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Abstract

Germinal centers (GCs) are specialized compartments within the secondary lymphoid organs
where B cells proliferate, differentiate, and mutate their antibody genes in response to the presence
of foreign antigens. They play a central role in generating an effective immune response against
infectious pathogens, and failures in their regulating mechanisms can lead to the development
of autoimmune diseases and cancer. While previous works study experimental systems of the
immune response with mouse models that are immunized with specific antigens, our study focuses
on a real life situation, with an ongoing GC response in a human lymph node (LN) involving
multiple asynchronized GCs reacting simultaneously to unknown antigens. We combined laser
capture microdissection (LCM) of individual GCs from human LN with next-generation repertoire
sequencing (Rep-seq) to characterize individual GCs as distinct evolutionary spaces. In line with
well-characterized GC responses in mice, elicited by immunization with model antigens such
as NP-CGG, we observe a relatively low sequence similarity, as well as heterogeneous clonal
diversity across individual GCs from the same human LN. Still, we identify shared clones in
several individual GCs, and phylogenetic tree analysis combined with paratope modeling suggest
the re-engagement and rediversification of B-cell clones across GCs as well as expanded clones
exhibiting shared antigen responses across distinct GCs, indicating convergent evolution of the
GCs. Finally, our study allows for the characterization of non-functional clones, where frequencies
of V(D)J or SHM induced stop codons are quantified.

Germinal centers (GCs) are specialized microanatomi-
cal structures within the secondary lymphoid organs where
B cells proliferate, differentiate, and mutate their antibody
genes in response to the presence of foreign antigens [1, 2].
Through the GC lifespan, interclonal competition between
B cells leads to an increased affinity of the B-cell receptors
(BCRs) for antigens accompanied by a loss of clonal diversity
in rodents [3] and humans [4]. Throughout the GC reac-
tion, B cells with improved affinity for antigens as a result
of these mutations are continuously selected. By compet-
ing for antibody-mediated antigen capture and subsequent
acquisition of T-cell help the mutated B cells gain affinity,
and the selected B cells with improved affinity for the anti-
gen differentiate into memory B cells and plasma cells [1,
5]. GCs thus play a central role in generating an effective
immune response against infectious pathogens, and failures
within their tightly regulated environment can lead to the

development of autoimmune diseases [6] and cancer [7].

In vivo mouse experiments have shown that individual GCs
exhibit variable degrees of clonal imbalance and dominance,
even when induced synchronously by immunization with var-
ious antigens (CGG, chicken gamma globulin; OVA, chicken
ovalbumin; HA, influenza hemagglutinin (H3); NP-OVA, 4-
hydroxy-3-nitrophenylacetyl-OVA) [3]. In particular, a sub-
set of GCs underwent a massive expansion of higher-affinity
B-cell variants (clonal bursts), leading to a loss of clonal di-
versity at a significantly faster rate than other GCs. These
differences in clonal dynamics among GCs could partially be
explained by the differences in affinity between competing
B cells but also by other factors unrelated to affinity [3].
Moreover, the temporal resolution of GC reactions through
intravital microscopy revealed substantial heterogeneity in
the evolution of both foreign-antigen induced and autore-
active GCs over time [8]. Interestingly, initially dominant
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clones were observed to suddenly lose competitive momen-
tum allowing for the emergence of other clones (inversion
event) [8]. GC computational models suggest that these
chaotic dynamics were likely the consequences of initially
small stochastic advantages in the affinity to antigens [9],
amplified through the selection and proliferation of higher
affinity clones. A research question of interest is to which
extent these observations are applicable to a typical ongoing
GC response in human LN, which involves multiple asynchro-
nized GCs to unknown antigens.

During lymphocyte development, the antigen receptors ex-
pressed by B and T lymphocytes are assembled in an antigen-
independent fashion by ordered variable gene segment re-
combination (V(D)J recombination) [10]. The antigen re-
ceptors of B cells are then further diversified in the GCs
through somatic hyper mutation (SHM) [11] which is in-
duced by activation-induced cytidine deaminase (AID), both
Base Excision Repair (BER) and Mismatch Repair (MMR) are
necessary for those processes [12, 13]. Affinity maturation
through SHM is critical for antibodies to reach high affinity
for the target antigen [11]. During V(D)J recombination
and SHM, stop codons or frameshifts of the B-cell receptor
(BCR) sequences may occur, leading to non-functional BCR
sequences. GC B cells that concur SHM-derived crippling
mutations, resulting in failure to express a functional BCR,
undergo apoptosis [14]. On the other hand, non-functional
BCR sequences derived from V(D)J recombination may be
propagated in the GC but are not subjected to selection [1]. A
recent study focusing on mice Peyer patches [15] sequenced
both functional and non-functional V(D)J rearrangements
from genomic DNA, which they used to identify positively se-
lected mutations by comparing SHM mutation rates between
functional and non-functional sequences. SHM selection was
identified for some shared clonotypes among mice under
different gnotobiotic conditions, but not for all of them [15].

In vivo studies in mice have revealed that recently activated
B and T cells could constantly enter ongoing GC reactions [16,
17, 18], thus indicating that GC seeding is an ongoing process
governed by a competitive advantage in antigen-binding
affinity of naive B cells [16, 2]. In addition, in vivo time
resolution of single GCs in mouse models demonstrated a
possible reentry of output memory B-cell clones to ongoing
GCs [8]. In line with these results in mice, we demonstrated
reoccurring B-cell clones in multiple GCs within the human
LNs [19], suggesting the migration of antigen-responsive
B cells in human lymphoid tissue. Those findings support the
hypothesis that high affinity BCRs do not necessarily arise
during a single GC passage, but potentially after successive
GC responses [19]. Nevertheless, such phenomena were
shown to be infrequent in mouse models under typical boost
regimens [20], with less than 10% of the clones found in
multiple GCs, and secondary germinal centers consisting
predominantly of B cells without prior GC experience.

Importantly, while mouse immunization models represent
controlled environments in which B cells from all GCs react
to the same antigen, a major question is to which extent
observations in such experimental models are applicable to a
typical ongoing GC response in a human LN that involves mul-
tiple asynchronized GCs reacting simultaneously to unknown
antigens.

We have developed a method to study the BCR repertoire
at the GC scale by combining LCM of individual GCs from
human LNs with next generation sequencing (NGS)-based
immunoglobulin heavy chain variable region (IGHV) reper-

toire analysis (Rep-seq) from genomic DNA. Our study goes
beyond most of the previous GC mouse studies [8, 20] in
several aspects. Firstly, the use of genomic DNA, as opposed
to more commonly used RNA, gives a direct and unbiased
reflection of clonal frequency, since one V(D)J rearrangement
equals one B-cell, which is not the case with mRNA analysis.
Secondly, it allows the analysis of the source and the fate of
the non-functional BCR sequences. Furthermore, it enables
the analysis of the effects of affinity-based selection on the
specific mutational spectrum during SHM, at the individual
GC scale. Such analyse were performed previously in mouse
models in bulk naive and GC B cells from the spleen or Peyer’s
patches [15], but not in individual GCs. Importantly, the use
of NGS-based Rep-seq of individual GCs enables the sequenc-
ing of more than 10* B cells in each GC, which considerably
strengthens the quantitative and statistical analysis of the
GC repertoires, with regards to clonal representation and
diversity. Finally, phylogenetic analysis provide insights into
the functional convergence of dominant clones across GCs
by identifying shared clones, which represent reactivated
B cells as well as expanded clones across distinct GCs.

