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Abstract
A fundamental goal in evolutionary biology is to understand the genetic architecture of adaptive
traits and its evolutionary relevance. Using whole-genome data of 3,958 Darwin’s finches on the
Galapagos Island of Daphne Major we identify six loci of large effect that explain 46% of the
variation in beak size of Geospiza fortis, a key ecological trait. Allele frequency changes across
30 years at these loci affected beak morphology in two ways. An abrupt change in beak size
occurred in Geospiza fortis as a result of natural selection associated with a drought, and a more
gradual change occurred in G. scandens as a result of introgressive hybridization. This study
demonstrates how large effect loci are a major contributor to the genetic architecture of rapid
diversification during adaptive radiations.

One Sentence Summary: Allele frequency change at six loci of large effect causes evolutionary
change in key ecological traits.

Main Text:

Many traits, like size, shape and its components, vary continuously and are referred to as
quantitative traits controlled by quantitative trait loci (QTLs) (Falconer and Mackay 1995, Lynch
and Walsh). It is generally assumed that quantitative traits affecting fitness in wild populations
have a highly polygenic background (Rockman 2012; Bosse et al. 2017; Barton 2022). If fitness
traits are controlled by a huge number of loci each with an infinitesimal small effect, as is the

case with most human traits (Yang et al. 2011), then it becomes exceedingly difficult to link
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selection on phenotypic traits to the adaptive changes at the molecular level (Barton 2022).
However, genomic comparisons among species or populations often reveal one or a few isolated
loci of large phenotypic effect (Hoekstra et al. 2006; Lamichhaney et al. 2016; Toews et al. 2016;
vonHoldt et al. 2018; Hill et al. 2019; Schluter et al. 2021; Semenov et al. 2021), and these have
been used to interpret genetic processes during speciation (Seehausen et al. 2014). Yet
surprisingly little is known of the effect sizes of loci affecting fitness among individuals within
populations (Seehausen et al. 2014), in part due to the large sample sizes of genomic and
ecological data needed to quantify them. Effect sizes are needed to improve our understanding of
how differences among individuals of a population transform into differences between species.
Thus, it is unclear if large effect loci play a prominent role in evolutionary change at least under

certain circumstances (Orr and Coyne 1992).

Recent adaptive radiations are particularly suitable for studying the genetic architecture
of adaptive traits because the ongoing process of speciation is observable and a link between
ecologically relevant traits and population divergence is achievable. For these reasons, adaptive
radiations have become a model for identifying genomic loci responsible for ecological
divergence among species (Lamichhaney et al. 2015; Campagna et al. 2017; Meier et al. 2018;
Marques et al. 2019; McGee et al. 2020). Few wild populations are better suited to investigate
the link between present and past evolution than Darwin’s finches on the Galapagos Islands.
Molecular phylogenetic studies have established relationships among the 18 species, the order
and timing of branching, and the approximate age of the group of one million years

(Lamichhaney et al. 2015, 2016; Chaves et al. 2016; Lawson and Petren 2017). The species
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diverged from each other in three key ecological traits: body size, and beak size and shape.
Variation among species and individuals in these three traits reflects dietary specialization (Boag
and Grant 1984; Grant 2017). Beak variation is subject to natural selection (Boag and Grant
1981) and influenced by introgressive hybridization (Grant and Grant 2014, 2020; Lamichhaney
et al. 2020). As with human height, beak traits are highly heritable, and estimates of 4’ for beak
traits exceed 0.50 in three species, reaching 0.89 in Geospiza fortis (Keller et al. 2001; Grant and
Grant 2014). Prior whole genome study of three ground-finch species (Geospiza) found that 28
loci are highly differentiated (Rubin et al. 2022). These loci represent ancestral haplotype blocks
and contain genes significantly enriched for a role in craniofacial development. Importantly, it is

not known whether these loci also control intraspecies variation.

