frequency in the CDR regions, but no significant differences

between functional and non-functional sequences were found

in this context (Figure 3C). The same comparison cannot be

performed at the clonal level because each clone has different

V or J genes and thus the mutation positions cannot be com-

pared across different clones. Furthermore, we also studied

the SHM spectrum with regards to the type of mutations

induced by AID in each GC for the functional and the non-

functional clones. Mutation analysis revealed that all samples

were very similar in terms of mutation rate and the nature of

these mutations.(Supplementary Section 1.1) Interestingly,

no difference between functional and non-functional clones

regarding the SHM spectrum was observed suggesting that,

the SHM process seems to be stochastic. However, the selec-

tion pressure of the functional dominant clones was assessed

by studying the replacement to silent mutation (R/S) ratio in

Page 5 of 16

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2022. ; https://doi.org/10.1101/2022.11.09.463832doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.09.463832
http://creativecommons.org/licenses/by-nc-nd/4.0/


Convergent Evolution and B-Cell Recirculation in Germinal Centers in a Human Lymph Node

CDR for the functional expanded clones versus the singletons

(Supplementary Section 1.2). The R/S ratio indicates that

replacement mutations are being selected over silent muta-

tions and it positively correlates to the selection pressure

undergoing in a GC environment. We observed increased

R/S ratio for the functional dominant clones compared to

the ’singleton’ sequences, verifying the difference of selec-

tion pressure between the expanded and the non expanded

clones (Supplementary Section 1.2).

Pairing between functional and non-functional al-
leles. The expansion of non-functional IGH alleles in the

GC may be derived from selected B-cells that harbor both a

functional and a non-functional allele due to V(D)J recom-

bination errors [30, 31] (Figure3A). Based on this notion,

we paired each non-functional IGH allele with a functional

IGH allele by assuming that equal/similar abundance indi-

cates that they come from the same B-cell. We show in

the obtained mapping that, the paired functional and non-

functional alleles were observed in all the GCs, consistently

in both replicates. Furthermore, the frequency of the func-

tional alleles that were paired with non-functional ones varies

between individual GCs (Figure 3D).

Identifying non-functional clones derived from
SHM. We performed functionality analysis also at clonal

level across GCs, and separated the clones into 3 categories.

We defined a clone as functional if it contained more than

95% functional sequences (F), non-functional (NF) if it con-

tained less than 5%, and F&NF otherwise, i.e. clones con-

sisting of both functional and non-functional sequences. The

F&NF clones corresponded to the 4% of all the clones stud-

ied, without significant correlation with their abundance (i.e.

being F&NF seems to be independent of being selected). All

of them were in frame and likely caused by SHM since the

stop codons were outside of the junction region. We found

at least 5 F&NF clones with 1000 different unique sequences

and investigated these in more detail. After inference of their

phylogenetic trees, we can observe a separation between

functional and non-functional branches (Figure 3F, Supple-

mentary Figure S12). Thus we can check for mutations that

were selected through affinity maturation, as performed pre-

viously in mouse models [15]. For example, we observe

several selected mutations of the functional sequences in the

FWR2 region of the studied F&NF clone (Figure 3G). Still,

we did not identify specific mutations consistently selected

across clones (Supplementary Figure S12). On the other

hand, our analysis revealed that specific crippling mutations

occurred independently in different F&NF clones, when they

shared the same V genes (Supplementary Table S1). As an

example, the mutation Y59* occurred consistently in 5 inde-

pendent clones with the IGHV3 gene.

Regarding the timing of these crippling mutations, the

distance between the non-functional sequences and the root

in the inferred tree can inform us about the number of mu-

tations the BCR sequences underwent before the crippling

mutation occurred, which correlates with the number of cell

divisions (roughly one mutation per two cell divisions [9]).

It was estimated from our generated trees that an average

of 3.6 mutations occurred prior to the crippling mutation

(Supplementary Figure S12).

Expansions of specific V genes are frequently involved

in stereotypic rearrangements found in B-cell malignancies

(IGHV1-8, IGHV1-2, IGHV3-23, IGHV4-34 [32, 33]), autoim-

mune diseases and infectious diseases (IGHV4-34, IGHV5-51,

IGHV1-69, IGHV1-46 [34]). We observed that the majority

of F&NF clones with crippling mutations (22/35) use some

of those genes. More specifically, the genes IGHV1-2, IGHV3-

23, IGHV4-34 and IGHV2-5 were used by the F&NF clones.

The SHM can act as a double-edged sword for the organism

since it is necessary for an effective immune response but at

the same time it introduces mutations that can induce the

recognition of self antigens and consequently can lead to

autoimmune disease. The GCs not only rely on the selection

of the antibodies with the highest affinity but also on autore-

activity checkpoints that are needed for the counter-selection

of B-cells that can bind to self antigens [1]. As studies in

mouse models demonstrated that self-reactive GC B-cells are

counter-selected or inactivated by SHM [35], our finding

support this hypothesis of counter-selection mechanism of

self-reactive B-cells in the human GC. Still, the role of nega-

tive selection in the GC is not yet completely clear, despite

the deepened knowledge obtained from recent studies using

mouse models [36, 14].

