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Abstract

It remains poorly understood how different cell types organize and coordinate with
each other to support tissue functions. We describe CytoCommunity for identification
of tissue cellular neighborhoods (TCNs) based on cell phenotypes and their spatial
distributions. CytoCommunity learns a mapping directly from cell phenotype space to
TCN space by a graph neural network model without using additional gene or protein
expression features and is thus applicable to tissue imaging data with a small number
of measured features. By leveraging graph pooling, CytoCommunity enables de novo
identification of condition-specific TCNs under the supervision of image labels.
Using various types of single-cell-resolution spatial proteomics and transcriptomics
images, we demonstrate that CytoCommunity can identify TCNs of variable sizes
with substantial improvement over existing methods. To further evaluate the ability of
CytoCommunity for discovering condition-specific TCNs by supervised learning, we
apply it to colorectal and breast cancer tissue images with clinical outcome
information. Our analysis reveals novel granulocyte- and cancer associated fibroblast-
enriched TCNs specific to high-risk tumors as well as altered tumor-immune and
tumor-stromal interactions within and between TCNs compared to low-risk tumors.
CytoCommunity represents the first computational tool for end-to-end unsupervised
and supervised analyses of single-cell spatial maps and enables direct discovery of
conditional-specific cell-cell communication patterns across variable spatial scales.

Introduction

To understand the structure-function relationship of a tissue, the concept of tissue
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cellular neighborhoods (TCNs) or spatial domains has been proposed as a recurrent
functional unit in which different cell types organize and coordinate to support tissue
functions !3. With the development of spatial omics and imaging technologies, there
is a critical need for computational methods % #* for identifying spatial domains in
tissues. Several pioneering methods have been developed that can be roughly
classified into statistics-based and deep learning-based approaches. As representative
work in the first category, Dries et al. developed Giotto % * and Zhao et al. developed
BayesSpace ° to identify spatial domains with similar gene expression patterns based
on probabilistic graphical models and spatial transcriptomics data. Chen et al. adapted
the latent Dirichlet allocation (LDA) topic model to develop Spatial-LDA ° for
identifying spatially coherent patterns based on cell type counts and cell spatial
coordinates. As a deep learning-based method, stLearn © utilizes a convolutional
neural network model to extract features from a histology image and measures
morphological similarity between neighboring cells or spots in a spatial
transcriptomics image to smooth gene expression data. Clustering is then performed
on the normalized expression data for spatial domain identification. Both SpaGCN 7
and STAGATE 2 first employ graph neural network to integrate gene expression and
spatial location data to generate embedding representations of cells or spots in a
spatial transcriptomics image and then perform clustering on those embeddings to
identify spatial domains.

All existing approaches, except Spatial-LDA, are originally designed for spatial
transcriptomics data and thus use expression of hundreds or thousands of genes as
features to infer TCNs. On one hand, such methods may not be applicable to spatial
proteomics data > '° with single-cell resolution that only have a few tens of protein
expression features available. On the other hand, using spatial transcriptomic data as
inputs cannot directly establish the relationship between cell types and TCNs in a
tissue, making the interpretation of TCN identity and function challenging.
Furthermore, given a cohort of tissue images associated with different conditions (e.g.
disease risk and patient prognosis), it is critical to identify condition-specific TCNs in
order to discover TCNs with more biological and clinical relevance. A representative
condition-specific TCN in cancer tissues is the tertiary lymphoid structure, which is
typically present in low-risk but absent in high-risk patients of many cancer types !!.
All existing methods are designed to detect TCNs in individual tissue images and thus
not applicable to identification of condition-specific TCNs because alignment of
TCNs across images is NP-hard 2. To our knowledge, no method currently exists for
de novo identification of condition-specific TCNs by utilizing tissue image labels
explicitly.

Here, we describe the CytoCommunity algorithm for identifying TCNs that can
be applied in either an unsupervised or a supervised learning framework. We
formulate the TCN identification as a graph-based community detection problem and
employ a minimum-cut-based graph neural network model to identify TCNs in cell-
cell spatial proximity graphs with cell types as node attributes. CytoCommunity
directly uses cell types as initial features of cells to learn TCNs and thus can be
applied to both single-cell transcriptomics and proteomics data and facilitates the
interpretation of TCN functions. CytoCommunity can not only infer TCNs from
individual images but also identify condition-specific TCNs from a cohort of labeled
tissue images by leveraging graph pooling and image labels, which is an effective
strategy to address the difficulty of graph alignment. Our deep graph learning
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framework is different from the group of methods represented by SpaGCN 7 and
STAGATE 8, which employ a “cell embedding and clustering” procedure to identify
spatial domains. The clustering approach makes it difficult to adopt a supervised
learning framework for finding condition-specific tissue structures.

Using single-cell spatial proteomics and transcriptomics datasets, we
benchmarked the performance of unsupervised CytoCommunity on detection of
TCNs of variable sizes in individual healthy tissue images. We also demonstrated the
ability of supervised CytoCommunity to reveal the changes in within- and between-
TCN communications in tumor tissues of patients having different risks and
prognoses.

Results
Overview of the CytoCommunity algorithm

The CytoCommunity algorithm consists of two components: a graph neural network
(GNN)-based soft tissue cellular neighborhood (TCN) assignment module and a TCN
ensemble module to determine the final robust TCNs in single-cell spatial maps (Fig.
la). CytoCommunity can be used for both unsupervised (Fig. 1b; Online Methods)
and supervised learning tasks (Fig. 1c; Online Methods). As an unsupervised learning
task, given a single-cell spatial map with cell type and location information,
CytoCommunity first constructs a k-nearest-neighbor (KNN) graph with nodes
representing cells and edges representing the spatial proximity among cells. Each
node also has an attribute vector representing its associated cell phenotype (e.g. cell
type or state). Using a deep neural network consisting of a graph convolution layer
and a fully-connected layer, the node attribute vectors on the KNN graph are
transformed to the soft TCN assignment vectors, representing probabilities of cells
belonging to the specified number of TCNs. A graph minimum cut (MinCut)-based
loss function ' is applied to learn optimal soft TCN assignments for cells. This loss
function can be used alone to detect TCNss in individual single-cell spatial maps
without any image labels (e.g. disease stage of the corresponding patient sample). In a
supervised learning task for de novo identification of condition-specific TCNs, a
second deep neural network with a graph pooling layer, a graph convolution layer and
two fully-connected layers are added to the soft TCN assignment module. A cross-
entropy loss function is used for image classification to minimize the difference
between actual and predicted probabilities of image labels. The overall loss function
of the supervised learning is a linear combination of the MinCut-based and the cross-
entropy-based loss functions. Due to the joint training of the two loss functions, the
learned optimal soft TCN assignments of cells are associated with the
conditions/labels of the single-cell spatial images under study. To alleviate the
instability of the graph partitioning based on GNN, the soft TCN assignment module
can be run multiple times to generate multiple optimal soft TCN assignment matrices.
Finally, a majority-voting-based ensemble procedure is performed on these soft TCN
assignment matrices to determine the final TCNs.

