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Abstract 

 

It remains poorly understood how different cell types organize and coordinate with 

each other to support tissue functions. We describe CytoCommunity for identification 

of tissue cellular neighborhoods (TCNs) based on cell phenotypes and their spatial 

distributions. CytoCommunity learns a mapping directly from cell phenotype space to 

TCN space by a graph neural network model without using additional gene or protein 

expression features and is thus applicable to tissue imaging data with a small number 

of measured features. By leveraging graph pooling, CytoCommunity enables de novo 

identification of condition-specific TCNs under the supervision of image labels. 

Using various types of single-cell-resolution spatial proteomics and transcriptomics 

images, we demonstrate that CytoCommunity can identify TCNs of variable sizes 

with substantial improvement over existing methods. To further evaluate the ability of 

CytoCommunity for discovering condition-specific TCNs by supervised learning, we 

apply it to colorectal and breast cancer tissue images with clinical outcome 

information. Our analysis reveals novel granulocyte- and cancer associated fibroblast-

enriched TCNs specific to high-risk tumors as well as altered tumor-immune and 

tumor-stromal interactions within and between TCNs compared to low-risk tumors. 

CytoCommunity represents the first computational tool for end-to-end unsupervised 

and supervised analyses of single-cell spatial maps and enables direct discovery of 

conditional-specific cell-cell communication patterns across variable spatial scales. 

 

 

Introduction 

 

To understand the structure-function relationship of a tissue, the concept of tissue 
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cellular neighborhoods (TCNs) or spatial domains has been proposed as a recurrent 

functional unit in which different cell types organize and coordinate to support tissue 

functions 1-3. With the development of spatial omics and imaging technologies, there 

is a critical need for computational methods 2, 4-9 for identifying spatial domains in 

tissues. Several pioneering methods have been developed that can be roughly 

classified into statistics-based and deep learning-based approaches. As representative 

work in the first category, Dries et al. developed Giotto 2, 4 and Zhao et al. developed 

BayesSpace 5 to identify spatial domains with similar gene expression patterns based 

on probabilistic graphical models and spatial transcriptomics data. Chen et al. adapted 

the latent Dirichlet allocation (LDA) topic model to develop Spatial-LDA 9 for 

identifying spatially coherent patterns based on cell type counts and cell spatial 

coordinates. As a deep learning-based method, stLearn 6 utilizes a convolutional 

neural network model to extract features from a histology image and measures 

morphological similarity between neighboring cells or spots in a spatial 

transcriptomics image to smooth gene expression data. Clustering is then performed 

on the normalized expression data for spatial domain identification. Both SpaGCN 7 

and STAGATE 8 first employ graph neural network to integrate gene expression and 

spatial location data to generate embedding representations of cells or spots in a 

spatial transcriptomics image and then perform clustering on those embeddings to 

identify spatial domains.  

All existing approaches, except Spatial-LDA, are originally designed for spatial 

transcriptomics data and thus use expression of hundreds or thousands of genes as 

features to infer TCNs. On one hand, such methods may not be applicable to spatial 

proteomics data 3, 10 with single-cell resolution that only have a few tens of protein 

expression features available. On the other hand, using spatial transcriptomic data as 

inputs cannot directly establish the relationship between cell types and TCNs in a 

tissue, making the interpretation of TCN identity and function challenging. 

Furthermore, given a cohort of tissue images associated with different conditions (e.g. 

disease risk and patient prognosis), it is critical to identify condition-specific TCNs in 

order to discover TCNs with more biological and clinical relevance. A representative 

condition-specific TCN in cancer tissues is the tertiary lymphoid structure, which is 

typically present in low-risk but absent in high-risk patients of many cancer types 11. 

All existing methods are designed to detect TCNs in individual tissue images and thus 

not applicable to identification of condition-specific TCNs because alignment of 

TCNs across images is NP-hard 12. To our knowledge, no method currently exists for 

de novo identification of condition-specific TCNs by utilizing tissue image labels 

explicitly. 

Here, we describe the CytoCommunity algorithm for identifying TCNs that can 

be applied in either an unsupervised or a supervised learning framework. We 

formulate the TCN identification as a graph-based community detection problem and 

employ a minimum-cut-based graph neural network model to identify TCNs in cell-

cell spatial proximity graphs with cell types as node attributes. CytoCommunity 

directly uses cell types as initial features of cells to learn TCNs and thus can be 

applied to both single-cell transcriptomics and proteomics data and facilitates the 

interpretation of TCN functions. CytoCommunity can not only infer TCNs from 

individual images but also identify condition-specific TCNs from a cohort of labeled 

tissue images by leveraging graph pooling and image labels, which is an effective 

strategy to address the difficulty of graph alignment. Our deep graph learning 
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framework is different from the group of methods represented by SpaGCN 7 and 

STAGATE 8, which employ a “cell embedding and clustering” procedure to identify 

spatial domains. The clustering approach makes it difficult to adopt a supervised 

learning framework for finding condition-specific tissue structures.  

Using single-cell spatial proteomics and transcriptomics datasets, we 

benchmarked the performance of unsupervised CytoCommunity on detection of 

TCNs of variable sizes in individual healthy tissue images. We also demonstrated the 

ability of supervised CytoCommunity to reveal the changes in within- and between-

TCN communications in tumor tissues of patients having different risks and 

prognoses. 

 

 

Results 

 

Overview of the CytoCommunity algorithm 

 

The CytoCommunity algorithm consists of two components: a graph neural network 

(GNN)-based soft tissue cellular neighborhood (TCN) assignment module and a TCN 

ensemble module to determine the final robust TCNs in single-cell spatial maps (Fig. 

1a). CytoCommunity can be used for both unsupervised (Fig. 1b; Online Methods) 

and supervised learning tasks (Fig. 1c; Online Methods). As an unsupervised learning 

task, given a single-cell spatial map with cell type and location information, 

CytoCommunity first constructs a k-nearest-neighbor (KNN) graph with nodes 

representing cells and edges representing the spatial proximity among cells. Each 

node also has an attribute vector representing its associated cell phenotype (e.g. cell 

type or state). Using a deep neural network consisting of a graph convolution layer 

and a fully-connected layer, the node attribute vectors on the KNN graph are 

transformed to the soft TCN assignment vectors, representing probabilities of cells 

belonging to the specified number of TCNs. A graph minimum cut (MinCut)-based 

loss function 13 is applied to learn optimal soft TCN assignments for cells. This loss 

function can be used alone to detect TCNs in individual single-cell spatial maps 

without any image labels (e.g. disease stage of the corresponding patient sample). In a 

supervised learning task for de novo identification of condition-specific TCNs, a 

second deep neural network with a graph pooling layer, a graph convolution layer and 

two fully-connected layers are added to the soft TCN assignment module. A cross-

entropy loss function is used for image classification to minimize the difference 

between actual and predicted probabilities of image labels. The overall loss function 

of the supervised learning is a linear combination of the MinCut-based and the cross-

entropy-based loss functions. Due to the joint training of the two loss functions, the 

learned optimal soft TCN assignments of cells are associated with the 

conditions/labels of the single-cell spatial images under study. To alleviate the 

instability of the graph partitioning based on GNN, the soft TCN assignment module 

can be run multiple times to generate multiple optimal soft TCN assignment matrices. 

