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Abstract

Spatial transcriptomics characterizes gene expression profiles while retaining the
information of the spatial context, providing an unprecedented opportunity to
understand cellular systems. One of the essential tasks in such data analysis is to
determine spatially variable genes (SVGs), which demonstrate spatial expression
patterns. Existing methods only consider genes individually and fail to model the
inter-dependence of genes. To this end, we present an analytic tool STAMarker for
robustly determining spatial domain-specific SVGs with saliency maps in deep
learning. STAMarker is a three-stage ensemble framework consisting of graph-
attention autoencoders, multilayer perceptron (MLP) classifiers, and saliency map
computation by the backpropagated gradient. We illustrate the effectiveness of
STAMarker and compare it with three competing methods on four spatial
transcriptomic data generated by various platforms. STAMarker considers all genes
at once and is more robust when the dataset is very sparse. STAMarker could
identify spatial domain-specific SVGs for characterizing spatial domains and enable
in-depth analysis of the region of interest in the tissue section.

Keywords: spatial transcriptomics, spatial domain, spatially variable genes, deep
learning, saliency map
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Introduction

Knowing the relative spatial context of complex tissues or cell cultures is crucial to
understanding complex biological systems®. The recent advances in spatial
transcriptomic (ST) technologies have enabled gene expression profiling with spatial
localization information. Such techniques (e.g., 10x Visium?, Slide-seq®*, and Stereo-
seq®) can profile the gene expressions corresponding to captured locations (referred
to as spots or beads) at a resolution of several cells or even at a subcellular level,
allowing us to discover spatially variable genes®®, identify spatial domains®™(i.e.,
regions with similar spatial expression patterns), deconvolve cell types of spots or
beads'?'3, and characterize spatial cell-to-cell interactions**°,

One of the fundamental tasks in ST data analysis is to identify genes whose
expressions display spatially varying patterns, simply referred to as spatially variable
genes (SVGs). Common methods for identifying SVGs include trensceek®,
SpatialDE’, SPARK?®, SPARK-X'®, and Hotspot'’. The first three methods were
designed based on the parametric framework. For example, SpatialDE fits a
Gaussian process regression (GPR) model for each gene’s expression and finds
whether the GPR model with spatial terms describes data better than that without
using a log-likelihood ratio test. Fitting GPR models for large-scale ST data can be
very time-consuming. To address this issue, SPARK-X adopts a non-parametric
framework to test the dependence between each gene’s expression covariance and
spatial covariance. Hotspot adopts a spatial autocorrelation metric (i.e., a modified
Geary's C statistics) to construct a test statistic to identify SVGs.

There are two main limitations of the existing methods. First, all the methods
perform the hypothesis tests for each gene independently, ignoring the fact that the
genes’ spatial expression patterns could be complementary to each other. Since ST
data tend to be very sparse, performing hypothesis tests for genes individually may
result in deteriorating performance. Second, the identified genes are not spatial
domain-specific, hindering in-depth downstream analysis. For example, researchers
may be interested in genes that display spatial patterns in one or several specific
regions. However, none of the existing methods are directly applicable for such a
purpose.

To this end, we propose an analytic tool STAMarker based on a three-stage
ensemble framewaork consisting of graph-attention autoencoders, multilayer
perceptron (MLP) classifiers, and saliency map computation by the backpropagated
gradient to determine robust spatial domain-specific SVGs. Different from testing
genes individually as the existing methods, STAMarker considers all genes at once
by the backpropagated gradient (i.e., saliency map) and further identifies the spatial
domain-specific SVGs. The intuition behind STAMarker is that genes contributing
most to the tissue structures are potentially important to the corresponding spatial
domains. The prominent advantage of STAMarker is its ability to identify spatial
domain-specific SVGs, enabling deeper insight into specific regions. Extensive
experiments and the comparison with the existing methods SpatialDE, SPARK-X and
Hotspot on various ST data generated from different platforms (e.g., 10x Visium?,
Slide-seq®, and Stereo-seq®) have shown its effectiveness.
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Results

