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Abstract

Simulation is a key tool in population genetics for both methods development and empirical research, but
producing simulations that recapitulate the main features of genomic data sets remains a major obstacle.
Today, more realistic simulations are possible thanks to large increases in the quantity and quality of avail-
able genetic data, and to the sophistication of inference and simulation software. However, implementing
these simulations still requires substantial time and specialized knowledge. These challenges are especially
pronounced for simulating genomes for species that are not well-studied, since it is not always clear what
information is required to produce simulations with a level of realism sufficient to confidently answer a
given question. The community-developed framework stdpopsim seeks to lower this barrier by facilitating
the simulation of complex population genetic models using up-to-date information. The initial version of
stdpopsim focused on establishing this framework using six well-characterized model species (Adrion et al.,
2020). Here, we report on major improvements made in the new release of stdpopsim (version 0.2), which
includes a significant expansion of the species catalog and substantial additions to simulation capabilities.
Features added to improve the realism of the simulated genomes include non-crossover recombination and
provision of species-specific genomic annotations. Through community-driven efforts, we expanded the num-
ber of species in the catalog more than three-fold and broadened coverage across the tree of life. During
the process of expanding the catalog, we have identified common sticking points and developed best prac-
tices for setting up genome-scale simulations. We describe the input data required for generating a realistic
simulation, suggest good practices for obtaining the relevant information from the literature, and discuss
common pitfalls and major considerations. These improvements to stdpopsim aim to further promote the
use of realistic whole-genome population genetic simulations, especially in non-model organisms, making
them available, transparent, and accessible to everyone.

Introduction

Dramatic reductions in sequencing costs are enabling the generation of unprecedented amounts of genomic
data for a huge variety of species (Ellegren, 2014). Ongoing efforts to systematically sequence life on Earth
by initiatives such as the Earth Biogenome (Lewin et al., 2022) and its affiliated project networks, such as
Vertebrate Genomes (Rhie et al., 2021), 10,000 Plants (Cheng et al., 2018) and others (Darwin Tree of Life
Project Consortium, 2022), are providing the backbone for enormous increases in the amount of population-
level genomic data available for model and non-model species. These data are being used to answer questions
across scales from deep evolutionary time to ongoing ecological dynamics. Methods that use these data for
purposes such as inference of demographic history and natural selection are also flourishing (Beichman et al.,
2018). While past methods development focused on humans and a few key model systems such as Drosophila,
more recent efforts are generalizing these methods to include important factors not initially accounted for,
such as inbreeding or selfing (Blischak et al., 2020), skewed offspring distributions (Montano, 2016), and
intense artificial selection even for non-model organisms (MacLeod et al., 2013, 2014).

Simulations can be useful at all stages of this work—for planning studies, analyzing data, testing inference
methods, and validating findings from empirical and theoretical research. For instance, simulations provide
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training data for inference methods based on machine learning (Schrider and Kern, 2018) and Approxi-
mate Bayesian Computation (Csilléry et al., 2010). They can also serve as baselines for further analyses:
for example, simulations incorporating demographic history serve as null models when detecting selection
(Hsieh et al., 2016) or seed downstream breeding program simulations (Gaynor et al., 2020). More recently,
population genomic simulations have been used to help guide conservation decisions for threatened species
(Teixeira and Huber, 2021; Kyriazis et al., 2022).

Increasing amounts of data and sophistication of inference methods have enabled researchers to ask ever
more specific and precise questions. Consequently, simulations must incorporate more and more elements of
biological realism. Important elements include genomic features such as mutation and recombination rates
that strongly affect genetic variation and haplotype structure (Nachman, 2002). The inclusion of these ge-
nomic features is particularly important when linked selection is acting upon the patterns of genomic diversity
being studied (Cutter and Payseur, 2013). Furthermore, the demographic history of a species—encompassing
population sizes and distributions, divergences, and gene flow—can dramatically affect patterns of genomic
variation (Teshima et al., 2006). Thus species-specific estimates of these and other ecological and evolution-
ary parameters (such as those governing the process of natural selection) are important when generating
realistic simulations. This presents challenges, especially to new researchers, as it takes a great deal of
specialized knowledge not only to code the simulations themselves but also to find and choose appropriate
estimates of the parameters underlying the simulation model.

The recently developed community resource stdpopsim provides easy access to detailed population ge-
nomic simulations (Adrion et al., 2020). It lowers the technical barriers to performing these simulations and
reduces the possibility of erroneous implementation of simulations for species with published demographic
models. The initial release of stdpopsim was restricted to only six well-characterized model species, such
as Drosophila melanogaster and Homo sapiens, but feedback we received from the community identified a
widespread desire to simulate a broader range of non-model species, and ideally to incorporate these into
the stdpopsim catalog for future use. This feedback, and subsequent efforts to expand the catalog, also
uncovered a vital need to better understand when it is practical to create a realistic simulation of a species
of interest, and indeed what “realistic” means in this context.

