

1 A new class of polymorphic T6SS effectors and tethers

2
3 Katarzyna Kanarek^a, Chaya Mushka Fridman^a, Eran Bosis^{b, #}, & Dor Salomon^{a, #}

4
5 ^a Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv
6 University, Tel Aviv, Israel

7 ^b Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel

8 [#] Address correspondence to [Dor Salomon, dorsalomon@mail.tau.ac.il](mailto:Dor.Salomon@mail.tau.ac.il), and to Eran Bosis,
9 bosis@braude.ac.il

10 11 **Abstract**

12 Bacteria use the type VI secretion system (T6SS) to deliver toxic effectors into bacterial or
13 eukaryotic cells during interbacterial competition, host colonization, or when resisting predation.
14 The identity of many effectors remains unknown. Here, we identify RIX, a new domain that
15 defines a class of polymorphic T6SS cargo effectors. RIX, which is widespread in the
16 *Vibrionaceae* family, is located at N-termini of proteins containing diverse antibacterial and anti-
17 eukaryotic toxin domains. We demonstrate that RIX-containing proteins are delivered via T6SS
18 into neighboring cells, and that RIX is necessary and sufficient for secretion. We show that RIX-
19 containing proteins can also act as tethers, enabling the T6SS-mediated delivery of other cargo
20 effectors by a previously undescribed mechanism. RIX-containing proteins significantly enlarge
21 the repertoire of known T6SS effectors, especially those with anti-eukaryotic activities. Our
22 findings also suggest that T6SSs may play a major, currently underappreciated, role in
23 interactions between vibrios and eukaryotes.

25 26 **Introduction**

27
28 The type VI secretion system (T6SS) is a protein delivery apparatus in Gram-negative bacteria,
29 which was originally described as an anti-eukaryotic determinant ^{1,2}. Nevertheless, further
30 investigations revealed that most T6SSs play a role in interbacterial competition ^{3,4}, whereas
31 only a few T6SSs have been identified as anti-eukaryotic ^{5,6}. These roles are mediated by toxic
32 proteins, called effectors, which are deployed inside neighboring bacterial and eukaryotic cells
33 ^{5,7,8}.