Results

Heterogeneous Clonal Diversity Across GCs. We
performed LCM on 10 individual GCs from a human LN (Sup-
plementary Figure S9) and we applied Rep-seq in order to
obtain sequencing data of the IGHV of the BCR, obtaining
approximately 100.000 sequences per sample (Figure 1A
and E). Two replicate PCR amplifications were performed for
each GC and analyzed in order to verify the reliability and
reproducibility of our PCR amplification and NGS approach,
and to quantify the variance intrinsic to our measurement
protocol. Mutation analysis revealed that all samples were
very similar in terms of mutation rate and the nature of these
mutations (Supplementary Section 1.1). Following previous
conventions [3, 15, 21], sequences were grouped together
into clones by shared V, J gene segments and CDR3 length, as
well as more than 84% junction nucleotide sequence identity,
as optimized from the distance to the nearest distribution
model [22] (Supplementary Section 2). We analyzed the
similarity between the clonal repertoire of each sample and
observed a high similarity between samples from the same
GC (Figure 1B and C), confirming the reliability of our se-
quencing protocol, showing a low overlap between IGHV
sequences obtained from different GCs (< 0.1), suggesting
that GCs are distinct evolutionary environments and thus
relatively independent from each other.

We then classified sequences into three categories accord-
ing to their frequency, corresponding to the dominant clone
(i.e. most abundant clone), an expanded clone (frequency
> 1%) or a non-expanded clone (frequency < 1%, typically
involving less than 1000 sequences belonging to that clone in
our data). As highlighted in Figure 1D, the clonal abundance
within different GCs is heterogeneous.

To quantify the heterogeneity between different GCs, we
computed the clonal diversity in terms of dominance (pro-
portion of the most abundant clone), evenness (homogeneity
of the clonal abundance), richness (number of clones) and
Shannon entropy, an alternative measure of diversity that
is less sensitive to singletons (clonal group with a unique
sequence). In agreement with previous mouse models [3, 8]
that identified heterogeneous clonal dominance across GCs,
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Figure 1: Sample diversity analysis. (A) Experimental framework combining laser capture microdissection (LCM) and
Rep-seq from Human Lymph Node (LN) GC’s genomic DNA to analyze F (functional) and NF (non-functional) rearrangements
via Semi-Nested PCR amplifying the Leader (LD) and Frame work region 1 (FR1). Details of the experimental approach
are provided in the methods section. The area within the dashed lines corresponds to the area that was isolated by LCM
and used for genomic DNA extraction. H & E staining performed in parallel with LCM is shown (10X magnification) (B)
Serensen—Dice similarity between each sample in terms of clonal abundance. (C) Clone abundance across samples, denoted as
Vgene_JunctionLength_Jgene (only the 20 most abundant clones are shown in the legend for visual clarity). (D) Proportion
of sequences belonging to the dominant clone, expanded clones and non-expanded clones in each sample. (E) Number of
sequencing reads in each sample (in units of 1000). (F) diversity analysis across samples in terms of dominance, richness,
Shannon entropy and evenness, where 7D corresponds to Hill’s unified notation. To highlight the relevance of studying GCs
individually, each sample (blue) is compared to an artificial sample of equivalent size sub-sampled from combining all the

obtained sequences (grey).

we show that the clonal diversity within each GC takes a
wide range of values (Figure 1C and F). As an example in our
setting, the clonal dominance ranged from 5% (GC9) to 30%
(GC10). In order to study the role of sample size in the GC
heterogeneity quantification, we paired each sample with an
artificial sample of equivalent size, obtained from randomly
selecting sequences from all the GCs combined. As high-
lighted in Figure 1F, differences related to sample size are
not statistically significant compared to the diversity varia-
tion across samples. These findings highlight the importance
of studying individual GCs and prove that the heterogeneity
is not a result of sub-sampling. In Supplementary Figure S10
we show that the variability in the diversity metrics between
samples is consistent across different clonal identification
methods, where the same conclusion can be obtained when
quantifying diversity in terms of CDR3 abundance only.

Heterogeneous V Gene Repertoire Usage Across
GCs. Analyzing the abundance of V genes in each sam-
ple reveals that GCs differ significantly in terms of their V
gene usage (Figure 2C and Supplementary Section 3). In-
terestingly, three genes in particular stand out with regards

to their frequency across all samples: IGHV1-2, IGHV2-5
and IGHV1-18 (Figure 2E). While these genes were shown
to be the most frequently found in the peripheral blood aof
adult patients suffering from end-stage renal disease [24],
they were still found in a higher abundance in our data than
in other LNs and the bone marrow of healthy donors [23]
(Figure 2E), suggesting that these V genes may have been
positively selected during the GC reaction in the reactive
lymph node used in our study. This is further supported by
the fact that these genes are found at a higher frequency than
the most abundant V genes in non-functional BCR sequences
(Figure 2F), which are not subjected to selection. The same
figure with functional and non-functional V gene abundances
for the same V gene label is provided Supplementary Figure
S11.

Next, we analyzed the V gene usage in the top 15 dom-
inant clones from each individual GC. We found that the
frequencies of the IGHV1-2, IGHV2-5 and IGHV1-18 genes
varied significantly between the GCs (Figure 2D). As an ex-
ample, in GC6, the IGHV1-18 or IGHV2-5 genes were not
found in the top 15 clones, while they were present in 7
and 5 of the top 15 clones from GC9, respectively. Similar
results were obtained when using different thresholds for
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Figure 2: V gene repertoire usage across samples. (A) Histogram expressing the number of GCs for which a given V gene is
used by the 15 most abundant clones of that GC, ranked from most to least abundant. (B) Heatmap where a pixel represents
the frequency (in %) with which a given V gene has been observed in a given GC’s 15 most abundant clones. (C) V gene
abundance across samples. (D) Histogram showing the V gene usage by the 15 most abundant clones in each GC. The 3 most
abundant V genes (IGHV1-18, IGHV1-2, IGHV2-5) are depicted. (E) Comparison of V genes frequency in our samples (all GCs
combined) and in B-cells from a public dataset [23]. (F) V genes frequencies in functional and non-functional B-cells, ranked
from the most to the least abundant. The V gene labels are not the same for non-functional and functional sequences, as we
are only interested in comparing the shape of the V gene distribution. The same figure with common labels is provided as
Supplementary Figure S11.

dominance (Supplementary Section 3). Moreover, we ana- the following: (i) functional sequences, (ii) out of frame non-
lyzed the most abundant clones and their features with two functional, and in frame non-functional due to an early stop
different sequence-grouping algorithms. We used the TRIP codon induced by (iii) V(D)J recombination or (iv) SHM. Out
tool [25] to group the sequences with identical CDR3 amino of frame sequences were defined as having an out of frame
acid sequences into clones. In parallel, we used the Hierar- junction, with a frameshift detected by IMGT-V-Quest [28].
chical Agglomerative Clustering (HAC) algorithm to cluster In frame non-functional sequences were assumed to arise ei-
the junctional sequences [26], which was previously proven ther from V(D)J recombination when having at least one stop
to be effective at identifying clones [27]. This approach codon in the IMGT N-region or from SHM otherwise. More
requires identical V and J gene segments, identical CDR3 specifically, the BCR junction is formed when the germline V,
lengths, and more than 84% junction nucleotide sequence D and J genes are associated during V(D)J recombination.
overlap to assign two sequences to the same clone [27] (see During this process, additional nucleotides are inserted be-
Methods Section 'Grouping clone sequences’ for more de- tween the V,D and D,J genes, which are referred to as the
tails). Both algorithms result in a similar identification of the N-regions [29]. Consequently, we assumed that stop codons
most abundant clones. We observed that the most abundant in N-regions are mostly derived from V(D)J recombination
clones exhibit common features in terms of CDR3 length and errors.

