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Abstract 
Spatial transcriptomics characterizes gene expression profiles while retaining the 
information of the spatial context, providing an unprecedented opportunity to 
understand cellular systems. One of the essential tasks in such data analysis is to 
determine spatially variable genes (SVGs), which demonstrate spatial expression 
patterns. Existing methods only consider genes individually and fail to model the 
inter-dependence of genes. To this end, we present an analytic tool STAMarker for 
robustly determining spatial domain-specific SVGs with saliency maps in deep 
learning. STAMarker is a three-stage ensemble framework consisting of graph-
attention autoencoders, multilayer perceptron (MLP) classifiers, and saliency map 
computation by the backpropagated gradient. We illustrate the effectiveness of 
STAMarker and compare it with three competing methods on four spatial 
transcriptomic data generated by various platforms. STAMarker considers all genes 
at once and is more robust when the dataset is very sparse. STAMarker could 
identify spatial domain-specific SVGs for characterizing spatial domains and enable 
in-depth analysis of the region of interest in the tissue section.  
 
Keywords: spatial transcriptomics, spatial domain, spatially variable genes, deep 
learning, saliency map 
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Introduction 
Knowing the relative spatial context of complex tissues or cell cultures is crucial to 
understanding complex biological systems1. The recent advances in spatial 
transcriptomic (ST) technologies have enabled gene expression profiling with spatial 
localization information. Such techniques (e.g., 10x Visium2, Slide-seq3,4, and Stereo-
seq5) can profile the gene expressions corresponding to captured locations (referred 
to as spots or beads) at a resolution of several cells or even at a subcellular level, 
allowing us to discover spatially variable genes6–8, identify spatial domains9–11(i.e., 
regions with similar spatial expression patterns), deconvolve cell types of spots or 
beads12,13, and characterize spatial cell-to-cell interactions14,15. 

One of the fundamental tasks in ST data analysis is to identify genes whose 
expressions display spatially varying patterns, simply referred to as spatially variable 
genes (SVGs). Common methods for identifying SVGs include trensceek6, 
SpatialDE7, SPARK8, SPARK-X16, and Hotspot17. The first three methods were 
designed based on the parametric framework. For example, SpatialDE fits a 
Gaussian process regression (GPR) model for each gene’s expression and finds 
whether the GPR model with spatial terms describes data better than that without 
using a log-likelihood ratio test. Fitting GPR models for large-scale ST data can be 
very time-consuming. To address this issue, SPARK-X adopts a non-parametric 
framework to test the dependence between each gene’s expression covariance and 
spatial covariance. Hotspot adopts a spatial autocorrelation metric (i.e., a modified 
Geary’s C statistics) to construct a test statistic to identify SVGs. 

There are two main limitations of the existing methods. First, all the methods 
perform the hypothesis tests for each gene independently, ignoring the fact that the 
genes’ spatial expression patterns could be complementary to each other. Since ST 
data tend to be very sparse, performing hypothesis tests for genes individually may 
result in deteriorating performance. Second, the identified genes are not spatial 
domain-specific, hindering in-depth downstream analysis. For example, researchers 
may be interested in genes that display spatial patterns in one or several specific 
regions. However, none of the existing methods are directly applicable for such a 
purpose. 