Finally, a majority-voting-based ensemble procedure is performed on these soft TCN 

assignment matrices to determine the final TCNs. 

Performance evaluation using single-cell spatial proteomics data 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.11.06.515344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.06.515344
http://creativecommons.org/licenses/by-nc-nd/4.0/


To evaluate the performance of CytoCommunity, we applied it to a spatial proteomics 

dataset of mouse spleen generated using the Co-Detection by Indexing (CODEX) 

technology 14 and compared with four state-of-the-art methods including Spatial-LDA 
9, STAGATE 8, BayesSpace 5 and stLearn 6 (Online Methods). This dataset includes 

CODEX images of three healthy mouse spleen samples (named as BALBc-1, 

BALBc-2 and BALBc-3). On average, each image contains 81,760 cells covering 27 

cell types (Fig. 2a). The images are manually annotated by the authors with four 

known tissue compartments of the spleen: red pulp, marginal zone, B-cell zone and 

periarteriolar lymphoid sheath (PALS) (Fig. 2b). Here we regard these tissue 

compartments as ground-truth TCNs. We evaluate the agreement of predicted TCNs 

and the ground truth using three performance metrics: accuracy, normalized mutual 

information (NMI) and adjusted Rand index (ARI) (Online Methods). Overall, all five 

methods can identify the PALS compartment accurately. However, compared to 

CytoCommunity, the other four methods performed poorly in distinguishing marginal 

zone, red pulp and B-cell zone, especially marginal zone which was hardly identified 

by the other four methods (Fig. 2c). Quantitatively, CytoCommunity also achieved the 

highest accuracy, NMI and ARI values across the three images (Fig. 2d). In 

conclusion, CytoCommunity has substantially improved performance over 

representative state-of-the-art methods when comparing identified TCNs with 

manually annotated tissue compartments. 

Performance evaluation using single-cell spatial transcriptomics data 

 

The evaluation above focused on identifying large tissue compartments. To further 

evaluate the performance of CytoCommunity on detection of TCNs of smaller sizes, 

we applied it to a spatial transcriptomic dataset of healthy mouse hypothalamic 

preoptic region generated using the Multiplexed Error-Robust Fluorescence in situ 

Hybridization (MERFISH) technology 15. This dataset includes five MERFISH 

images with 18 manually annotated hypothalamic nuclei regions (Fig. 3a). In 

neuroanatomy, a nucleus is a group of neurons having similar connections and 

functions. Hence, we treated these manually annotated nuclei as gold-standard TCNs 

in the performance evaluation. On average, each image contains 5,352 cells that were 

assigned to nine cell types by the authors 15 (Fig. 3b). As shown in Fig. 3a, a 

prominent tissue architectural feature of the preoptic region is the symmetry of 

various types of nuclei. We found that CytoCommunity can identify multiple 

symmetric and coherent TCNs that agree with the manually outlined nuclei (Fig. 3c). 

For example, symmetric BNST (bed nucleus of the stria terminalis), MPA (medial 

preoptic area) and MPN (medial preoptic nucleus) regions were identified in all five 

images. We also identified symmetric VLPO (ventrolateral preoptic nucleus) regions 

in “Bregma-0.04”, “Bregma+0.06” and “Bregma+0.16” images, symmetric SHy 

(septohypothalamic nucleus), AVPe (anteroventral periventricular nucleus) and 

VMPO (ventromedial preoptic nucleus) regions in image “Bregma+0.06” and 

symmetric PaAP (paraventricular hypothalamic nucleus) regions in image 

“Bregma+0.26”. Besides these symmetric domains, central ACA (anterior 

commissure), Pe (periventricular hypothalamic nucleus) and MnPO (median preoptic 

nucleus) domains were also identified. In contrast, a number of manually annotated 

nuclei cannot be identified by the other four methods (unlabeled TCNs in the figure 

legend). Among those that can be identified, many are intermixed without clear 

boundary between them and lacks clear symmetry (Fig. 3c). In conclusion, 

CytoCommunity has substantially improved performance over state-of-the-art 
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methods when comparing identified TCNs with manually annotated, complex tissue 

functional regions of variable sizes. 

Altered tumor-immune interactions within and between tissue cellular 

neighborhoods in low- versus high-risk colorectal cancer patients 

 

To demonstrate the utility of CytoCommunity for de novo identification of condition-

specific TCNs by supervised learning, we applied it to a CODEX dataset generated 

using samples from 17 low-risk (characterized by “Crohn’s-like reaction”, CLR) and 

18 high-risk (characterized by diffuse inflammatory infiltration, DII) colorectal cancer 

patients 3. The CLR patient group was reported to have significantly better overall 

survival than the DII patient group (log-rank test p = 0.002) 3. The dataset consists of 

68 and 72 CODEX images from the CLR and DII patients, respectively (four images 

per patient). Using 10 sets of 10-fold cross-validation, we found that CytoCommunity 

nearly perfectly classified the images into the two patient groups with an average area 

under the receiver operating characteristic curve of 0.99 (Fig. 4a). We next 

investigated the 10 TCNs identified in the 140 CODEX images using supervised 

learning and found that the cell type enrichment scores (Online Methods) in those 

TCNs are significantly correlated (Pearson correlation coefficient (PCC) = 0.69, Fig. 

4b and 4c), which indicates that the identified TCNs of the two patient groups have 

similar cell type composition. However, we also found multiple cell types that are 

enriched in CLR or DII-specific TCNs. For example, B cells are significantly 

enriched in TCN-5 in CLR patients but not enriched in any TCN in DII patients (Fig. 

4b; Supplementary Fig. 1a), which is consistent with the presence of B cell-enriched 

tertiary lymphoid structures (TLSs) in CLR patient samples but absence of TLSs in 

DII patient samples 3. On the contrary, granulocytes are significantly enriched in 

TCN-7 in DII patients but not enriched in TCNs in CLR patients (Fig. 4b; 

Supplementary Fig. 1b), which is consistent with the previously reported critical role 

of granulocytes in DII patients 3. Interestingly, tumor cells and vascular smooth 

muscle cells are enriched in more TCNs in the DII group than in the CLR group (Fig. 