V, D and J gene usage (Supplementary Section 4). These data
reveal different V genes expansions in individual GCs and
convergent evolution of the expanded and most abundant
clones.

We observe that the majority of sequences is functional (=
90 %), and 78 % of the non-functional sequences result from
a frame-shift. The remaining sequences are roughly equally
divided between SHM-induced and V(D)J recombination-
related stop codons. The distribution appears consistent be-
Heterogeneous Clone Functionality Across GCs tween GCs, with the proportion of non-functional sequences
And SHM Induced Crippling Mutations. We classi- ranging between 10 % and 25 % across samples (Figure 3B).
fied the sequences into four categories based on the identi- The frequency of non-functional sequences was found to be
fication of a frameshift or a stop codon. The categories are relatively similar across samples from the same GC, except
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Figure 3: Analysis of functional and non-functional BCR sequences in GCs. (A) Diagram showing the possible fates of
functional and non-functional B-cell alleles prior to and during a GC reaction, (B) proportion of functional and non-functional
in frame and out of frame sequences in each sample. (C) Mutational spectrum regrouping the position-wise mutation frequency
across all sequences. The near zero mutation frequency zones in the middle of CDR1 and CDR2, shown in gray, are due to
gaps related to the IMGT numbering scheme that varies across sequences. Mutations were inferred by comparison to the
most common sequence segments among all sequences within a given clone. (D) Mapping of functional and non-functional
clones across samples. Each rectangle represents a functional clone. Dark blue rectangles represent functional alleles paired
with non-functional alleles, while light blue rectangles represent unpaired functional alleles. (E) Sample similarity in terms
of frequency of non-functional clones. (F) Phylogeny reconstruction and (G) mutational spectrum of a representative clone
including both functional and non-functional alleles (IGHV3-74_60_IGHJ5). Mutations associated with functional sequences
are depicted in blue, while non-functional ones are shown in red. The crippling mutation Y59* was probably caused by
SHM and made the BCRs non-functional. The distance between the majority of non-functional BCR sequences and the root
can be quantified in terms of number of mutations, highlighted in purple. The analysis of other F&NF clones is provided in

Supplementary Figure S12.

for GC5, where non-functional sequences were found in a
low abundance in one of the two NGS samples. The high
degree of similarity of the non-functional sequences in GCs
4-6 and GCs 2-8(Figure 3E) was related to shared clones
in these GCs, which also carried the non-functional allele,
supporting the notion that these are due to V(D)J recom-
bination errors. Studies in mouse models focusing on the
role of crippling mutations during SHM identified a limited
number of stop codons in the GC with a range of 2-5%, where
the crippling mutations were strikingly enriched in B-cells
expressing low surface BCR levels, being 7 times more abun-
dant (17.2%) [14] compared to our current analysis of a
human lymph node.

We computed the SHM mutational spectrum by regrouping
the position-wise mutation frequencies across all sequences.
Our data highlighted an expected increase in the mutation

frequency in the CDR regions, but no significant differences
between functional and non-functional sequences were found
in this context (Figure 3C). The same comparison cannot be
performed at the clonal level because each clone has different
V or J genes and thus the mutation positions cannot be com-
pared across different clones. Furthermore, we also studied
the SHM spectrum with regards to the type of mutations
induced by AID in each GC for the functional and the non-
functional clones. Mutation analysis revealed that all samples
were very similar in terms of mutation rate and the nature of
these mutations.(Supplementary Section 1.1) Interestingly,
no difference between functional and non-functional clones
regarding the SHM spectrum was observed suggesting that,
the SHM process seems to be stochastic. However, the selec-
tion pressure of the functional dominant clones was assessed
by studying the replacement to silent mutation (R/S) ratio in
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CDR for the functional expanded clones versus the singletons
(Supplementary Section 1.2). The R/S ratio indicates that
replacement mutations are being selected over silent muta-
tions and it positively correlates to the selection pressure
undergoing in a GC environment. We observed increased
R/S ratio for the functional dominant clones compared to
the ’singleton’ sequences, verifying the difference of selec-
tion pressure between the expanded and the non expanded
clones (Supplementary Section 1.2).

Pairing between functional and non-functional al-
leles. The expansion of non-functional IGH alleles in the
GC may be derived from selected B-cells that harbor both a
functional and a non-functional allele due to V(D)J recom-
bination errors [30, 31] (Figure3A). Based on this notion,
we paired each non-functional IGH allele with a functional
IGH allele by assuming that equal/similar abundance indi-
cates that they come from the same B-cell. We show in
the obtained mapping that, the paired functional and non-
functional alleles were observed in all the GCs, consistently
in both replicates. Furthermore, the frequency of the func-
tional alleles that were paired with non-functional ones varies
between individual GCs (Figure 3D).

Identifying non-functional clones derived from
SHM. We performed functionality analysis also at clonal
level across GCs, and separated the clones into 3 categories.
We defined a clone as functional if it contained more than
95% functional sequences (F), non-functional (NF) if it con-
tained less than 5%, and F&NF otherwise, i.e. clones con-
sisting of both functional and non-functional sequences. The
F&NF clones corresponded to the 4% of all the clones stud-
ied, without significant correlation with their abundance (i.e.
being F&NF seems to be independent of being selected). All
of them were in frame and likely caused by SHM since the
stop codons were outside of the junction region. We found
at least 5 F&NF clones with 1000 different unique sequences
and investigated these in more detail. After inference of their
phylogenetic trees, we can observe a separation between
functional and non-functional branches (Figure 3F, Supple-
mentary Figure S12). Thus we can check for mutations that
were selected through affinity maturation, as performed pre-
viously in mouse models [15]. For example, we observe
several selected mutations of the functional sequences in the
FWR2 region of the studied F&NF clone (Figure 3G). Still,
we did not identify specific mutations consistently selected
across clones (Supplementary Figure S12). On the other
hand, our analysis revealed that specific crippling mutations
occurred independently in different F&NF clones, when they
shared the same V genes (Supplementary Table S1). As an
example, the mutation Y59* occurred consistently in 5 inde-
pendent clones with the IGHV3 gene.