Overview of STAMarker

STAMarker is a three-stage framework that consists of an ensemble of graph
attention autoencoders (STAGATE'?), an ensemble of MLP classifiers and saliency
map computation by the backpropagated gradient (Fig. 1). More specifically, after
constructing the spatial neighbor network (SNN) based on the spots’ locations,
STAMarker first trains multiple STAGATE graph-attention autoencoders, each of
which learns the low-dimensional embeddings of the spots. The learned low-
dimensional embeddings are used to identify spatial domains with various clustering
algorithms, such as Louvain'® and mclust™. To obtain robust and unified spatial
domains, STAMarker uses consensus clustering to aggregate the clustering results.
Second, STAMarker trains multiple MLPs to model the relationship between the
corresponding embeddings and the spatial domains. Third, to detect the SVGs,
STAMarker stacks the encoders with the corresponding MLP and computes the
saliency maps by backpropagation (see the “Saliency score” subsection of the
Methods). STAMarker selects the SVGs in each spatial domain by their norms in the
saliency maps.

STAMarker robustly identifies the spatial domain-specific SVGs on the human
dorsolateral prefrontal cortex dataset

We first applied STAMarker to the human dorsolateral prefrontal cortex (DLPFC)
dataset profiled by the 10x Visium platform®. This dataset contains 12 sections that
are manually annotated with the DLPFC layers and white matter (WM) based on the
gene markers and morphological features (Fig. 2A). We considered the manual
annotation as the ground truth and used the adjusted rand index (ARI) to evaluate
the performance of spatial domain identification.

Compared with only using an individual graph attention auto-encoder, STAMarker
improved the robustness and identified the spatial domains more accurately. For
example, STAGATE resulted in an undesirable spatial domain in the DLPFC section
151507 (the red region in Fig. 2A, middle panel). STAMarker improved the
performance of ARI from 0.48 to 0.55 and identified the expected cortical layer
structures better. Experimental results in the 12 DLPFC sections showed that
STAMarker could consistently reduce the model variances of STAGATE across all
sections and improve the performance of spatial domain identification in most of the
sections (Fig. S1B). We set the number of auto-encoders M = 20 in all the following
experiments.

STAMarker further identified the spatial domain-specific SVGs by saliency map.
We note that a gene could be identified as an SVG for multiple spatial domains,
which means that this gene is important for the determination of those spatial
domains. For section 151507 of the DLPFC dataset, we found that 214 SVGs genes
were specifically related to a unique spatial domain, and 382 SVGs were specifically
with two or three spatial domains (Fig. 2B).

We compared STAMarker with three commonly used methods, i.e., SpatiaIDE7,
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SPARK-X'®, and Hotspot*’. Note that none of the compared methods can identify
domain-specific SVGs. To facilitate direct comparison, we kept the number of the
identified SVGs to be the same for all methods. The UpSet plot shows that the SVGs
identified by the four methods have considerable overlap (417 out of 650 genes,
referred to as consensus SVGs in the following), suggesting that STAMarker could
discover the most SVGs identified by other methods (Fig. 2C). To further illustrate the
robustness of STAMarker, we downsampled the counts of the gene expressions and
computed the overlap number of the identified SVGs with the consensus ones (Fig.
2D). STAMarker is more robust than other methods when the gene expressions are
sparse (the downsampling rate is less than 0.3) (Fig. 2D). The compared methods
perform the hypothesis test for each independently, resulting in weak statistical
power when the data are very sparse. STAMarker implicitly takes account of the
gene expression interaction by considering all the genes at once with the
backpropagation of the gradient, suggesting that it has a stronger power when the ST
data are very sparse.