Performance evaluation using single-cell spatial proteomics data
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To evaluate the performance of CytoCommunity, we applied it to a spatial proteomics
dataset of mouse spleen generated using the Co-Detection by Indexing (CODEX)
technology ' and compared with four state-of-the-art methods including Spatial-LDA
. STAGATE 8, BayesSpace ° and stLearn ¢ (Online Methods). This dataset includes
CODEX images of three healthy mouse spleen samples (named as BALBc-1,
BALBc-2 and BALBc-3). On average, each image contains 81,760 cells covering 27
cell types (Fig. 2a). The images are manually annotated by the authors with four
known tissue compartments of the spleen: red pulp, marginal zone, B-cell zone and
periarteriolar lymphoid sheath (PALS) (Fig. 2b). Here we regard these tissue
compartments as ground-truth TCNs. We evaluate the agreement of predicted TCNs
and the ground truth using three performance metrics: accuracy, normalized mutual
information (NMI) and adjusted Rand index (ARI) (Online Methods). Overall, all five
methods can identify the PALS compartment accurately. However, compared to
CytoCommunity, the other four methods performed poorly in distinguishing marginal
zone, red pulp and B-cell zone, especially marginal zone which was hardly identified
by the other four methods (Fig. 2¢). Quantitatively, CytoCommunity also achieved the
highest accuracy, NMI and ARI values across the three images (Fig. 2d). In
conclusion, CytoCommunity has substantially improved performance over
representative state-of-the-art methods when comparing identified TCNs with
manually annotated tissue compartments.

Performance evaluation using single-cell spatial transcriptomics data

The evaluation above focused on identifying large tissue compartments. To further
evaluate the performance of CytoCommunity on detection of TCNs of smaller sizes,
we applied it to a spatial transcriptomic dataset of healthy mouse hypothalamic
preoptic region generated using the Multiplexed Error-Robust Fluorescence in situ
Hybridization (MERFISH) technology '°. This dataset includes five MERFISH
images with 18 manually annotated hypothalamic nuclei regions (Fig. 3a). In
neuroanatomy, a nucleus is a group of neurons having similar connections and
functions. Hence, we treated these manually annotated nuclei as gold-standard TCNs
in the performance evaluation. On average, each image contains 5,352 cells that were
assigned to nine cell types by the authors '3 (Fig. 3b). As shown in Fig. 3a, a
prominent tissue architectural feature of the preoptic region is the symmetry of
various types of nuclei. We found that CytoCommunity can identify multiple
symmetric and coherent TCNs that agree with the manually outlined nuclei (Fig. 3c¢).
For example, symmetric BNST (bed nucleus of the stria terminalis), MPA (medial
preoptic area) and MPN (medial preoptic nucleus) regions were identified in all five
images. We also identified symmetric VLPO (ventrolateral preoptic nucleus) regions
in “Bregma-0.04", “Bregma+0.06” and “Bregma+0.16” images, symmetric SHy
(septohypothalamic nucleus), AVPe (anteroventral periventricular nucleus) and
VMPO (ventromedial preoptic nucleus) regions in image “Bregma+0.06” and
symmetric PaAP (paraventricular hypothalamic nucleus) regions in image
“Bregma+0.26”. Besides these symmetric domains, central ACA (anterior
commissure), Pe (periventricular hypothalamic nucleus) and MnPO (median preoptic
nucleus) domains were also identified. In contrast, a number of manually annotated
nuclei cannot be identified by the other four methods (unlabeled TCNs in the figure
legend). Among those that can be identified, many are intermixed without clear
boundary between them and lacks clear symmetry (Fig. 3¢). In conclusion,
CytoCommunity has substantially improved performance over state-of-the-art
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methods when comparing identified TCNs with manually annotated, complex tissue
functional regions of variable sizes.

Altered tumor-immune interactions within and between tissue cellular
neighborhoods in low- versus high-risk colorectal cancer patients

To demonstrate the utility of CytoCommunity for de novo identification of condition-
specific TCNs by supervised learning, we applied it to a CODEX dataset generated
using samples from 17 low-risk (characterized by “Crohn’s-like reaction”, CLR) and
18 high-risk (characterized by diffuse inflammatory infiltration, DII) colorectal cancer
patients 3. The CLR patient group was reported to have significantly better overall
survival than the DII patient group (log-rank test p = 0.002) 3. The dataset consists of
68 and 72 CODEX images from the CLR and DII patients, respectively (four images
per patient). Using 10 sets of 10-fold cross-validation, we found that CytoCommunity
nearly perfectly classified the images into the two patient groups with an average area
under the receiver operating characteristic curve of 0.99 (Fig. 4a). We next
investigated the 10 TCNs identified in the 140 CODEX images using supervised
learning and found that the cell type enrichment scores (Online Methods) in those
TCNss are significantly correlated (Pearson correlation coefficient (PCC) = 0.69, Fig.
4b and 4c), which indicates that the identified TCNs of the two patient groups have
similar cell type composition. However, we also found multiple cell types that are
enriched in CLR or DII-specific TCNs. For example, B cells are significantly
enriched in TCN-5 in CLR patients but not enriched in any TCN in DII patients (Fig.
4b; Supplementary Fig. 1a), which is consistent with the presence of B cell-enriched
tertiary lymphoid structures (TLSs) in CLR patient samples but absence of TLSs in
DII patient samples 3. On the contrary, granulocytes are significantly enriched in
TCN-7 in DII patients but not enriched in TCNs in CLR patients (Fig. 4b;
Supplementary Fig. 1b), which is consistent with the previously reported critical role
of granulocytes in DII patients 3. Interestingly, tumor cells and vascular smooth
muscle cells are enriched in more TCNs in the DII group than in the CLR group (Fig.
4b), suggesting that the two cell types are spatially abundant in high-risk cancer
patients.