Regarding the timing of these crippling mutations, the
distance between the non-functional sequences and the root
in the inferred tree can inform us about the number of mu-
tations the BCR sequences underwent before the crippling
mutation occurred, which correlates with the number of cell
divisions (roughly one mutation per two cell divisions [9]).
It was estimated from our generated trees that an average
of 3.6 mutations occurred prior to the crippling mutation
(Supplementary Figure S12).

Expansions of specific V genes are frequently involved
in stereotypic rearrangements found in B-cell malignancies

(IGHV1-8, IGHV1-2, IGHV3-23, IGHV4-34 [32, 33]), autoim-
mune diseases and infectious diseases (IGHV4-34, IGHV5-51,
IGHV1-69, IGHV1-46 [34]). We observed that the majority
of F&NF clones with crippling mutations (22/35) use some
of those genes. More specifically, the genes IGHV1-2, IGHV3-
23, IGHV4-34 and IGHV2-5 were used by the F&NF clones.
The SHM can act as a double-edged sword for the organism
since it is necessary for an effective immune response but at
the same time it introduces mutations that can induce the
recognition of self antigens and consequently can lead to
autoimmune disease. The GCs not only rely on the selection
of the antibodies with the highest affinity but also on autore-
activity checkpoints that are needed for the counter-selection
of B-cells that can bind to self antigens [1]. As studies in
mouse models demonstrated that self-reactive GC B-cells are
counter-selected or inactivated by SHM [35], our finding
support this hypothesis of counter-selection mechanism of
self-reactive B-cells in the human GC. Still, the role of nega-
tive selection in the GC is not yet completely clear, despite
the deepened knowledge obtained from recent studies using
mouse models [36, 14].

B-Cell Reactivation In The GC. Several studies in
both rodents and humans by us and others have shown vari-
ous frequencies of shared clones between different GCs [19,
3, 20], which might be indicative of B-cell reactivation in
ongoing GC reactions [8]. We investigated the number of
shared clones in a human LN. To increase the robustness of
our analysis we considered a clone to belong to a GC only if it
was consistently identified in both NGS replicates. We found
10.8 % (396/3650) of functional clones to be present in at
least two GCs (Figure 4B). This is in line with a recent study
in the mouse, where approximately 10% of the clones were
found to be shared between individual GCs induced by CGG
immunization [20]. Moreover, some of the shared clones
exhibit common features with other shared clones across
GCs, regarding V, D and J gene usage and CDR3 length (Sup-
plementary Section 4). Shared clones between different GCs
indicate a frequent B-cell recirculation from one GC to an-
other. (Figure 4A). Nevertheless, clones that were expanded
in more than two GCs were rare and the majority of the
shared clones were expanded only in one GC, with only 5 %
of clones found with dominance > 0.1 % in more than one
GC (Figure 4B). The fact that shared clones exhibit different
degrees of dominance in different GCs fits with the notion
that GCs are distinct competitive environments, leading to
clonal expansions varying by several orders of magnitude
across GCs. In fact, a recirculating B-cell enters different
GCs at a disadvantage compared to other already established
dominant clones, where its initially low abundance makes it
more difficult to compete for T cell help [9].

Interestingly, the distribution of shared clones among GCs
fits a Poisson distribution well (Figure 4B), suggesting that
the reactivation of a B-cell in a different GC is a memoryless
stochastic process where the past evolutionary history of the
B-cell does not play any role. According to the Poisson dis-
tribution and denoting as A the occurrence rate (in our case
the rate of B-cell reactivation), the number of occurrences N
at the exposure time f is a random variable of mean y = At
and distribution:

et
n!

€3]

PIN =n] =

Fitting Eq. 1 to the observed distribution gives y = 0.25.
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Figure 4: (A) Cartoon representing the probability of clones being shared between different GCs of the same LN. (B) Number
of clones and number of identical CDR3 sequences as a function of the number of GCs in which they are found (in green),
fitted to a Poisson process (in red) of parameter rate y. The blue histogram depicts the clones that are found with at least
0.1 % dominance. (C) Phylogenetic reconstruction of clone IGHV1-2_63_IGHJ6, where each colored branch corresponds to an
unique BCR sequence. The number of replicates of each BCR sequence is indicated at the bottom of the branch. Only the 150
most abundant sequences from both GC8 and GC1 are shown for visualization clarity. (D) Histograms of the pairwise sequence
similarity between BCRs of the same GC (green) and different GCs (red). (E) Histograms of the pairwise sequence similarity
between BCRs and the root of the joint tree including both GC1 and GC8. (F) Most common CDR3 sequences among BCRs

from both GCs.

From this, we can compute the probability that a given clone
seeds at least one other GC during the whole GC reaction
PIN>1) =P(N>0)—P(N=10) =1—¢# =1-
e 025 ~ 229%,.

We can also estimate the probably of seeding per clone
and day. When using 20 days as a typical lifetime of a GC,
generated in response to immunization with a simple hapten-
protein conjugate sucha as NP-CGG [3], we can estimate the
GC B-cell reactivation rate to be A ~ 0205 = 0.0125 seeding
per day per clone. However, it is worth keeping in mind that
the calculated reactivation rate is only an upper limit, as
the GC lifetime most likely is much clonger in chronically
activated LNs. For instance, lifetimes of up to 100 days have
been observed for some viral infections [37], and GCs formed
in response to synthetic antigens can persist for up to 1.5
years [38]. Such extended GC lifetimes would result in much
smaller reactivation rates. As an example, if the data would
have been collected at day 200 of the GC reaction, the esti-
mated reactivation rate would decrease to 0.1 % (Figure 4A).

We are interested not only in how many clones (sequences
sharing the same V, J gene segments and CDR3 length, as
well as more than 84% junction nucleotide sequence identity)
are shared across GCs but also in how many identical CDR3s
are observed between different GCs. We observed that only

2% (38/1885) of the CDR3s are shared among GCs, which
is considerably less than for clones. This indicates that the
CDR3 typically continues to mutate after B-cell recirculation
in the new GC environment (Figure 4F). To gain insight into
the parallel evolution of a given clone in different GCs, we
inferred phylogenetic trees from clones found in multiple GCs.
In Figure 4C, we show the phylogenetic tree inferred from
clone IGHV1-2_63_IGHJ6, which was found expanded with
dominance > 1%) in two different GCs. The hierarchical
reconstruction of the tree clearly separated the two GCs,
where sequences in the same GC were more similar to each
other than sequences in different GCs (Figure 4D). In this
example, sequences in GC8 are generally closer to the root
(unmutated V gene, J gene and consensus CDR3) than GC1 in
terms of sequence similarity (Figure 4E), suggesting that GC8
yielded a clone that initiated GC1. This apparent temporal
separation (Figure 4D&E) was also observed in the Brainbow
mouse model after 20 days of subcutaneous immunization
with alum-adsorbed CGG [39, 3], suggesting that mutations
may be selected through affinity maturation at different rates
and through different evolutionary processes in different GCs.
Such a clonal tree pattern was found to different extents in
other shared clones and is thus not anecdotal (other shared
clones are provided in Supplementary Figure S13).
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Figure 5: Common epitope reactivity across GCs. (A) Example of predicted dominant clones pairs that bind to similar epitopes.
The paratopes residues are emphasised in bold, and the differences between the two clones highlighted in red. (B) Number of
GCs for which at least one clone is within each structural (epitope binder) group for a dominance threshold of 300. (C) Number
of predicted clone pairs with common epitope reactivity across different GCs and (D) within the same GC as a function of the
dominance ranking threshold. The pairs are separated into three categories: (blue) same clone found in two different GCs,
(green) clone with the same V and J gene, but with CDRs similarity < 0.84, and (yellow) clone with different V or J genes. (E)
Median of the number of clones within each structural (epitope binder) group within each GC for a dominance threshold of
300. The analysis was done independently for each GC and the error bar represents the first and third quartile.