More importantly, STAMarker could determine spatial domain-specific SVGs that
play important roles in DLPFC (Fig. 2E). We note that a gene that is highly
expressed in a spatial domain does not necessarily have a higher saliency score in
that region. For example, CD47 was highly expressed in more than one layer, and it
was identified as a layer 1-specific SVG by STAMarker but not by other methods.
Note that CD47 was known as the ligand of tyrosine phosphatases?®', and was
documented as an Alzheimer’s resilience factor” which is related to the biological
function of DLPFC. Moreover, STAMarker revealed FEZF2 and HAPLN2 as layer 5
and WM-specific genes respectively. Notably, FEZF2 is a marker gene of deep layer
excitatory neurons?®, and HAPLN2 plays an important role in the development of
white matter®*. Lastly, STAMarker also revealed some SVGs like MOBP, MBP, and
SNAP25 for multiple spatial domains, which have been reported as marker genes
before®.

The saliency map can be used to cluster the spatial domain-specific SVGs into
spatial modules (see the “Identifying spatial domain-specific SVG modules”
subsection). The selected SVGs were clustered into seven clear modules (Fig. S1C)
which correspond to the layers 1-6 and white matter, respectively (Fig. S1D). We
also performed gene enrichment analysis for the identified SVGs by the four methods
and found that the SVGs identified by STAMarker tended to be more enriched in GO
cellular components (GO:CC) terms directly related to the nervous system, such as
synapse and neuron projection (Fig. S1E). We observed consistent phenomena in
other datasets (see Supplementary Notes section “Comparison of the enrichment
analysis of the identified SVGs by the four methods” for detailed description).

STAMarker enables fine-grained analysis on the mouse hippocampus dataset
of Alzheimer’s disease

We applied STAMarker to the mouse hippocampus dataset of Alzheimer’s disease
(AD)?, which was generated by Slide-seq V2 with a spatial resolution of 10um.
STAMarker could well characterize the tissue structures (Fig. 3A) including the
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important ones in the hippocampus, such as the arrow-like structure DG and the
cord-like structure CAL. Strikingly, STAMarker successfully identified a spatial
domain (domain 9) corresponding to the microglial cells (Fig. 3B), which were
concentrated around amyloid plaques. This phenomenon is a prominent feature of
AD*?"_STAMarker identified the SVGs of spatial domain 9, and many of them are
known gene markers of microglial cell and risk genes of AD with significantly high
expressions (Fig. 3C). For example, P2ry12 was related to microglial motility and
migration®®; Trem2 was known selectively expressed by microglia and related to a
cell surface protein®’. Trem2 was also a well-known risk gene associated with AD,
and its mutation increases the risk of AD around threefold®=°. Hexb and Cx3rc1 were
stably expressed microglia core genes®. However, among the competing methods,
SpatialDE missed Hexb and Fcrls, SPARK-X only identified Mef2c, and Hotspot was
the only method that could identify all the six known marker genes (shown in Fig. 3C).
Compared with the competing spatial domain-agnostic methods, STAMarker enables
a fine-grained analysis of the spatial domain of interest.

In total, STAMarker determined 797 SVGs that had considerable overlap with the
ones identified by other methods and many of the STAMarker-identified SVGs are
domain-specific (Fig. S2A and B). These SVGs detected by STAMarker were
enriched in a total of 1125 GO terms and 47 KEGG at an FDR of 5%. The directly
related GO terms such as synapse (G0:0045202), nervous system development
(G0:0007399), and neuron projection (GO:0043005) were significantly enriched and
comparable to the competing methods (Fig. S2C).