Besides the enrichment of individual cell types in TCNs, we also investigated the
coordination of cell types within and between TCNs to better understand cell-cell
communication in the tissue microenvironment. As an example of within-TCN cell
type communication shared by the two patient groups (Supplementary Fig. 2), the
enrichment of CD4+ memory T cells (red square) is significantly correlated with
CD8+ T cell (black diamond) enrichment in TCN-6 in both CLR (PCC = 0.73) and
DII (PCC = 0.68) patients (Fig. 4d, left panel). Consistent with the cell type and TCN
maps from the patients with high enrichment scores, we observed that the two cell
types are intermixed with each other in TCN-6 (Fig. 4d, middle and right panels). We
also found CLR-specific (Supplementary Fig. 2a) and DII-specific (Supplementary
Fig. 2b) cell type associations within TCNs. For instance, the enrichment of
CD68+CD163+ macrophages (blue plus) is significantly correlated with CD8+ T cell
enrichment in TCN-6 in CLR patients (PCC = 0.59) but not in DII patients (Fig. 4e),
suggesting that double positive macrophages might have anti-tumor effects by
promoting CD8+ T cell infiltration to improve survival of CLR patients. Similar cell
type communication between the double positive macrophage and CD8+ T cell was
recently reported in human lung cancer '6. As an opposite example, the enrichment of
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granulocytes (purple cross) and tumor cells in TCN-7 has significantly correlation
(PCC = 0.68) in DII patients but not in CLR patients (Fig. 4f, left panel). Consistent
with the corresponding cell type and TCN maps, we observed that a large number of
granulocytes either intermix with or are spatially close to tumor cells in the DII group
while much smaller number of granulocytes are near tumor cells in the CLR group
(Fig. 4f, middle and right panels). This is in line with previous studies that neutrophils
have tumor-promoting effects to impact cancer patient survival !7-18,

To investigate communication between different TCNs, we conducted canonical
correlation analysis of TCN pairs (Online Methods). We found substantial differences
in significant canonical correlations of TCNs (permutation test p < 0.05) between
CLR (Supplementary Fig. 3a) and DII patients (Supplementary Fig. 3b). As an
example of significant between-TCN associations that are specific to CLR patients,
granulocytes in TCN-6 and tumor cells in TCN-7 are two dominant cell types
(observed variables) in the first canonical variate pair (Fig. 4g, top left panel). Without
consideration of other cell types, granulocytes and tumor cells in the two TCNs have a
statistically significant correlation (PCC = 0.48, p = 0.05) (Fig. 4g, bottom left panel),
suggesting a potential interaction between this two cell types across TCNs. Consistent
with the corresponding cell type and TCN maps, we observed that a small number of
granulocytes enriched in TCN-6 are close to tumor cells enriched in TCN-7 (Fig. 4g,
right panel). Such between-TCN communication in CLR patients is presumably
different from the within-TCN communication between the same two cell types in DII
patients (Fig. 4f), again supporting the pro-tumor role of granulocytes in DII patients.

Another interesting example of between-TCN communication regarding the DII
group is the significant association between TCN-5 and TCN-1, in which
CD68+CD163+ macrophages, CD4+ memory T cells, vascular smooth muscle cells,
granulocytes and tumor cells are dominant cell types in the first canonical variate pair
(Fig. 4h, top left panel). By examining the pair-wise correlation of these cell types, we
found that double positive macrophages and CD4+ memory T cells in TCN-5 are
significantly correlated with tumor cells in TCN-1 (PCC = 0.48 and 0.61,
respectively; Fig. 4h, bottom left panel). Although vascular smooth muscle cells do
not have significant correlation with tumor cells, the two cell types are co-enriched in
the two TCNs in multiple DII patients (Fig. 4h, bottom left panel). From the
corresponding cell type and TCN maps, we observed that the double positive
macrophage/CD4+ memory T cell/vascular smooth muscle cell-enriched TCN-5 is
spatially adjacent to the tumor cell-enriched TCN-1 (Fig. 4h, right panel), suggesting
an unexpected cancer-promoting effects of these three cell types. As supporting
evidence, extensive studies have demonstrated that tumor associated macrophages
have functional plasticity that show both pro- and anti-tumor activities dependent on
their microenvironment !*-2°, CD4+ memory T cells produce interleukin-22, which is
induced by cancer cells to promote tumor growth in breast and lung cancers 2!
Previous studies also reported the critical role of vascular smooth muscle cells in
tumor angiogenesis and metastasis 22, which is consistent with our observation that a
small group of tumor cells in TCN-1 reside with vascular smooth muscle cells in
TCN-5 (Fig. 4h, right panel).

Altered tumor-stromal interactions within and between tissue cellular
neighborhoods in low- versus high-risk breast cancer patients
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To further evaluate the ability of CytoCommunity to discover condition-specific
TCNs using different data modalities, we applied it to another spatial proteomics
dataset of breast cancer generated using the imaging mass cytometry technology '°.
Based on the median overall survival, we stratified the 79 breast cancer patients into
low- and high-risk groups with significant survival difference (log-rank test p <
0.0001; Fig. 5a). We identified nine TCNs in both low- and high-risk groups. By
comparing their cell type enrichment scores (Fig. 5b and 5c), we found that TCNs in
both groups have similar overall cell type composition (Fig. 5¢) and are enriched for
several types of fibroblasts (Fig. 5b), suggesting a critical role of fibroblasts in breast
cancer prognosis. Specifically, we found that SMAM Vimentin™ fibroblasts, also
known as cancer associated fibroblasts (CAFs) that highly express alpha smooth
muscle actin (SMA) and vimentin, are more enriched in TCNs of the high-risk group
than those of the low-risk group (Fig. 5b; Supplementary Fig. 4a). Besides stromal
cell types, we also found low- and high-risk-group specific TCNs, characterized by
significant enrichment (p < 0.05) of CK* HRM tumor cells (cells with positive
expression of cytokeratins (CK) and high expression of hormone receptors (HR)) and
CK'*¥ HR'*¥ tumor cells, respectively (Fig. 5b; Supplementary Fig. 4b and 4c). This is
consistent with the previous report that these two tumor cell phenotypes are associated
with good and poor prognosis, respectively '°.