B-Cell Reactivation In The GC. Several studies in

both rodents and humans by us and others have shown vari-

ous frequencies of shared clones between different GCs [19,

3, 20], which might be indicative of B-cell reactivation in

ongoing GC reactions [8]. We investigated the number of

shared clones in a human LN. To increase the robustness of

our analysis we considered a clone to belong to a GC only if it

was consistently identified in both NGS replicates. We found

10.8 % (396/3650) of functional clones to be present in at

least two GCs (Figure 4B). This is in line with a recent study

in the mouse, where approximately 10% of the clones were

found to be shared between individual GCs induced by CGG

immunization [20]. Moreover, some of the shared clones

exhibit common features with other shared clones across

GCs, regarding V, D and J gene usage and CDR3 length (Sup-

plementary Section 4). Shared clones between different GCs

indicate a frequent B-cell recirculation from one GC to an-

other. (Figure 4A). Nevertheless, clones that were expanded

in more than two GCs were rare and the majority of the

shared clones were expanded only in one GC, with only 5 %
of clones found with dominance > 0.1 % in more than one

GC (Figure 4B). The fact that shared clones exhibit different

degrees of dominance in different GCs fits with the notion

that GCs are distinct competitive environments, leading to

clonal expansions varying by several orders of magnitude

across GCs. In fact, a recirculating B-cell enters different

GCs at a disadvantage compared to other already established

dominant clones, where its initially low abundance makes it

more difficult to compete for T cell help [9].

Interestingly, the distribution of shared clones among GCs

fits a Poisson distribution well (Figure 4B), suggesting that

the reactivation of a B-cell in a different GC is a memoryless

stochastic process where the past evolutionary history of the

B-cell does not play any role. According to the Poisson dis-

tribution and denoting as λ the occurrence rate (in our case

the rate of B-cell reactivation), the number of occurrences N
at the exposure time t is a random variable of mean µ = λt
and distribution:

P[N = n] =
µne−µ

n!
. (1)

Fitting Eq. 1 to the observed distribution gives µ = 0.25.
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Figure 4: (A) Cartoon representing the probability of clones being shared between different GCs of the same LN. (B) Number

of clones and number of identical CDR3 sequences as a function of the number of GCs in which they are found (in green),

fitted to a Poisson process (in red) of parameter rate µ. The blue histogram depicts the clones that are found with at least

0.1 % dominance. (C) Phylogenetic reconstruction of clone IGHV1-2_63_IGHJ6, where each colored branch corresponds to an

unique BCR sequence. The number of replicates of each BCR sequence is indicated at the bottom of the branch. Only the 150

most abundant sequences from both GC8 and GC1 are shown for visualization clarity. (D) Histograms of the pairwise sequence

similarity between BCRs of the same GC (green) and different GCs (red). (E) Histograms of the pairwise sequence similarity

between BCRs and the root of the joint tree including both GC1 and GC8. (F) Most common CDR3 sequences among BCRs

from both GCs.

From this, we can compute the probability that a given clone

seeds at least one other GC during the whole GC reaction

P(N ≥ 1) = P(N ≥ 0) − P(N = 0) = 1 − e−µ = 1 −
e−0.25 ≈ 22 %.

We can also estimate the probably of seeding per clone

and day. When using 20 days as a typical lifetime of a GC,

generated in response to immunization with a simple hapten-

protein conjugate sucha as NP-CGG [3], we can estimate the

GC B-cell reactivation rate to be λ ≈ 0.25
20 = 0.0125 seeding

per day per clone. However, it is worth keeping in mind that

the calculated reactivation rate is only an upper limit, as

the GC lifetime most likely is much clonger in chronically

activated LNs. For instance, lifetimes of up to 100 days have

been observed for some viral infections [37], and GCs formed

in response to synthetic antigens can persist for up to 1.5

years [38]. Such extended GC lifetimes would result in much

smaller reactivation rates. As an example, if the data would

have been collected at day 200 of the GC reaction, the esti-

mated reactivation rate would decrease to 0.1 % (Figure 4A).

We are interested not only in how many clones (sequences

sharing the same V, J gene segments and CDR3 length, as

well as more than 84% junction nucleotide sequence identity)

are shared across GCs but also in how many identical CDR3s

are observed between different GCs. We observed that only

2 % (38/1885) of the CDR3s are shared among GCs, which

is considerably less than for clones. This indicates that the

CDR3 typically continues to mutate after B-cell recirculation

in the new GC environment (Figure 4F). To gain insight into

the parallel evolution of a given clone in different GCs, we

inferred phylogenetic trees from clones found in multiple GCs.