We further used the saliency map to cluster SVGs belonging to less than two
spatial domains (referred to as domain-specific SVGs for simplicity) into nine gene
modules (Fig. 3D, 312 SVGs in total). Gene module M1 (74 genes) was highlighted
in the microglial cells and was specifically enriched in many GO terms related to the
immune response terms, such as immune system process, response to stimulus, and
regulation of cytokine production (Fig. 3F). As a comparison, the enriched GO terms
of gene module M5 were mainly related to transmembrane transport and no immune-
related GO terms were detected. The representative genes of gene module M1
include Egr3, Lrrn2, and Kcnbl (Fig. 3G). Egr3 was CA3-specific and only identified
by STAMarker. Egr3 was known as a master regulator of differentially expressed
genes in AD*?, Lrrn2 corresponded to microglial and CA1. Kcnbl was a DG-specific
one, indicating that it is important for distinguishing DG from other spatial domains.
Kcnbl was also associated with aging and cognitive impairment®*. Gene module M2
(387 genes) was mainly highlighted in the exterior region with two representative
genes Usp33 and Tenm2. This module was significantly enriched in axon
growth(G0:0007409, P = 3.55 x 10~2%) and axon guidance (GO:0007411, P = 2.74 X
10719). Gene module M5 (30 genes) was enriched in many GO terms related to
neurons such as regulation of neurotransmitter levels (GO:0001505, P = 5.78 X
10723), and presynapse (G0O:0098793, P = 2.85 x 10757). Its representative gene
Gad?2 was a spatially variable one related to spatial domains 4 and 7 (Fig. 3G).
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STAMarker reveals the domain-specific variable genes on the mouse olfactory
bulb dataset

We applied STAMarker to the mouse olfactory bulb dataset’ profiled by the Stereo-
seq platform to identify the laminar organization and the corresponding SVGs.
STAMarker could well decipher the eight spatial domains with clear laminar
structures (Fig. 4A), consisting of rostral migratory stream (RMS), ependymal cell
zone (ECZ), granule cell layer (GCL), internal plexiform layer (IPL), mitral layer (MT),
glomerular layer (GL) and olfactory nerve layer (ONL), annotated according to the
Allen Brain Atlas®.

STAMarker determined 311 SVGs, and most of them belong to more than three
spatial domains (Fig. 4B), implying that the eight laminar organizations share similar
gene expression patterns. The shared SVGs of the four methods is only one gene
(Fig. 4C). The SVGs identified by STAMarker were enriched in more GO terms and
KEGG pathways, while those of SpatialDE were enriched in much fewer terms at an
FDR of 5% (Fig. S3) (STAMarker: 451 GO terms and 42 KEGG pathways; Hotspot:
349 GO terms, 27 KEGG pathways; SPARK-X: 377 GO terms, 34 KEGG pathways;
SpatialDE: 15 GO terms, 2 KEGG pathways). Many of the STAMarker-identified GO
terms and KEGG pathways directly related to the synapse organization and the
functions of the olfactory bulb, and tended to be more significant than those of the
other methods. For example, the SVGs identified by STAMarker were enriched in the
circadian entrainment pathway (KEGG 04713, P = 4.13 x 10~12) and were more
significant than those by the compared methods (Hotspot P = 3.05 x 10~7; SPARK-X
P = 107°; SpatialDE is not significant).

The spatial domain-specific SVGs (67 genes) were clustered into eight gene
modules (Fig. 4D), showing clear laminar organization with distinct correspondence
to the morphological layers. For example, gene module M1 consisted of spatial
domain-specific SVGs of the ECZ and GCL layers (Fig. 4E). Its two representative
genes Fasn and Cabinl were, respectively, related to the endothelial cell
differentiation (GO 0045446, P = 6.60 x 10~2) and over-expressed in olfactory
epithelium®® (Fig. 4F), which was only identified by STAMarker. Gene module M3
highlighted the interior layers of the olfactory bulb with two typical genes: Gadl was
highlighted in both GCL and IPL and played an important role in the olfactory bulb
interneurons® and Pcp4l1 was known as a marker gene of the GCL*'. Gene module
M4 mainly corresponded to the IPL and EPL spatial domains with two typical genes
Slc25a3 and Cox7a2, and was enriched in the organelle inner membrane (GO
0019866, P = 6.91 x 1078).