Regarding cell type associations within TCNs (Supplementary Fig. 5), we found
that two normal fibroblast types, small circular (green hexagon) and elongated (black
diamond) fibroblasts, are significantly correlated in TCN-1 in both low- (PCC = 0.67)
and high-risk (PCC = 0.95) patients (Fig. 5d, left panel). Correspondingly, we
observed that these two fibroblast types are intermixed in TCN-1 in patients with high
enrichment scores (Fig. 5d, middle and right panels). As examples of low-
(Supplementary Fig. 5a) and high-risk-specific (Supplementary Fig. 5b) within-TCN
cell-cell communications, we found that endothelial cell (cyan pentagon) enrichment
is significantly correlated with macrophage (blue plus) enrichment in TCN-1 in low-
risk patients (PCC = 0.68; Fig. Se, left panel) but correlated with CAF (purple cross)
enrichment in TCN-2 in high-risk patients (PCC = 0.35; Fig. 5f, left panel). This
observation implies that differential interactions between endothelial cells,
macrophages and fibroblasts can lead to different patient outcomes 2> 24, From
representative cell type and TCN maps, we observed that endothelial cells are
intermixed with macrophages in TCN-1 in the low-risk patient only (Fig. Se, middle
and right panels) but with CAFs in TCN-2 in the high-risk patient only (Fig. 5f,
middle and right panels).

Next, we investigated between-TCN communications by canonical correlation
analysis. Interestingly, we only found significant TCN associations involving tumor-
stromal interactions in high-risk patients (Supplementary Fig. 6). For example, we
observed that endothelial cell (cyan pentagon) and T cell (red square)-dominated
TCN-7 is associated with TCN-3 dominated by epithelial®¥ tumor cells (green
upside-down triangle) that are undergoing epithelial-mesenchymal-transition (EMT)
(Fig. 5g). As supporting evidence, previous studies showed that both endothelial cells
and T cells can induce EMT of cancer cells, resulting in poor clinical outcomes 23-%°.
Another interesting example is the significant correlation between hypoxic tumor cell
(orange triangle)-dominated TCN-6 and TCN-8 that mainly consists of endothelial
cells (cyan pentagon), small elongated fibroblasts (black diamond), proliferative
(brown right-pointing triangle) and CK'®" HR!*Y (pink left-pointing triangle) tumor
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cells (Fig. 5h). Proliferative tumor cells in TCN-8 probably lead to reduction in the
oxygen supply, promoting the formation of a hypoxic tumor microenvironment 3.
Hypoxia enables the expansion of aggressive tumor clones 3° (represented by the
cohesive hypoxic tumor mass in TCN-6) and can also inhibit hormone receptor
expression 3!, probably contributing to the CK'*¥ HR!®" tumor phenotype in TCN-8.
Hypoxic microenvironment can also support the transformation of tissue-resident
fibroblasts to CAFs and endothelial cell-mediated neovascularization 3° in TCN-8. All
these hypoxia-induced events are associated with unfavorable prognosis in breast
cancer.

Discussion

We introduce a deep graph learning approach, CytoCommunity, for identifying tissue
cellular neighborhoods based on cell phenotypes and cell spatial distributions.
CytoCommunity formulates the TCN identification as a community detection
problem on node-attributed cell-cell spatial proximity graphs. Since most traditional
community detection algorithms focus only on graph topology to find densely-
connected subgraphs and cannot explicitly deal with node attributes 32,
CytoCommunity employs a minimum cut-based GNN model to learn optimal TCN
assignments of cells (nodes) from cell type information (node attributes). Like
previous methods >4, CytoCommunity can be applied in an unsupervised fashion to
identify TCNs in individual images. More importantly, it is the first TCN-detection
method that can be used in a supervised fashion for de novo identification of
condition-specific TCNs and prediction of tissue image labels and therefore
facilitating the discovery of more physiologically or clinically relevant tissue
structures. This unique characteristics of CytoCommunity is attributed to the usage of
graph pooling that preserves TCN partition information in the embedding
representation of the whole image and thus addresses the TCN alignment across
images by training an end-to-end model for image classification. It is worth noting
that TCN identification under the supervision of image labels can be considered as a
weakly supervised graph partitioning problem, representing an interesting research
topic in graph learning.

Successful identification of large (splenic compartments) and small
(hypothalamic nuclei) TCNs by unsupervised CytoCommunity suggest that
information about cell types and their spatial distributions are sufficient to determine
the functional units in tissues without using gene or protein expression features. By
applying supervised CytoCommunity to risk-stratified cancer tissue images, we
identified both shared and specific TCNs, such as a low-risk-specific TCN enriched
for B cells, corresponding to the well-known tertiary lymphoid structure (TLS)
associated with favorable prognosis. We also found granulocyte- and cancer-
associated fibroblast-enriched TCNs in high-risk colorectal and breast cancer patients,
respectively. By comparative analysis of TCNs, we revealed multiple altered tumor-
immune and tumor-stromal coordination patterns within and between TCNs in low-
versus high-risk cancer patients.

We believe that the success of CytoCommunity can be attributed to two main
features. First, it leverages a GNN model with a theoretically grounded minimum cut-
based loss function '3 for soft TCN assignment learning, generating more accurate and
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stable graph partitioning results than other pooling-capable GNN models such as
DiffPool 33, which employs heuristic loss functions to learn the soft assignments.
Second, CytoCommunity uses cell types as initial cell features, probably leading to a
better measurement of functional similarity between cells than using noisy gene or
protein expression data directly. Cell type identification is typically the first crucial
task in single-cell data analysis and often needs sophisticated tools 34-3¢ as well as
expert knowledge. Therefore, cell type annotation should be directly utilized in a
specialized TCN detection method rather than starting with expression data.
CytoCommunity encodes cell types in categorical vector space and thus has
scalability to incorporate more heterogenous categorical data, such as cell states *7,
into the initial cell feature vectors for inferring TCNs.