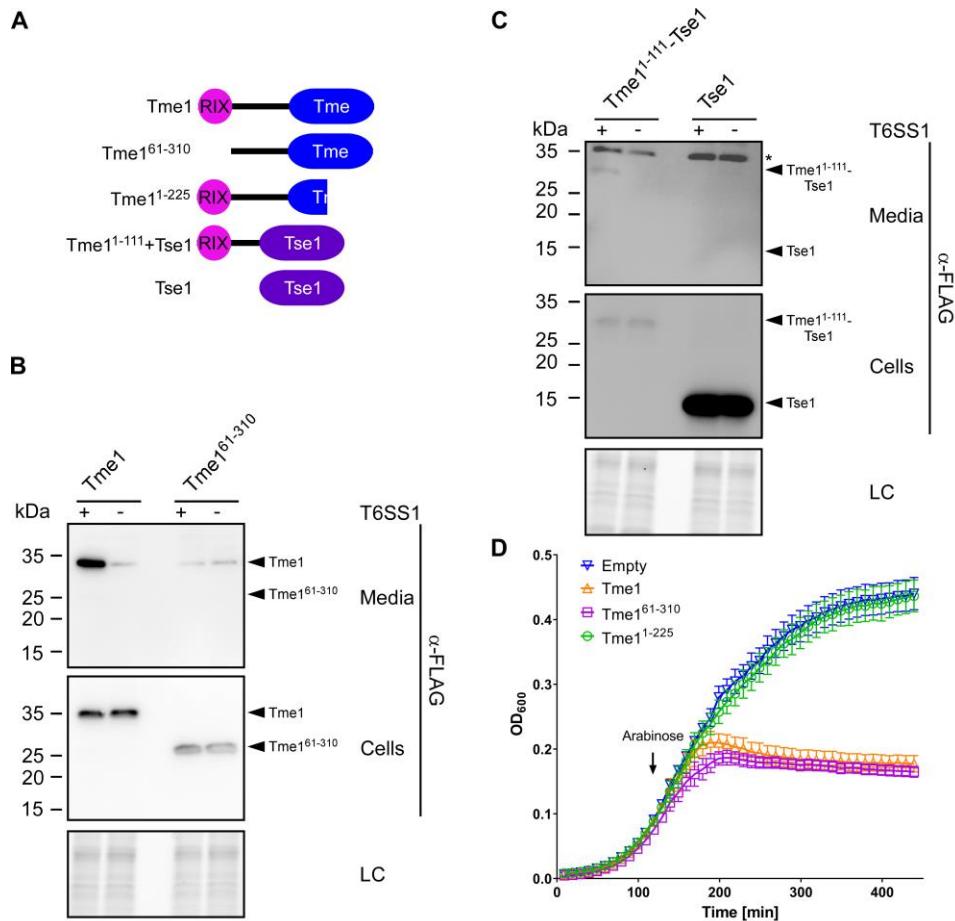
34 Effectors are loaded onto a missile-like structure, which is ejected by a contractile sheath that
35 engulfs it in the cytoplasm of the secreting cell ^{9,10}. The missile is composed of Hcp proteins that
36 are stacked as hexameric rings forming an inner tube; the tube is capped by a spike complex
37 comprising a VgrG trimer sharpened by a PAAR repeat-containing protein (hereafter referred to
38 as PAAR) ⁹. T6SS effectors can be divided into two types: (1) specialized effectors, which are
39 secreted structural components (i.e., Hcp, VgrG, or PAAR) containing a C-terminal toxin domain
40 extension ¹¹⁻¹⁴ and (2) cargo effectors, which are toxic proteins that non-covalently interact with
41 one of the missile components or its C-terminal extension ¹⁵⁻¹⁹, either directly or aided by an
42 adaptor protein ^{20,21} or a co-effector ²². Because cargo effectors can bind to diverse loading
43 platforms on the tube or spike, they lack a canonical secretion signal or domain. Therefore,
44 identifying cargo effectors is a challenging task, especially if they are not encoded within T6SS
45 gene clusters or near T6SS-associated genes.

46 Many T6SS cargo effectors belong to one of three known classes of polymorphic toxins: (1) MIX
47 (Marker for type sIX) domain-containing proteins^{15,23}; (2) FIX (Found in type sIX) domain-
48 containing proteins¹⁶; or (3) Rhs (Rearrangement hotspot) repeat-containing proteins²⁴⁻²⁸.
49 These three domains are found N-terminal to diverse C-terminal toxin domains, and they are
50 predicted to play a role in their delivery. MIX and FIX domains are specifically found in T6SS-
51 secreted proteins, whereas Rhs repeats are also present in toxins secreted by other types of
52 secretion systems. However, many other cargo effectors lack a known domain at their N-
53 terminus; it is possible that these effectors contain N-terminal delivery domains that have not yet
54 been revealed.

55 We previously identified Tme1, an antibacterial T6SS effector of *Vibrio parahaemolyticus*. Tme1
56 contains a C-terminal toxin domain named Tme (T6SS Membrane-disrupting Effector), which
57 permeabilizes membranes and dissipates membrane potential²⁹; the sequence N-terminal to
58 the Tme domain does not contain a known domain or activity. Here, we show that the N-
59 terminus of Tme1 is necessary and sufficient to mediate T6SS secretion in *V. parahaemolyticus*,
60 and we use it to reveal a new domain that is widespread in members of the *Vibrionaceae* family.
61 Proteins containing the identified domain, named RIX (aRginine-rich type sIX), are secreted via
62 T6SS. RIX is found N-terminal to diverse C-terminal extensions with antibacterial and anti-
63 eukaryotic toxic activities, as well as to sequences that function as loading platforms for cargo
64 effectors. Therefore, we reveal a new class of T6SS-secreted proteins, including polymorphic
65 toxins and effector tethers.