4b), suggesting that the two cell types are spatially abundant in high-risk cancer 

patients. 

Besides the enrichment of individual cell types in TCNs, we also investigated the 

coordination of cell types within and between TCNs to better understand cell-cell 

communication in the tissue microenvironment. As an example of within-TCN cell 

type communication shared by the two patient groups (Supplementary Fig. 2), the 

enrichment of CD4+ memory T cells (red square) is significantly correlated with 

CD8+ T cell (black diamond) enrichment in TCN-6 in both CLR (PCC = 0.73) and 

DII (PCC = 0.68) patients (Fig. 4d, left panel). Consistent with the cell type and TCN 

maps from the patients with high enrichment scores, we observed that the two cell 

types are intermixed with each other in TCN-6 (Fig. 4d, middle and right panels). We 

also found CLR-specific (Supplementary Fig. 2a) and DII-specific (Supplementary 

Fig. 2b) cell type associations within TCNs. For instance, the enrichment of 

CD68+CD163+ macrophages (blue plus) is significantly correlated with CD8+ T cell 

enrichment in TCN-6 in CLR patients (PCC = 0.59) but not in DII patients (Fig. 4e), 

suggesting that double positive macrophages might have anti-tumor effects by 

promoting CD8+ T cell infiltration to improve survival of CLR patients. Similar cell 

type communication between the double positive macrophage and CD8+ T cell was 

recently reported in human lung cancer 16. As an opposite example, the enrichment of 
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granulocytes (purple cross) and tumor cells in TCN-7 has significantly correlation 

(PCC = 0.68) in DII patients but not in CLR patients (Fig. 4f, left panel). Consistent 

with the corresponding cell type and TCN maps, we observed that a large number of 

granulocytes either intermix with or are spatially close to tumor cells in the DII group 

while much smaller number of granulocytes are near tumor cells in the CLR group 

(Fig. 4f, middle and right panels). This is in line with previous studies that neutrophils 

have tumor-promoting effects to impact cancer patient survival 17, 18. 

To investigate communication between different TCNs, we conducted canonical 

correlation analysis of TCN pairs (Online Methods). We found substantial differences 

in significant canonical correlations of TCNs (permutation test p < 0.05) between 

CLR (Supplementary Fig. 3a) and DII patients (Supplementary Fig. 3b). As an 

example of significant between-TCN associations that are specific to CLR patients, 

granulocytes in TCN-6 and tumor cells in TCN-7 are two dominant cell types 

(observed variables) in the first canonical variate pair (Fig. 4g, top left panel). Without 

consideration of other cell types, granulocytes and tumor cells in the two TCNs have a 

statistically significant correlation (PCC = 0.48, p = 0.05) (Fig. 4g, bottom left panel), 

suggesting a potential interaction between this two cell types across TCNs. Consistent 

with the corresponding cell type and TCN maps, we observed that a small number of 

granulocytes enriched in TCN-6 are close to tumor cells enriched in TCN-7 (Fig. 4g, 

right panel). Such between-TCN communication in CLR patients is presumably 

different from the within-TCN communication between the same two cell types in DII 

patients (Fig. 4f), again supporting the pro-tumor role of granulocytes in DII patients.  

Another interesting example of between-TCN communication regarding the DII 

group is the significant association between TCN-5 and TCN-1, in which 

CD68+CD163+ macrophages, CD4+ memory T cells, vascular smooth muscle cells, 

granulocytes and tumor cells are dominant cell types in the first canonical variate pair 

(Fig. 4h, top left panel). By examining the pair-wise correlation of these cell types, we 

found that double positive macrophages and CD4+ memory T cells in TCN-5 are 

significantly correlated with tumor cells in TCN-1 (PCC = 0.48 and 0.61, 

respectively; Fig. 4h, bottom left panel). Although vascular smooth muscle cells do 

not have significant correlation with tumor cells, the two cell types are co-enriched in 

the two TCNs in multiple DII patients (Fig. 4h, bottom left panel). From the 

corresponding cell type and TCN maps, we observed that the double positive 

macrophage/CD4+ memory T cell/vascular smooth muscle cell-enriched TCN-5 is 

spatially adjacent to the tumor cell-enriched TCN-1 (Fig. 4h, right panel), suggesting 

an unexpected cancer-promoting effects of these three cell types. As supporting 

evidence, extensive studies have demonstrated that tumor associated macrophages 

have functional plasticity that show both pro- and anti-tumor activities dependent on 

their microenvironment 19, 20. CD4+ memory T cells produce interleukin-22, which is 

induced by cancer cells to promote tumor growth in breast and lung cancers 21. 

Previous studies also reported the critical role of vascular smooth muscle cells in 

tumor angiogenesis and metastasis 22, which is consistent with our observation that a 

small group of tumor cells in TCN-1 reside with vascular smooth muscle cells in 

TCN-5 (Fig. 4h, right panel). 

Altered tumor-stromal interactions within and between tissue cellular 

neighborhoods in low- versus high-risk breast cancer patients 
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To further evaluate the ability of CytoCommunity to discover condition-specific 

TCNs using different data modalities, we applied it to another spatial proteomics 

dataset of breast cancer generated using the imaging mass cytometry technology 10. 

Based on the median overall survival, we stratified the 79 breast cancer patients into 

low- and high-risk groups with significant survival difference (log-rank test p < 

0.0001; Fig. 5a). We identified nine TCNs in both low- and high-risk groups. By 

comparing their cell type enrichment scores (Fig. 5b and 5c), we found that TCNs in 

both groups have similar overall cell type composition (Fig. 5c) and are enriched for 

several types of fibroblasts (Fig. 5b), suggesting a critical role of fibroblasts in breast 

cancer prognosis. Specifically, we found that SMAhi Vimentinhi fibroblasts, also 

known as cancer associated fibroblasts (CAFs) that highly express alpha smooth 

muscle actin (SMA) and vimentin, are more enriched in TCNs of the high-risk group 

than those of the low-risk group (Fig. 5b; Supplementary Fig. 4a). Besides stromal 

cell types, we also found low- and high-risk-group specific TCNs, characterized by 

significant enrichment (p < 0.05) of CK+ HRhi tumor cells (cells with positive 

expression of cytokeratins (CK) and high expression of hormone receptors (HR)) and 

CKlow HRlow tumor cells, respectively (Fig. 5b; Supplementary Fig. 4b and 4c). This is 

consistent with the previous report that these two tumor cell phenotypes are associated 

with good and poor prognosis, respectively 10. 