STAMarker uncovers the spatial domain-specific SVGs on the mouse
cerebellum dataset

We illustrated the effectiveness of STAMarker on a mouse cerebellum dataset
generated by Slide-seq V2 platform®. STAMarker clearly identified the tissue
structures of the cerebellum, i.e., molecular layer (MOL), Purkinje layer (PL), white
matter (WM) and granule cell layer (GCL), and cerebellar nucleus (CN) (Fig. 5A).
STAMarker and other three methods determined 508 SVGs respectively and the
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SVGs identified by SpatialDE were quite different from those of other methods (Fig.
S4). The SVGs identified by STAMarker were enriched in 640 GO terms and 30
KEGG pathways, while the SVGs identified by SPARK-X were enriched in 578 GO
terms and 32 pathways (for comparison, Hotspot: 550 GO terms and 24 KEGG
pathways; SpatialDE: 170 GO terms and no enriched KEGG pathways were
identified) (Fig. S4C). STAMarker identified the GO terms that are directly related the
cerebellum development (GO 0021549, P = 3.59 x 10~*) and morphogenesis (GO
0021587, P = 4.83 x 10™%), while Hotspot is the only method that identified the two
GO terms with less overlap size (GO 0021549, P = 5.67 x 1073 ; GO 0021587,

P = 0.160). One of the prominent advantages of STAMarker is the ability to provide
spatial domain-specific SVGs, enabling more fine-grained analysis. Moreover, the
spatial domain-specific enrichment analysis characterized the functions of each
spatial domain. For example, the Purkinje-related GO terms were only enriched in
MOL, PL, and GCL respectively (Fig. 5B), which is consistent with the histology of
Purkinje cells.

Moreover, the SVGs determined by STAMarker could cover more mouse
cerebellum marker genes from the Harmonizome database® (i.e., 108 out of the 261
genes) with the hypergeometric test P = 5.29 x 1023 compared to the other three
methods (Fig. 5C). Hotspot identified the second most 80 genes with the
hypergeometric test P = 5.99 x 10~?, while the overlaps of the identified SVGs by
SPARK-X and SpatialDE were merely below 50 without statistical significance.

The spatial domain-specific SVGs were clearly clustered into five gene modules
based on the saliency maps (Fig. 5D) with clear spatial domain patterns (Fig. 5E).
The five modules were enriched in distinct cell types (Fig. 5F) based on the
downloaded marker genes of cerebellum-related cell types from PanglaoDB*°. For
example, gene module M1 corresponds to GCL and MOL with two representative
genes Chinl and Dabl. The two genes were strongly over-expressed in the
corresponding spatial domains and were enriched in cerebellum development (GO
0021549, P = 4.13 x 107®8). CbIn1 was essential for synaptic plasticity and integrity in
the cerebellum*'. Gene module M2 mainly consists of PL and MOL and the Purkinje
neurons were only enriched in this module. Two example genes of M2 include Grial
and Baiap2 belonging to the enriched GO term regulation of synaptic plasticity (GO
0048167, P = 3.49 x 1077). In particular, Baiap2 was only identified by STAMarker.
Gene module M5 was related to the CN and WM spatial domains with two highly
expressed genes Nrsnl and Ucn in the CN region. Moreover, both of them were in
the enriched GO term distal axon (GO 0150034, P = 3.88 x 10719). In summary,
STAMarker can not only determine SVGs that are enriched in the most GO terms
and KEGG pathways that are directly related to the tissue biological functions
compared to other methods, but also provides the spatial domains corresponding to
SVGs.

Discussion
Determining SVGs is the very first step towards understanding the complex biological
functions of complex tissues and cell cultures through ST data. Here, we develop a
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robust and effective spatial domain-specific SVGs identification method STAMarker.
STAMarker is a three-stage analytic method inspired by the saliency map in deep
learning. STAMarker conceptually considers genes that contribute most to the
determination of the spatial domains as SVGs. Different from the competing methods
that consider genes independently, STAMarker considers all genes simultaneously,
making it possible to exploit the complementary information across genes. Another
outstanding advantage of STAMarker is its ability to identify spatial domain-specific
SVGs while the competing methods are not directly applicable.