66

67 **Results**

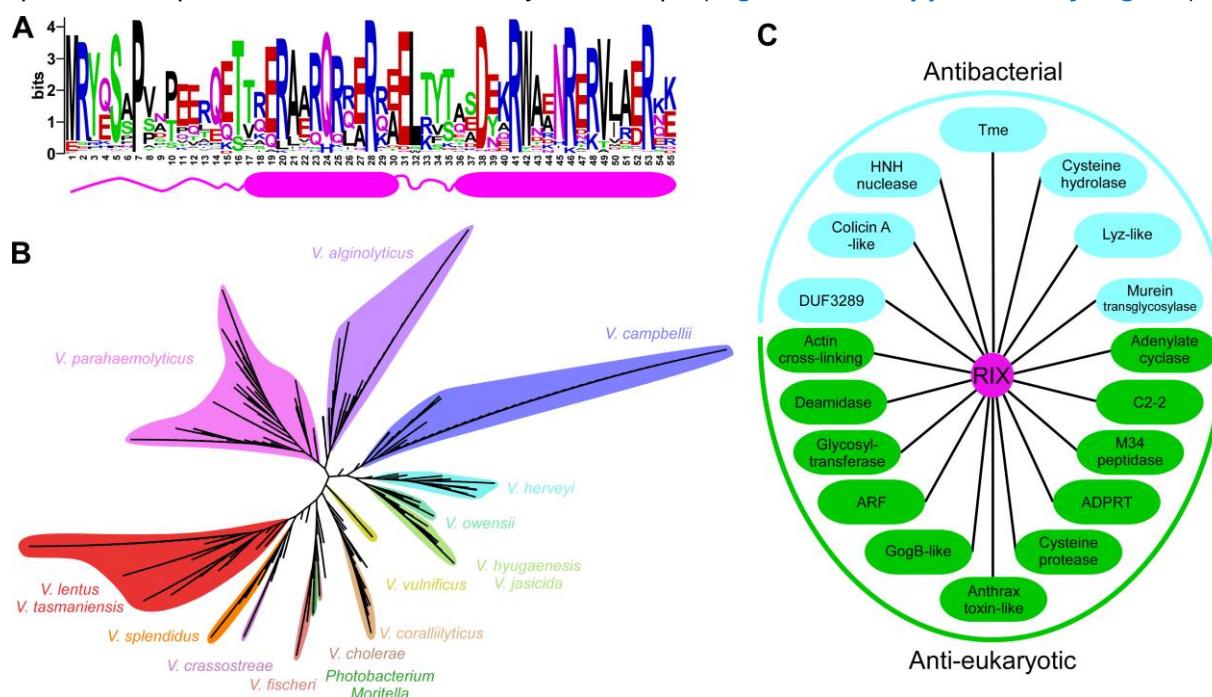

68

69 **The N-terminus of Tme1 is necessary and sufficient for T6SS-mediated secretion**