Regarding cell type associations within TCNs (Supplementary Fig. 5), we found 

that two normal fibroblast types, small circular (green hexagon) and elongated (black 

diamond) fibroblasts, are significantly correlated in TCN-1 in both low- (PCC = 0.67) 

and high-risk (PCC = 0.95) patients (Fig. 5d, left panel). Correspondingly, we 

observed that these two fibroblast types are intermixed in TCN-1 in patients with high 

enrichment scores (Fig. 5d, middle and right panels). As examples of low- 

(Supplementary Fig. 5a) and high-risk-specific (Supplementary Fig. 5b) within-TCN 

cell-cell communications, we found that endothelial cell (cyan pentagon) enrichment 

is significantly correlated with macrophage (blue plus) enrichment in TCN-1 in low-

risk patients (PCC = 0.68; Fig. 5e, left panel) but correlated with CAF (purple cross) 

enrichment in TCN-2 in high-risk patients (PCC = 0.35; Fig. 5f, left panel). This 

observation implies that differential interactions between endothelial cells, 

macrophages and fibroblasts can lead to different patient outcomes 23, 24. From 

representative cell type and TCN maps, we observed that endothelial cells are 

intermixed with macrophages in TCN-1 in the low-risk patient only (Fig. 5e, middle 

and right panels) but with CAFs in TCN-2 in the high-risk patient only (Fig. 5f, 

middle and right panels). 

Next, we investigated between-TCN communications by canonical correlation 

analysis. Interestingly, we only found significant TCN associations involving tumor-

stromal interactions in high-risk patients (Supplementary Fig. 6). For example, we 

observed that endothelial cell (cyan pentagon) and T cell (red square)-dominated 

TCN-7 is associated with TCN-3 dominated by epitheliallow tumor cells (green 

upside-down triangle) that are undergoing epithelial-mesenchymal-transition (EMT) 

(Fig. 5g). As supporting evidence, previous studies showed that both endothelial cells 

and T cells can induce EMT of cancer cells, resulting in poor clinical outcomes 25-29. 

Another interesting example is the significant correlation between hypoxic tumor cell 

(orange triangle)-dominated TCN-6 and TCN-8 that mainly consists of endothelial 

cells (cyan pentagon), small elongated fibroblasts (black diamond), proliferative 

(brown right-pointing triangle) and CKlow HRlow (pink left-pointing triangle) tumor 
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cells (Fig. 5h). Proliferative tumor cells in TCN-8 probably lead to reduction in the 

oxygen supply, promoting the formation of a hypoxic tumor microenvironment 30. 

Hypoxia enables the expansion of aggressive tumor clones 30 (represented by the 

cohesive hypoxic tumor mass in TCN-6) and can also inhibit hormone receptor 

expression 31, probably contributing to the CKlow HRlow tumor phenotype in TCN-8. 

Hypoxic microenvironment can also support the transformation of tissue-resident 

fibroblasts to CAFs and endothelial cell-mediated neovascularization 30 in TCN-8. All 

these hypoxia-induced events are associated with unfavorable prognosis in breast 

cancer. 

 

 

Discussion 

 

We introduce a deep graph learning approach, CytoCommunity, for identifying tissue 

cellular neighborhoods based on cell phenotypes and cell spatial distributions. 

CytoCommunity formulates the TCN identification as a community detection 

problem on node-attributed cell-cell spatial proximity graphs. Since most traditional 

community detection algorithms focus only on graph topology to find densely-

connected subgraphs and cannot explicitly deal with node attributes 32, 

CytoCommunity employs a minimum cut-based GNN model to learn optimal TCN 

assignments of cells (nodes) from cell type information (node attributes). Like 

previous methods 2, 4-9, CytoCommunity can be applied in an unsupervised fashion to 

identify TCNs in individual images. More importantly, it is the first TCN-detection 

method that can be used in a supervised fashion for de novo identification of 

condition-specific TCNs and prediction of tissue image labels and therefore 

facilitating the discovery of more physiologically or clinically relevant tissue 

structures. This unique characteristics of CytoCommunity is attributed to the usage of 

graph pooling that preserves TCN partition information in the embedding 

representation of the whole image and thus addresses the TCN alignment across 

images by training an end-to-end model for image classification. It is worth noting 

that TCN identification under the supervision of image labels can be considered as a 

weakly supervised graph partitioning problem, representing an interesting research 

topic in graph learning. 

Successful identification of large (splenic compartments) and small 

(hypothalamic nuclei) TCNs by unsupervised CytoCommunity suggest that 

information about cell types and their spatial distributions are sufficient to determine 

the functional units in tissues without using gene or protein expression features. By 

applying supervised CytoCommunity to risk-stratified cancer tissue images, we 

identified both shared and specific TCNs, such as a low-risk-specific TCN enriched 

for B cells, corresponding to the well-known tertiary lymphoid structure (TLS) 

associated with favorable prognosis. We also found granulocyte- and cancer-

associated fibroblast-enriched TCNs in high-risk colorectal and breast cancer patients, 

respectively. By comparative analysis of TCNs, we revealed multiple altered tumor-

immune and tumor-stromal coordination patterns within and between TCNs in low- 

versus high-risk cancer patients. 

We believe that the success of CytoCommunity can be attributed to two main 

features. First, it leverages a GNN model with a theoretically grounded minimum cut-

based loss function 13 for soft TCN assignment learning, generating more accurate and 
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stable graph partitioning results than other pooling-capable GNN models such as 

DiffPool 33, which employs heuristic loss functions to learn the soft assignments. 

Second, CytoCommunity uses cell types as initial cell features, probably leading to a 

better measurement of functional similarity between cells than using noisy gene or 

protein expression data directly. Cell type identification is typically the first crucial 

task in single-cell data analysis and often needs sophisticated tools 34-36 as well as 

expert knowledge. Therefore, cell type annotation should be directly utilized in a 

specialized TCN detection method rather than starting with expression data. 

CytoCommunity encodes cell types in categorical vector space and thus has 

scalability to incorporate more heterogenous categorical data, such as cell states 37, 

into the initial cell feature vectors for inferring TCNs.  

Due to the use of cell type information, the current version of CytoCommunity is 

not applicable to spatial transcriptomics data with spot resolution 38,39. To address this 

issue, cell type composition at each spot can be first estimated by deconvolution 

methods 40, 41. Then, a spot-spot proximity graph with inferred cell type fractions as 

node attributes can be constructed as the input to CytoCommunity. 

In summary, with the rapid growth of single-cell spatial maps, CytoCommunity 

represents a powerful and scalable method for identifying condition-specific TCNs. 

TCNs directly learned from cell types can facilitate their function interpretation and 

discovery of cell-cell communications within the tissue microenvironment. 