STAMarker could robustly identify SVGs even when the data are downsampled to
a very sparse level. Experimental results on various datasets consistently showed
that SVGs identified by STAMarker tended to be more significant in related GO terms
and KEGG pathways. Moreover, the spatial domain-specific SVGs can be organized
into gene modules corresponding to spatial domain patterns. The domain-specific
SVGs identified by STAMarker could also enable researchers to investigate spatial
domains of interest at a finer scale.

Despite that STAMarker considers all genes simultaneously and measures genes’
importance by their contributions to the classification, it is still unclear how to
evaluate the importance of a set of genes, which are expected to be solved in the
future. Lastly, we expect that this kind of analytic tools can be extended to other
spatial omics like spatial metabolomics*.
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Materials and Methods

Data description

We applied STAMarker and the three compared methods to ST datasets generated
by various techniques, including 10x Visium, Slide-seqV2, and Stereo-seq (see
Supplementary Table S1 for details).

Data preprocessing

We followed the data preprocessing procedure in STAGATE™. We first removed
spots outside of the main tissue area. We then used the pipeline provided by the
SCANPY package to log-transform the raw gene expression and normalize it
according to the library size. For all datasets, we selected the top 3,000 highly
variable genes as the inputs of STAMarker.

Ensemble of graph attention auto-encoders
We used an ensemble of graph attention auto-encoders to robustly identify spatial
domains. We adopted STAGATE as the base auto-encoder for its superior
performance in spatial domain identification. Specifically, STAGATE consists of three
parts: encoder f,,., decoder f;.. and the attention layer. STAGATE first constructs a
spatial neighbor network (SNN) where neighboring spots have edges. The encoder
fenc transforms the gene expression of a spot into a d-dimensional embedding by
aggregating information from the neighboring spots in SNN. Let's denote the gene
expression matrix of n spots and p genes by X € R™"*?. The encoder is defined as

h; = fenc (%), @)
where x; € RP indicates the gene expression profile of spot i and h; € R% is the
corresponding latent embedding. Then the decoder f;,. reverses back the latent
embedding h; into the reconstructed gene expression profile, i.e., X; = fy..(h;). The
attention layers coupled with the encoder and decoder adaptively learn the edge
weights of SNN.

Despite that STAGATE has shown its effectiveness on various ST datasets, an
inherent challenge of deep learning methods is that the weight initialization might
have a significant impact on the results. To alleviate this issue, we constructed an
ensemble of graph attention auto-encoders. We trained M STAGATE models with
different random weight initialization and applied clustering algorithms to the learned
low-dimensional embeddings of each model. Specifically, we used the mclust
clustering algorithm when the number of labels is known; otherwise, we employed
the Louvain algorithm. As a result, we obtained M clustering results for each

STAGATE model, denoted by YV, Y@ | Y™ respectively.

Consensus clustering
We used consensus clustering to obtain the spatial domains. Given the clustering

results YOO, y@ . Y™ we first computed the clustering connectivity matrix

C such that
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Mo = y™)

o= @)
if M ’

)

where I(+) is the indicator function, and yi(m and y].(m) denote the cluster labels of

spot i and j in Y™ respectively. The clustering connectivity matrix C is a symmetric
matrix where C;; indicates the empirical probability of spots i and j that belong to the
same cluster. Finally, we applied hierarchical clustering to ¢ and obtained the spatial
domain labels Y*. The number of clusters K is simply set as the same as the mode of
the number of clusters of the M clustering results.

Ensemble of MLP classifiers
We used an ensemble of two-layer MLP classifiers denoted by fy,,p to model the
relationship between the latent embeddings and the spatial domain labels Y*. The
low-dimensional latent embeddings of the M auto-encoders are used as the inputs:
furp(hy) = c(Wo(W h; + by) + b,), )
where W, € R**% and W, € R**K are the weight matrices, b, € R%, b, € RX are the
bias, and ¢ is a nonlinear activation function (we used ReLU here). The MLP
classifier is trained by minimizing the cross-entropy between the spatial domain
labels Y™ and the softmax of the output of f,,, . As a result, there are M MLP
classifiers corresponding to the M auto-encoders.