Due to the use of cell type information, the current version of CytoCommunity is
not applicable to spatial transcriptomics data with spot resolution ¥-°, To address this
issue, cell type composition at each spot can be first estimated by deconvolution
methods #>-#!. Then, a spot-spot proximity graph with inferred cell type fractions as
node attributes can be constructed as the input to CytoCommunity.

In summary, with the rapid growth of single-cell spatial maps, CytoCommunity
represents a powerful and scalable method for identifying condition-specific TCNSs.
TCNs directly learned from cell types can facilitate their function interpretation and
discovery of cell-cell communications within the tissue microenvironment.

Online Methods
Unsupervised model for identification of tissue cellular neighborhoods

The CytoCommunity algorithm for identifying tissue cellular neighborhoods (TCNs)
consists of two components: a soft TCN assignment learning module and a TCN
ensemble procedure to determine the final robust TCNs (Fig. 1a). As the first
component, given a single-cell spatial map with cell type annotation and cell location
data, an undirected K-nearest neighbor (KNN) graph with node attribute (cell type) is
constructed. In the graph, a cell is represented by a node and its cell type information
(categorical data) is represented by a node attribute vector using one-hot encoding
(Fig. 1a, top panel). Specifically, we first construct a directed KNN graph by
connecting each node to its KNNs based on Euclidean distance calculated using cell
spatial coordinates. Then, the underlying undirected graph without self-edges of the
directed KNN graph was used as the input to the graph neural network (GNN). Since
each spatial omics dataset is measured from the same tissue type and using the same
technology, we set the value of K in the KNN graphs as the square root of the average
number of cells across images in the dataset.

For the undirected KNN graph with n nodes, we employ a basic GNN model #?
with the ReLU activation function to generate a node embedding matrix X € R"*¢,
where each row is a learned d-dimensional representation vector of a node defined as

below.

x; = ReLU(O1x; + 0, Yjeni) ;) )
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where x; is an updated embedding vector of node i, which is calculated based on the
previous representation of itself x; and its first-order neighborhood N(i) in the
undirected KNN graph constructed above. x; is initialized with the node attribute
vector. ©®; and 0, are trainable parameter matrices in the GNN model. The value of
d was empirically set to 128 for all datasets in this study.

Next, we use a fully-connected neural network with no hidden layers, also
known as a linear layer, and the softmax activation function to transform the node
embedding matrix X € R™? to the soft TCN assignment matrix S € R™*¢, which
can be formulated as below.

S = softmax(Linear(X; @)) (2)

where each element in S represents the probability of a node (row) belonging to one
of the ¢ TCNss. c is a user-specified hyperparameter and represents the maximum
number of TCNs to be detected. Next, we use the following graph minimum cut
(MinCut)-based loss function 3 to optimize the matrix S in an unsupervised way.
Ly = Z=CAy | ST g 3)
MinCut — Z]C'=1(5TDS)jj ||5T5||F NI e
where A € {0,1}""" is the symmetric adjacency matrix derived from the undirected
KNN graph. D € R™" is a diagonal matrix (or the degree matrix), where each
diagonal element is the sum of the corresponding row in 4. The loss function Lyipncue
is the sum of two terms. The left term is used to address the normalized MinCut
problem in graph theory with the objective of partitioning the graph into c¢ disjoint
connected components with similar sizes by removing the minimum number of edges.
The right term encourages the soft TCN assignment matrix S to be orthogonal in order
to make the TCN membership of each node unambiguous. |||z denotes the
Frobenius norm. This loss function can be used alone for an unsupervised learning
task, that is Lyneup = Lmincue to identify TCNs for single-cell spatial omics images
individually (Fig. 1b).

As the second component of the CytoCommunity algorithm, we attempt to obtain
a robust graph partitioning result as the final TCNs by conducting a TCN ensemble
procedure (Fig. 1a, bottom panel). Specifically, the soft TCN assignment learning
module in the first component is run multiple times to generate multiple learned
matrices S. For each of them, the hard assignment is performed by assigning the cell
(row) to the TCN (column) with the highest probability. Then, we use the majority-
voting strategy to conduct an ensemble procedure on those hard TCN assignments to
determine the final TCN partition of the single-cell spatial map. To demonstrate the
effectiveness of this ensemble-based approach, we performed a stability experiment
on the challenging MERFISH dataset with multiple TCNs of small sizes to be
detected (Supplementary Fig. 7). Specifically, we applied CytoCommunity with
different number of runs of the first component to the MERFISH image for five times.
We then conducted pair-wise comparisons among the TCN partitions generated by the
five sets of runs. Our results showed that the TCN ensemble procedure based on 20
runs is sufficient to obtain a stable TCN partition.

Supervised model for de novo identification of condition-specific tissue cellular
neighborhoods
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Given a dataset of multiple spatial omics images from different conditions, TCNs can
be first identified for each image and then aligned across images for identifying
condition-specific TCNs. However, TCN alignment is analogous to community
alignment in graphs, which is NP-hard '2. To tackle this problem, we take advantage
of graph pooling to generate an embedding representation of the whole graph that
preserves the TCN partition information. Thus, by adapting the unsupervised graph
partitioning model described above to a graph convolution and pooling-based graph
classification framework, TCNs in different images are automatically aligned during
soft TCN assignment learning, facilitating the identification of condition-specific
TCNs (Fig. 1a, top panel). Specifically, after obtaining the soft TCN assignment
matrix S by a graph convolution and a fully-connected layers, we additionally employ
a graph pooling layer '3 33 formulated as below to generate a coarsened adjacency
matrix AP0 € R and a matrix of embeddings XF2°d € R°*4 for the c
pooled nodes in the coarsened graph. Note that this coarsened graph is a fully
connected graph with each pooled node corresponding to a cluster of nodes in the
original KNN graph and the weights of edges representing the connectivity strengths
between clusters.