We present the results of a whole-genome analysis of 3,958 birds from all four species of
ground finches (G. fortis, G. scandens, G. magnirostris, and G. fuliginosa) on the small island of
Daphne Major. We tracked individuals from these four species in their shared environment for
over 30 years and measured their phenotypic evolution and fitness. We identify, quantify and
document the importance of six large effect loci and show how allelic variation has changed
under contrasting influences of natural selection and introgressive hybridization. According to
these findings, a few loci of large effect contributed disproportionately to the rapid

diversification of species in this classical example of adaptive radiation.
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Results
Whole-genome community analysis over multiple generations

Blood samples were collected annually by B.R.G from the four species of finches on Daphne in
the years 1988-2012 (from individuals hatched as early as 1983). We performed lowpass,
whole-genome sequencing for all individuals captured. In total, we sequenced 3,958 individuals
to a mean depth of 2.2x, comprising 1,913 G. fortis, 855 G. scandens, 582 G. magnirostris, 55 G.
fuliginosa, and 553 individuals of hybrid origin (see Materials and Methods). For 2,543
individuals sampled as adults, P.R.G. measured three beak dimensions (length, depth, and width),
body weight, and recorded sex when known. We employed an iterative imputation pipeline using
a reference panel of 433 Darwin’s finches sequenced to higher coverage (15 + 8X), a de novo
pedigree-based recombination map (Fig. S1, Table S1), and the software GLIMPSE (Rubinacci
et al. 2021), which imputes genotypes based on genotype likelihoods (ngy,, = 5,163,840). We
found high concordance in imputing variants with reference panel frequencies > 0.5% (Fig. S2)

and concordance in genomic PCA using genotype-likelihoods alone (Fig. S3).

Admixture and immigration are important components of population history

Genome-wide divergence is low among the four Geospiza species present on Daphne (Fp =
0.03-0.17). To track the ancestry of every individual on the island, we estimated genomic
ancestry using a set of ancestry informative and putatively neutral, unlinked markers (Methods).
Daphne finches show extensive signatures of admixture, consistent with previous genomic and

pedigree-based observations (Grant et al. 2004; Grant and Grant 2010, 2020; Lamichhaney et al.
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2020). Reflecting the accumulated effect of introgression, finch species tended to be more
genetically differentiated at the beginning than at the end of the study period; self-ancestry
declined 20% in G. fortis, 17% in G. scandens, and 0.2% in G. magnirostris (Fig. 1). These are
likely the lower bounds of ancestry due to high allele sharing across the radiation (Lamichhaney
et al. 2015). The largest introgression of genomic material in G. scandens is from G. fortis,
which increased by 12%. In contrast, the largest contribution to the G. fortis population
originates from G. fuliginosa, whose ancestry increased 14%. These changes are consistent with
pedigree information (Grant and Grant 2020) and are in stark contrast to the stability of G.
magnirostris ancestry across the period (Fig. 1C).

Changes in ancestry are strongly correlated with phenotypic shifts. Variation in beak
morphology among the four Daphne finch species can be decomposed into two principal
components explaining 99.7% of morphological variation, with PC1 loading on beak size (89%
of variation, beak size hereinafter) and PC2 on beak shape (10% of variation, beak shape
hereinafter, Fig. 2A). In G. fortis, change in beak shape is associated with G. scandens ancestry
(R*=0.23, Fig. S5) and beak size with G. fuliginosa ancestry (R*=0.12, Fig. S5). In G.
scandens, G. fortis ancestry is associated with beak shape (R*= 0.34) and G. fortis and G.
fuliginosa both contribute to beak size, but to a small extent (R*= 0.04 and R*= 0.01, Fig. S5). G.
scandens and G. fuliginosa do not hybridize on Daphne, yet alleles pass from G. fuliginosa to G.
scandens and these associations are the outcome of introgression through G. fortis as a conduit

species (Supplemental Text 1, Fig. S4, also (Grant and Grant 2020).
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The estimated number of ancestral populations on Daphne is a good fit to K =4 or to K =
5, i.e., one more than the expected number of species (Fig. S6). At K =5, the fifth population
reflects heterogeneity in the Daphne G. magnirostris population. This population was initiated by
a single pair of individuals but augmented by immigrants later in the study period (Grant et al.
2001). Our ancestry analysis identifies two sources of immigrants to Daphne, one from the
nearby island of Santa Cruz and a second that is ~5% larger from an as-yet unknown island of
origin (Fig. S7, Supplemental Text 2). These results highlight the dual contributions of