To this end, we propose an analytic tool STAMarker based on a three-stage 
ensemble framework consisting of graph-attention autoencoders, multilayer 
perceptron (MLP) classifiers, and saliency map computation by the backpropagated 
gradient to determine robust spatial domain-specific SVGs. Different from testing 
genes individually as the existing methods, STAMarker considers all genes at once 
by the backpropagated gradient (i.e., saliency map) and further identifies the spatial 
domain-specific SVGs. The intuition behind STAMarker is that genes contributing 
most to the tissue structures are potentially important to the corresponding spatial 
domains. The prominent advantage of STAMarker is its ability to identify spatial 
domain-specific SVGs, enabling deeper insight into specific regions. Extensive 
experiments and the comparison with the existing methods SpatialDE, SPARK-X and 
Hotspot on various ST data generated from different platforms (e.g., 10x Visium2, 
Slide-seq3–5, and Stereo-seq5) have shown its effectiveness. 
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Results 
Overview of STAMarker 
STAMarker is a three-stage framework that consists of an ensemble of graph 
attention autoencoders (STAGATE10), an ensemble of MLP classifiers and saliency 
map computation by the backpropagated gradient (Fig. 1). More specifically, after 
constructing the spatial neighbor network (SNN) based on the spots’ locations, 
STAMarker first trains multiple STAGATE graph-attention autoencoders, each of 
which learns the low-dimensional embeddings of the spots. The learned low-
dimensional embeddings are used to identify spatial domains with various clustering 
algorithms, such as Louvain18 and mclust19. To obtain robust and unified spatial 
domains, STAMarker uses consensus clustering to aggregate the clustering results. 
Second, STAMarker trains multiple MLPs to model the relationship between the 
corresponding embeddings and the spatial domains. Third, to detect the SVGs, 
STAMarker stacks the encoders with the corresponding MLP and computes the 
saliency maps by backpropagation (see the “Saliency score” subsection of the 
Methods). STAMarker selects the SVGs in each spatial domain by their norms in the 
saliency maps. 
 
STAMarker robustly identifies the spatial domain-specific SVGs on the human 
dorsolateral prefrontal cortex dataset 
We first applied STAMarker to the human dorsolateral prefrontal cortex (DLPFC) 
dataset profiled by the 10x Visium platform20. This dataset contains 12 sections that 
are manually annotated with the DLPFC layers and white matter (WM) based on the 
gene markers and morphological features (Fig. 2A). We considered the manual 
annotation as the ground truth and used the adjusted rand index (ARI) to evaluate 
the performance of spatial domain identification. 

Compared with only using an individual graph attention auto-encoder, STAMarker 
improved the robustness and identified the spatial domains more accurately. For 
example, STAGATE resulted in an undesirable spatial domain in the DLPFC section 
151507 (the red region in Fig. 2A, middle panel). STAMarker improved the 
performance of ARI from 0.48 to 0.55 and identified the expected cortical layer 
structures better. Experimental results in the 12 DLPFC sections showed that 
STAMarker could consistently reduce the model variances of STAGATE across all 
sections and improve the performance of spatial domain identification in most of the 
sections (Fig. S1B). We set the number of auto-encoders � � 20 in all the following 
experiments. 

STAMarker further identified the spatial domain-specific SVGs by saliency map. 
We note that a gene could be identified as an SVG for multiple spatial domains, 
which means that this gene is important for the determination of those spatial 
domains. For section 151507 of the DLPFC dataset, we found that 214 SVGs genes 
were specifically related to a unique spatial domain, and 382 SVGs were specifically 
with two or three spatial domains (Fig. 2B).  

We compared STAMarker with three commonly used methods, i.e., SpatialDE7, 
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SPARK-X16, and Hotspot17. Note that none of the compared methods can identify 
domain-specific SVGs. To facilitate direct comparison, we kept the number of the 
identified SVGs to be the same for all methods. The UpSet plot shows that the SVGs 
identified by the four methods have considerable overlap (417 out of 650 genes, 
referred to as consensus SVGs in the following), suggesting that STAMarker could 
discover the most SVGs identified by other methods (Fig. 2C). To further illustrate the 
robustness of STAMarker, we downsampled the counts of the gene expressions and 
computed the overlap number of the identified SVGs with the consensus ones (Fig. 
2D). STAMarker is more robust than other methods when the gene expressions are 
sparse (the downsampling rate is less than 0.3) (Fig. 2D). The compared methods 
perform the hypothesis test for each independently, resulting in weak statistical 
power when the data are very sparse. STAMarker implicitly takes account of the 
gene expression interaction by considering all the genes at once with the 
backpropagation of the gradient, suggesting that it has a stronger power when the ST 
data are very sparse. 