XPooled — STX (4)
APOOled — STAS (5)
Then, we use XFo0%@d and APo°d 35 inputs to another GNN same as described

in Equation (1) to integrate pooled node features and their local neighborhood
information in the coarsened graph, generating an updated embedding vector for each
pooled node. The average across these new embedding vectors of the pooled nodes is
considered as an embedding vector of the whole graph, which is in turn used as the
input to a graph classifier implemented by two fully-connected layers with the
softmax activation function. The overall supervised loss function is defined as
follows.

Loup = B X Lyjincut + (1 = B) X L¢g (6)

where [ is a weight parameter to balance the minimum cut loss Lyi,cy: used for
graph partitioning as described above and the cross-entropy loss L. used for graph
classification. Trained with the joint loss function, this model is able to directly learn
condition-specific TCNs under the supervision of graph (image) labels (Fig. 1c¢).

For both colorectal and breast cancer datasets in this study, we performed 10 sets
of 10-fold cross-validation to evaluate prediction performance of the model and used
100 optimal soft TCN assignment matrices generated during cross-validation to
conduct the TCN ensemble procedure for robust TCN identification. We empirically
set f to 0.9 due to our emphasis on graph partitioning (i.e. TCN identification) and
set the maximum number of TCNs that will be identified (i.e. the value of ¢) to 10.

Running of published methods

We compared the performance of CytoCommunity with four other spatial domain
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detection methods, including Spatial-LDA °, STAGATE 8, BayesSpace ° and stLearn
6. As required by these methods, cell type annotation and cell spatial coordinates were
used as inputs to Spatial-LDA, while protein or mRNA expression data and cell
spatial coordinates were used as inputs to the other three methods. For benchmarking
purpose, the number of TCNs to be detected were specified according to the manual
annotation from the original studies '* 3.

The Python package “spatial-1da (v0.1.3)” was applied to the CODEX dataset of
mouse spleen and the MERFISH dataset of mouse hypothalamic preoptic region. By
considering all cells as index cells, we first used featurize samples and
make_merged_difference_matrices functions for image featurization. Then, TCNs
were detected using spatial_lda.model.train function with parameters
max_dirichlet iter=30 and max_dirichlet Is iter=30 for the CODEX dataset and
default parameters for the MERFISH dataset. Note that the number of TCNs
identified by this method may be fewer than the pre-specified number.

The Python package “STAGATE-pyG (v1.0.0)” was applied to both datasets. For
each image, cell spatial neighbor network was constructed using Cal Spatial Net and
Stats_Spatial Net functions. The train STAGATE function was then used to learn
low-dimensional latent representations of cells, which were considered as inputs to
the Louvain clustering algorithm for TCN detection. scanpy.pp.neighbors and
scanpy.tl.louvain functions were used here with resolution=0.25 for all three CODEX
images. In order to obtain the same number of TCNs as the manually outlined
hypothalamic nuclei regions in each MERFISH image, the parameter resolution was
set to 0.5, 0.45, 0.6, 0.62 and 0.76 for image Bregma-0.14, Bregma-0.04,
Bregma+0.06, Bregma+0.16 and Bregma+0.26, respectively.

The R package “BayesSpace (v1.5.1)” was applied to the CODEX dataset with
top 15 principal components (n.PCs) considered and all 30 protein markers as highly
variable genes (n.HVGs) in the preprocessing function spatialPreprocess. TCNs were
then identified using spatialCluster function with nrep=5000 and burn.in=100. For the
MERFISH dataset, TCNs were identified using spatialPreprocess function with
n.PCs=30 and n.HVGs=155 and spatialCluster function with nrep=10,000 and
burn.in=100.

The Python package “stlearn (v0.4.0)” was applied to both datasets following the
stLearn official tutorial “Working with MERFISH”
https://stlearn.readthedocs.io/en/latest/tutorials/Read MERFISH.html. The parameters
were set to be n_comps=30, randome_state=0, and n_neighbors=50 in the
preprocessing functions stlearn.em.run_pca and stlearn.pp.neighbors for both
datasets. Then, TCNs were identified using stlearn.tl.clustering.louvain function with
resolution=0.25 for the CODEX dataset. With respect to the MERFISH dataset, the
parameter resolution was set to 0.35, 0.5, 0.8, 0.9 and 1.3 for image Bregma-0.14,
Bregma-0.04, Bregma+0.06, Bregma+0.16 and Bregma+0.26, respectively.

Quantitative performance evaluation using the CODEX dataset of mouse spleen

We used three metrics, accuracy, normalized mutual information (NMI) and adjusted
Rand index (ARI) to quantitatively evaluate the performance of five compared
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methods. The ground-truth labels of cells among four known splenic compartments,
red pulp, marginal zone, B-cell zone and periarteriolar lymphoid sheath (PALS), were
obtained from the authors of the original study '*. For each CODEX image, NMI, ARI
and accuracy were defined as below and computed using the R package “aricode
(v1.0.0)”. Note that we assigned each identified TCN to the compartment with the
largest number of cell matches.

2xI(GT;TCN)

NMI= H(GT)+H(TCN) (7)
where I(GT;TCN) is the mutual information between ground-truth and predicted
TCN labels of cells. H(GT) and H(TCN) are the entropies of ground-truth and
predicted TCN labels, respectively.

TP+TN
RI = Accuracy = TP+FPTTN+FN (8)
AR] = RI—Expected RI (9)

max(RI)—Expected RI

where the Rand index (RI) is computed based on true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN) of the TCN predictions compared
to the ground-truth labels of cells.

Cell type enrichment score in tissue cellular neighborhoods

To quantitatively measure the composition of cell types in identified TCNs, we
defined an enrichment score of each cell type in each TCN as -logio(P-value). The P-
value was computed using hypergeometric test based on the following four numbers:
(1) the number of cells of a given type in the TCN; (2) the total number of cells in the
TCN; (3) the number of cells of the given type in the single-cell spatial omics image;
(4) the total number of cells in the image. P-values were adjusted for multiple testing
using the Benjamini-Hochberg method #°.