Spatial domain-specific saliency map

We used the saliency map to measure the contribution of genes to the spatial domain
classification. The idea is inspired by the saliency map in computer vision®**, which
is an important concept to explain the contribution of pixels to image classification.
Specifically, given the i-th spot's gene expression x;, we denoted the output of the
last layer of the MLP classifier as z;

Z; = fonc © fup(X0) = furp (fenc(xi))’ (4)
where z; € RX. The MLP classifier will predict x; as the k,,,,-th spatial domain where
k.nax is the index of the largest value of z; (denoted by z; ;). Note that z;; _ isa
scalar function of x;. To measure the genes’ contribution to the prediction of spatial
domains, we computed the gradient of z;,, _ with respect to x; by backpropagation

0Zig,

s; = ox; ()
where s; € R? is the same size of x;. We denoted the saliency map of the m-th auto-
encoder and the corresponding MLP classifier across all spots as $(™) € R™?, where
the i-th column of (™) is computed by (5). We used the norm of the gene j’s
gradients across the spots belonging to spatial domain k. Specifically, the spatial
domain-specific saliency score of gene j for spatial domain k is defined as follows:

score(k,j) = ||§ﬂ(k),j |, (6)
where A(k) indicates the set of indices of spots belonging to spatial domain k, i.e.,

A(k) = {i:y; = k}.
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Identifying spatial domain-specific SVGs

We used the norm of the saliency maps to identify the spatial domain-specific SVGs.
Given the spatial domain k, we first applied log transformation to the saliency scores
of all genes. To adaptively select SVGs, we estimated the mean /i and standard
deviation & of the log-transformed scores of all genes, and selected genes whose
scores are greater than g + aji, where « is a user-defined parameter to control the
number of selected SVGs. Larger « results in fewer identified SVGs. We typically set
a = 1.5.

Identifying spatial domain-specific SVG modules

We constructed the spatial domain-specific SVG modules by the saliency score
matrix. First, we selected genes that are SVGs in less than two spatial domains.
Then we evaluated the pair-wise gene correlation by the saliency matrix, i.e., the
Pearson correlation between S,; and 5:]-. We then clustered the resulting affinity
matrix into K clusters. We applied PCA to the saliency score matrix of the gene
modules and visualized the gene modules by the first principal component.

Gene enrichment analysis
We used the g:pforfie*® API provided by SCANPY*’ to perform gene enrichment
analysis.

Data availability

All data used in this paper are available in raw from the corresponding papers’
authors. Specifically, the DLPFC dataset generated by 10x Visium is available at
http://spatial.libd.org/spatialLIBD. The hippocampus dataset of the J20 mouse model
generated by Slide-seq V2 is accessible at
https://singlecell.broadinstitute.org/single_cell/study/SCP1663/cell-type-specific-
inference-of-differential-expression-in-spatial-transcriptomics. The processed Stereo-
seq data for mouse olfactory bulb tissue is available at
https://github.com/JinmiaoChenlLab/SEDR_analyses. The processed Slide-seq data
for mouse cerebellum is available at
https://singlecell.broadinstitute.org/single_cell/study/SCP354/slide-seq-study.

Code availability
The STAMarker algorithm is implemented with Python and is available at
http://github.com/zhanglabtools/STAMarker.
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Figure captions:

Figure 1. Overview of STAMarker. Given the spatial transcriptomics of a tissue
section, STAMarker first trains an ensemble of graph attention auto-encoders that
consists of M STAGATE models to learn the low-dimensional latent embeddings of
spots, cluster them to obtain M grouping results, computes the clustering connectivity
matrix and applies hierarchical clustering to obtain the spatial domains. STAMarker
further models the relationships between the embeddings of the M auto-encoders
and the spatial domains by training M base classifiers. At last, STAMarker computes
the saliency map by first stacking the encoder and the corresponding classifier and
then backpropagating the gradient to the input spatial transcriptomics matrix.
STAMarker selects the domain-specific SVGs based on the genes’ saliency scores in
each spatial domain.