In Figure 4C, we show the phylogenetic tree inferred from

clone IGHV1-2_63_IGHJ6, which was found expanded with

dominance > 1%) in two different GCs. The hierarchical

reconstruction of the tree clearly separated the two GCs,

where sequences in the same GC were more similar to each

other than sequences in different GCs (Figure 4D). In this

example, sequences in GC8 are generally closer to the root

(unmutated V gene, J gene and consensus CDR3) than GC1 in

terms of sequence similarity (Figure 4E), suggesting that GC8

yielded a clone that initiated GC1. This apparent temporal

separation (Figure 4D&E) was also observed in the Brainbow

mouse model after 20 days of subcutaneous immunization

with alum-adsorbed CGG [39, 3], suggesting that mutations

may be selected through affinity maturation at different rates

and through different evolutionary processes in different GCs.

Such a clonal tree pattern was found to different extents in

other shared clones and is thus not anecdotal (other shared

clones are provided in Supplementary Figure S13).
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Figure 5: Common epitope reactivity across GCs. (A) Example of predicted dominant clones pairs that bind to similar epitopes.

The paratopes residues are emphasised in bold, and the differences between the two clones highlighted in red. (B) Number of

GCs for which at least one clone is within each structural (epitope binder) group for a dominance threshold of 300. (C) Number

of predicted clone pairs with common epitope reactivity across different GCs and (D) within the same GC as a function of the

dominance ranking threshold. The pairs are separated into three categories: (blue) same clone found in two different GCs,

(green) clone with the same V and J gene, but with CDRs similarity < 0.84, and (yellow) clone with different V or J genes. (E)

Median of the number of clones within each structural (epitope binder) group within each GC for a dominance threshold of

300. The analysis was done independently for each GC and the error bar represents the first and third quartile.

Convergent Epitope Reactivity Across GCs. We

studied the structural similarity of dominant clones by con-

sidering their paratope structure via paratope modeling. In

order to study the paratope similarity of dominant clones,

we assigned to each clone in each GC a representative se-

quence, defined as the most abundant sequence within that

clone. Then, we combined three metrics, the CDRs similarity,

Paratype [40], and Ab-Ligity [41], to identify clones that are

likely to bind similar epitopes (Supplementary Section 5).

We refer to those predicted clones as clone pairs. If the simi-

larity of the clone pairs is above the optimized threshold for

two of the three aforementioned metrics (see Supplementary

Information for details), the clone pair is predicted to have

evolved towards binding the same epitope. We show a few

illustrative examples of predicted clone pairs in Figure 5A. Al-

though all pairs have a relatively low CDR3 sequence similar-

ity (ranging from 0.63 to 0.74), the pairs exhibit identical (or

nearly identical) CDR1 and CDR2, as well as similar paratope
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(> 0.76) and high structure similarity. The first two clone

pairs in the Figure 5A (1st and 2nd column starting from the

left) could be the same clone misclassified as a different clone

because of too many newly accumulated mutations in the

CDR3. Alternatively, they could have originated from highly

similar naive B-cells. The fact that they exhibit differences in

the nucleotide sequence of the N region of the V and J genes

suggests that they are different clones exhibiting common

epitope reactivity. The last two clone pairs (3rd and 4th

column starting from the left) have different V and J genes,

respectively, with a 4(7) nucleotides difference between the

two V(J) regions and considerable CDR3 dissimilarity, but

their paratope and CDR3 loop structure were predicted to

be highly similar (Figure 5A).

We classified the predicted clone pairs with common epi-

tope reactivity within one GC and across GCs into the follow-

ing categories:

• Same clone present in different GCs: This is the most

straight forward way to study GC convergent evolution

(blue curve in Figure 5C).

• Same V and J gene, but CDR3 similarity < 0.84: This
category needs to be carefully analyzed since some

clones could be miss-classified as different because they

have accumulated too many mutations in the CDR3 and

their CDR3 similarity is thus below 84%, the threshold

we used for clone identification in our study (green

curve on Figure 5C&D).

• Different V or J gene: This category is based on literature

showing that different gene rearrangements can yield

convergent epitope reactivity [42, 40]. For this category,

however, there is a chance that some pairs are miss-

classified due to a misalignment in the V or J genes,

which is especially likely to happen when their CDR3s

are nearly identical (yellow curve on Figure 5C&D).

We also investigated the number of predicted clone pairs

within and across GCs based on each of these categories. We

considered multiple dominance ranking thresholds, ranging

from the top 10 to the top 300 clones in each GC, and showed

the predicted number of identified clone pairs in each of the

3 categories with an increased number of dominant clones

(Figure 5C&D). We observe an increased number of predicted

clone pairs across andwithin GCs for all three categories, with

the number of identified clone pairs approaching 1000 when

the top 300 dominant clones per GC are considered (red line

in Figure 5C&D). Most of the predicted clone pairs come from

the second category (same V and J genes and CDR3 similarity

< 0.84, depicted by the green curve in Figure 5C&D).