Canonical correlation analysis of tissue cellular neighborhoods

To identify the associations among cell types located in different TCNs, we conducted
canonical correlation analysis (CCA) of each TCN pair using cell type enrichment
scores. Specifically, for each TCN, we selected five most variable cell types based on
the standard deviation of enrichment scores across patient samples as observed
variables of the TCN. Then, the canonical correlation model between each TCN pair
was constructed using the cc function from the R package “CCA (v1.2.1)”. We also
computed statistical significance p-values of canonical correlation coefficients using
permutation test-based p.perm function from the R package “CCP (v1.2)”. To
facilitate interpretation of CCA results, we further investigated correlations between
dominant cell types identified based on their normalized weights in the first canonical
variate pair to describe cell type communication patterns between TCNss.

Cancer risk stratification based on survival analysis
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For the spatial proteomics dataset of breast cancer generated using the imaging mass

cytometry technology !°, we conducted a patient stratification into low- and high-risk
groups based on the median overall survival of 79 deceased patients only. We did not
consider censored patients since their overall survival time is unknown. The Kaplan-

Meier survival curves and corresponding log-rank test p-value were computed using

the R package “survival (v3.2-13)”.

Figure Legends
Figure 1. Schematic diagram of the CytoCommunity algorithm.

Given a single-cell spatial map with cell type annotation and cell spatial coordinates,
identification of tissue cellular neighborhoods (TCNs) is formulated as a graph
partitioning problem, which can be solved by a graph neural network (GNN)-based
machine learning model. (a) The CytoCommunity algorithm includes two
components: a soft TCN assignment module and a TCN ensemble module to
determine the final robust TCNs. First, an undirected K-nearest neighbor (KNN)
graph is constructed based on Euclidean distance between cells computed using the
cell spatial coordinates. Each node represents a cell and its attribute vector (blue) is
represented using one-hot encoding. An edge exists between two nodes if a node
belongs to the KNN set of the other node. A basic GNN model with the ReLu
activation function is applied to this node-attributed KNN graph to obtain a real-
valued embedding vector (green) for each node, which integrates the phenotype
information of the cell and its local neighborhood. d, the number of embedding
dimensions. A fully-connected neural network (no hidden layers) with the softmax
activation function is used for transforming the node embeddings to the soft TCN
assignments (yellow vectors) of nodes, representing the probabilities of cells
belonging to the specified number of TCNs. The graph minimum cut-based loss

(L pincue) function is then used to learn the optimal soft TCN assignments of all
nodes. This loss function can be used alone for an unsupervised learning task. In a
supervised learning task for de novo identification of condition-specific TCNs in a
tissue image dataset, a graph pooling, a graph convolution and two fully-connected
layers with the cross-entropy loss function L.p (for image classification, surrounded
by a dashed rectangular box) are added on top of the soft TCN assignment module.
The overall supervised loss function is a linear combination of Lyincye and Leg
with a weight parameter [. To alleviate the instability issue of graph partitioning
based on GNN, the soft TCN assignment module can be run multiple times to
generate multiple soft TCN assignment matrices. For each of them, the hard
assignment is conducted by assigning the cell (row) to the TCN (column) with the
highest probability. Finally, an ensemble procedure is performed on those hard TCN
assignments using the majority-voting strategy to determine the final TCN partition of
the single-cell spatial map. (b) For an unsupervised learning task, CytoCommunity
identifies TCNs for each tissue image individually. (¢) For a supervised learning task,
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using a dataset of tissue images associated with different conditions as the input,
CytoCommunity enables de novo identification of condition-specific TCNs under the
supervision of image labels (e.g. TCNs colored by dark cyan or spring green).
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Figure 2. Performance evaluation of the CytoCommunity algorithm using single-
cell spatial proteomics data.

(a, b) Three single-cell spatial maps, BALBc-1, BALBc-2 and BALBc-3, generated
from healthy mouse spleen samples by the CODEX technology. Cells are colored
based on cell type annotation (a) or manual tissue compartment annotation (b) from
the original study '*. (¢) Tissue cellular neighborhoods (TCNs) identified by
CytoCommunity, Spatial-LDA, STAGATE, BayesSpace and stLearn. (d) Boxplots of
accuracy, normalized mutual information (NMI) and adjusted Rand index (ARI)
values computed by comparing detected TCNs with manually annotated tissue
compartments. Each dot in the boxplot represents the performance on a given single-
cell spatial map.
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Figure 3. Performance evaluation of the CytoCommunity algorithm using single-
cell spatial transcriptomics data.

(a) Five single-cell spatial images, Bregma-0.14, Bregma-0.04, Bregma+0.06,
Bregma+0.16 and Bregma+0.26, of the mouse hypothalamic preoptic region
generated by the MERFISH technology. Bregma distance is given for each imaged
brain section. 9, 10, 12, 12 and 11 hypothalamic nuclei/regions in the images are
manually outlined by the authors '°. (b) Cells in the five images are colored based on
the cell type annotation from the original study '°. (¢) Tissue cellular neighborhoods
(TCNs) identified by CytoCommunity, Spatial-LDA, STAGATE, BayesSpace and
stLearn are labeled and colored based on the most similar manually annotated nuclei
regions. TCNs without labels cannot be matched to the manual annotation. ACA,
anterior commissure; BAC, bed nucleus of the anterior commissure; BNST, bed
nucleus of the stria terminalis; LPO, lateral preoptic area; MPA, medial preoptic area;
MPN, medial preoptic nucleus; MnPO, median preoptic nucleus; PaAP,
paraventricular hypothalamic nucleus; Pe, periventricular hypothalamic nucleus; PS,
parastrial nucleus; PVA, paraventricular thalamic nucleus; StHy, striohypothalamic
nucleus; SHy, septohypothalamic nucleus; VMPO, ventromedial preoptic nucleus;
VLPO, ventrolateral preoptic nucleus; AVPe, anteroventral periventricular nucleus;
Fx, fornix; 3V, third ventricle.
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Figure 4. Coordinated tumor and immune cell type distributions within and
between tissue cellular neighborhoods in colorectal cancer.