hybridization and immigration to genetic and phenotypic diversity on Daphne.
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Fig. 1: Admixture history of four species of finches on Daphne Major. (A) Clustering derived from the
relatedness matrix produced using genome-wide SNPs in the software GEMMA. (B) Ancestry estimates (K = 5) for
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each of 3,958 individuals on Daphne based on ancestry informative SNPs (see Methods). Filled column colors
designate the ancestral population containing a majority of samples from the field identification for each species by
their measurements. Darker orange indicates a second G. magnirostris population. Below, a filled horizontal bar
designates the field identification. (C) Annual trends in ancestry per species grouping from K = 4. Each panel refers
to the field identification labeled above. Ancestry estimates are the mean value per cohort each year starting in 1983
and ending in 2012.

High SNP heritability of beak morphology and body size

We used the extensive genotype-phenotype records to determine SNP heritability of beak
morphology and body size. Estimates of SNP heritability (h’s\p) account for the proportion of
variance in phenotypic traits explained by our imputed SNP dataset. Here we analyzed three
phenotypic traits: beak size, beak shape, and body size using individuals with complete
phenotypic data (n = 2,545). We ran all association analyses separately on three genetic clusters
(Fig. 1A) representative of G. fortis (n =1,508), G. scandens (n = 552), and G. magnirostris (n =
430). We did not include G. fuliginosa samples in this analysis due to low power for
genotype-phenotype analysis (n = 55).

To estimate A’gp we used a linkage disequilibrium (LD) and minor allele frequency
(MAF)-stratified residual maximum likelihood analysis (GREML-LDMS) as implemented in the
software package GCTA (Yang et al. 2015). We estimated a total beak size h’gypin G. fortis of
0.95 (se = 0.02). A large proportion of this estimate is captured by common (MAF > 0.05) and
high LD variants (h’sp = 0.77, se = 0.04, Fig. S8). Heritabilities of beak shape (h’gyp = 0.78, se =
0.03, Fig. S8) and weight (A7g\p = 0.67, se = 0.04, Fig. S8) are also high (Keller et al. 2001; Grant
and Grant 2014). The high SNP-based estimates match pedigree 4’ (Keller et al. 2001; Grant and

Grant 2014) and confirm that beak traits and body size are highly heritable in Darwin’s finches.
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GWAS identifies large effect loci underlying ecological traits

To identify loci underlying phenotypic variation we performed GWAS using the software
GEMMA (Zhou and Stephens 2014). Because beak and body size (weight) are strongly
correlated (G. fortis, r=0.74, P <0.001), we included body weight as a covariate in a
multivariate GWAS of beak size (PC1) and shape (PC2) as the response variables. For beak size
and shape in G. fortis, we identified six independent loci surpassing a significance threshold of
-log,o(P) > 7.7 set by permutation (Supplemental Text 3, Fig. 2B, Fig. 3A-D, Fig. S9). A large
region of association on chromosome 1A contains the previously identified G03 locus
encompassing HMGA?2 (Fig. 3B)(Lamichhaney et al. 2016). We treat this large region of
association as a single locus following exploratory analysis that indicates long-range linkage
disequilibrium extending from the central region of association (Fig. S10).