Regarding the paratope commonalities between dominant

clones across and within GCs, we characterized paratope

similarity by studying the paratope distance between clone

pairs, defined as (paratype distance + CDRs distance)/2. We

show that the distribution of paratope distance is very similar

across and within GCs, with only a slightly lower average

paratope distance within GCs than across GCs (Supplemen-

tary Section 6). This finding suggests that different evolu-

tionary forces can lead to convergent immune responses.

Discussion

In this study we developed a method to analyze the IGHV

repertoire in single GCs by combining LCM of individual GCs

from human LNs with NGS Rep-seq from gDNA. Our study

revealed the heterogeneity of an ongoing immune response

in single GCs, within a LN of a 46 years old woman, but also

the convergent evolution of different evolutionary spaces, the

single GCs. The reproducibility of our method was demon-

strated by performing replicate IGHV amplification and NGS

analyses. Moreover, the use of genomic DNA in our method

offers a better alternative to typical mRNA-based studies,

which introduce bias due to differential expression of mRNA

between different B-cell types, and at the same time it allows

for the study of non-functional clones.

Similarity and diversity analyzes of samples showed that

human GCs are distinct evolutionary spaces governed by the

evolutionary pressure of antigen capture and selection driv-

ing the output of the GC reaction. In line with previous mouse

studies [3, 8, 15], we observed a relatively low sequence simi-

larity between the GCs, as well as heterogeneous clonal diver-

sity in terms of dominance, evenness, richness and Shannon

entropy between individual GCs. The heterogeneous clonal

diversity was independent of the clone identification meth-

ods studied and was not a result of sub-sampling, since the

differences related to sample size were not significant com-

pared to the diversity variation across GCs. The expanded

clones showed commonalities in terms of V, D, J gene usage

as well as CDR3 length. This finding suggests convergent

evolution of the expanded clones in different individual GCs.

Analysis of the VH gene repertoire revealed that a few VH

genes were found more frequently than in public repertoire

data, suggesting that they were positively selected during

the GC reaction in the studied human LN. Acccordingly, The

VH gene usage was found to be heterogeneous across GCs.

With the help of phylogenetic tree inference, we showed

that there is convergent evolution of different GCs of the same

LN by identifying the seeding of GC-experienced (potentially

memory B cells) B cells in different preexisting GCs, which is

in line with previous studies in rodents and humans [19, 3,

20]. While earlier studies identified the frequent presence of

clones that were shared between individual GCs in the same

LN, both in mice and humans [19, 3], those studies have

sequenced limited numbers of B cells with limited statistical

analysis/evaluation. Nevertheless, a more recent study in

a mouse model argues that this is a restricted phenomenon

under typical immunization-boost regimens, with less than

10 % clones found in multiple GCs, and secondary germinal

centers consisting predominantly of B cells without prior GC

experience [20]. Although coming from on ongoing human

GC response in an uncontrolled environment, our results

are in line with the most recent mouse model studies, since

we identify approximately 10% of clones as being shared

between GCs.

Using antibody modeling and paratope prediction tools,

we quantified the functional convergence of clones in dif-

ferent GCs by predicting candidates of clone pairs that po-

tentially bind the same epitope, suggesting a shared pool of

antigens across different GCs. Interestingly, these cases were

relatively rare, which suggests that the number of epitopes

involved in the LN reaction is high (estimated to range from

500 to 5000 epitopes). In addition, the prediction of common

epitope reactivity can be used to predict the number of epi-

topes in the GC and/or the LN. We clustered all clones within

structural groups based on the predicted epitope binding,

such that each clone in a given group is predicted to bind the

same epitope as at least one other clone of the same group.

Overall, only a minority of clones were found to bind the

same epitope across GCs (Figure 5B&E), thus we expect the

Page 9 of 16

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2022. ; https://doi.org/10.1101/2022.11.09.463832doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.09.463832
http://creativecommons.org/licenses/by-nc-nd/4.0/


Convergent Evolution and B-Cell Recirculation in Germinal Centers in a Human Lymph Node

number of epitopes present in GCs and LNs to be quite high.

With a simple statistical model (Supplementary Section 7),

we derived the number of epitopes targeted in the lymph

node to be around 5000, and each GC to be specialized to

∼1000 epitopes on average. These estimations should be

taken as a higher bound, as we expect to have missed a large

fraction of antibodies that react to the same epitope (recall

estimated to be as low as 10%, see Supplementary Section 5).

Assuming that 90% of the pairs were missed, our estimate

would be significantly reduced to roughly ∼500 epitopes in

the lymph node and 100 epitopes in each GC. Given that epi-

topes are around 15 AAs long [43], and that antigen chains

typically consist of hundreds of AAs, many of these epitopes

could belong to a single antigen. As an example, insulin was

reported to have more than 100 epitopes [44].