More importantly, STAMarker could determine spatial domain-specific SVGs that 
play important roles in DLPFC (Fig. 2E). We note that a gene that is highly 
expressed in a spatial domain does not necessarily have a higher saliency score in 
that region. For example, CD47 was highly expressed in more than one layer, and it 
was identified as a layer 1-specific SVG by STAMarker but not by other methods. 
Note that CD47 was known as the ligand of tyrosine phosphatases21, and was 
documented as an Alzheimer’s resilience factor22 which is related to the biological 
function of DLPFC. Moreover, STAMarker revealed FEZF2 and HAPLN2 as layer 5 
and WM-specific genes respectively. Notably, FEZF2 is a marker gene of deep layer 
excitatory neurons23, and HAPLN2 plays an important role in the development of 
white matter24. Lastly, STAMarker also revealed some SVGs like MOBP, MBP, and 
SNAP25 for multiple spatial domains, which have been reported as marker genes 
before20.  

The saliency map can be used to cluster the spatial domain-specific SVGs into 
spatial modules (see the “Identifying spatial domain-specific SVG modules” 
subsection). The selected SVGs were clustered into seven clear modules (Fig. S1C) 
which correspond to the layers 1-6 and white matter, respectively (Fig. S1D). We 
also performed gene enrichment analysis for the identified SVGs by the four methods 
and found that the SVGs identified by STAMarker tended to be more enriched in GO 
cellular components (GO:CC) terms directly related to the nervous system, such as 
synapse and neuron projection (Fig. S1E). We observed consistent phenomena in 
other datasets (see Supplementary Notes section “Comparison of the enrichment 
analysis of the identified SVGs by the four methods” for detailed description). 

 
STAMarker enables fine-grained analysis on the mouse hippocampus dataset 
of Alzheimer’s disease  
We applied STAMarker to the mouse hippocampus dataset of Alzheimer’s disease 
(AD)25, which was generated by Slide-seq V2 with a spatial resolution of 10µm. 
STAMarker could well characterize the tissue structures (Fig. 3A) including the 
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important ones in the hippocampus, such as the arrow-like structure DG and the 
cord-like structure CA1. Strikingly, STAMarker successfully identified a spatial 
domain (domain 9) corresponding to the microglial cells (Fig. 3B), which were 
concentrated around amyloid plaques. This phenomenon is a prominent feature of 
AD26,27. STAMarker identified the SVGs of spatial domain 9, and many of them are 
known gene markers of microglial cell and risk genes of AD with significantly high 
expressions (Fig. 3C). For example, P2ry12 was related to microglial motility and 
migration28; Trem2 was known selectively expressed by microglia and related to a 
cell surface protein27. Trem2 was also a well-known risk gene associated with AD, 
and its mutation increases the risk of AD around threefold29,30. Hexb and Cx3rc1 were 
stably expressed microglia core genes31. However, among the competing methods, 
SpatialDE missed Hexb and Fcrls, SPARK-X only identified Mef2c, and Hotspot was 
the only method that could identify all the six known marker genes (shown in Fig. 3C). 
Compared with the competing spatial domain-agnostic methods, STAMarker enables 
a fine-grained analysis of the spatial domain of interest. 

In total, STAMarker determined 797 SVGs that had considerable overlap with the 
ones identified by other methods and many of the STAMarker-identified SVGs are 
domain-specific (Fig. S2A and B). These SVGs detected by STAMarker were 
enriched in a total of 1125 GO terms and 47 KEGG at an FDR of 5%. The directly 
related GO terms such as synapse (GO:0045202), nervous system development 
(GO:0007399), and neuron projection (GO:0043005) were significantly enriched and 
comparable to the competing methods (Fig. S2C). 