70 We previously reported that Tme1 is an antibacterial effector delivered by T6SS1 in *V.*
71 *parahaemolyticus* BB22OP²⁹; its toxin domain, Tme, is located at the C-terminus. We
72 hypothesized that the N-terminus of Tme1 plays a role in secretion via T6SS. To test this
73 hypothesis, we monitored the expression and secretion of a truncated version of Tme1 lacking
74 the first 60 amino acids (Tme1⁶¹⁻³¹⁰) (Fig. 1A). As shown in Fig. 1B, truncating the 60 N-terminal
75 amino acids abrogated Tme1 secretion, indicating that this region is necessary for T6SS-
76 mediated secretion. Next, we sought to determine whether the N-terminus of Tme1 is sufficient
77 for T6SS-mediated secretion. To this end, we used Tse1, a *Pseudomonas aeruginosa* T6SS
78 effector. Tse1 is unable to secrete via *V. parahaemolyticus* T6SS1 (Fig. 1C, right lanes).
79 However, fusing the N-terminal 111 amino acids of Tme1 to Tse1 (Tme1¹⁻¹¹¹-Tse1) enabled its
80 secretion via *V. parahaemolyticus* T6SS1 (Fig. 1C, left lanes). Shorter N-terminal Tme1
81 sequences were unstable when fused to Tse1, and were therefore not tested. Taken together,
82 these results suggest that a region found at the N-terminus of Tme1 is necessary and sufficient
83 for T6SS-mediated secretion.

84 To confirm that the N-terminus of Tme1 does not play a role in the effector's antibacterial
85 activity, we monitored the toxicity of Tme1 variants with truncations at the N-terminus and the C-
86 terminus. As shown in Fig. 1D, truncating the first 60 amino acids of Tme1 did not affect the
87 toxicity of this effector in the periplasm of *E. coli*, whereas truncating the last 85 amino acids of
88 Tme1, corresponding to the end of the Tme domain, abrogated its toxicity. The expression of all
89 Tme1 forms was detected in immunoblots (Supplementary Fig. S1). Thus, the N-terminal end
90 of Tme1 is not required for toxicity.