Finally, the use of genomic DNA, as opposed to RNA, which

is common practice, allowed us to study and quantify the role

of selection in the SHM spectrum by studying the origin and

fate of non-functional alleles at the individual GC scale. We

showed that the SHM pattern in terms of both position and

spectrum was independent of GC B-cell selection. For the

first time, we analyzed the non-functional alleles stemming

from the SHM or V(D)J recombination process in individual

GCs and we observed that the source of the non-functional

alleles was approximately equally divided between these two

processes. The distribution was roughly consistent across

GCs. We identified several mutations that were introduced

by SHM and were either selected through affinity maturation

or crippled the BCR. While this type of analysis was previ-

ously performed in mouse models in naive and GC B cells

from the spleen and Peyer’s patches at the B-cell population

level, it was not in individual GCs [15]. Interestingly, the

majority of clones with crippling mutations used V genes that

are known to be implicated in stereotypic rearrangements

in autoimmunity and B cells malignancies [33, 34], such as

IGHV4-34, suggesting counter-selection of those B cells in

the GCs. Our result are in line with studies in mouse mod-

els, which showed that self-reactive GC B cells are counter

selected or inactivated by SHM [35].

Our study underscores the stochastic nature of SHM,which

was found to be selection-independent. It also quantifies its

role in producing non-functional clones by analyzing the

frequency of non-functional sequences derived from SHM. It

shows that the heterogeneity of the individual GCs in terms of

diversity and clonal expansions is a conserved phenomenon

between mouse and human. Additionally, even though the

individual GCs are heterogeneous and separate from each

other, at the same time they exhibit convergent features both

in mice [3, 8] and humans.

Our results will help to improve existing computational

models of the GC reaction, as well as aid in the development

of novel computational models, by providing more accurate

parameters stemming from a real life situation in a human

LN. As GCs and LNs are stochastic systems that display a

high level of variability even within the same lymph node of

the same individual [45], mathematical models have been

widely used to deepen our understanding of the cellular and

molecular processes characterizing these complex dynamic

systems [46, 9, 47]. Nevertheless, these models are limited

due to the lack of available data to correctly estimate the

numerous unknown parameters describing cellular and in-

tracellular interactions. Since our study characterizes clonal

abundance, clonal diversity and clonal functionality data in

several GCs of the same lymph node, it represents an impor-

tant step towards the correct parametrization of GC models.

Additionally, it could also be used to compare the normal

human BCR repertoire with data from disease models, with

the final goal of potentially identifying shared BCR structures

that could originate from similar antigenic stimuli.

Finally, regarding further research, one question of inter-

est would be to which extent our findings in lymph nodes are

applicable to different human tissues, such as Peyer’s patches

and tonsils. If the comparison is relevant, our study conclu-

sions could be extrapolated to investigate the GC reaction

mechanisms in other similar environments. Additionally, the

use of mouse models in combination with gDNA could enable

the characterization of the origin and fate of non-functional

clones in more controlled environments. Indeed, controlled

mouse immunization experiments enable the in-vitro investi-

gation of the antibodies generated as a response to known

antigens, which is not possible in human studies, where GC

reactions arise in response to unknown antigens.

Materials and Methods

IGH Next Generation Sequencing / Rep-seq. In

brief: LCM of the individual GCs from human LN was com-

bined with the extraction of gDNA and an NGS approach

in order to study both the functional and the nonfunctional

clones.

Tissue Preparation. Patient frozen LN tissue from the

pathology department of the Amsterdam UMC hospital was

used in this study. (LN studied was a cervical LN resected out

of a 46-yr-old woman suffering from chronic sialadenitis.)

The LN was fresh-frozen in liquid nitrogen shortly after surgi-

cal resection. Five serial cryosections (10µm per cryosection,

Cryostat NX-70, Thermo Scientific) of the LN tissue on PEN

slides (1mm, Zeiss) were used in order to obtain higher DNA

concentrations. Immunostaining was performed in order to

visualize the GCs: The PEN slides were incubated with drops

of Hematoxylin (KLINPATH, VWR Life Science) for 1 minute

at Room Temperature (RT), after a quick and gentle wash

with demi water and tap water they dried overnight at RT.

In parallel, H&E staining of the frozen tissue was performed

on normal (TOMO) slides at Amsterdam UMC diagnostics.