Figure 2. STAMarker robustly identifies the spatial domain-specific SVGs on
the human dorsolateral prefrontal cortex (DLPFC) dataset. A, Manual annotation
of cortical layers and white matter (WM) in the DLPFC section 151507, and the
spatial domains identified by STAGATE and STAMarker respectively. B, Histogram of
the number of spatial domains to which the SVGs identified by STAMarker belong. C,
UpSet plot of the numbers of SVGs identified by SpatialDE, SPARK-X, Hotspot, and
STAMarker. D, Comparison of the overlap number of the identified SVGs with the
consensus ones by the four methods on the downsampled datasets. The error bars
are computed based on five replicates. E, Visualization of the representative spatial
domain-specific SVGs. From top to bottom, the raw counts, the saliency map (z-
score transformation is applied), and the corresponding spatial domains of the SVGs
identified by STAMarker.

Figure 3. STAMarker identifies spatial domain-specific SVGs on the mouse
hippocampus dataset. A, Spatial domains identified by STAMarker. The major
subfields of the hippocampal formation, such as DG (spatial domain 2), CAl(spatial
domain 6), and CAS3 (spatial domain 0), were clearly shown. B, Spatial domain 9
corresponds to the microglial cells which are associated with the amyloid plaque of
Alzheimer’s disease. C, Stacked violin plot showing the marker genes of microglial
cells that were differentially expressed in spatial domain 9 but not others. D,
Heatmap showing the nine clear gene modules that were clustered by the 154 spatial
domain-specific SVGs. E, Visualization of the domain-specific gene modules by the
first principal component of the saliency maps. F, Comparison of the top eight GO BP
terms of M1 and M5. “r.0.” stands for “regulation of” to avoid clutter. G, Visualization
of the representative spatial domain-specific SVGs. From top to bottom, the raw
counts, the saliency map, and the corresponding spatial domains of SVGs.

Figure 4. STAMarker reveals the domain-specific SVGs on the mouse olfactory
bulb dataset. A, Spatial domains identified by STAMarker. The laminar organization
of the mouse olfactory bulb is clearly shown. The identified spatial domains were
annotated by the Allen Reference Atlas. B, Histogram of the number of spatial
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domains to which the SVGs identified by STAMarker belong. C, UpSet plot of the
numbers of SVGs identified by SpatialDE, SPARK-X, Hotspot, and STAMarker.
STAMarker identified 311 SVGs. D, Heatmap showing the eight modules that were
clustered by the 67 domain-specific SVGs. E, Visualization of the domain-specific
gene modules by the first principal component of the saliency maps. F, Visualization
of the representative spatial domain-specific SVGs.

Figure 5. STAMarker uncovers spatial domain-specific SVGs on the mouse
cerebellum data. A, Spatial domains identified by STAMarker. The identified spatial
domains were annotated by the Allen Reference Atlas. B, GO enrichment analysis of
the SVGs in the named spatial domains. The selected enriched GO terms show
distinct significance levels. C, Bar plot displaying the overlap of the identified SVGs
with reference gene list (261 genes, obtained from the Harmonizome database). The
p values of the hypergeometric test were shown above the bars (ns indicates not
significant, i.e., p values > 0.05). D, Heatmap showing the five gene modules that
were clustered by the 369 domain-specific SVGs. E, Visualization of the domain-
specific gene modules by the first principal component of the saliency maps. F,
Enrichment analysis of the identified spatial modules with diverse cell types related to
the cerebellum. G, Visualization of the representative spatial domain-specific SVGs.
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