Convergent Epitope Reactivity Across GCs. We
studied the structural similarity of dominant clones by con-
sidering their paratope structure via paratope modeling. In
order to study the paratope similarity of dominant clones,
we assigned to each clone in each GC a representative se-
quence, defined as the most abundant sequence within that
clone. Then, we combined three metrics, the CDRs similarity,
Paratype [40], and Ab-Ligity [41], to identify clones that are
likely to bind similar epitopes (Supplementary Section 5).

We refer to those predicted clones as clone pairs. If the simi-
larity of the clone pairs is above the optimized threshold for
two of the three aforementioned metrics (see Supplementary
Information for details), the clone pair is predicted to have
evolved towards binding the same epitope. We show a few
illustrative examples of predicted clone pairs in Figure 5A. Al-
though all pairs have a relatively low CDR3 sequence similar-
ity (ranging from 0.63 to 0.74), the pairs exhibit identical (or
nearly identical) CDR1 and CDR2, as well as similar paratope
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(> 0.76) and high structure similarity. The first two clone
pairs in the Figure 5A (1st and 2nd column starting from the
left) could be the same clone misclassified as a different clone
because of too many newly accumulated mutations in the
CDR3. Alternatively, they could have originated from highly
similar naive B-cells. The fact that they exhibit differences in
the nucleotide sequence of the N region of the V and J genes
suggests that they are different clones exhibiting common
epitope reactivity. The last two clone pairs (3rd and 4th
column starting from the left) have different V and J genes,
respectively, with a 4(7) nucleotides difference between the
two V(J) regions and considerable CDR3 dissimilarity, but
their paratope and CDR3 loop structure were predicted to
be highly similar (Figure 5A).

We classified the predicted clone pairs with common epi-
tope reactivity within one GC and across GCs into the follow-
ing categories:

* Same clone present in different GCs: This is the most
straight forward way to study GC convergent evolution
(blue curve in Figure 5C).

* Same V and J gene, but CDR3 similarity < 0.84: This
category needs to be carefully analyzed since some
clones could be miss-classified as different because they
have accumulated too many mutations in the CDR3 and
their CDR3 similarity is thus below 84%, the threshold
we used for clone identification in our study (green
curve on Figure 5C&D).

* Different V or J gene: This category is based on literature
showing that different gene rearrangements can yield
convergent epitope reactivity [42, 40]. For this category,
however, there is a chance that some pairs are miss-
classified due to a misalignment in the V or J genes,
which is especially likely to happen when their CDR3s
are nearly identical (yellow curve on Figure 5C&D).

We also investigated the number of predicted clone pairs
within and across GCs based on each of these categories. We
considered multiple dominance ranking thresholds, ranging
from the top 10 to the top 300 clones in each GC, and showed
the predicted number of identified clone pairs in each of the
3 categories with an increased number of dominant clones
(Figure 5C&D). We observe an increased number of predicted
clone pairs across and within GCs for all three categories, with
the number of identified clone pairs approaching 1000 when
the top 300 dominant clones per GC are considered (red line
in Figure 5C&D). Most of the predicted clone pairs come from
the second category (same V and J genes and CDR3 similarity
< 0.84, depicted by the green curve in Figure 5C&D).

Regarding the paratope commonalities between dominant
clones across and within GCs, we characterized paratope
similarity by studying the paratope distance between clone
pairs, defined as (paratype distance + CDRs distance)/2. We
show that the distribution of paratope distance is very similar
across and within GCs, with only a slightly lower average
paratope distance within GCs than across GCs (Supplemen-
tary Section 6). This finding suggests that different evolu-
tionary forces can lead to convergent immune responses.

Discussion

In this study we developed a method to analyze the IGHV
repertoire in single GCs by combining LCM of individual GCs
from human LNs with NGS Rep-seq from gDNA. Our study

revealed the heterogeneity of an ongoing immune response
in single GCs, within a LN of a 46 years old woman, but also
the convergent evolution of different evolutionary spaces, the
single GCs. The reproducibility of our method was demon-
strated by performing replicate IGHV amplification and NGS
analyses. Moreover, the use of genomic DNA in our method
offers a better alternative to typical mRNA-based studies,
which introduce bias due to differential expression of mRNA
between different B-cell types, and at the same time it allows
for the study of non-functional clones.

Similarity and diversity analyzes of samples showed that
human GCs are distinct evolutionary spaces governed by the
evolutionary pressure of antigen capture and selection driv-
ing the output of the GC reaction. In line with previous mouse
studies [3, 8, 15], we observed a relatively low sequence simi-
larity between the GCs, as well as heterogeneous clonal diver-
sity in terms of dominance, evenness, richness and Shannon
entropy between individual GCs. The heterogeneous clonal
diversity was independent of the clone identification meth-
ods studied and was not a result of sub-sampling, since the
differences related to sample size were not significant com-
pared to the diversity variation across GCs. The expanded
clones showed commonalities in terms of V, D, J gene usage
as well as CDR3 length. This finding suggests convergent
evolution of the expanded clones in different individual GCs.

Analysis of the VH gene repertoire revealed that a few VH
genes were found more frequently than in public repertoire
data, suggesting that they were positively selected during
the GC reaction in the studied human LN. Acccordingly, The
VH gene usage was found to be heterogeneous across GCs.

With the help of phylogenetic tree inference, we showed
that there is convergent evolution of different GCs of the same
LN by identifying the seeding of GC-experienced (potentially
memory B cells) B cells in different preexisting GCs, which is
in line with previous studies in rodents and humans [19, 3,
20]. While earlier studies identified the frequent presence of
clones that were shared between individual GCs in the same
LN, both in mice and humans [19, 3], those studies have
sequenced limited numbers of B cells with limited statistical
analysis/evaluation. Nevertheless, a more recent study in
a mouse model argues that this is a restricted phenomenon
under typical immunization-boost regimens, with less than
10 % clones found in multiple GCs, and secondary germinal
centers consisting predominantly of B cells without prior GC
experience [20]. Although coming from on ongoing human
GC response in an uncontrolled environment, our results
are in line with the most recent mouse model studies, since
we identify approximately 10% of clones as being shared
between GCs.