LCM Of Individual GCs. After tissue preparation, we

used the objective 5x of the Leica PALM-LMD6 to draw and

laser capture individual GCs from 5 serial cryosections of the

human LN studied. The laser capture was performed 5 times

for each GC in the same 0.2ml Eppendorf tube.

gDNA Extraction From Individual GCs And DNA
Concentration. 2 µl 1x proteinase K (recombinant PCR

Grade, 25mg - Roche) dissolved in 2,5 ml TE (10mg/ml) and

20 µl 1x proteinase K lysis buffer (50 mM TRIS-HCl (PH8,5-

ENZO), 100 mM NaCl (Sigma), 1 mM EDTA (Sigma), 0,5

Tween-20 (Biorad), 0,5 NP-40 (Sigma Aldrich) were added

in the tubes used for the LCM and the samples are incubated

at 56°C, overnight. The proteinase K was inactivated by

incubation for 5 min at 95°C. The Qubit dsDNA HS Assay

kit (Invitrogen) was used in order to quantify the extracted

g-DNA, according to manufacturer’s protocol.
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Multiplex-Nested-PCR protocol. The gDNA

extracted from individual GCs was used for the Multiplex-

Nested PCR, consisting of two rounds. Round 1: Amplifica-

tion of the leader genes region (LD). Round 2: Amplification

of the FR1 region with primers containing Illumina adapter

overhang nucleotide sequences. The input used for Round 2

was the Round 1 PCR product. We used technical replicates

to check the method reproducibility (duplicates of PCRs for

the same DNA/GC).

For Round 1: PCR amplification of gDNA from individual

GCs (2 ng input) was performed with1 ul of JH reverse primer

(10 uM, provided byMERCK) and 1.8 ul of LD forward primer

set pools (10 uM per primer, provided by MERCK) using 25

ul of Q5 Hot Start Master Mix (2X) (New England Biolabs)

for a total volume reaction of 50 ul.

For Round 2: PCR amplification of the Round 1 PCR prod-

uct (1 ul) with 1 ul of JH reverse primer (10 uM, provided by

MERCK ) and 1 ul of FR1 forward primer set pools (10 uM

per primer, provided by MERCK) using 25 ul of Q5 Hot Start

Master Mix (2X) (New England Biolabs) for a total volume

reaction of 50 ul.

The following PCR program was used for both Round 1

and Round 2: 5 min at 95 °C; three cycles of 5 s at 98 °C and

2 min at 72 °C; three cycles of 5 s at 98 °C, 10 s at 65 °C, and

2 min at 72 °C; and 25 cycles of 20 s at 98 °C, 30 s at 60°C,

and 2 min at 72 °C; with a final extension cycle of 7 min at

72 °C on a Biometra T-ADVANCED PCR machine. Primers

and adaptors used in Round 1 and Round 2 are provided in

Supplementary Figure S9.

Round 2 PCR Product Purification. Electrophoresis

of the Round 2 Multiplex-Nested-PCR product was performed

on a 1% agarose (Molecular grade, Bioline) gel, followed

by Gel excision of the 400bp PCR product with Macherey-

Nagel PCR clean up and gel extraction kit, according to

manufacturer’s protocol.

NGS Library Preparation And Sequencing. The

concentration of the gel excised Round 2 Multiplex-Nested-

PCR product was quantified by using the Qubit dsDNA HS

Assay kit (Invitrogen) according to manufacturer’s protocol.

100ng of this PCR product were used for the preparation of

the 16S Metagenomic Sequencing Library for the Illumina

MiSeq System, according to manufacturer’s protocol. More

specifically, for the library construction the Illumina indexes

were attached to the amplicon with 8 PCR cycles using Nex-

tera Indexted Primer. The final purified (AMPure XP beads)

product was then quantified using qPCR according to the

qPCR Quantification Protocol Guide (KAPA Library Quantifi-

cation kits for Illumina Sequecing platforms) and qualified

using the TapeStation D1000 ScreenTape (Agilent Technolo-

gies, Waldbronn, Germany). The paired-end (2×300 bp) se-

quencing was then performed by Macrogen using the MiSeq™

platform (Illumina, San Diego, USA)

Sample Reads Preprocessing. Two samples were

acquired for each of the 10 GCs. For each sample, the

reads were merged with BBmerge [48] (using the recom-

mended command for optimal accuracy bbmerge-auto.sh).

We compared the reads obtained from BBmerge with the

ones from PEAR [49] (using a quality index of 30) and no

significant differences were found. Then, the primers and

adaptors sequences were removed by using a customized

Cutadapt script in order to remove 7 primers from the

merged reads [50]. The quality of the preprocessed reads

was tested by the FastQC tool available in the Galaxy plat-

form (https://usegalaxy.org)). The sequences were

transformed to FASTA format. Finally, the alignments to

V and J germline sequences, as well as the identification

of CDRs/FWRs and frameshifts were obtained by submit-

ting the reads to the IMGT-High-V-Quest web portal [28]

(http://www.imgt.org/HighV-QUEST/search.action).

Grouping Sequences Into Clones. Following previ-

ous conventions [3, 15, 51, 52, 23, 21], sequences were

grouped together into clones if they shared the same V, J

gene segments and CDR3 length, as well as more than 84%

junction nucleotide sequence identity. The threshold was op-

timized using the distance to nearest distribution model [22]

as well as a negation table approach [53], as detailed in the

Supplementary Section 1. The junction clustering was per-

formed with a Hierarchical Agglomerative Clustering (HAC)

algorithm [26], previously proven to be effective at identi-

fying clones [27]. As our data is especially susceptible to

incorrect V-gene assignment, due to part of FRW1 missing

in our sequencing data (the first 15 to 20 residues), clones

with different V genes from the same subgroup were merged

together when the CDR3 of their most common sequence

were identical.