We analyzed body weight using the relatedness matrix and sex as covariates. In G. fortis,
we identified a large effect locus G0O3 on chromosome 1A and two additional loci, G30 and G31,
that approached genome-wide significance (Fig. 2C). Thus, G03 has a large effect on body
weight and on beak size independent of body weight. These six loci also reach statistical
significance in G. scandens, but only one (G0/) does so in G. magnirostris (Fig. S11 and
Fig. S12). Weaker associations in these species may reflect the smaller sample sizes (3x more
samples in G. fortis) and less within-group variation at these loci. For example, G. magnirostris
is nearly fixed for one allele at both G03 and G30 (and therefore GWAS does not detect these in
this species, Fig. 2E, Fig. S12). A striking feature of G. scandens is an association of a single

large region (34Mbp) on chromosome 5 (Fig. S12) that is associated with large divergent
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haplotypes (Fig. S13) and overlaps a region known to be resistant to ingression in G. scandens

(Lamichhaney et al. 2020).
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Fig. 2: Genome-wide association analysis of morphological variation in beak and body size in G. fortis. (A)
Morphological PCA for beak width, length, and depth, colored by species. (B) Multivariate genome-wide
association analysis for beak PC1 and PC2, including body weight and sex as covariates. The cutoff for
genome-wide significance at -logl1 0(P-value) = 7.7 is indicated. Locus names match and extend those previously
reported (Rubin et al. 2022). (C) Genome-wide association analysis for body weight using sex as a covariate. GO3
(HMGA?2) and G31, containing /GF2, are highlighted. (D-E) Relationships between G0/ and G03 genotypes and
beak size. (F) Phenotypic effects of all genotype combinations at GO/ and G03 suggest an additive relationship.
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How individual loci contribute to beak variation within populations

To estimate effect sizes, we identified haplotypes associated with each GWAS signal (Materials
and Methods). In combination, the six loci account for 46% of the variation in beak size of G.
fortis, and 19% of the variation in beak shape (Fig. 3E). These values reduce to 29% and 20%,
respectively, after controlling for the correlated effects of body size by using residuals of a model
including body weight and sex as a covariate (Fig. S15). Similarly, in G. scandens, these six loci
account for 29% of beak size (residuals = 26%) and 24% of beak shape (residuals =21%). All
loci contribute additively to beak size variation (Fig. 2D-F, Fig. S18). When we fitted these six
loci as covariates in a GREML analysis of G. fortis we found that they explain 59% of total #%g\p
in beak size, 17% of the variation in weight, but only 3% of beak shape (see also Fig. S16).
Together, these results demonstrate that a small number of loci explain a large portion of the
heritable beak size variation in G. fortis. Effect size predictions were largely robust to filtering
based on genomic ancestry estimates, suggesting that their magnitude is not inflated by
background ancestry (Fig. S17).

The single largest contributor to beak size is G03 which accounts for 23% of beak size
variation in G. fortis (Fig. 3E), half of the total explained variation (46%). This is reduced to
11% after controlling for the correlated effect of body size. The remaining five loci explain
between 2% (G29) and 7% (GO01) of beak size variation. After controlling for body size,
approximately 13% of beak shape variation is explained by another locus (G07). The remaining

loci associated with beak size explain between 0% (G30) and 3% (G29) of variation in beak
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shape. At four loci, we detected a third haplotype in G. scandens associated with beak

morphology (Supplemental Text 5, Table S2).

Inter and intraspecies variation

Species of Darwin’s finches differ in beak size and shape; therefore, loci that explain differences
between species may contribute to variation within species. Among 28 previously identified loci
with large allele frequency differences among Geospiza species (Rubin et al. 2022), we identified
four significant associations in our GWAS analysis (G01, G03, G07, and G27).

Are the remaining inter-species differences associated with intra-population variation?
After pruning for LD-linked loci (Fig. S19), 6 out of the 10 remaining loci from Rubin et al.
(2022) either had small effects on beak size (4 explained <1% of variation, Fig. S20) or
explained 1-2% of variation in beak shape (2 loci) Fig. S20). In all 6 cases, the allele associated
with a large beak in the G. fortis population on Daphne is the most common in the largest
species, G. magnirostris, rare in the smallest species G. fuliginosa, and at intermediate frequency
in G. fortis (Fig. S20). These include G26, an association overlapping /GFBP2, encoding an
insulin growth factor binding proteins. Together these results indicate that species differences in
allele frequency and beak and body size are to a large extent recapitulated in individual variation
in G. fortis. Four loci with allele frequency variation among species on chromosome 2 were not

associated with either beak size or shape in G. fortis and may therefore affect other fitness traits.
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Two novel loci involved in beak size