We further used the saliency map to cluster SVGs belonging to less than two 
spatial domains (referred to as domain-specific SVGs for simplicity) into nine gene 
modules (Fig. 3D, 312 SVGs in total). Gene module M1 (74 genes) was highlighted 
in the microglial cells and was specifically enriched in many GO terms related to the 
immune response terms, such as immune system process, response to stimulus, and 
regulation of cytokine production (Fig. 3F). As a comparison, the enriched GO terms 
of gene module M5 were mainly related to transmembrane transport and no immune-
related GO terms were detected. The representative genes of gene module M1 
include Egr3, Lrrn2, and Kcnb1 (Fig. 3G). Egr3 was CA3-specific and only identified 
by STAMarker. Egr3 was known as a master regulator of differentially expressed 
genes in AD32. Lrrn2 corresponded to microglial and CA1. Kcnb1 was a DG-specific 
one, indicating that it is important for distinguishing DG from other spatial domains. 
Kcnb1 was also associated with aging and cognitive impairment33. Gene module M2 
(37 genes) was mainly highlighted in the exterior region with two representative 
genes Usp33 and Tenm2. This module was significantly enriched in axon 

growth(GO:0007409, � � 3.55 	 10���) and axon guidance (GO:0007411, � � 2.74 	
10���). Gene module M5 (30 genes) was enriched in many GO terms related to 
neurons such as regulation of neurotransmitter levels (GO:0001505, � � 5.78 	
10���), and presynapse (GO:0098793, � � 2.85 	 10���). Its representative gene 
Gad2 was a spatially variable one related to spatial domains 4 and 7 (Fig. 3G). 
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STAMarker reveals the domain-specific variable genes on the mouse olfactory 
bulb dataset 
We applied STAMarker to the mouse olfactory bulb dataset5 profiled by the Stereo-
seq platform to identify the laminar organization and the corresponding SVGs. 
STAMarker could well decipher the eight spatial domains with clear laminar 
structures (Fig. 4A), consisting of rostral migratory stream (RMS), ependymal cell 
zone (ECZ), granule cell layer (GCL), internal plexiform layer (IPL), mitral layer (MT), 
glomerular layer (GL) and olfactory nerve layer (ONL), annotated according to the 
Allen Brain Atlas34. 

STAMarker determined 311 SVGs, and most of them belong to more than three 
spatial domains (Fig. 4B), implying that the eight laminar organizations share similar 
gene expression patterns. The shared SVGs of the four methods is only one gene 
(Fig. 4C). The SVGs identified by STAMarker were enriched in more GO terms and 
KEGG pathways, while those of SpatialDE were enriched in much fewer terms at an 
FDR of 5% (Fig. S3) (STAMarker: 451 GO terms and 42 KEGG pathways; Hotspot: 
349 GO terms, 27 KEGG pathways; SPARK-X: 377 GO terms, 34 KEGG pathways; 
SpatialDE: 15 GO terms, 2 KEGG pathways). Many of the STAMarker-identified GO 
terms and KEGG pathways directly related to the synapse organization and the 
functions of the olfactory bulb, and tended to be more significant than those of the 
other methods. For example, the SVGs identified by STAMarker were enriched in the 
circadian entrainment pathway (KEGG 04713, � � 4.13 	 10���) and were more 
significant than those by the compared methods (Hotspot � � 3.05 	 10��; SPARK-X 
� � 10��; SpatialDE is not significant).  

The spatial domain-specific SVGs (67 genes) were clustered into eight gene 
modules (Fig. 4D), showing clear laminar organization with distinct correspondence 
to the morphological layers. For example, gene module M1 consisted of spatial 
domain-specific SVGs of the ECZ and GCL layers (Fig. 4E). Its two representative 
genes Fasn and Cabin1 were, respectively, related to the endothelial cell 
differentiation (GO 0045446, � � 6.60 	 10��) and over-expressed in olfactory 
epithelium35 (Fig. 4F), which was only identified by STAMarker. Gene module M3 
highlighted the interior layers of the olfactory bulb with two typical genes: Gad1 was 
highlighted in both GCL and IPL and played an important role in the olfactory bulb 
interneurons36 and Pcp4l1 was known as a marker gene of the GCL37. Gene module 
M4 mainly corresponded to the IPL and EPL spatial domains with two typical genes 
Slc25a3 and Cox7a2, and was enriched in the organelle inner membrane (GO 
0019866, � � 6.91 	 10�	). 
 