As a way of checking for the consistency of our analysis,

we alternately grouped sequences into CDR3 groups irrespec-

tively of their V and J genes, which can be directly performed

with the TRIP tool [25], a software framework implemented

in R shiny.

Similarity Between Samples. To quantify the simi-

larity between samples X and Y, we first normalized the

number of sequences belonging to each clone by the total

number of sequences in that sample such that |X| = |Y| = 1.
Then, the similarity was defined as the Sørensen–Dice coeffi-

cient, known to be more robust than the Jaccard index when

some information is missing from the dataset [54]

Similarity =
2|X ∩ Y|

|X|+ |Y|
= |X ∩ Y| = 1 − ∑

i ∈ clones

|xi − yi|

2
(2)

where xi and yi are the abundance of clone i in sample X
and Y, respectively. A similarity of one indicates perfectly

identical samples and one of zero that they do not share any

clone.

Quantifying Clonal Diversity. To quantify the diver-

sity of GCs, we used different statistical representations of

GC clonal composition: richness, dominance, entropy and

evenness. The diversity indices are denoted with the uni-

fied framework of Hill (qD) [55], where values of q that are

smaller than unity disproportionately favor rare species (thus

more sensitive to singletons), while values greater than unity

disproportionately favor the most common species.

• Dominance (1/∞D). The clonal dominance is defined

as the number of cells belonging to the most abundant

clone divided by the total number of observed cells in

the GC.

• Richness (0D). The clonal richness is defined as the

number of clones in the GC. To provide an estimate
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of the total number of clones in a GC based on an in-

complete sample, we use the bias-corrected Chao1 for-

mula [56, 57]:

NChao = Nobs +
f1 ( f1 − 1)

2 ( f2 + 1)
(3)

where Nobs is the number of observed clones in the GC,

f1 is the number of clones detected exactly once, and

f2 the number of clones detected exactly twice. In our

setup, the second term of Eq.3 typically equals between

50 % and 100 % of the number of observed clones.

• Shannon entropy (log[1D]). The Shannon entropy

has been a popular diversity index in the ecological

literature. It is a measure of diversity that accounts

"fairly" for the abundance of both rare and frequent

clones [58] and is thus less affected by the presence of

singletons. Defining the sample size n, and pi =
Xi
n as

the normalized occurrence of clone i in the sample, the

Shannon entropy is defined as:

H = −∑
i ∈ clones

pi ln(pi) (4)

Similar to the Chao richness, we also use an estimator to

infer Shannon entropy with incomplete sample informa-

tion [59]. Defining the sample coverage C = 1−
f1

n , we

adjust the relative species abundances with p̃i = piC,

HChao = −
Nobs

∑
i=1

p̃i log ( p̃i)

1 − (1 − p̃i)
n (5)

• Evenness (1D/0D). The evenness quantifies the ho-

mogeneity of clonal abundances in a GC. It is defined

as the exponential of the Shannon entropy normalized

by the richness of the GC [55]. The Chao corrected

richness and Shannon entropy were used to compute

this indicator:

Evenness =
exp(HChao)

NChao
(6)

The Evenness is bounded between 0 and 1, where an

evenness of one corresponds to a perfectly homogeneous

sample, i.e. all clones have the same occurrence.

Classifying Non-Functional And Functional
Clones. Each sequence was labeled either as non-

functional when having a frameshift or a stop codon, or

functional otherwise. For each clone, a productivity index,

defined as the number of productive sequences divided by

the total number of sequences in that clone (thus between 0

and 1), was computed.

We further classified non-functional sequences into three

categories: (i) out of frame (ii) early stop codon induced

by VDJ recombination and (iii) early stop codon induced by

SHM. Out of frame sequences were defined as having an out

of frame junction, with a frameshift detected by IMGT. In

frame non-functional sequences were assumed to arise either

from V(D)J recombination when having at least one stop

codon in the IMGT N region, or from SHM otherwise.

Phylogenetic Tree Representation. We used phylo-

genetic trees to visualize the evolution of the antibody re-

ceptor sequences. In such representation, each founder cell

defines the unmutated germline of a new tree, and newly

acquired mutations are ideally represented as downstream

nodes. We defined the root by taking the unmutated V,J

germline and filling the remaining junction region with the

consensus sequence of all available sequences within the

clone. To compute the trees, the grouped sequences from

each clone were first aligned with ClustalW [60]. This align-

ment was necessary to infer a mutation matrix, as tree in-

ference algorithms typically require sequences to be aligned

and of the same length, while experimentally determined

sequences have different lengths, and include insertions and

deletions. To infer trees from a large amount of sequences, we

used a hierarchical clustering approach, where the most simi-

lar sequences were grouped together and progressively aggre-

gated with other groups until the root node (maximum dis-

tance) was reached (Neighbour Joining method in ClustalW).