This paper reports on the updates made in the current release of stdpopsim (version 0.2), and is also
intended as a resource for any researcher who wishes to develop chromosome-scale simulations for their own
species of interest. We start by describing the central idea behind the standardized simulation framework of
stdpopsim, and then outline the main updates made to the stdpopsim catalog and simulation framework
in the past two years. We then provide guidelines for generating population genomic simulations, either for
the purpose of using them in one specific study, or with the intent of making the simulations available for
future work by adding the appropriate models to stdpopsim. Among other considerations, we discuss when
a chromosome-scale simulation is more useful than simulations based on either individual loci or generic
loci. We specify the required input data, mention common pitfalls in choosing appropriate parameters, and
suggest courses of action for species that are missing estimates of some necessary inputs. We conclude with
examples from two species recently added to stdpopsim, which demonstrate some of the main considerations
involved in the process of designing realistic chromosome-scale simulations. While the guidelines provided
in this paper are intended for any researcher interested in implementing a population genomic simulation
using any software, we highlight the ways in which the stdpopsim framework eases the burden involved in
this process and facilitates reproducible research.

The utility of stdpopsim for chromosome-scale simulations

We begin by providing a brief overview of the importance of chromosome-scale simulations and the main
rationale behind stdpopsim; see Adrion et al. (2020) for more on the topic. The main objective of popula-
tion genomic simulations is to recreate patterns of sequence variation along the genome under the inferred
evolutionary history of a given species. To achieve this, stdpopsim is built on top of the msprime (Kelleher
et al., 2016; Nelson et al., 2020; Baumdicker et al., 2021) and SLiM (Haller and Messer, 2019) simulation
engines, which are capable of producing fairly realistic patterns of sequence variation if provided with accu-
rate descriptions of the genome architecture and evolutionary history of the simulated species. The required
parameters include the number of chromosomes and their lengths, mutation and recombination rates, the
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demographic history of the simulated population, and, potentially, the landscape of natural selection along
the genome. A key challenge when setting up a population genomic simulation is to obtain estimates of
all of these quantities from the literature and then correctly implement them in an appropriate simulation
engine. Detailed estimates of all of these quantities are increasingly available due to the growing availability
of population genomic data coupled with methodological advances. Incorporating this data into a population
genomic simulation often involves integrating this data between different literature sources, which can require
specialized knowledge of population genetics theory. Thus, the process of coding a realistic simulation can
be quite time-consuming and often error-prone.

The main objective of stdpopsim is to streamline this process, and to make it more robust and more
reproducible. Contributors collect parameter values for their species of interest from the literature, and
then specify these parameters in a template file for the new model. This model then undergoes a peer-
review process, which involves another researcher independently recreating the model based on the provided
documentation. Automated scripts then execute to compare the two models; if discrepancies are found in this
process, they are resolved by discussion between the contributor and reviewer, and if necessary with input
of additional members of the community. This quality-control process quite often finds subtle bugs (e.g.,
as in Ragsdale et al., 2020) or highlights parts of the model that are ambiguously defined by the literature
sources. This increases the reliability and reproducibility of the resulting simulations in any downstream
analysis.

Another important goal of stdpopsim is to promote and facilitate chromosome-scale simulations, as
opposed to the common practice of simulating many short segments (see, e.g., Harris and Nielsen, 2016).
Simulation of long sequences, on the order of 107 bases, has until recently been computationally prohibitive,
but this has changed with the development of modern simulation engines such as msprime and SLiM. Gener-
ating chromosome-scale simulations has several key benefits. First, the organization of genes on chromosomes
is a key feature of a species’ genome that is ignored in many traditional population genomic simulations (see
Schrider (2020) for one exception). Second, modeling physical linkage allows simulations to capture impor-
tant correlations between genetic variants on a chromosome. These correlations reduce variance relative to
separate and independent simulations of equivalent genetic material. This has a particularly striking effect
in long stretches with a low recombination rate, as observed for instance on the long arm of human chromo-
some 22 (Dawson et al., 2002). In bacteria, a similar effect occurs due to genome-wide linkage that is broken
only by horizontal transfer of short segments (Didelot and Maiden, 2010). When conducting simulations
with natural selection, linkage has an even stronger effect. Selection acting on a small number of sites can
indirectly influence levels and patterns of genetic variation at linked neutral sites, which has been shown to
have a widespread effect on patterns of genomic variation in a myriad of species (e.g., McVicker et al., 2009;
Charlesworth, 2012). In addition, the lengths of chromosome-scale shared haplotypes within and between
populations provides valuable information on their demographic history. Demographic inference methods
that use such information, such as MSMC (Schiffels and Wang, 2020) and IBDNe (Browning and Browning,
2015), perform best on long genomic segments with realistic recombination rates. Chromosome-scale sim-
ulations are clearly required to test (or train) such methods, or to conduct power analyses when designing
empirical studies that use them. With stdpopsim, such simulations are available with just a single call to a
command-line script or with execution of a handful of lines of Python code.