 

 

Online Methods 

 

Unsupervised model for identification of tissue cellular neighborhoods 

 

The CytoCommunity algorithm for identifying tissue cellular neighborhoods (TCNs) 

consists of two components: a soft TCN assignment learning module and a TCN 

ensemble procedure to determine the final robust TCNs (Fig. 1a). As the first 

component, given a single-cell spatial map with cell type annotation and cell location 

data, an undirected K-nearest neighbor (KNN) graph with node attribute (cell type) is 

constructed. In the graph, a cell is represented by a node and its cell type information 

(categorical data) is represented by a node attribute vector using one-hot encoding 

(Fig. 1a, top panel). Specifically, we first construct a directed KNN graph by 

connecting each node to its KNNs based on Euclidean distance calculated using cell 

spatial coordinates. Then, the underlying undirected graph without self-edges of the 

directed KNN graph was used as the input to the graph neural network (GNN). Since 

each spatial omics dataset is measured from the same tissue type and using the same 

technology, we set the value of K in the KNN graphs as the square root of the average 

number of cells across images in the dataset. 

For the undirected KNN graph with n nodes, we employ a basic GNN model 42 

with the ReLU activation function to generate a node embedding matrix 𝑋 ∈ ℝ𝑛×𝑑, 

where each row is a learned d-dimensional representation vector of a node defined as 

below. 

𝑥𝑖
′ = ReLU(Θ1𝑥𝑖 + Θ2 ∑ 𝑥𝑗𝑗∈𝑁(𝑖) )                  (1) 
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where 𝑥𝑖
′ is an updated embedding vector of node i, which is calculated based on the 

previous representation of itself 𝑥𝑖 and its first-order neighborhood 𝑁(𝑖) in the 

undirected KNN graph constructed above. 𝑥𝑖 is initialized with the node attribute 

vector. Θ1 and Θ2 are trainable parameter matrices in the GNN model. The value of 

d was empirically set to 128 for all datasets in this study. 

Next, we use a fully-connected neural network with no hidden layers, also 

known as a linear layer, and the softmax activation function to transform the node 

embedding matrix 𝑋 ∈ ℝ𝑛×𝑑 to the soft TCN assignment matrix 𝑆 ∈ ℝ𝑛×𝑐, which 

can be formulated as below. 

𝑆 = softmax(Linear(𝑋; Θ))                    (2) 

where each element in S represents the probability of a node (row) belonging to one 

of the c TCNs. c is a user-specified hyperparameter and represents the maximum 

number of TCNs to be detected. Next, we use the following graph minimum cut 

(MinCut)-based loss function 13 to optimize the matrix S in an unsupervised way. 

𝐿𝑀𝑖𝑛𝐶𝑢𝑡 = −
∑ (𝑆𝑇𝐴𝑆)𝑗𝑗

𝑐
𝑗=1

∑ (𝑆𝑇𝐷𝑆)𝑗𝑗
𝑐
𝑗=1

+ ‖
𝑆𝑇𝑆

‖𝑆𝑇𝑆‖
𝐹

−
𝐼𝑐

√𝑐
‖

𝐹

             (3) 

where 𝐴 ∈ {0, 1}𝑛×𝑛 is the symmetric adjacency matrix derived from the undirected 

KNN graph. 𝐷 ∈ ℝ𝑛×𝑛 is a diagonal matrix (or the degree matrix), where each 

diagonal element is the sum of the corresponding row in A. The loss function 𝐿𝑀𝑖𝑛𝐶𝑢𝑡 

is the sum of two terms. The left term is used to address the normalized MinCut 

problem in graph theory with the objective of partitioning the graph into c disjoint 

connected components with similar sizes by removing the minimum number of edges. 

The right term encourages the soft TCN assignment matrix S to be orthogonal in order 

to make the TCN membership of each node unambiguous. ‖∙‖𝐹 denotes the 

Frobenius norm. This loss function can be used alone for an unsupervised learning 

task, that is 𝐿𝑈𝑛𝑠𝑢𝑝 = 𝐿𝑀𝑖𝑛𝐶𝑢𝑡, to identify TCNs for single-cell spatial omics images 

individually (Fig. 1b). 

As the second component of the CytoCommunity algorithm, we attempt to obtain 

a robust graph partitioning result as the final TCNs by conducting a TCN ensemble 

procedure (Fig. 1a, bottom panel). Specifically, the soft TCN assignment learning 

module in the first component is run multiple times to generate multiple learned 

matrices S. For each of them, the hard assignment is performed by assigning the cell 

(row) to the TCN (column) with the highest probability. Then, we use the majority-

voting strategy to conduct an ensemble procedure on those hard TCN assignments to 

determine the final TCN partition of the single-cell spatial map. To demonstrate the 

effectiveness of this ensemble-based approach, we performed a stability experiment 

on the challenging MERFISH dataset with multiple TCNs of small sizes to be 

detected (Supplementary Fig. 7). Specifically, we applied CytoCommunity with 

different number of runs of the first component to the MERFISH image for five times. 

We then conducted pair-wise comparisons among the TCN partitions generated by the 

five sets of runs. Our results showed that the TCN ensemble procedure based on 20 

runs is sufficient to obtain a stable TCN partition. 

 

Supervised model for de novo identification of condition-specific tissue cellular 

neighborhoods 
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Given a dataset of multiple spatial omics images from different conditions, TCNs can 

be first identified for each image and then aligned across images for identifying 

condition-specific TCNs. However, TCN alignment is analogous to community 

alignment in graphs, which is NP-hard 12. To tackle this problem, we take advantage 

of graph pooling to generate an embedding representation of the whole graph that 

preserves the TCN partition information. Thus, by adapting the unsupervised graph 

partitioning model described above to a graph convolution and pooling-based graph 

classification framework, TCNs in different images are automatically aligned during 

soft TCN assignment learning, facilitating the identification of condition-specific 

TCNs (Fig. 1a, top panel). Specifically, after obtaining the soft TCN assignment 

matrix S by a graph convolution and a fully-connected layers, we additionally employ 

a graph pooling layer 13, 33 formulated as below to generate a coarsened adjacency 

matrix 𝐴𝑃𝑜𝑜𝑙𝑒𝑑 ∈ ℝ𝑐×𝑐 and a matrix of embeddings 𝑋𝑃𝑜𝑜𝑙𝑒𝑑 ∈ ℝ𝑐×𝑑 for the c 

pooled nodes in the coarsened graph. Note that this coarsened graph is a fully 

connected graph with each pooled node corresponding to a cluster of nodes in the 

original KNN graph and the weights of edges representing the connectivity strengths 

between clusters. 