Two loci in this paper have not previously been associated with individual variation in Darwin’s
finches (G29 and G30) and each contain insulin-like growth factor-related genes (/GF1 and
IGF2BP3, Fig. 3C and D); genes that are part of a well-characterized network involved in
growth, metabolism, and aging (Wullschleger et al. 2006; Zoncu et al. 2011; Melzer et al. 2020;
Morrill et al. 2022). Insulin-like growth factors are also associated with beak size in Pyrenestes
ostrinus (vonHoldt et al. 2018) and the evolution of life history variation across amniotes
(McGaugh et al. 2015). A third IGF-related gene, /GF2, falls just short of genome-wide
significance in the body size GWAS in G. fortis (G31). Together with G26 (IGFBP2), the
identification of four /GF loci involved in Darwin’s finch beak morphology supports the

hypothesis that gene networks involved in this pathway are co-evolving (McGaugh et al. 2015).
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Fig. 3: Details of association peaks and effect size estimates. A-D zoom-in of regions of associations
for locus G01, G03, G29, and G30. Red points indicate missense mutations. Below, a heatmap of a sliding window
of linkage disequilibrium of all SNPs in 200kb windows (blue = low, red = high). (E) Additive effect size
predictions for each of the six loci shown in Fig. 2C. Colors indicate the three species, and a star designates
statistical significance (P<0.05; see Methods). Right, the minor allele frequency for each locus across species. Note
that G. magnirostris is fixed for the large allele at G03, G07, and G29.
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How natural selection and hybridization change allele frequencies at major effect loci

Populations of G. fortis and G. scandens underwent substantial change in beak morphology over
the 30 years of monitoring (Fig. 4A) (Grant and Grant 2014). The average size of G. fortis and
G. scandens beak dimensions oscillated in direction in response to changing ecological
conditions, with an abrupt change to smaller beaks in G. fortis and a more gradual change to
blunter beaks in G. scandens (Fig. 4A) (Grant and Grant 2002). Allele frequency changes at the
large-eftect loci identified in our GWAS changed concordantly and exceeded annual allele
frequency shifts at random loci (Fig. 4B, Fig. S21). The strongest shift occurred in G. fortis
during the 2004/2005 drought (Grant and Grant 2006). The beaks of G. fortis became smaller on
average due to differential mortality resulting from competition with the much larger G.
magnirostris. We confirm the sharp increase in the frequency of the small G03 haplotype
(Fig. 4C) from 0.50 in 2004 to 0.63 in 2005 (Lamichhaney et al. 2016). G03 predicts survival
alone with a selection coefficient of 0.49 (Fisher’s exact test, P < 0.05). However, three other
loci have differential effects in the same direction when comparing small to large homozygotes
(and two others trend in this direction). In fact three loci (G01, G03, and G29, Fig. 4D) predict
survival from 2004 to 2005 better than G03 alone in a repeated leave-one-out analysis
(AIC, o pinea = 89.4 vs AIC;); = 97.6) (Fig. 4D, z=3.1, P <0.01).

How has changing ancestries (Fig. 1) affected allele frequency change at these six loci?
Allele frequency changes at these six loci range from 2-30% in G. fortis and from 1-10% in G.
scandens (Fig. 4C). The phenotypic change towards a blunter beak in G. scandens is the

consequence of incremental gene flow from G. fortis beginning in the 1990s (Fig. 1) (Grant and
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Grant 2002; Lamichhaney et al. 2020). A spike in allele frequency change at the turn of the
century is likely due to this introgression, which occurred following the low productivity of G.
scandens in the El Nifio year of 1998 (Fig. 1) (Grant and Grant 2014). At the beak shape locus
with the largest phenotypic effect (GO7/ALX1), G. scandens carrying a blunt allele are more
likely to have G. fortis ancestry than those carrying a pointed allele (GLM: F=1.1, P <0.0001,
see also Supplemental Text 1). Similarly, G. fortis carrying the small allele at G03, the locus of
greatest phenotypic effect on beak size, are more likely to have G. fuliginosa ancestry (GLM:

F=-1.1, P <0.0001).