Additions to stdpopsim

When first published, the stdpopsim catalog included six species: Homo sapiens, Pongo abelii, Canis famil-
iaris, Drosophila melanogaster, Arabidopsis thaliana, and Escherichia coli (Figure 1). One way the catalog
has expanded is through the introduction of additional demographic models for Homo sapiens, Pongo abelii,
Drosophila melanogaster, and Arabidopsis thaliana, enabling a wider variety of simulations for these well-
studied species. However, the initial collection of six species represents only a small slice of the tree of life.
This is a concern not only because there is a large community of researchers studying other organisms, but
also because methods developed for application to model species (such as humans) may not perform well
when applied to other species with very different biology. Adding species to the stdpopsim catalog will allow
developers to easily test their methods across a wider variety of organisms.

We thus made a concerted effort to recruit members of the population and evolutionary genetics com-
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munity to add their species of interest to the stdpopsim catalog. This effort involved a series of workshops
to introduce potential contributors to stdpopsim, followed by a “Growing the Zoo” hackathon organized
alongside the 2021 ProbGen conference. The seven initial workshops allowed us to reach a broad community
of more than 150 researchers, many of whom expressed interest in adding non-model species to stdpopsim.
The hackathon was then structured based on feedback from these participants. One month before the
hackathon, we organized a final workshop to prepare interested participants, by introducing them to the
process of developing a new species model and adding it to the stdpopsim code base. Roughly 20 scien-
tists participated in the hackathon (most of whom are included as authors on this paper), which resulted
in the addition of 15 species to the stdpopsim catalog (Figure 1). The catalog now includes a teleost fish
(Gasterosteus aculeatus), a bird (Anas platyrhynchos), a reptile (Anolis carolinensis), a livestock species
(Bos taurus), six insects including two vectors of human disease (Aedes aegypti and Anopheles gambiae),
a nematode (Caenorhabditis elegans), two flowering plants including a crop (Helianthus annuus), an algae
(Chlamydomonas reinhardtii), two bacteria, four primates, and a common mammalian associate of humans
(Canis familiaris). Not all of these have genetic maps or demographic models (see Figure 1), but this lays
a framework for future contributions.

Expanding the species catalog required adding several capabilities to the simulation framework of stdpopsim.
Some features were added by upgrading the neutral simulation engine, msprime, from version 0.7.4 to version
1.0 (Baumdicker et al., 2021). Among other features, this upgrade includes a discrete-site model of mutation,
which enables simulating sites with multiple mutations and possibly more than two alleles. Another key fea-
ture added to stdpopsim’s simulation framework was the ability to model non-crossover recombination. In
bacteria and archaea, recombination occurs through horizontal transfer of homologous DNA segments from
one organism to another (Thomas and Nielsen, 2005; Didelot and Maiden, 2010; Gophna and Altman-Price,
2022). As a result, such species cannot be realistically simulated with a recombination model that considers
only crossovers, as did the initial version of stdpopsim. To address this, we made use of features of the
msprime and SLiM simulation engines for modeling non-crossover recombination (Cury et al., 2022). Mod-
eling recombination in a bacterial or archaeal species in stdpopsim is done by setting a flag in the species
model to indicate that recombination should be modeled without crossovers, and specifying an average tract
length of exchanged genetic material. For example, the model for Escherichia coli has been updated in
the stdpopsim catalog to use non-crossover recombination at an average rate of 8.9× 10−11 recombination
events per base per generation, with an average tract length of 542 bases (Wielgoss et al., 2011; Didelot
et al., 2012). Note that this rate (8.9× 10−11) corresponds to the rate of initiation of a recombined tract.

Recombination without crossover is also prevalent in sexually reproducing species, where it is termed
gene conversion. Gene conversion affects shorter segments than crossover recombination and creates distinct
patterns of genetic diversity along the genome (Korunes and Noor, 2017). Indeed, gene conversion rates
in some species are estimated to occur at similar or even higher rates than crossover recombination (Gay
et al., 2007; Comeron et al., 2012; Wijnker et al., 2013). To accommodate this in stdpopsim simulations, one
needs to specify the fraction of recombinations that occur due to gene conversion (i.e., without crossover),
and the average tract length. For example, the model for Drosophila melanogaster has been updated in
the stdpopsim catalog to have a fraction of gene conversions of 0.83 (in all chromosomes that undergo
recombination) and an average tract length of 518 bases (Comeron et al., 2012). This update does not affect
the rate of crossover recombination, but it adds gene conversion events at a ratio of 83:17 relative to crossover
recombination events. We note that since non-crossover recombination incurs a high computation load in
simulation, it is turned off by default in stdpopsim, and must be explicitly invoked by the simulation model.