STAMarker uncovers the spatial domain-specific SVGs on the mouse 
cerebellum dataset 
We illustrated the effectiveness of STAMarker on a mouse cerebellum dataset 
generated by Slide-seq V2 platform38. STAMarker clearly identified the tissue 
structures of the cerebellum, i.e., molecular layer (MOL), Purkinje layer (PL), white 
matter (WM) and granule cell layer (GCL), and cerebellar nucleus (CN) (Fig. 5A). 
STAMarker and other three methods determined 508 SVGs respectively and the 
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SVGs identified by SpatialDE were quite different from those of other methods (Fig. 
S4). The SVGs identified by STAMarker were enriched in 640 GO terms and 30 
KEGG pathways, while the SVGs identified by SPARK-X were enriched in 578 GO 
terms and 32 pathways (for comparison, Hotspot: 550 GO terms and 24 KEGG 
pathways; SpatialDE: 170 GO terms and no enriched KEGG pathways were 
identified) (Fig. S4C). STAMarker identified the GO terms that are directly related the 

cerebellum development (GO 0021549, � � 3.59 	 10�
) and morphogenesis (GO 
0021587, � � 4.83 	 10�
), while Hotspot is the only method that identified the two 
GO terms with less overlap size (GO 0021549, � � 5.67 	 10�� ; GO 0021587, 
� � 0.160). One of the prominent advantages of STAMarker is the ability to provide 
spatial domain-specific SVGs, enabling more fine-grained analysis. Moreover, the 
spatial domain-specific enrichment analysis characterized the functions of each 
spatial domain. For example, the Purkinje-related GO terms were only enriched in 
MOL, PL, and GCL respectively (Fig. 5B), which is consistent with the histology of 
Purkinje cells.  

Moreover, the SVGs determined by STAMarker could cover more mouse 
cerebellum marker genes from the Harmonizome database39 (i.e., 108 out of the 261 
genes) with the hypergeometric test � � 5.29 	 10��� compared to the other three 
methods (Fig. 5C). Hotspot identified the second most 80 genes with the 
hypergeometric test � � 5.99 	 10��, while the overlaps of the identified SVGs by 
SPARK-X and SpatialDE were merely below 50 without statistical significance.  

The spatial domain-specific SVGs were clearly clustered into five gene modules 
based on the saliency maps (Fig. 5D) with clear spatial domain patterns (Fig. 5E). 
The five modules were enriched in distinct cell types (Fig. 5F) based on the 
downloaded marker genes of cerebellum-related cell types from PanglaoDB40. For 
example, gene module M1 corresponds to GCL and MOL with two representative 
genes Cbln1 and Dab1. The two genes were strongly over-expressed in the 
corresponding spatial domains and were enriched in cerebellum development (GO 
0021549, � � 4.13 	 10�	). Cbln1 was essential for synaptic plasticity and integrity in 
the cerebellum41. Gene module M2 mainly consists of PL and MOL and the Purkinje 
neurons were only enriched in this module. Two example genes of M2 include Gria1 
and Baiap2 belonging to the enriched GO term regulation of synaptic plasticity (GO 
0048167, � � 3.49 	 10��). In particular, Baiap2 was only identified by STAMarker. 
Gene module M5 was related to the CN and WM spatial domains with two highly 
expressed genes Nrsn1 and Ucn in the CN region. Moreover, both of them were in 
the enriched GO term distal axon (GO 0150034, � � 3.88 	 10���). In summary, 
STAMarker can not only determine SVGs that are enriched in the most GO terms 
and KEGG pathways that are directly related to the tissue biological functions 
compared to other methods, but also provides the spatial domains corresponding to 
SVGs. 
 

Discussion 
Determining SVGs is the very first step towards understanding the complex biological 
functions of complex tissues and cell cultures through ST data. Here, we develop a 
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robust and effective spatial domain-specific SVGs identification method STAMarker. 
STAMarker is a three-stage analytic method inspired by the saliency map in deep 
learning. STAMarker conceptually considers genes that contribute most to the 
determination of the spatial domains as SVGs. Different from the competing methods 
that consider genes independently, STAMarker considers all genes simultaneously, 
making it possible to exploit the complementary information across genes. Another 
outstanding advantage of STAMarker is its ability to identify spatial domain-specific 
SVGs while the competing methods are not directly applicable.  