Using antibody modeling and paratope prediction tools,
we quantified the functional convergence of clones in dif-
ferent GCs by predicting candidates of clone pairs that po-
tentially bind the same epitope, suggesting a shared pool of
antigens across different GCs. Interestingly, these cases were
relatively rare, which suggests that the number of epitopes
involved in the LN reaction is high (estimated to range from
500 to 5000 epitopes). In addition, the prediction of common
epitope reactivity can be used to predict the number of epi-
topes in the GC and/or the LN. We clustered all clones within
structural groups based on the predicted epitope binding,
such that each clone in a given group is predicted to bind the
same epitope as at least one other clone of the same group.
Overall, only a minority of clones were found to bind the
same epitope across GCs (Figure 5B&E), thus we expect the
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number of epitopes present in GCs and LNs to be quite high.
With a simple statistical model (Supplementary Section 7),
we derived the number of epitopes targeted in the lymph
node to be around 5000, and each GC to be specialized to
~1000 epitopes on average. These estimations should be
taken as a higher bound, as we expect to have missed a large
fraction of antibodies that react to the same epitope (recall
estimated to be as low as 10%, see Supplementary Section 5).
Assuming that 90% of the pairs were missed, our estimate
would be significantly reduced to roughly ~500 epitopes in
the lymph node and 100 epitopes in each GC. Given that epi-
topes are around 15 AAs long [43], and that antigen chains
typically consist of hundreds of AAs, many of these epitopes
could belong to a single antigen. As an example, insulin was
reported to have more than 100 epitopes [44].

Finally, the use of genomic DNA, as opposed to RNA, which
is common practice, allowed us to study and quantify the role
of selection in the SHM spectrum by studying the origin and
fate of non-functional alleles at the individual GC scale. We
showed that the SHM pattern in terms of both position and
spectrum was independent of GC B-cell selection. For the
first time, we analyzed the non-functional alleles stemming
from the SHM or V(D)J recombination process in individual
GCs and we observed that the source of the non-functional
alleles was approximately equally divided between these two
processes. The distribution was roughly consistent across
GCs. We identified several mutations that were introduced
by SHM and were either selected through affinity maturation
or crippled the BCR. While this type of analysis was previ-
ously performed in mouse models in naive and GC B cells
from the spleen and Peyer’s patches at the B-cell population
level, it was not in individual GCs [15]. Interestingly, the
majority of clones with crippling mutations used V genes that
are known to be implicated in stereotypic rearrangements
in autoimmunity and B cells malignancies [33, 34], such as
IGHV4-34, suggesting counter-selection of those B cells in
the GCs. Our result are in line with studies in mouse mod-
els, which showed that self-reactive GC B cells are counter
selected or inactivated by SHM [35].

Our study underscores the stochastic nature of SHM, which
was found to be selection-independent. It also quantifies its
role in producing non-functional clones by analyzing the
frequency of non-functional sequences derived from SHM. It
shows that the heterogeneity of the individual GCs in terms of
diversity and clonal expansions is a conserved phenomenon
between mouse and human. Additionally, even though the
individual GCs are heterogeneous and separate from each
other, at the same time they exhibit convergent features both
in mice [3, 8] and humans.

Our results will help to improve existing computational
models of the GC reaction, as well as aid in the development
of novel computational models, by providing more accurate
parameters stemming from a real life situation in a human
LN. As GCs and LNs are stochastic systems that display a
high level of variability even within the same lymph node of
the same individual [45], mathematical models have been
widely used to deepen our understanding of the cellular and
molecular processes characterizing these complex dynamic
systems [46, 9, 47]. Nevertheless, these models are limited
due to the lack of available data to correctly estimate the
numerous unknown parameters describing cellular and in-
tracellular interactions. Since our study characterizes clonal
abundance, clonal diversity and clonal functionality data in
several GCs of the same lymph node, it represents an impor-

tant step towards the correct parametrization of GC models.
Additionally, it could also be used to compare the normal
human BCR repertoire with data from disease models, with
the final goal of potentially identifying shared BCR structures
that could originate from similar antigenic stimuli.

Finally, regarding further research, one question of inter-
est would be to which extent our findings in lymph nodes are
applicable to different human tissues, such as Peyer’s patches
and tonsils. If the comparison is relevant, our study conclu-
sions could be extrapolated to investigate the GC reaction
mechanisms in other similar environments. Additionally, the
use of mouse models in combination with gDNA could enable
the characterization of the origin and fate of non-functional
clones in more controlled environments. Indeed, controlled
mouse immunization experiments enable the in-vitro investi-
gation of the antibodies generated as a response to known
antigens, which is not possible in human studies, where GC
reactions arise in response to unknown antigens.

Materials and Methods

IGH Next Generation Sequencing / Rep-seq. In
brief: LCM of the individual GCs from human LN was com-
bined with the extraction of gDNA and an NGS approach
in order to study both the functional and the nonfunctional
clones.

Tissue Preparation. Patient frozen LN tissue from the
pathology department of the Amsterdam UMC hospital was
used in this study. (LN studied was a cervical LN resected out
of a 46-yr-old woman suffering from chronic sialadenitis.)
The LN was fresh-frozen in liquid nitrogen shortly after surgi-
cal resection. Five serial cryosections (10 pm per cryosection,
Cryostat NX-70, Thermo Scientific) of the LN tissue on PEN
slides (1mm, Zeiss) were used in order to obtain higher DNA
concentrations. Immunostaining was performed in order to
visualize the GCs: The PEN slides were incubated with drops
of Hematoxylin (KLINPATH, VWR Life Science) for 1 minute
at Room Temperature (RT), after a quick and gentle wash
with demi water and tap water they dried overnight at RT.
In parallel, H&E staining of the frozen tissue was performed
on normal (TOMO) slides at Amsterdam UMC diagnostics.

LCM Of Individual GCs. After tissue preparation, we
used the objective 5x of the Leica PALM-LMD6 to draw and
laser capture individual GCs from 5 serial cryosections of the
human LN studied. The laser capture was performed 5 times
for each GC in the same 0.2ml Eppendorf tube.

gDNA Extraction From Individual GCs And DNA
Concentration. 2 pl 1x proteinase K (recombinant PCR
Grade, 25 mg - Roche) dissolved in 2,5 ml TE (10 mg/ml) and
20 pl 1x proteinase K lysis buffer (50 mM TRIS-HCI (PHS,5-
ENZO), 100 mM Nacl (Sigma), 1 mM EDTA (Sigma), 0,5
Tween-20 (Biorad), 0,5 NP-40 (Sigma Aldrich) were added
in the tubes used for the LCM and the samples are incubated
at 56°C, overnight. The proteinase K was inactivated by
incubation for 5 min at 95°C. The Qubit dsDNA HS Assay
kit (Invitrogen) was used in order to quantify the extracted
g-DNA, according to manufacturer’s protocol.
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Multiplex-Nested-PCR protocol. The gDNA
extracted from individual GCs was used for the Multiplex-
Nested PCR, consisting of two rounds. Round 1: Amplifica-
tion of the leader genes region (LD). Round 2: Amplification
of the FR1 region with primers containing Illumina adapter
overhang nucleotide sequences. The input used for Round 2
was the Round 1 PCR product. We used technical replicates
to check the method reproducibility (duplicates of PCRs for
the same DNA/GC).

For Round 1: PCR amplification of gDNA from individual
GCs (2 ng input) was performed with1 ul of JH reverse primer
(10 uM, provided by MERCK) and 1.8 ul of LD forward primer
set pools (10 uM per primer, provided by MERCK) using 25
ul of Q5 Hot Start Master Mix (2X) (New England Biolabs)
for a total volume reaction of 50 ul.