Another important extension of stdpopsim allows augmenting a genome assembly with genome annota-
tions, such as coding regions, promoters, and conserved elements. These annotations can be used to simulate
selection at a subset of sites (such as the annotated coding regions) using parametric distributions of fitness
effects. Standardized, easily accessible simulations that include the reality of pervasive linked selection in
a species-specific manner has long been identified as a goal for evolutionary genetics (e.g., McVicker et al.,
2009; Comeron, 2014). Thus, we expect this extension of stdpopsim to be transformative in the way simu-
lations are carried out in population genetics. This significant new capability of the stdpopsim library will
be detailed in a forthcoming publication, and is not the focus of this paper.
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Figure 1: Phylogenetic tree of species available in the stdpopsim catalog, including the six species we
published in the original release (Adrion et al., 2020, in blue), and 15 species that have since been added (in
orange). Solid circles indicate species that have one (light grey) or more (dark grey) demographic models
and genetic maps. Branch lengths were derived from the divergence times provided by TimeTree5 (Kumar
et al., 2022). The horizontal bar below the tree indicates 500 million years (my).

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.10.29.514266doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.29.514266
http://creativecommons.org/licenses/by/4.0/


Expanding stdpopsim

Guidelines for implementing a population genomic simulation

The concentrated effort to add species to the stdpopsim catalog has led to a series of important insights
about this process, which we summarize here as a set of guidelines for implementing realistic simulations for
any species. Our intention is to provide general guidance that applies to any population genomic simulation
software, but we also mention specific requirements that apply to simulations done in stdpopsim.

Basic setup for chromosome-level simulations

Implementing a realistic population genomic simulation for a species of interest requires a detailed description
of the organism’s demography and mechanisms of genetic inheritance. While simulation software requires
unforgivingly precise values, in practice we may only have rough guesses for most of the parameters describing
these processes. In this section, we list the relevant parameters and provide guidelines for how to set them
based on current knowledge.

1. A chromosome-level genome assembly, which consists of a list of chromosomes or scaffolds and
their lengths. Having a good quality assembly with complete chromosomes, or at least very long
scaffolds, is necessary if chromosome-level population genomic simulations are to reflect the genomic
architecture of the species. When expanding the stdpopsim catalog during the “Growing the Zoo”
hackathon, we considered the possibility of adding species whose genome assemblies are composed
of many relatively small contigs, unanchored to chromosome-level scaffolds. Although we had not
previously put restrictions on which species might be added, we decided that we would only add
species with chromosome-level assemblies. The main justification for this restriction is that species
with less complete genome builds typically do not have good estimates of recombination rate, genetic
maps, and demographic models, making chromosome-level simulation much less useful in such species.
Another issue is the storage burden and long load times involved in dealing with hundreds of contigs.
Finally, each species requires validation of its code before it is added to the stdpopsim catalog, as well
as long-term maintenance to keep it up-to-date with changes made to the stdpopsim framework. So,
the benefit of including species with very partial genome builds in stdpopsim would be outweighed by
the substantial extra burden on stdpopsim maintainers as well as downstream users of these models.
Another reason to focus on species with chromosome-level assemblies is that we expect their numbers
to dramatically increase in the near future due to numerous genome initiatives (Lewin et al., 2022;
Rhie et al., 2021; Cheng et al., 2018) and the development of new long-read sequencing technologies
and assembly pipelines (Chakraborty et al., 2016; Amarasinghe et al., 2020, 2021).

2. An average mutation rate for each chromosome (per generation per bp). This rate estimate can be
based on sequence data from pedigrees, mutation accumulation studies, or comparative genomic anal-
ysis calibrated by fossil data (i.e., phylogenetic estimates). At present, stdpopsim simulates mutations
at a constant rate under the Jukes–Cantor model of nucleotide mutations (Jukes and Cantor, 1969).
However, we anticipate future development will provide support for more complex, heterogeneous mu-
tational processes, as these are easily specified in both the SLiM and msprime simulation engines. Such
progress will further improve the realism of simulated genomes, since mutation processes, including
rates, are known to vary along the genome and through time (Benzer, 1961; Ellegren et al., 2003; Supek
and Lehner, 2019).