(a) Receiver operating characteristic (ROC) curves for image label prediction based
on 10 sets of 10-fold cross-validations. Blue dashed line, ROC curve for each fold of
cross-validation. Green solid line, ROC curve based on the mean values of the 10 sets
of 10-fold cross-validations. (b) Heatmaps of average enrichment scores of each cell
type in each identified tissue cellular neighborhood (TCN) across all images of CLR
and DII patient samples. Cell type enrichment score is defined as -logio(P-value). P-
values were computed using hypergeometric test and adjusted using Benjamini-
Hochberg method 4. (¢) Correlation of average cell type enrichment scores in all
identified TCNs between CLR and DII patients. (d-f) Correlation of the enrichment
scores of two indicated cell types in TCN-6 or TCN-7 in each patient group (left
panels). Representative cell type and TCN maps (middle and right panels) are based
on patient samples indicated by a dashed circle in the scatter plots. (g, h) Significant
canonical correlation (permutation test p-value < 0.05) between two TCNs in the CLR
(g) and DII (h) patient groups. Shown are scatter plots of normalized weights of five
cell types (observed variable) in each TCN in the first two canonical variate pairs (top
left panels). Correlation of the enrichment scores of dominant cell types in the first
canonical variate pair (bottom left panels), and representative cell type and TCN maps
(right panels) are also shown. Black dashed rectangles in the cell type and TCN maps
in (h) are used to highlight the colocalization of smooth muscle cells in TCN-5 and
tumor cells in TCN-1. For all scatter plots, regression lines, Pearson correlation
coefficients (PCC) and corresponding p-values are shown. For clarity, cells of studied
types and TCNs are shown in large size without transparency in all cell type and TCN
maps.
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Figure 5. Coordinated tumor and stromal cell type distributions within or
between tissue cellular neighborhoods in breast cancer.

(a) Kaplan-Meier survival curves of 79 breast cancer patients who were classified into
low-risk and high-risk groups based on their median overall survival time. P-value
was computed using the log-rank test. (b) Heatmaps of average enrichment scores of
each cell type in each identified tissue cellular neighborhood (TCN) across all images
of low-risk and high-risk patient samples. Cell type enrichment score is defined as -
logio(P-value). P-values were computed using hypergeometric test and adjusted using
Benjamini-Hochberg method 4. (¢) Correlation of average cell type enrichment scores
in all identified TCNs between low-risk and high-risk patients. (d-f) Correlation of the
enrichment scores of two indicated cell types in TCN-1 or TCN-2 in each patient
group (left panels). Representative cell type and TCN maps (middle and right panels)
are based on patient samples indicated by a dashed circle in the scatter plots. Black
dashed rectangles in the cell type and TCN maps in (f) are used to highlight the
colocalization of endothelial cells and SMAM vimentin® fibroblasts in TCN-2. (g, h)
Significant canonical correlation (permutation test p-value < 0.1) between TCN-7 and
TCN-3 (g) and between TCN-8 and TCN-6 (h) in the high-risk patient groups. Shown
are scatter plots of normalized weights of five cell types (observed variable) in each
TCN in the first two canonical variate pairs (top left panels). Correlation of the
enrichment scores of dominant cell types in the first canonical variate pair (bottom
left panels), and representative cell type and TCN maps (right panels) are also shown.
For all scatter plots, regression lines, Pearson correlation coefficients (PCC) and
corresponding p-values are shown. For clarity, cells of studied types and TCNs are
shown in large size without transparency in all cell type and TCN maps.
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Supplementary Figure Legends

Supplementary Figure 1. Representative tissue cellular neighborhoods specific to
low- and high-risk colorectal cancer patients.

(a) Cell type and tissue cellular neighborhood (TCN) maps of a representative CLR
patient image with B cells enriched in TCN-5. (b) Cell type and TCN maps of a
representative DII patient image with granulocytes enriched in TCN-7. For clarity,
cells of studied types and TCNs are shown in large size without transparency in all
cell type and TCN maps.
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Supplementary Figure 2. Cell type associations within tissue cellular
neighborhoods in colorectal cancer.

Heatmaps for correlations of the enrichment scores of any two cell types (CTs) within
each of the 10 tissue cellular neighborhoods (TCNs) identified in CLR (a) and DII (b)

patients.
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Supplementary Figure 3. Cell type associations between tissue cellular
neighborhoods in colorectal cancer.

Heatmaps for empirical p-values of canonical correlation coefficients of the cell type

enrichment scores of tissue cellular neighborhood (TCN) pairs in CLR (a) and DII (b)
patient groups. P-values were computed using permutation test-based p.perm function
from the R package “CCP (v1.2)”.
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Supplementary Figure 4. Representative tissue cellular neighborhoods specific to
low- and high-risk breast cancer patients.

(a) Cell type and tissue cellular neighborhood (TCN) maps of a representative high-
risk patient with SMAPM Vimentin® fibroblasts enriched in TCN-4. (b) Cell type and
TCN maps of a representative low-risk patient with CK* HR! tumor cells enriched in
TCN-1. (c¢) Cell type and TCN maps of a representative high-risk patient with CK'*"
HR!®" tumor cells enriched in TCN-2. For clarity, cells of studied types and TCNs are
shown in large size without transparency in all cell type and TCN maps.
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Supplementary Figure 5. Cell type associations within tissue cellular
neighborhoods in breast cancer.

Heatmaps for correlations of the enrichment scores of any two cell types (CTs) within
each of the nine tissue cellular neighborhoods (TCNs) identified in low-risk (a) and
high-risk (b) patients.
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Supplementary Figure 6. Cell type associations between tissue cellular
neighborhoods in breast cancer.

Heatmaps for empirical p-values of canonical correlation coefficients of the cell type
enrichment scores of tissue cellular neighborhood (TCN) pairs in low-risk (a) and
high-risk (b) patient groups. P-values were computed using permutation test-based
p.perm function from the R package “CCP (v1.2)”.
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Supplementary Figure 7. Robustness of CytoCommunity on the MERFISH
dataset.

CytoCommunity was applied to each MERFISH image for five times. Each time,
different numbers of runs of the soft tissue cellular neighborhood (TCN) assignment
module was conducted. Normalized mutual information (NMI) between any two TCN
partitions generated by the five sets of experiments are shown in boxplots with lines
connecting the median of each group.
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