STAMarker could robustly identify SVGs even when the data are downsampled to 
a very sparse level. Experimental results on various datasets consistently showed 
that SVGs identified by STAMarker tended to be more significant in related GO terms 
and KEGG pathways. Moreover, the spatial domain-specific SVGs can be organized 
into gene modules corresponding to spatial domain patterns. The domain-specific 
SVGs identified by STAMarker could also enable researchers to investigate spatial 
domains of interest at a finer scale.  

Despite that STAMarker considers all genes simultaneously and measures genes’ 
importance by their contributions to the classification, it is still unclear how to 
evaluate the importance of a set of genes, which are expected to be solved in the 
future. Lastly, we expect that this kind of analytic tools can be extended to other 
spatial omics like spatial metabolomics42. 
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Materials and Methods  
Data description 
We applied STAMarker and the three compared methods to ST datasets generated 
by various techniques, including 10x Visium, Slide-seqV2, and Stereo-seq (see 
Supplementary Table S1 for details). 
 
Data preprocessing 
We followed the data preprocessing procedure in STAGATE10. We first removed 
spots outside of the main tissue area. We then used the pipeline provided by the 
SCANPY package to log-transform the raw gene expression and normalize it 
according to the library size. For all datasets, we selected the top 3,000 highly 
variable genes as the inputs of STAMarker. 
 
Ensemble of graph attention auto-encoders 
We used an ensemble of graph attention auto-encoders to robustly identify spatial 
domains. We adopted STAGATE as the base auto-encoder for its superior 
performance in spatial domain identification. Specifically, STAGATE consists of three 
parts: encoder ��
� , decoder ���� and the attention layer. STAGATE first constructs a 
spatial neighbor network (SNN) where neighboring spots have edges. The encoder 
��
� transforms the gene expression of a spot into a d-dimensional embedding by 
aggregating information from the neighboring spots in SNN. Let’s denote the gene 

expression matrix of � spots and � genes by � � �
��. The encoder is defined as 
 �� � ��
�����, (1) 

where �� � �� indicates the gene expression profile of spot � and �� � ��  is the 
corresponding latent embedding. Then the decoder ����  reverses back the latent 
embedding ��  into the reconstructed gene expression profile, i.e., ��� � ��������. The 
attention layers coupled with the encoder and decoder adaptively learn the edge 
weights of SNN. 

Despite that STAGATE has shown its effectiveness on various ST datasets, an 
inherent challenge of deep learning methods is that the weight initialization might 
have a significant impact on the results. To alleviate this issue, we constructed an 

ensemble of graph attention auto-encoders. We trained � STAGATE models with 
different random weight initialization and applied clustering algorithms to the learned 
low-dimensional embeddings of each model. Specifically, we used the mclust 
clustering algorithm when the number of labels is known; otherwise, we employed 
the Louvain algorithm. As a result, we obtained � clustering results for each 

STAGATE model, denoted by ����, ����, …, ����, respectively. 

 
Consensus clustering 
We used consensus clustering to obtain the spatial domains. Given the clustering 

results ����, ����, …, ����, we first computed the clustering connectivity matrix 

   such that 
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  �� �
∑ "�#�

��� � #�
�����

���

� , (2) 

 

where "�$� is the indicator function, and #�
��� and #�

��� denote the cluster labels of 

spot � and % in ����, respectively. The clustering connectivity matrix   is a symmetric 
matrix where  ��  indicates the empirical probability of spots � and % that belong to the 

same cluster. Finally, we applied hierarchical clustering to   and obtained the spatial 
domain labels ��. The number of clusters & is simply set as the same as the mode of 
the number of clusters of the � clustering results. 
 
Ensemble of MLP classifiers 
We used an ensemble of two-layer MLP classifiers denoted by ����  to model the 
relationship between the latent embeddings and the spatial domain labels ��. The 
low-dimensional latent embeddings of the � auto-encoders are used as the inputs: 
 �������� � '�(�'�(��� ) *�� ) *��, (3) 

where +� � ���� and +� � ���� are the weight matrices, *� � �� , *� � �� are the 
bias, and ' is a nonlinear activation function (we used ReLU here). The MLP 
classifier is trained by minimizing the cross-entropy between the spatial domain 
labels �� and the softmax of the output of  ����. As a result, there are � MLP 
classifiers corresponding to the � auto-encoders. 
 