3. Recombination rates (per generation per bp). Ideally, a population genomic simulation should
make use of a chromosome-level recombination map, since the recombination rate is known to
vary widely across chromosomes (Nachman, 2002), and this can strongly affect the patterns of linkage
disequilibrium and shared haplotype lengths. When this information is not available, we suggest
specifying an average recombination rate for each chromosome. At minimum, an average genome-
wide recombination rate needs to be specified, which is typically available for well-assembled genomes.
For bacteria and archaea, which primarily experience non-crossover recombination, the average tract
length should also be specified (see details in previous section). Gene conversion (optional): If one
wishes to model gene conversion in eukaryotes, either together with crossover recombination or as a
stand-alone process, then one should specify the fraction of recombinations done by gene conversion
as well as the per chromosome average tract length.
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4. A demographic model describing ancestral population sizes, split times, and migration rates. Se-
lection of a reasonable demographic model is often crucial, since misspecification of the model can
generate unrealistic patterns of genetic variation that will affect downstream analyses (e.g., Navascués
and Emerson, 2009). A given species might have more than one demographic model, fit from different
data or by different methods. Thus, when selecting a demographic model, one should examine the
data sources and methods used to obtain it to ensure that they are relevant to the study at hand. At
a minimum, simulation requires a single estimate of effective population size. This estimate, which
may correspond to some sort of historical average effective population size, should produce simulated
data that matches the average observed genetic diversity in that species. Note, however, that this
average effective population size cannot capture features of genetic variation that are caused by recent
changes in population size and the presence of population structure (MacLeod et al., 2013; Eldon et al.,
2015). For example, a recent population expansion will produce an excess of low-frequency alleles that
no simulation of a constant-sized population will reproduce (Tennessen et al., 2012).

5. An average generation time for the species. This parameter is an important part of the species’
natural history. This value does not directly affect the simulation, since stdpopsim uses either the
Wright–Fisher model (in SLiM) or the Moran model (in msprime), both of which operate in time units
of generations. Thus, the average generation time is only currently used to convert time units to years,
which is useful when comparing among different demographic models.

These five categories of parameters are sufficient for generating simulations under neutral evolution. Such
simulations are useful for a number of purposes, but they cannot be used to model the influence of natural
selection on patterns of genetic variation. To achieve this, the simulator needs to know which regions along
the genome are subject to selection, and the nature and strength of this selection. As mentioned above, the
ability to simulate chromosomes with realistic models of selection is still under development, and will be
finalized in the next release of stdpopsim. The development version of stdpopsim enables simulation with
selection (using the SLiM engine) by specifying genome annotations and distributions of fitness effects, as
specified below.

6. Genome annotations, specifying regions subject to selection (as, for example, a GFF3/GTF file).
For instance, annotations can contain information on the location of coding regions, the position of
specific genes, or conserved non-coding regions. Regions not covered by the annotation file are assumed
to be evolving free from the effects of direct natural selection.

7. Distributions of fitness effects (DFEs) for each annotation. Each annotation is associated with a
DFE describing the probability distribution of selection coefficients (deleterious, neutral, and beneficial)
for mutations occurring in the region covered by the annotation. DFEs can be inferred from population
genomic data (reviewed in Eyre-Walker and Keightley, 2007), and are available for several species (e.g.,
Ma et al., 2013; Huber et al., 2018).

Extracting parameters from the literature

Simulations cannot of course precisely match reality, but in setting up simulations it is desirable to choose
parameters that best reflect our current understanding of the evolutionary history of the species of interest.
In practice a researcher may choose each parameter to match a fairly precise estimate or a wild guess, which
may be obtained from a peer-reviewed publication or by word of mouth. However, values in stdpopsim are
always chosen to match published estimates, so that the underlying data and methods are documented and
can be validated. Because the process of converting information reported in the literature to parameters
used by a simulation engine is quite error-prone, independent validation of the simulation code is crucial.
We highly recommend following a quality-control procedure similar to the one used in stdpopsim, in which
each species or model added to the catalog is independently recreated or thoroughly reviewed by a separate
researcher.

Obtaining reliable and citable estimates for all model parameters is not a trivial task. Oftentimes, values
for different parameters must be gleaned from multiple publications and combined. For example, it is not
uncommon to find an estimate of a mutation rate in one paper, a recombination map in a separate paper, and
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a suitable demographic model in a third paper. Integrating information from different publications requires
caution, since some of these parameter estimates are entangled in non-trivial ways. For instance, consider
simulating a demographic model estimated in a specific paper that assumes a certain mutation rate. Naively
using the demographic model, as published, with a new estimate of the mutation rate will lead to levels of
genetic diversity that do not fit the genomic data. This is addressed in stdpopsim by allowing a demographic
model to be simulated using a mutation rate that differs from the default rate specified for the species. See,
for example, the model implemented for Bos taurus, which is described in the next section. This important
feature does not necessarily fix all potential inconsistencies caused by assumptions made by the demographic
inference method (such as assumptions about recombination rates). It is therefore recommended, when
possible, to take the demographic model, mutation rates, and recombination rates from the same study, and
to proceed carefully when mixing sources. An additional tricky source of inconsistency is coordinate drift
between subsequent versions of genome assemblies. In stdpopsim, we follow the UCSC Genome Browser
and use liftOver to convert the coordinates of genetic maps and genome annotations to the coordinates of
the current genome assembly (Hinrichs et al., 2006).