Such a method was preferred over typical Bayesian Maximum

likelihood estimation [39] or Markov chain Monte Carlo sam-

pling [61], because the latter were intractable for the amount

of sequences per clone in our data (> 5000 sequences), and

would thus require significant subsampling leading to an

important loss of information in our phylogeny analysis.

Sequence Similarity. The Levenshtein distance [62],

defined as the minimum number of edits required to tran-

sition form one sequence to the other, is a common metric

to quantify sequence similarity. To reduce the bias caused

by length differences, we used a normalized Levenshtein

distance [63] that incorporates the length of both sequences

and satisfies the triangle inequality. Given two strings s1, s2

and Lev(s1, s2) the Levenshtein distance between s1 and s2,

the normalized Levenshtein distance Levnorm is defined as:

Levnorm(s1, s2) =
2 · Lev(s1, s2)

|s1|+ |s2|+ Lev(s1, s2)
(7)

Paratope And Antibody Modeling. The paratope

residues were predicted by submitting the antibody se-

quences to Parapred [64] (https://github.com/elibe

ris/parapred). To convert the output of Parapred, binding

probabilities, into a binary label, we selected a threshold

of 0.67, shown to be optimal by the authors of the original

paper [64]. Antibody sequences were submitted to reper-

toire Builder [65] (https://sysimm.org/rep_builder/)

to construct the antibody structure from a homology model.

As part of the FRW1 region was missing from our sequencing

data (the first 15 to 20 residues), missing nucleotides were

filled with the unmutated sequence of their respective IGHV.

The obtained structures were visualized with Pymol [66].

Functional Convergence. While antibodies within the

same clones are likely to target a common epitope [40], it

has also been observed that clones from different V and J

gene backgrounds express common epitope reactivity [67].

To identify different clones that are potentially binding to

the same target epitope, we combine three approaches.

• CDR similarity: As the majority of the paratope

residues are localized on the CDR loops of the antibody

(≈ 90% according to [68]), antibodies that exhibit high

CDR similarity are likely to express common reactiv-

ity (although expressing different V or J genes). Given

two sequences s1 and s2 with CDRs denoted as H1,H2,

and H3, we define the CDR similarity as the average
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Levenshtein distance between their respective CDRs.

CDR similarity(s1, s2) =
1

3 ∑
i=[1,2,3]

Levnorm(Hi1,Hi2)

(8)

The threshold for common reactivity prediction was set

to 84% for this metric, as optimized in Supplementary

Section 5.

• Paratype [40] simplifies the complex phenomenon

of antibody–antigen interaction into sets of shared

paratope residues. It was shown to help in identify-

ing antibodies from different clones binding to the

same target epitope. Two antibodies are said to be

paratype if they have a sequence identity across the pre-

dicted paratope regions greater than a given threshold.

Paratope identity is defined as the number of identical

paratope residues (residues that are predicted to be

in the paratope in both cases) divided by the smallest

number of paratope residues of either sequence being

compared. The threshold for common reactivity pre-

diction was set to 76% for this metric, as optimized in

Supplementary Section 5.

• AbLigity: [41] is a structure-based similarity measure

tailored to the antibody-antigen interfaces. Using pre-

dicted paratopes on modeled antibody structures, it

allows for the identification of sequence-dissimilar anti-

bodies that target highly similar epitopes. In short, the

Ab-Ligity framework enumerates all sets of 3 residues

in the paratope structures, and tokenizes them in terms

of both the distance between the residues as well as

their intrinsic chemical properties (aliphatic, hydroxyl,

sulphur, aromatic, acidic, amine, basic). The obtained

set is then compared among other antibodies to obtain

a similarity score, and predicted as common epitope if

above 0.26, as optimized in Supplementary Section 5.

To find pairs of antibodies that are likely to bind the same

epitope, we combine these three metrics. An antibody pair is

predicted to bind to a common epitope if it has a similarity

above the given threshold for two of the three metrics. Ad-

ditionally, since a different CDR3 length generally implies a

different binding mode, we add the condition that the two

antibodies should have the same CDR3 length in order to be

predicted as binding the same epitope. Although some cases

of antibodies with different CDR3 length expressing com-

mon epitope reactivity were observed [41], such a situation

is anecdotal. In fact, removing this constrain considerably

reduces the accuracy of the three metrics described above,

and existing tools are currently unable to accurately identify

such cases, mainly due to the difficulty of modeling the CDR3

loop accurately [69].

Comparison To Public V Gene Database. We com-

pared the V genes frequencies with a public database of

6 human donors in Lymph node [23], downloaded from

http://immunedb.com/tissue-atlas/. LN samples were

retrived form tissues labeled as submandibular lymph nodes

(MLN) and inguinal lymph nodes (ILN).
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