𝑋𝑃𝑜𝑜𝑙𝑒𝑑 = 𝑆𝑇𝑋                          (4) 

𝐴𝑃𝑜𝑜𝑙𝑒𝑑 = 𝑆𝑇𝐴𝑆                          (5) 

 

Then, we use 𝑋𝑃𝑜𝑜𝑙𝑒𝑑  and 𝐴𝑃𝑜𝑜𝑙𝑒𝑑 as inputs to another GNN same as described 

in Equation (1) to integrate pooled node features and their local neighborhood 

information in the coarsened graph, generating an updated embedding vector for each 

pooled node. The average across these new embedding vectors of the pooled nodes is 

considered as an embedding vector of the whole graph, which is in turn used as the 

input to a graph classifier implemented by two fully-connected layers with the 

softmax activation function. The overall supervised loss function is defined as 

follows. 

𝐿𝑆𝑢𝑝 = 𝛽 × 𝐿𝑀𝑖𝑛𝐶𝑢𝑡 + (1 − 𝛽) × 𝐿𝐶𝐸                (6) 

 

where 𝛽 is a weight parameter to balance the minimum cut loss 𝐿𝑀𝑖𝑛𝐶𝑢𝑡 used for 

graph partitioning as described above and the cross-entropy loss 𝐿𝐶𝐸 used for graph 

classification. Trained with the joint loss function, this model is able to directly learn 

condition-specific TCNs under the supervision of graph (image) labels (Fig. 1c).  

For both colorectal and breast cancer datasets in this study, we performed 10 sets 

of 10-fold cross-validation to evaluate prediction performance of the model and used 

100 optimal soft TCN assignment matrices generated during cross-validation to 

conduct the TCN ensemble procedure for robust TCN identification. We empirically 

set 𝛽 to 0.9 due to our emphasis on graph partitioning (i.e. TCN identification) and 

set the maximum number of TCNs that will be identified (i.e. the value of c) to 10. 

 

Running of published methods 

 

We compared the performance of CytoCommunity with four other spatial domain 
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detection methods, including Spatial-LDA 9, STAGATE 8, BayesSpace 5 and stLearn 
6. As required by these methods, cell type annotation and cell spatial coordinates were 

used as inputs to Spatial-LDA, while protein or mRNA expression data and cell 

spatial coordinates were used as inputs to the other three methods. For benchmarking 

purpose, the number of TCNs to be detected were specified according to the manual 

annotation from the original studies 14, 15. 

The Python package “spatial-lda (v0.1.3)” was applied to the CODEX dataset of 

mouse spleen and the MERFISH dataset of mouse hypothalamic preoptic region. By 

considering all cells as index cells, we first used featurize_samples and 

make_merged_difference_matrices functions for image featurization. Then, TCNs 

were detected using spatial_lda.model.train function with parameters 

max_dirichlet_iter=30 and max_dirichlet_ls_iter=30 for the CODEX dataset and 

default parameters for the MERFISH dataset. Note that the number of TCNs 

identified by this method may be fewer than the pre-specified number. 

The Python package “STAGATE-pyG (v1.0.0)” was applied to both datasets. For 

each image, cell spatial neighbor network was constructed using Cal_Spatial_Net and 

Stats_Spatial_Net functions. The train_STAGATE function was then used to learn 

low-dimensional latent representations of cells, which were considered as inputs to 

the Louvain clustering algorithm for TCN detection. scanpy.pp.neighbors and 

scanpy.tl.louvain functions were used here with resolution=0.25 for all three CODEX 

images. In order to obtain the same number of TCNs as the manually outlined 

hypothalamic nuclei regions in each MERFISH image, the parameter resolution was 

set to 0.5, 0.45, 0.6, 0.62 and 0.76 for image Bregma-0.14, Bregma-0.04, 

Bregma+0.06, Bregma+0.16 and Bregma+0.26, respectively. 

The R package “BayesSpace (v1.5.1)” was applied to the CODEX dataset with 

top 15 principal components (n.PCs) considered and all 30 protein markers as highly 

variable genes (n.HVGs) in the preprocessing function spatialPreprocess. TCNs were 

then identified using spatialCluster function with nrep=5000 and burn.in=100. For the 

MERFISH dataset, TCNs were identified using spatialPreprocess function with 

n.PCs=30 and n.HVGs=155 and spatialCluster function with nrep=10,000 and 

burn.in=100. 

The Python package “stlearn (v0.4.0)” was applied to both datasets following the 

stLearn official tutorial “Working with MERFISH” 

https://stlearn.readthedocs.io/en/latest/tutorials/Read_MERFISH.html. The parameters 

were set to be n_comps=30, randome_state=0, and n_neighbors=50 in the 

preprocessing functions stlearn.em.run_pca and stlearn.pp.neighbors for both 

datasets. Then, TCNs were identified using stlearn.tl.clustering.louvain function with 

resolution=0.25 for the CODEX dataset. With respect to the MERFISH dataset, the 

parameter resolution was set to 0.35, 0.5, 0.8, 0.9 and 1.3 for image Bregma-0.14, 

Bregma-0.04, Bregma+0.06, Bregma+0.16 and Bregma+0.26, respectively. 

 

Quantitative performance evaluation using the CODEX dataset of mouse spleen 

 

We used three metrics, accuracy, normalized mutual information (NMI) and adjusted 

Rand index (ARI) to quantitatively evaluate the performance of five compared 
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methods. The ground-truth labels of cells among four known splenic compartments, 

red pulp, marginal zone, B-cell zone and periarteriolar lymphoid sheath (PALS), were 

obtained from the authors of the original study 14. For each CODEX image, NMI, ARI 

and accuracy were defined as below and computed using the R package “aricode 

(v1.0.0)”. Note that we assigned each identified TCN to the compartment with the 

largest number of cell matches. 

𝑁𝑀𝐼 =
2×𝐼(𝐺𝑇;𝑇𝐶𝑁)

𝐻(𝐺𝑇)+𝐻(𝑇𝐶𝑁)
                       (7) 

where 𝐼(𝐺𝑇; 𝑇𝐶𝑁) is the mutual information between ground-truth and predicted 

TCN labels of cells. 𝐻(𝐺𝑇) and 𝐻(𝑇𝐶𝑁) are the entropies of ground-truth and 

predicted TCN labels, respectively. 

𝑅𝐼 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                (8) 

𝐴𝑅𝐼 =
𝑅𝐼−Expected 𝑅𝐼

max(𝑅𝐼)−Expected 𝑅𝐼
                    (9) 

where the Rand index (RI) is computed based on true positives (TP), true negatives 

(TN), false positives (FP) and false negatives (FN) of the TCN predictions compared 

to the ground-truth labels of cells. 