Filling in the missing pieces

For many species it is difficult to obtain estimates of all necessary model parameters. Table 1 provides
suggestions for ways to deal with missing values of various model parameters. The table also mentions
possible consequences of misspecification of each parameter.

In some cases, one may wish to generate simulations for a species with a partial genome build. Despite
the focus of stdpopsim on species with chromosome-level assemblies (see discussion above), simulation is
still potentially useful for species with less complete assemblies, with some important considerations to
keep in mind. Longer contigs or scaffolds in these builds can be simulated separately and independently.
This approach allows us to model genetic linkage within each contig, but linkage between different contigs
that map to the same chromosome will not be captured by the simulation. This provides a reasonable
approximation for many purposes, at least for genomic regions far from the contig edges. For shorter contigs,
separate independent simulations will not be able to capture patterns of long-range linkage in a reasonably
realistic way. Thus, a potentially viable option for shorter contigs is to combine them into longer pseudo-
chromosomes, trying to mimic the species’ expected chromosome lengths. Despite their somewhat artificial
construction, these pseudo-chromosomes have the important benefit of capturing patterns of linkage similar
to those observed in real genomic chromosomes. If, for example, the main purpose of the simulation is to
examine the distribution of lengths of shared haplotypes between individuals, or study patterns of background
selection, then it makes sense to simulate such pseudo-chromosomes. However, genetic correlations between
different specific contigs lumped together in this way are obviously not accurate. So, if the main purpose
of the simulation is to examine local patterns of genetic variation in loci of interest, then it may be more
appropriate to simulate the relevant contigs separately (even if they are short), or to randomly sample several

Table 1: Guidelines for dealing with missing parameters. For each parameter, we provide a suggested
course of action, and mention the main discrepancies between simulated data and real genomic data that
could be caused by misspecification of that parameter.

Missing parameter Suggested action Possible discrepancies
Mutation rate Borrow from closest relative with a

citable mutation rate
Number of polymorphic sites

Recombination rate Borrow from closest relative with a
citable recombination rate

Patterns of linkage disequilibrium

Gene conversion rate and
tract length

Set rate to 0 or borrow from closest
relative with a citable rate

Lengths of shared haplotypes across
individuals

Demographic model Set the effective population size (Ne)
to a value that reflects the average
observed genetic diversity in the sim-
ulated population

Features of genetic diversity that are
captured by the site frequency spec-
trum, such as the prevalence of low-
frequency alleles
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mappings of contigs to pseudo-chromosomes. For some purposes it makes sense to simulate a large number
of unlinked sites (Gutenkunst et al., 2009; Excoffier et al., 2013), which can be generated without any sort
of genome assembly. However, this approach would not have the benefits of chromosome-scale simulations.
While some of the same considerations hold when simulating unlinked short sequences, a detailed discussion
about such simulations goes beyond the scope of this paper. Ultimately, the recommended mode of simulation
for a species with a partial genome assembly depends on the intended use of the simulated genomes.

Examples of added species

In this section, we provide examples of two species recently added to the stdpopsim catalog, Anopheles
gambiae and Bos taurus, to demonstrate some of the key considerations of the process.

Anopheles gambiae (mosquito)

Anopheles gambiae, the African malaria mosquito, is a non-model organism whose population history has
direct implications for human health. Several large-scale studies in recent years have provided information
about the population history of this species on which population genomic simulations can be based (e.g.,
Miles et al., 2017; Clarkson et al., 2020). The genome assembly structure used in the species model is from
the AgamP4 genome assembly (Sharakhova et al., 2007), downloaded directly from Ensembl (Howe et al.,
2020) using the special utilities provided by stdpopsim.