91

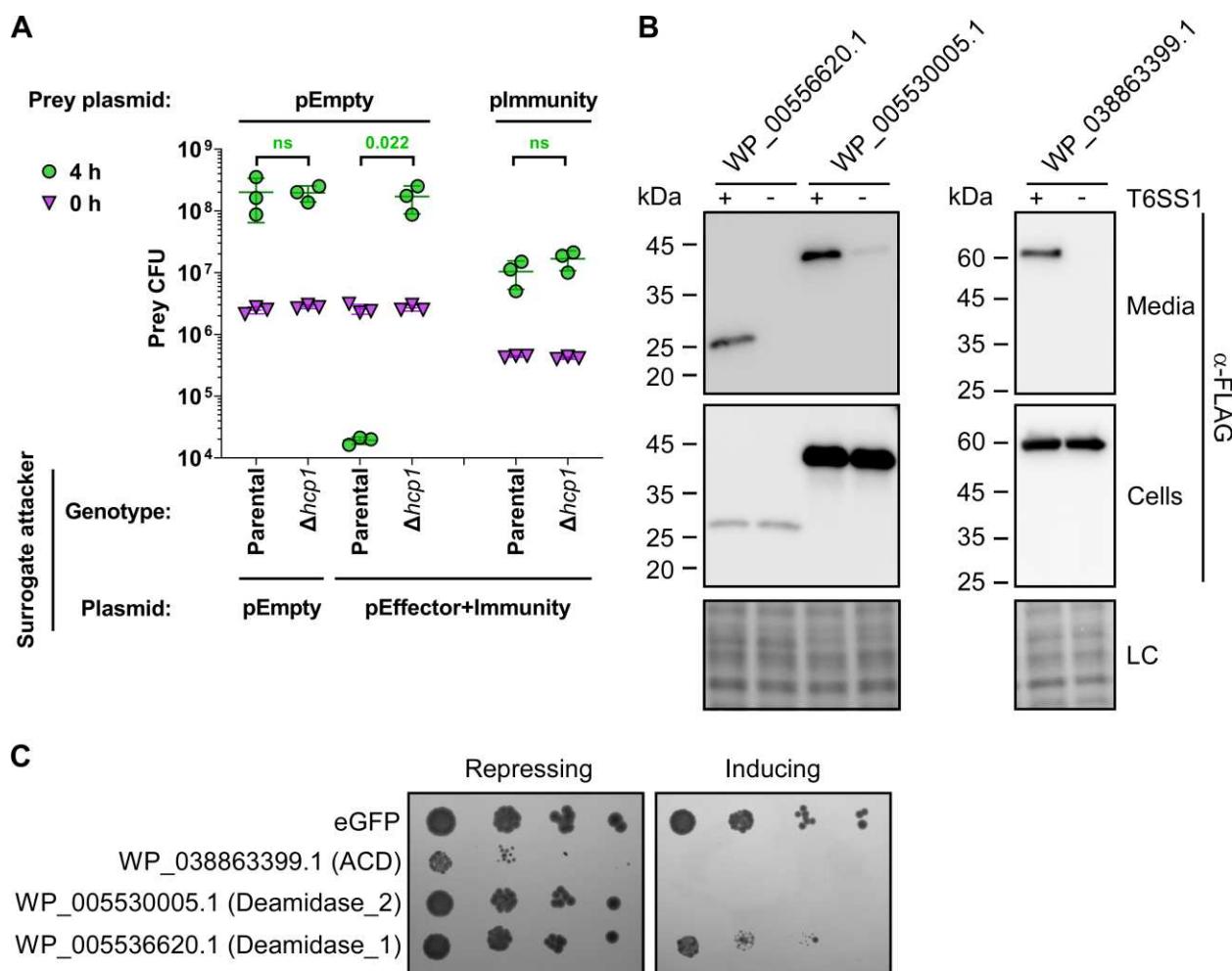

Fig. 1. The N-terminus of Tme1 is necessary and sufficient for T6SS-mediated secretion in *V. parahaemolyticus*. (A) Schematic representation of Tme1 truncations and fusion proteins used in this figure. (B-C) Expression (cells) and secretion (media) of the indicated C-terminal FLAG-tagged proteins expressed from pBAD33.1^F-based plasmids in *V. parahaemolyticus* BB22OP $\Delta hns/\Delta tme1$ (T6SS1⁺; deletion of *hns* was used to hyper-activate T6SS1) and *V. parahaemolyticus* BB22OP $\Delta hns/\Delta tme1/\Delta hcp1$ (T6SS1⁻). Samples were grown in MLB supplemented with chloramphenicol and 0.01% (wt/vol) L-arabinose (to induce expression from plasmids) for 3 h at 30°C. Loading control (LC) is shown for the total protein lysates. In (C), the asterisk denotes a non-specific band detected by the α-FLAG antibody. (D) Growth of *E. coli* BL21 (DE3) containing pPER5 plasmids for the arabinose-inducible expression of the indicated proteins fused to an N-terminal PelB signal peptide (for delivery to the periplasm). An arrow denotes the timepoint (120 min) at which arabinose (0.05% wt/vol) was added to the media.

92 RIX is an arginine-rich domain found at N-termini of polymorphic toxins

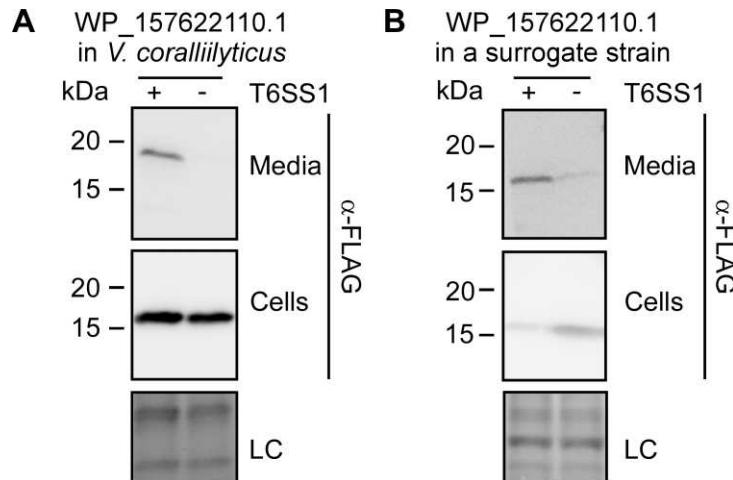
93 Following these findings, we set out to identify regions homologous to the N-terminus of Tme1
 94 in other proteins. We identified 502 unique protein accession numbers that contain a
 95 homologous sequence at their N-terminus ([Supplementary Dataset S1](#)). A multiple sequence
 96 alignment of these homologs revealed a conserved, arginine-rich motif corresponding to amino
 97 acids 1-55 in Tme1 ([Fig. 2A](#)); hereafter, we will refer to this region as the RIX (aRginine-rich
 98 type SIX) domain. RIX-containing proteins are encoded by 692 Gamma-proteobacterial strains,
 99 exclusively belonging to the marine bacteria families *Vibrionaceae* (i.e., *Vibrio* and