 

Cell type enrichment score in tissue cellular neighborhoods 

 

To quantitatively measure the composition of cell types in identified TCNs, we 

defined an enrichment score of each cell type in each TCN as -log10(P-value). The P-

value was computed using hypergeometric test based on the following four numbers: 

(1) the number of cells of a given type in the TCN; (2) the total number of cells in the 

TCN; (3) the number of cells of the given type in the single-cell spatial omics image; 

(4) the total number of cells in the image. P-values were adjusted for multiple testing 

using the Benjamini-Hochberg method 43. 

 

Canonical correlation analysis of tissue cellular neighborhoods 

 

To identify the associations among cell types located in different TCNs, we conducted 

canonical correlation analysis (CCA) of each TCN pair using cell type enrichment 

scores. Specifically, for each TCN, we selected five most variable cell types based on 

the standard deviation of enrichment scores across patient samples as observed 

variables of the TCN. Then, the canonical correlation model between each TCN pair 

was constructed using the cc function from the R package “CCA (v1.2.1)”. We also 

computed statistical significance p-values of canonical correlation coefficients using 

permutation test-based p.perm function from the R package “CCP (v1.2)”. To 

facilitate interpretation of CCA results, we further investigated correlations between 

dominant cell types identified based on their normalized weights in the first canonical 

variate pair to describe cell type communication patterns between TCNs. 

 

Cancer risk stratification based on survival analysis 
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For the spatial proteomics dataset of breast cancer generated using the imaging mass 

cytometry technology 10, we conducted a patient stratification into low- and high-risk 

groups based on the median overall survival of 79 deceased patients only. We did not 

consider censored patients since their overall survival time is unknown. The Kaplan-

Meier survival curves and corresponding log-rank test p-value were computed using 

the R package “survival (v3.2-13)”. 

 

 

Figure Legends 

 

Figure 1. Schematic diagram of the CytoCommunity algorithm. 

 

Given a single-cell spatial map with cell type annotation and cell spatial coordinates, 

identification of tissue cellular neighborhoods (TCNs) is formulated as a graph 

partitioning problem, which can be solved by a graph neural network (GNN)-based 

machine learning model. (a) The CytoCommunity algorithm includes two 

components: a soft TCN assignment module and a TCN ensemble module to 

determine the final robust TCNs. First, an undirected K-nearest neighbor (KNN) 

graph is constructed based on Euclidean distance between cells computed using the 

cell spatial coordinates. Each node represents a cell and its attribute vector (blue) is 

represented using one-hot encoding. An edge exists between two nodes if a node 

belongs to the KNN set of the other node. A basic GNN model with the ReLu 

activation function is applied to this node-attributed KNN graph to obtain a real-

valued embedding vector (green) for each node, which integrates the phenotype 

information of the cell and its local neighborhood. d, the number of embedding 

dimensions. A fully-connected neural network (no hidden layers) with the softmax 

activation function is used for transforming the node embeddings to the soft TCN 

assignments (yellow vectors) of nodes, representing the probabilities of cells 

belonging to the specified number of TCNs. The graph minimum cut-based loss 

(𝐿𝑀𝑖𝑛𝐶𝑢𝑡) function is then used to learn the optimal soft TCN assignments of all 

nodes. This loss function can be used alone for an unsupervised learning task. In a 

supervised learning task for de novo identification of condition-specific TCNs in a 

tissue image dataset, a graph pooling, a graph convolution and two fully-connected 

layers with the cross-entropy loss function 𝐿𝐶𝐸 (for image classification, surrounded 

by a dashed rectangular box) are added on top of the soft TCN assignment module. 

The overall supervised loss function is a linear combination of 𝐿𝑀𝑖𝑛𝐶𝑢𝑡 and 𝐿𝐶𝐸 

with a weight parameter 𝛽. To alleviate the instability issue of graph partitioning 

based on GNN, the soft TCN assignment module can be run multiple times to 

generate multiple soft TCN assignment matrices. For each of them, the hard 

assignment is conducted by assigning the cell (row) to the TCN (column) with the 

highest probability. Finally, an ensemble procedure is performed on those hard TCN 

assignments using the majority-voting strategy to determine the final TCN partition of 

the single-cell spatial map. (b) For an unsupervised learning task, CytoCommunity 

identifies TCNs for each tissue image individually. (c) For a supervised learning task, 
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using a dataset of tissue images associated with different conditions as the input, 

CytoCommunity enables de novo identification of condition-specific TCNs under the 

supervision of image labels (e.g. TCNs colored by dark cyan or spring green). 
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Figure 2. Performance evaluation of the CytoCommunity algorithm using single-

cell spatial proteomics data. 

 

(a, b) Three single-cell spatial maps, BALBc-1, BALBc-2 and BALBc-3, generated 

from healthy mouse spleen samples by the CODEX technology. Cells are colored 

based on cell type annotation (a) or manual tissue compartment annotation (b) from 

the original study 14. (c) Tissue cellular neighborhoods (TCNs) identified by 

CytoCommunity, Spatial-LDA, STAGATE, BayesSpace and stLearn. (d) Boxplots of 

accuracy, normalized mutual information (NMI) and adjusted Rand index (ARI) 

values computed by comparing detected TCNs with manually annotated tissue 

compartments. Each dot in the boxplot represents the performance on a given single-

cell spatial map.  
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Figure 3. Performance evaluation of the CytoCommunity algorithm using single-

cell spatial transcriptomics data. 

 

(a) Five single-cell spatial images, Bregma-0.14, Bregma-0.04, Bregma+0.06, 

Bregma+0.16 and Bregma+0.26, of the mouse hypothalamic preoptic region 

generated by the MERFISH technology. Bregma distance is given for each imaged 

brain section. 9, 10, 12, 12 and 11 hypothalamic nuclei/regions in the images are 

manually outlined by the authors 15. (b) Cells in the five images are colored based on 

the cell type annotation from the original study 15. (c) Tissue cellular neighborhoods 

(TCNs) identified by CytoCommunity, Spatial-LDA, STAGATE, BayesSpace and 

stLearn are labeled and colored based on the most similar manually annotated nuclei 

regions. TCNs without labels cannot be matched to the manual annotation. ACA, 

anterior commissure; BAC, bed nucleus of the anterior commissure; BNST, bed 

nucleus of the stria terminalis; LPO, lateral preoptic area; MPA, medial preoptic area; 

MPN, medial preoptic nucleus; MnPO, median preoptic nucleus; PaAP, 

paraventricular hypothalamic nucleus; Pe, periventricular hypothalamic nucleus; PS, 

parastrial nucleus; PVA, paraventricular thalamic nucleus; StHy, striohypothalamic 

nucleus; SHy, septohypothalamic nucleus; VMPO, ventromedial preoptic nucleus; 

VLPO, ventrolateral preoptic nucleus; AVPe, anteroventral periventricular nucleus; 

Fx, fornix; 3V, third ventricle. 
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Figure 4. Coordinated tumor and immune cell type distributions within and 

between tissue cellular neighborhoods in colorectal cancer. 