Estimates of average recombination rates for each of the chromosomes (excluding the mitochondrial
genome) were taken from a recombination map inferred by Pombi et al. (2006) which itself included infor-
mation from Zheng et al. (1996) (Figure 2A). As direct estimates of mutation rate (e.g., via mutation
accumulation) do not currently exist for Anopheles gambiae, we used the genome-wide average mutation
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Figure 2: The species parameters and demographic model used for Anopheles gambiae in the stdpopsim

catalog. (A) The parameters associated with the genome build and species, including chromosome lengths,
average recombination rates (per base per generation), and average mutation rates (per base per generation).
(B) A graphical depiction of the demographic model, which consists of a single population whose size changes
throughout the past 11,260 generations in 67 time intervals (note the log scale). The width at each point
depicts the effective population size (Ne), with the horizontal bar at the bottom indicating the scale for
Ne = 106.
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rate of µ = 3.5× 10−9 mutations per generation per site estimated by Keightley et al. (2009) for the fellow
Dipteran Drosophila melanogaster, a rate that was used for analysis of A. gambiae data in Miles et al. (2017).
To obtain an estimate for the default effective population size (Ne), we used the formula θ = 4µNe, with
the above mutation rate (µ = 3.5× 10−9) and a mean nucleotide diversity of θ ≈ 0.015, as reported by Miles
et al. (2017) for the Gabon population. This resulted in an estimate of Ne = 1.07× 106, which we rounded
down to one million. These steps were documented in the code for the stdpopsim species model, to facilitate
validation and future updates. We acknowledge that some of these steps involve somewhat arbitrary choices,
such as the choice of the Gabon population and rounding down of the final value. However, this should
not be seen as a considerable source of misspecification, since this value of Ne is meant to provide only a
rough approximation to historical population sizes and would be overwritten by a more detailed demographic
model. Miles et al. (2017) inferred demographic models from Anopheles samples from nine different pop-
ulations (locations) using the stairway plot method (Liu and Fu, 2015). We chose to include in stdpopsim

the model inferred from the Gabon sample, which consists of a single population whose size fluctuated from
below 80,000 (an ancient bottleneck roughly 10,000 generations ago) to the present-day estimate of over
4 million individuals (Figure 2B). To convert the timescale from generations to years, we used an average
generation time of 1/11 years, as in Miles et al. (2017).

All of these parameters were set in the species entry in the stdpopsim catalog, accompanied by the
relevant citation information, and the model underwent the standard quality-control process. The species
entry may be refined in the future by adding more demographic models, updating or refining the recombi-
nation map, or updating the mutation rate estimates based on ones directly estimated for this species. Note
that even if the mutation rate is updated sometime in the future, the demographic model mentioned above
should still be associated with the current mutation rate (µ = 3.5 × 10−9), since this was the rate used in
its inference.

Bos taurus (cattle)

Bos taurus (cattle) was added to the stdpopsim catalog during the 2020 hackathon because of its agricultural
importance. Agricultural species experience strong selection due to domestication and selective breeding,
leading to a reduction in effective population size. These processes, as well as admixture and introgression,
produce patterns of genetic variation that can be very different from typical model species (Larson and
Burger, 2013). These processes have occurred over a relatively short period of time, since the advent of
agriculture roughly 10,000 years ago, and they have intensified over the years to improve food production
(Gaut et al., 2018; MacLeod et al., 2013). High-quality genome assemblies are now available for several
breeds of cattle (e.g., Rosen et al., 2020; Heaton et al., 2021; Talenti et al., 2022) and the use of genomic
data has become ubiquitous in selective breeding (Meuwissen et al., 2001; MacLeod et al., 2014; Obšteter
et al., 2021; Cesarani et al., 2022). Modern cattle have extremely low and declining genetic diversity, with
estimates of effective population size around 90 in the early 1980s (MacLeod et al., 2013; VanRaden, 2020;
Makanjuola et al., 2020). On the other hand, the ancestral effective population size is estimated to be
roughly Ne=62,000 (MacLeod et al., 2013). This change in effective population size presents a challenge for
demographic inference, selection scans, genome-wide association, and genomic prediction (MacLeod et al.,
2013, 2014; Hartfield et al., 2022). For these reasons, it was useful to develop a detailed simulation model
for cattle to be added to the stdpopsim catalog.

We used the most recent genome assembly, ARS-UCD1.2 (Rosen et al., 2020), a constant mutation
rate µ = 1.2 × 10−8 for all chromosomes (Harland et al., 2017), and a constant recombination rate
r = 9.26× 10−9 for all chromosomes other than the mitochondrial genome (Ma et al., 2015). With respect
to the effective population size, it is clear that simulating with either the ancestral or current effective
population size would not generate realistic genome structure and diversity (MacLeod et al., 2013; Rosen
et al., 2020). Since stdpopsim does not allow for a missing value of Ne, we chose to set the species default
Ne to the ancestral estimate of 6.2 × 104. However, we strongly caution that simulating the cattle genome
with any fixed value for Ne will generate unrealistic patterns of genetic variation, and recommend using a
reasonably detailed demographic model. We implemented the demographic model of the Holstein breed,
which was inferred by MacLeod et al. (2013) from runs of homozygosity in the whole-genome sequence of
two iconic bulls. This demographic model specifies changes in the ancestral effective population size from
Ne=62,000 at around 33,000 generations ago to Ne=90 in the 1980s in a series of 13 instantaneous population
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size changes (taken from Supplementary Table S1 in MacLeod et al., 2013). To convert the timescale from
generations to years, we used an average generation time of 5 years (MacLeod et al., 2013). Note that
this demographic model does not capture the intense selective breeding since the 1980s that has even further
reduced the effective population size of cattle (MacLeod et al., 2013; VanRaden, 2020; Makanjuola et al.,
2020). These effects can be modeled with downstream breeding simulations (e.g., Gaynor et al., 2020).