Spatial domain-specific saliency map 
We used the saliency map to measure the contribution of genes to the spatial domain 
classification. The idea is inspired by the saliency map in computer vision43–45, which 
is an important concept to explain the contribution of pixels to image classification. 
Specifically, given the �-th spot’s gene expression �� , we denoted the output of the 
last layer of the MLP classifier as ,�  
 -� � ��
� . �������� � ����/��
�����0, (4) 

where -� � ��. The MLP classifier will predict ��  as the 1���-th spatial domain where 
1���  is the index of the largest value of ,�  (denoted by ,�, ���). Note that ,�, ��� is a 

scalar function of �� . To measure the genes’ contribution to the prediction of spatial 
domains, we computed the gradient of ,�, ��� with respect to ��  by backpropagation 

 2� �
3,�, 

���

3��
, (5) 

where 4� � �� is the same size of �� . We denoted the saliency map of the 5-th auto-

encoder and the corresponding MLP classifier across all spots as 6��� � �
��, where 
the �-th column of 6��� is computed by (5). We used the norm of the gene %’s 
gradients across the spots belonging to spatial domain 1. Specifically, the spatial 
domain-specific saliency score of gene % for spatial domain 1 is defined as follows: 

 4789:�1, %� � ;<6=!� �,�<;, (6) 

where ���� indicates the set of indices of spots belonging to spatial domain �, i.e., 

���� � ��: 	�

� 
 ��. 
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Identifying spatial domain-specific SVGs 
We used the norm of the saliency maps to identify the spatial domain-specific SVGs. 
Given the spatial domain 1, we first applied log transformation to the saliency scores 
of all genes. To adaptively select SVGs, we estimated the mean >̂ and standard 
deviation '@ of the log-transformed scores of all genes, and selected genes whose 
scores are greater than >̂ ) A>̂, where A is a user-defined parameter to control the 
number of selected SVGs. Larger A results in fewer identified SVGs. We typically set 
A � 1.5.  
 
Identifying spatial domain-specific SVG modules 
We constructed the spatial domain-specific SVG modules by the saliency score 
matrix. First, we selected genes that are SVGs in less than two spatial domains. 
Then we evaluated the pair-wise gene correlation by the saliency matrix, i.e., the 
Pearson correlation between 6=:� and 6=:�. We then clustered the resulting affinity 

matrix into & clusters. We applied PCA to the saliency score matrix of the gene 
modules and visualized the gene modules by the first principal component. 
 
Gene enrichment analysis 
We used the g:pforfie46 API provided by SCANPY47 to perform gene enrichment 
analysis.  
 
Data availability 
All data used in this paper are available in raw from the corresponding papers’ 
authors. Specifically, the DLPFC dataset generated by 10x Visium is available at 
http://spatial.libd.org/spatialLIBD. The hippocampus dataset of the J20 mouse model 
generated by Slide-seq V2 is accessible at  
https://singlecell.broadinstitute.org/single_cell/study/SCP1663/cell-type-specific-
inference-of-differential-expression-in-spatial-transcriptomics. The processed Stereo-
seq data for mouse olfactory bulb tissue is available at 
https://github.com/JinmiaoChenLab/SEDR_analyses. The processed Slide-seq data 
for mouse cerebellum is available at 
https://singlecell.broadinstitute.org/single_cell/study/SCP354/slide-seq-study. 
 
Code availability 
The STAMarker algorithm is implemented with Python and is available at 
http://github.com/zhanglabtools/STAMarker.  
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Figure captions: 

Figure 1. Overview of STAMarker. Given the spatial transcriptomics of a tissue 
section, STAMarker first trains an ensemble of graph attention auto-encoders that 
consists of � STAGATE models to learn the low-dimensional latent embeddings of 
spots, cluster them to obtain � grouping results, computes the clustering connectivity 
matrix and applies hierarchical clustering to obtain the spatial domains. STAMarker 
further models the relationships between the embeddings of the � auto-encoders 
and the spatial domains by training � base classifiers. At last, STAMarker computes 
the saliency map by first stacking the encoder and the corresponding classifier and 
then backpropagating the gradient to the input spatial transcriptomics matrix. 
STAMarker selects the domain-specific SVGs based on the genes’ saliency scores in 
each spatial domain. 
 