For Round 2: PCR amplification of the Round 1 PCR prod-
uct (1 ul) with 1 ul of JH reverse primer (10 uM, provided by
MERCK ) and 1 ul of FR1 forward primer set pools (10 uM
per primer, provided by MERCK) using 25 ul of Q5 Hot Start
Master Mix (2X) (New England Biolabs) for a total volume
reaction of 50 ul.

The following PCR program was used for both Round 1
and Round 2: 5 min at 95 °C; three cycles of 5 s at 98 °C and
2 min at 72 °C; three cycles of 5 s at 98 °C, 10 s at 65 °C, and
2 min at 72 °C; and 25 cycles of 20 s at 98 °C, 30 s at 60°C,
and 2 min at 72 °C; with a final extension cycle of 7 min at
72 °C on a Biometra T-ADVANCED PCR machine. Primers
and adaptors used in Round 1 and Round 2 are provided in
Supplementary Figure S9.

Round 2 PCR Product Purification. Electrophoresis
of the Round 2 Multiplex-Nested-PCR product was performed
on a 1% agarose (Molecular grade, Bioline) gel, followed
by Gel excision of the 400bp PCR product with Macherey-
Nagel PCR clean up and gel extraction kit, according to
manufacturer’s protocol.

NGS Library Preparation And Sequencing. The
concentration of the gel excised Round 2 Multiplex-Nested-
PCR product was quantified by using the Qubit dsDNA HS
Assay kit (Invitrogen) according to manufacturer’s protocol.
100ng of this PCR product were used for the preparation of
the 16S Metagenomic Sequencing Library for the Illumina
MiSeq System, according to manufacturer’s protocol. More
specifically, for the library construction the Illumina indexes
were attached to the amplicon with 8 PCR cycles using Nex-
tera Indexted Primer. The final purified (AMPure XP beads)
product was then quantified using qPCR according to the
gPCR Quantification Protocol Guide (KAPA Library Quantifi-
cation kits for Illumina Sequecing platforms) and qualified
using the TapeStation D1000 ScreenTape (Agilent Technolo-
gies, Waldbronn, Germany). The paired-end (2% 300 bp) se-
quencing was then performed by Macrogen using the MiSeq™
platform (Illumina, San Diego, USA)

Sample Reads Preprocessing. Two samples were
acquired for each of the 10 GCs. For each sample, the
reads were merged with BBmerge [48] (using the recom-
mended command for optimal accuracy bbmerge-auto.sh).
We compared the reads obtained from BBmerge with the
ones from PEAR [49] (using a quality index of 30) and no
significant differences were found. Then, the primers and
adaptors sequences were removed by using a customized

Cutadapt script in order to remove 7 primers from the
merged reads [50]. The quality of the preprocessed reads
was tested by the FastQC tool available in the Galaxy plat-
form (https://usegalaxy.org)). The sequences were
transformed to FASTA format. Finally, the alignments to
V and J germline sequences, as well as the identification
of CDRs/FWRs and frameshifts were obtained by submit-
ting the reads to the IMGT-High-V-Quest web portal [28]
(http://www.imgt.org/HighV-QUEST/search.action).

Grouping Sequences Into Clones. TFollowing previ-
ous conventions [3, 15, 51, 52, 23, 21], sequences were
grouped together into clones if they shared the same V, J
gene segments and CDR3 length, as well as more than 84%
junction nucleotide sequence identity. The threshold was op-
timized using the distance to nearest distribution model [22]
as well as a negation table approach [53], as detailed in the
Supplementary Section 1. The junction clustering was per-
formed with a Hierarchical Agglomerative Clustering (HAC)
algorithm [26], previously proven to be effective at identi-
fying clones [27]. As our data is especially susceptible to
incorrect V-gene assignment, due to part of FRW1 missing
in our sequencing data (the first 15 to 20 residues), clones
with different V genes from the same subgroup were merged
together when the CDR3 of their most common sequence
were identical.

As a way of checking for the consistency of our analysis,
we alternately grouped sequences into CDR3 groups irrespec-
tively of their V and J genes, which can be directly performed
with the TRIP tool [25], a software framework implemented
in R shiny.

Similarity Between Samples. To quantify the simi-
larity between samples X and Y, we first normalized the
number of sequences belonging to each clone by the total
number of sequences in that sample such that |X| = |Y]| = 1.
Then, the similarity was defined as the Sgrensen-Dice coeffi-
cient, known to be more robust than the Jaccard index when
some information is missing from the dataset [54]

2|XNY|

_ o lx;i — yil

Similarity =
. 2

i € clones

where x; and y; are the abundance of clone i in sample X

and Y, respectively. A similarity of one indicates perfectly

identical samples and one of zero that they do not share any

clone.

Quantifying Clonal Diversity. To quantify the diver-
sity of GCs, we used different statistical representations of
GC clonal composition: richness, dominance, entropy and
evenness. The diversity indices are denoted with the uni-
fied framework of Hill (D) [55], where values of g that are
smaller than unity disproportionately favor rare species (thus
more sensitive to singletons), while values greater than unity
disproportionately favor the most common species.

¢ Dominance (1/°D). The clonal dominance is defined
as the number of cells belonging to the most abundant
clone divided by the total number of observed cells in
the GC.

 Richness (°D). The clonal richness is defined as the
number of clones in the GC. To provide an estimate
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of the total number of clones in a GC based on an in-
complete sample, we use the bias-corrected Chaol for-
mula [56, 57]:

-1
AlA-T) 3)

obs T 201 1)
where Ny, is the number of observed clones in the GC,
f1 is the number of clones detected exactly once, and
f» the number of clones detected exactly twice. In our
setup, the second term of Eq.3 typically equals between
50 % and 100 % of the number of observed clones.

+ Shannon entropy (log[!D]). The Shannon entropy
has been a popular diversity index in the ecological
literature. It is a measure of diversity that accounts
"fairly" for the abundance of both rare and frequent
clones [58] and is thus less affected by the presence of
singletons. Defining the sample size 1, and p; = % as
the normalized occurrence of clone i in the sample, the
Shannon entropy is defined as:

H=-Y piln(p) @

i € clones

Nchao =

Similar to the Chao richness, we also use an estimator to
infer Shannon entropy with incomplete sample informa-

tion [59]. Defining the sample coverage C = 1 — %, we

adjust the relative species abundances with p; = p;C,

Nobs 5 5
_ pilog (pi)

HChao 1221 — (1 — ﬁz’)n (5)

+ Evenness (!D/%D). The evenness quantifies the ho-

mogeneity of clonal abundances in a GC. It is defined

as the exponential of the Shannon entropy normalized

by the richness of the GC [55]. The Chao corrected

richness and Shannon entropy were used to compute
this indicator:

exp(HChao) (6)

Evenness =
NChao

The Evenness is bounded between 0 and 1, where an
evenness of one corresponds to a perfectly homogeneous
sample, i.e. all clones have the same occurrence.

Classifying Non-Functional And Functional
Clones. Each sequence was labeled either as non-
functional when having a frameshift or a stop codon, or
functional otherwise. For each clone, a productivity index,
defined as the number of productive sequences divided by
the total number of sequences in that clone (thus between 0
and 1), was computed.