100 *Photobacterium*), and *Moritellaceae* (i.e., *Moritella*) (Fig. 2B and Supplementary Dataset S1).
101 Many of the bacterial strains encoding RIX-containing proteins are pathogens of humans and
102 animals; these include *V. parahaemolyticus*, *V. cholerae*, *V. vulnificus*, *V. campbellii*, *V.*
103 *corallilyticus*, and *V. crassostreae*³⁰⁻³³. Importantly, although none of the identified RIX-
104 containing proteins is encoded within a T6SS gene cluster or module, almost all (97.7%) of the
105 genomes encoding RIX-containing proteins harbor a T6SS (Supplementary Dataset S2).

106 Analysis of the amino acid sequences C-terminal to RIX based on all-against-all pairwise
107 similarity (using the CLANS classification tool³⁴) revealed 33 distinct clusters (Table 1 and
108 Supplementary Fig. S2). Remarkably, the majority of these C-terminal sequences contain
109 domains that are known or predicted to be toxins with anti-eukaryotic activities (e.g., actin cross-
110 linking, deamidase, adenylate cyclase, and glycosyltransferase) or antibacterial activities (e.g.,
111 pore-forming, HNH nuclease, and lysozyme-like) (Fig. 2C and Table 1). RIX-containing proteins
112 with predicted antibacterial toxin domains are encoded upstream of a gene that possibly
113 encodes a cognate immunity protein; genes encoding predicted anti-eukaryotic toxins do not
114 neighbor a potential immunity gene. Notably, AlphaFold2 structure predictions^{35,36} of
115 representatives from each cluster revealed a possible conserved RIX structure, comprising two
116 alpha helices preceded and connected by short loops (Fig. 2A and Supplementary Fig. S3).


Fig. 2. RIX is found in polymorphic toxins that are widespread in vibrios. (A) A conserved motif found at the N-terminus of polymorphic toxins (RIX) is illustrated using WebLogo, based on multiple sequence alignment of sequences homologous to the N-terminal 55 amino acids of Tme1. The position numbers correspond to the amino acids in Tme1. A secondary structure prediction, based on the AlphaFold2 prediction of the Tme1 structure, is shown below. Alpha helices are denoted by cylinders. **(B)** Phylogenetic distribution of bacteria encoding a protein with a RIX domain, based on the DNA sequence of *rpoB* coding for DNA-directed RNA polymerase subunit beta. The evolutionary history was inferred using the neighbor-joining method. **(C)** Examples of known and predicted activities and domains found in sequences C-terminal to RIX domains.