15


https://paperpile.com/c/Kvtam0/H3mvn+0uxhV
https://paperpile.com/c/Kvtam0/otMqj
https://doi.org/10.1101/2022.10.29.514326
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.29.514326; this version posted October 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A 15 fortis scandens
510
o o5
§ 0.0
g-05
-1.0
& o6
a
< 03
g 00
03
B & o008
Q
> 0.06
o
< 004
= 002
< 0.00
1.0
C
> 08
Qo
c
9]
p=}
g 06
<@
2
T 04
=
£
D o2
— GO1 = GO7 — G29
0ol — 603 — G27 — G30
w0 (=] w0 (=] w0 =] w0 (=] 2] (=] "2} o
@ (=23 (=23 (=3 (=3 - «Q (=23 =23 =3 =3 -
=3} > = =1 S < =] > =2} s} =1 <]
- - - 59 34 I3 ~ - - & & I
D
7
GO1 G03 GO07
$=0.55 s=049 $=013
0.6 P =009 P<0.01 P=0.74 6
o P
@
3 04 %
S 02 =5
5 £
200 s
g G27 G29 G30 @4
ke 3
= 5=0.09 $=0.46 s=-01 £
808 £=050 P=0.09 P=022 2
04 3
o
0.2
of
0.0 - - , F y . - > - -
sS  SL LL ss  SLLL ss  SLLL died  survived

Fig. 4: Evolutionary change over 30 years on Daphne Major. (A) Annual phenotypic means for G. fortis and G.
scandens between 1983 and 2012. (B) The absolute average change in allele frequency (AFye, - AFyey 1) across
all six loci shown in Fig. 2. The colored line indicates the average of all six loci and the gray line indicates 100
randomly selected loci across the genomes with starting allele frequencies matching the six loci. (C) Annual allele
frequency trajectories at each of the six loci. (D) The proportion of individuals that survived during the 2004/2005
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Methods). Right, the sum of small alleles at GF0/, GF03, and GF29 is associated with survival during the
2004/2005 drought event.
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Conclusions

We describe the genetic architecture underlying phenotypic variation and fitness in natural
populations of Darwin’s finches using lowpass, whole-genome sequencing over 5-6 generations
on the undisturbed island of Daphne Major, Galdpagos. We report that six large effect loci are
responsible for as much as 46% of the genetic variance in beak size in G. fortis and that one
alone (G03/HMGA?2) explains 23% of the variance. The latter is due to a QTL effect on
allometric growth (affecting both body and beak size) and an additional QTL effect on beak size
independent of body size.

These results represent a striking deviation from a solely polygenic model involving
many loci of small effect assumed to underlie most phenotypic traits (Rockman 2012; Barton
2022; Campagna and Toews 2022). However, in wild populations, an increasing number of
studies show that large effect loci (Shapiro et al. 2004; Chan et al. 2010; Barrett et al. 2019; Han
et al. 2020; Schluter and Rieseberg 2022) play a more important role in maintaining phenotypic
variation in natural populations than anticipated from GWAS in humans (Manolio et al. 2009)
and artificial selection data (Goddard et al. 2016). Why do these discrepancies in genetic
architecture occur? An important difference is that most human genotype-phenotype
relationships explored by GWAS depend on standing genetic variation, including slightly
deleterious variants not yet purged by natural selection (Zeng et al. 2018). Further, responses to
artificial selection reflect short-term directional selection on standing variation. In contrast, the
data on Darwin’s finches and other natural populations deviating from a solely polygenic model

represent long-term responses to intense perturbations by natural selection, introgression, and

17


https://paperpile.com/c/Kvtam0/dxFuq+RQTSh+hyCGw
https://paperpile.com/c/Kvtam0/dxFuq+RQTSh+hyCGw
https://paperpile.com/c/Kvtam0/nM1R6+kehAv+XFM0p+kIikC+wSaEC
https://paperpile.com/c/Kvtam0/nM1R6+kehAv+XFM0p+kIikC+wSaEC
https://paperpile.com/c/Kvtam0/nbQOd
https://paperpile.com/c/Kvtam0/LKUUH
https://paperpile.com/c/Kvtam0/Xc3PM
https://doi.org/10.1101/2022.10.29.514326
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.29.514326; this version posted October 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

environmental fluctuations. In humans, large effect alleles are known to affect adaptation to
extreme environments at high altitudes (Simonson et al. 2010) and diving (Ilardo et al. 2018),
and following strong selection associated with the Black Death (Klunk et al. 2022).