Figure 2. STAMarker robustly identifies the spatial domain-specific SVGs on 
the human dorsolateral prefrontal cortex (DLPFC) dataset. A, Manual annotation 
of cortical layers and white matter (WM) in the DLPFC section 151507, and the 
spatial domains identified by STAGATE and STAMarker respectively. B, Histogram of 
the number of spatial domains to which the SVGs identified by STAMarker belong. C, 
UpSet plot of the numbers of SVGs identified by SpatialDE, SPARK-X, Hotspot, and 
STAMarker. D, Comparison of the overlap number of the identified SVGs with the 
consensus ones by the four methods on the downsampled datasets. The error bars 
are computed based on five replicates. E, Visualization of the representative spatial 
domain-specific SVGs. From top to bottom, the raw counts, the saliency map (z-
score transformation is applied), and the corresponding spatial domains of the SVGs 
identified by STAMarker. 
 
Figure 3. STAMarker identifies spatial domain-specific SVGs on the mouse 
hippocampus dataset. A, Spatial domains identified by STAMarker. The major 
subfields of the hippocampal formation, such as DG (spatial domain 2), CA1(spatial 
domain 6), and CA3 (spatial domain 0), were clearly shown. B, Spatial domain 9 
corresponds to the microglial cells which are associated with the amyloid plaque of 
Alzheimer’s disease. C, Stacked violin plot showing the marker genes of microglial 
cells that were differentially expressed in spatial domain 9 but not others. D, 
Heatmap showing the nine clear gene modules that were clustered by the 154 spatial 
domain-specific SVGs. E, Visualization of the domain-specific gene modules by the 
first principal component of the saliency maps. F, Comparison of the top eight GO BP 
terms of M1 and M5. “r.o.” stands for “regulation of” to avoid clutter. G, Visualization 
of the representative spatial domain-specific SVGs. From top to bottom, the raw 
counts, the saliency map, and the corresponding spatial domains of SVGs.  
 
Figure 4. STAMarker reveals the domain-specific SVGs on the mouse olfactory 
bulb dataset. A, Spatial domains identified by STAMarker. The laminar organization 
of the mouse olfactory bulb is clearly shown. The identified spatial domains were 
annotated by the Allen Reference Atlas. B, Histogram of the number of spatial 
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domains to which the SVGs identified by STAMarker belong. C, UpSet plot of the 
numbers of SVGs identified by SpatialDE, SPARK-X, Hotspot, and STAMarker. 
STAMarker identified 311 SVGs. D, Heatmap showing the eight modules that were 
clustered by the 67 domain-specific SVGs. E, Visualization of the domain-specific 
gene modules by the first principal component of the saliency maps. F, Visualization 
of the representative spatial domain-specific SVGs.  
 
Figure 5. STAMarker uncovers spatial domain-specific SVGs on the mouse 
cerebellum data. A, Spatial domains identified by STAMarker. The identified spatial 
domains were annotated by the Allen Reference Atlas. B, GO enrichment analysis of 
the SVGs in the named spatial domains. The selected enriched GO terms show 
distinct significance levels. C, Bar plot displaying the overlap of the identified SVGs 
with reference gene list (261 genes, obtained from the Harmonizome database). The 
p values of the hypergeometric test were shown above the bars (ns indicates not 
significant, i.e., p values > 0.05). D, Heatmap showing the five gene modules that 
were clustered by the 369 domain-specific SVGs. E, Visualization of the domain-
specific gene modules by the first principal component of the saliency maps. F, 
Enrichment analysis of the identified spatial modules with diverse cell types related to 
the cerebellum. G, Visualization of the representative spatial domain-specific SVGs.  
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