When setting up the parameters of the demographic model, we noticed that the inference by MacLeod
et al. (2013) assumed a genome-wide fixed recombination rate of r = 10−8, and a fixed mutation rate
µ = 9.4× 10−9 (considering also sequence errors). The more recently updated mutation rate assumed in the
species model (1.2× 10−8 from Harland et al., 2017) is thus 28% higher than the rate used for inference. As
a result, if genomes were simulated under this demographic model with the species’ default mutation rate
they would have considerably higher sequence diversity than actually observed in real genomic data. To
address this, we specified a mutation rate of µ = 9.4× 10−9 in the demographic model, which then overrides
the species’ mutation rate when this demographic model is applied in simulation. The issue of fitting
the rates used in simulation with those assumed during inference was discussed during the independent
review of this demographic model, and it raised an important question about recombination rates. Since
MacLeod et al. (2013) use runs of homozygosity to infer the demographic model, their results depends on
the assumed recombination rate. The recombination rate assumed in inference (r = 10−8) is 8% higher
than the one used in the species model (r = 9.26 × 10−9). In its current version, stdpopsim does not
allow specification of a separate recombination rate for each demographic model, so we had no simple way
to adjust for this. Future versions of stdpopsim will enable such flexibility. Thus, we note that genomes
simulated under this demographic model as currently implemented in stdpopsim might have slightly higher
linkage disequilibrium than observed in real cattle genomes. However, we anticipate that this would affect
patterns less than selection due to domestication and selective breeding, which are not yet modeled at all in
stdpopsim simulations.

Conclusion

As our ability to sequence genomes continues to advance, the need for population genomic simulations of
new model and non-model organisms is becoming acute. So, too, is the concomitant need for an expandable
framework for implementing such simulations and guidance for how to do so. Generating realistic whole-
genome simulations presents significant challenges both in coding and in choosing parameter values on
which to base the simulation. With stdpopsim, we provide a resource that is uniquely poised to address
these challenges as it provides easy access to state-of-the-art simulation engines and practices, and an easy
procedure for including new species. Moreover, we aim for the choices regarding inclusion of new species to
be driven by the needs of the population genomics community. In this manuscript we describe the expansion
of stdpopsim in two ways: the addition of new features to the simulation framework that incorporate new
evolutionary processes, such as non-crossover recombination, broadening the diversity of species that can
be realistically modeled; and the considerable expansion of the catalog itself to include more species and
demographic models.

We also formulated a series of guidelines for implementing population genomic simulations, based on
insights from the community-driven process of expanding the stdpopsim catalog. These guidelines specify
the basic requirements for generating a useful chromosome-level simulation for a given species, as well as the
rationale behind these requirements. We also discuss special considerations for collecting relevant information
from the literature, and what to do if some of that information is not available. Because this process is quite
error-prone, we encourage wider adoption of “code review”: researchers implementing simulations should
have their parameter choices and implementation reviewed by at least one other researcher. The guidelines
in this paper can be followed when implementing a simulation independently for a single study, or (as we
encourage others to do) when adding code to stdpopsim, which helps to ensure its robustness and to make
it available for future research. Currently, large-scale efforts such as the Earth Biogenome and its affiliated
project networks are generating tens of thousands of genome assemblies. Each of these assemblies would
become a candidate for inclusion into the stdpopsim catalog, although substantial changes to the structure of
stdpopsim would be required to include so many distinct species. As annotations of those genome assemblies
improve over time, this information, too, can easily be added to the stdpopsim catalog.
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One of the important objectives of the PopSim consortium is to leverage stdpopsim as a means to
promote education and inclusion of new communities into computational biology and software development.
We are keen to use outreach, such as the workshops and hackathons described here, as a way to grow the
stdpopsim catalog and library while also democratizing the development of population genomic simulations
in general. We predict that the increased use of chromosome-scale simulations in non-model species will
lead to an improvement in inference methods, which traditionally have been quite narrowly focused on well-
studied model organisms. Thus, we hope that further expansion of stdpopsim will improve the ease and
reproducibility of research across a larger number of systems, while simultaneously expanding the community
of software developers among population and evolutionary geneticists.

Data availability

All resources are available from https://github.com/popsim-consortium/stdpopsim
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