Genetic theory predicts that large effect loci should be quickly fixed by selection (Barton
2022). However, that is only possible when conditions favoring a positive effect on fitness
remain until fixation has occurred. For example, the small and large alleles at the six loci
described here are close to fixation in the small (G. fuliginosa) and large ground-finches (G.
magnirostris), respectively. Conditions that vary over time may instead lead to balancing
selection where the fitness of alleles fluctuates in time or varies in space. This is the case in the
Galapagos, where oscillating environmental conditions have unpredictable evolutionary
outcomes (Grant and Grant 2002). We found substantial shifts in allele frequencies at these large
effect loci under periods of environmental stress and intense interspecies competition in G. fortis,
which has an intermediate phenotype (Fig. 4). Another important factor promoting segregation of
large effect alleles in Darwin’s finches, and in other species (Seehausen et al. 2014; Edelman et
al. 2019), is gene flow between closely related populations. We show that introgression
supplements standing variation at large effect loci in G. fortis, leading to intermediate genotype
frequencies (Fig. 3, bottom) that facilitate survival under the unpredictable environmental
conditions of Daphne (Grant and Grant 2002). These results are consistent with theory predicting
that adaptation combined with migration favors the evolution of large effect alleles (Yeaman and

Whitlock 2011).

18


https://paperpile.com/c/Kvtam0/kqEMG
https://paperpile.com/c/Kvtam0/ON3Zk
https://paperpile.com/c/Kvtam0/i7tLx
https://paperpile.com/c/Kvtam0/H3mvn
https://paperpile.com/c/Kvtam0/Uzvdu+E9b6x
https://paperpile.com/c/Kvtam0/Uzvdu+E9b6x
https://paperpile.com/c/Kvtam0/H3mvn
https://paperpile.com/c/Kvtam0/Jim65
https://paperpile.com/c/Kvtam0/Jim65
https://doi.org/10.1101/2022.10.29.514326
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.29.514326; this version posted October 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Large effect mutations under positive selection are rare. Therefore, a more plausible
interpretation is that the large effect alleles detected in the present study represent haplotypes
harboring multiple mutations affecting fitness. Such large effect alleles have evolved in domestic
animals by the consecutive accumulation of multiple mutations (Marklund et al. 1998;
Andersson and Purugganan 2022). A similar evolution of large effect alleles in natural
populations has also been noted (Prud’homme et al. 2006; McGregor et al. 2007). Thus, the six
large effect loci detected in this study may be considered small supergenes where the haplotype
blocks are maintained because they are located in low-recombination regions and recombinant
haplotypes are eliminated by selection. The two major GO3/HMGA?2 alleles represent ~525 kb
ancient haplotypes, encompassing four genes - HMGA2, MSRB3, LEMD3, WIFI- and most
likely have affected variation in body size and beak morphology throughout the evolutionary
history of Darwin’s finches (Rubin et al. 2022; Lamichhaney et al. 2016). Given the fundamental
role for HMGA?2 as a transcription-facilitating factor controlling body size in vertebrates (Lee et
al. 2022), we hypothesize that non-coding changes affecting HMGA2 expression regulate
development of body and beak size. However, the additional effect of this locus on beak size
independent of body size found here may be controlled by mutation(s) affecting the function of
one or more of the other genes at this locus.

Taken together, this community-level genomic study of Darwin's finch populations on the
small island of Daphne has demonstrated a prominent role of large effect alleles at a few loci in

causing evolutionary change when the populations are subjected to intense natural selection and

influenced by introgressive hybridization.
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