We further classified non-functional sequences into three
categories: (i) out of frame (ii) early stop codon induced
by VDJ recombination and (iii) early stop codon induced by
SHM. Out of frame sequences were defined as having an out
of frame junction, with a frameshift detected by IMGT. In
frame non-functional sequences were assumed to arise either
from V(D)J recombination when having at least one stop
codon in the IMGT N region, or from SHM otherwise.

Phylogenetic Tree Representation. We used phylo-
genetic trees to visualize the evolution of the antibody re-
ceptor sequences. In such representation, each founder cell
defines the unmutated germline of a new tree, and newly

acquired mutations are ideally represented as downstream
nodes. We defined the root by taking the unmutated V,J
germline and filling the remaining junction region with the
consensus sequence of all available sequences within the
clone. To compute the trees, the grouped sequences from
each clone were first aligned with ClustalW [60]. This align-
ment was necessary to infer a mutation matrix, as tree in-
ference algorithms typically require sequences to be aligned
and of the same length, while experimentally determined
sequences have different lengths, and include insertions and
deletions. To infer trees from a large amount of sequences, we
used a hierarchical clustering approach, where the most simi-
lar sequences were grouped together and progressively aggre-
gated with other groups until the root node (maximum dis-
tance) was reached (Neighbour Joining method in ClustalW).
Such a method was preferred over typical Bayesian Maximum
likelihood estimation [39] or Markov chain Monte Carlo sam-
pling [61], because the latter were intractable for the amount
of sequences per clone in our data (> 5000 sequences), and
would thus require significant subsampling leading to an
important loss of information in our phylogeny analysis.

Sequence Similarity. The Levenshtein distance [62],
defined as the minimum number of edits required to tran-
sition form one sequence to the other, is a common metric
to quantify sequence similarity. To reduce the bias caused
by length differences, we used a normalized Levenshtein
distance [63] that incorporates the length of both sequences
and satisfies the triangle inequality. Given two strings sq, sp
and Lev(sq,sp) the Levenshtein distance between s; and sy,
the normalized Levenshtein distance Levnorm is defined as:

2 - Lev(sy, sp)
L /52) =
€Unorm (51, 52) |s1] + |s2| + Lev(s1, s2) @

Paratope And Antibody Modeling. The paratope
residues were predicted by submitting the antibody se-
quences to Parapred [64] (https://github.com/elibe
ris/parapred). To convert the output of Parapred, binding
probabilities, into a binary label, we selected a threshold
of 0.67, shown to be optimal by the authors of the original
paper [64]. Antibody sequences were submitted to reper-
toire Builder [65] (https://sysimm.org/rep_builder/)
to construct the antibody structure from a homology model.
As part of the FRW1 region was missing from our sequencing
data (the first 15 to 20 residues), missing nucleotides were
filled with the unmutated sequence of their respective IGHV.
The obtained structures were visualized with Pymol [66].

Functional Convergence. While antibodies within the
same clones are likely to target a common epitope [40], it
has also been observed that clones from different V and J
gene backgrounds express common epitope reactivity [67].
To identify different clones that are potentially binding to
the same target epitope, we combine three approaches.

e CDR similarity: As the majority of the paratope
residues are localized on the CDR loops of the antibody
(= 90% according to [68]), antibodies that exhibit high
CDR similarity are likely to express common reactiv-
ity (although expressing different V or J genes). Given
two sequences s and s, with CDRs denoted as H1,H2,
and H3, we define the CDR similarity as the average
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Levenshtein distance between their respective CDRs.

1

CDR similarity(sy,s;) = 3
i—

Z Levnorm (Hil, le)
(1,2,3]
®
The threshold for common reactivity prediction was set
to 84% for this metric, as optimized in Supplementary
Section 5.

e Paratype [40] simplifies the complex phenomenon
of antibody-antigen interaction into sets of shared
paratope residues. It was shown to help in identify-
ing antibodies from different clones binding to the
same target epitope. Two antibodies are said to be
paratype if they have a sequence identity across the pre-
dicted paratope regions greater than a given threshold.
Paratope identity is defined as the number of identical
paratope residues (residues that are predicted to be
in the paratope in both cases) divided by the smallest
number of paratope residues of either sequence being
compared. The threshold for common reactivity pre-
diction was set to 76% for this metric, as optimized in
Supplementary Section 5.

* AbLigity: [41] is a structure-based similarity measure
tailored to the antibody-antigen interfaces. Using pre-
dicted paratopes on modeled antibody structures, it
allows for the identification of sequence-dissimilar anti-
bodies that target highly similar epitopes. In short, the
Ab-Ligity framework enumerates all sets of 3 residues
in the paratope structures, and tokenizes them in terms
of both the distance between the residues as well as
their intrinsic chemical properties (aliphatic, hydroxyl,
sulphur, aromatic, acidic, amine, basic). The obtained
set is then compared among other antibodies to obtain
a similarity score, and predicted as common epitope if
above 0.26, as optimized in Supplementary Section 5.

To find pairs of antibodies that are likely to bind the same
epitope, we combine these three metrics. An antibody pair is
predicted to bind to a common epitope if it has a similarity
above the given threshold for two of the three metrics. Ad-
ditionally, since a different CDR3 length generally implies a
different binding mode, we add the condition that the two
antibodies should have the same CDR3 length in order to be
predicted as binding the same epitope. Although some cases
of antibodies with different CDR3 length expressing com-
mon epitope reactivity were observed [41], such a situation
is anecdotal. In fact, removing this constrain considerably
reduces the accuracy of the three metrics described above,
and existing tools are currently unable to accurately identify
such cases, mainly due to the difficulty of modeling the CDR3
loop accurately [69].

Comparison To Public V Gene Database. We com-
pared the V genes frequencies with a public database of
6 human donors in Lymph node [23], downloaded from
http://immunedb.com/tissue-atlas/. LN samples were
retrived form tissues labeled as submandibular lymph nodes
(MLN) and inguinal lymph nodes (ILN).

Supplementary Materials

The supplementary files attached to this article contains:
Supplementary Section 1 and Figure S1: Mutations analysis

across samples. Supplementary Section 2 and Figure S2: Dis-
tance to nearest distribution to both negation sequences and
sequences within the same sample. Supplementary Section 3
and Figure S3: VJ gene usage combination heatmap. Supple-
mentary Section 4 and Figure S4: Common features of the
most abundant and shared clones. Supplementary Section
5 and Figure S5: Threshold optimization for the Paratype,
CDRsim and AbLigity similarity frameworks. Supplementary
Section 6 and Figure S6: Distribution of paratope distances
for all dominant clones pairs in the same GC and in different
GCs. Supplementary Section 7 and Figure S7 and S8: Epi-
tope convergence model and epitope diversity in germinal
centers. Figure S9: Extensive Experimental Methods. Figure
S10: Samples diversity analysis with CDR3. Figure S11: V
gene frequency in functional and nonfunctional clones. Fig-
ure S12: Phylogeny reconstruction of some representative
F&NF clones. Figure S13: Phylogeny reconstruction of some
representative shared clones across GCs. Supplementary Ta-
ble S1: Crippling mutations and stereotyped V genes (excel
table).
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