 

(a) Receiver operating characteristic (ROC) curves for image label prediction based 

on 10 sets of 10-fold cross-validations. Blue dashed line, ROC curve for each fold of 

cross-validation. Green solid line, ROC curve based on the mean values of the 10 sets 

of 10-fold cross-validations. (b) Heatmaps of average enrichment scores of each cell 

type in each identified tissue cellular neighborhood (TCN) across all images of CLR 

and DII patient samples. Cell type enrichment score is defined as -log10(P-value). P-

values were computed using hypergeometric test and adjusted using Benjamini-

Hochberg method 43. (c) Correlation of average cell type enrichment scores in all 

identified TCNs between CLR and DII patients. (d-f) Correlation of the enrichment 

scores of two indicated cell types in TCN-6 or TCN-7 in each patient group (left 

panels). Representative cell type and TCN maps (middle and right panels) are based 

on patient samples indicated by a dashed circle in the scatter plots. (g, h) Significant 

canonical correlation (permutation test p-value < 0.05) between two TCNs in the CLR 

(g) and DII (h) patient groups. Shown are scatter plots of normalized weights of five 

cell types (observed variable) in each TCN in the first two canonical variate pairs (top 

left panels). Correlation of the enrichment scores of dominant cell types in the first 

canonical variate pair (bottom left panels), and representative cell type and TCN maps 

(right panels) are also shown. Black dashed rectangles in the cell type and TCN maps 

in (h) are used to highlight the colocalization of smooth muscle cells in TCN-5 and 

tumor cells in TCN-1. For all scatter plots, regression lines, Pearson correlation 

coefficients (PCC) and corresponding p-values are shown. For clarity, cells of studied 

types and TCNs are shown in large size without transparency in all cell type and TCN 

maps.  
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Figure 5. Coordinated tumor and stromal cell type distributions within or 

between tissue cellular neighborhoods in breast cancer. 

 

(a) Kaplan-Meier survival curves of 79 breast cancer patients who were classified into 

low-risk and high-risk groups based on their median overall survival time. P-value 

was computed using the log-rank test. (b) Heatmaps of average enrichment scores of 

each cell type in each identified tissue cellular neighborhood (TCN) across all images 

of low-risk and high-risk patient samples. Cell type enrichment score is defined as -

log10(P-value). P-values were computed using hypergeometric test and adjusted using 

Benjamini-Hochberg method 43. (c) Correlation of average cell type enrichment scores 

in all identified TCNs between low-risk and high-risk patients. (d-f) Correlation of the 

enrichment scores of two indicated cell types in TCN-1 or TCN-2 in each patient 

group (left panels). Representative cell type and TCN maps (middle and right panels) 

are based on patient samples indicated by a dashed circle in the scatter plots. Black 

dashed rectangles in the cell type and TCN maps in (f) are used to highlight the 

colocalization of endothelial cells and SMAhi vimentinhi fibroblasts in TCN-2. (g, h) 

Significant canonical correlation (permutation test p-value < 0.1) between TCN-7 and 

TCN-3 (g) and between TCN-8 and TCN-6 (h) in the high-risk patient groups. Shown 

are scatter plots of normalized weights of five cell types (observed variable) in each 

TCN in the first two canonical variate pairs (top left panels). Correlation of the 

enrichment scores of dominant cell types in the first canonical variate pair (bottom 

left panels), and representative cell type and TCN maps (right panels) are also shown. 

For all scatter plots, regression lines, Pearson correlation coefficients (PCC) and 

corresponding p-values are shown. For clarity, cells of studied types and TCNs are 

shown in large size without transparency in all cell type and TCN maps. 
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Supplementary Figure Legends 

 

Supplementary Figure 1. Representative tissue cellular neighborhoods specific to 

low- and high-risk colorectal cancer patients. 

 

(a) Cell type and tissue cellular neighborhood (TCN) maps of a representative CLR 

patient image with B cells enriched in TCN-5. (b) Cell type and TCN maps of a 

representative DII patient image with granulocytes enriched in TCN-7. For clarity, 

cells of studied types and TCNs are shown in large size without transparency in all 

cell type and TCN maps.  
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Supplementary Figure 2. Cell type associations within tissue cellular 

neighborhoods in colorectal cancer. 

 

Heatmaps for correlations of the enrichment scores of any two cell types (CTs) within 

each of the 10 tissue cellular neighborhoods (TCNs) identified in CLR (a) and DII (b) 

patients. 
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Supplementary Figure 3. Cell type associations between tissue cellular 

neighborhoods in colorectal cancer. 

 

Heatmaps for empirical p-values of canonical correlation coefficients of the cell type 

enrichment scores of tissue cellular neighborhood (TCN) pairs in CLR (a) and DII (b) 

patient groups. P-values were computed using permutation test-based p.perm function 

from the R package “CCP (v1.2)”. 
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Supplementary Figure 4. Representative tissue cellular neighborhoods specific to 

low- and high-risk breast cancer patients. 

 

(a) Cell type and tissue cellular neighborhood (TCN) maps of a representative high-

risk patient with SMAhi Vimentinhi fibroblasts enriched in TCN-4. (b) Cell type and 

TCN maps of a representative low-risk patient with CK+ HRhi tumor cells enriched in 

TCN-1. (c) Cell type and TCN maps of a representative high-risk patient with CKlow 

HRlow tumor cells enriched in TCN-2. For clarity, cells of studied types and TCNs are 

shown in large size without transparency in all cell type and TCN maps.  
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Supplementary Figure 5. Cell type associations within tissue cellular 

neighborhoods in breast cancer. 

 

Heatmaps for correlations of the enrichment scores of any two cell types (CTs) within 

each of the nine tissue cellular neighborhoods (TCNs) identified in low-risk (a) and 

high-risk (b) patients. 
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Supplementary Figure 6. Cell type associations between tissue cellular 

neighborhoods in breast cancer. 

 

Heatmaps for empirical p-values of canonical correlation coefficients of the cell type 

enrichment scores of tissue cellular neighborhood (TCN) pairs in low-risk (a) and 

high-risk (b) patient groups. P-values were computed using permutation test-based 

p.perm function from the R package “CCP (v1.2)”. 
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Supplementary Figure 7. Robustness of CytoCommunity on the MERFISH 

dataset. 

 

CytoCommunity was applied to each MERFISH image for five times. Each time, 

different numbers of runs of the soft tissue cellular neighborhood (TCN) assignment 

module was conducted. Normalized mutual information (NMI) between any two TCN 

partitions generated by the five sets of experiments are shown in boxplots with lines 

connecting the median of each group. 
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