117 **RIX domain-containing proteins are secreted by T6SS**


118 The results thus far indicated that: (1) Tme1 is a RIX-containing T6SS effector, (2) nearly all
119 RIX-containing proteins are encoded by bacteria with a T6SS, and (3) most RIX-containing
120 proteins have predicted C-terminal toxin domains. All together, these results led us to
121 hypothesize that RIX-containing proteins are a new class of polymorphic T6SS effectors. To test
122 this hypothesis, we investigated whether a predicted RIX-containing protein from *V. campbellii*
123 ATCC 25920, WP_005534959.1, which has a C-terminal domain of unknown function
124 (Unknown_2; **Table 1** and **Supplementary Fig. S4A**) functions as a T6SS effector. We first
125 monitored the toxicity of this protein in bacteria. Expression of the WP_005534959.1 alone in *E.*
126 *coli* was detrimental, whereas co-expression of the downstream-encoded protein
127 (WP_005534960.1) antagonized this toxicity (**Supplementary Fig. S4B**). We then tested the
128 T6SS-mediated delivery of the predicted effector using a previously established T6SS surrogate
129 system in a *V. parahaemolyticus* RIMD 2210633 derivative strain^{29,37}. We found that expression
130 of the predicted effector and immunity proteins from a plasmid in the surrogate attacker strain
131 led to the killing of a parental prey strain lacking the predicted immunity protein (**Fig. 3A**). The
132 killing was T6SS-dependent, since expression of the proteins in a derivative surrogate strain in
133 which T6SS1 is inactive ($\Delta hcp1$) did not lead to killing of the prey strain. Expression of the
134 predicted immunity protein from a plasmid in the prey strain protected it from this attack. These
135 results indicate that the RIX domain-containing WP_005534959.1 and its downstream encoded
136 WP_005534960.1 are an antibacterial T6SS effector and immunity pair.

137 To further support our hypothesis, we next determined whether RIX-containing proteins
138 belonging to diverse clusters are secreted by T6SS. To this end, we monitored the expression
139 and secretion of three additional RIX-containing proteins encoded by *V. campbellii* ATCC
140 25920: WP_005536620.1, WP_005530005.1, and WP_038863399.1; these proteins are
141 predicted to have anti-eukaryotic toxin domains at their C-terminus (Deamidase_1,
142 Deamidase_2, and Actin cross-linking, respectively; see **Table 1**). Notably, the genomic
143 neighborhood of their encoding genes did not include T6SS-associated genes that would
144 suggest that these RIX-containing proteins are T6SS effectors (**Supplementary Fig. S5** and
145 **Dataset S1**). Remarkably, the three RIX-containing proteins were secreted from a surrogate
146 strain in a T6SS-dependent manner (**Fig. 3B**). Furthermore, they were all toxic when expressed
147 in the eukaryotic yeast model organism, *Saccharomyces cerevisiae* (**Fig. 3C**), suggesting that
148 they affect a conserved eukaryotic target³⁸. Taken together, these results support our
149 hypothesis that RIX-containing proteins are secreted by T6SSs.

150 Next, we sought to demonstrate the secretion of another RIX-containing protein via its
151 endogenous T6SS, in addition to Tme1, which was shown previously (**Fig. 1B**). To this end, we
152 investigated WP_157622110.1, encoded by *V. corallilyticus* BAA-450. To monitor the secretion
153 of WP_157622110.1 via T6SS in *V. corallilyticus*, we set out to identify the conditions under
154 which T6SS1 of *V. corallilyticus* BAA-450 is active. First, we monitored the secretion of the
155 T6SS spike protein VgrG1, and the ability of this strain to intoxicate *V. natriegens* prey bacteria
156 during competition under different temperatures in media containing 3% (w/v) NaCl. Our results
157 revealed that *V. corallilyticus* BAA-450 T6SS1 is an antibacterial system that is active at 30°C
158 (i.e., under warm, marine-like conditions) (**Supplementary Fig. S6**). We then monitored the
159 secretion of the RIX-containing protein, WP_157622110.1, when expressed from a plasmid. As
160 shown in **Fig. 4A**, WP_157622110.1 was secreted by *V. corallilyticus* BAA-450 in a T6SS1-
161 dependent manner, confirming the secretion of RIX-containing proteins via their endogenous
162 T6SS. In addition, we confirmed that this RIX-containing protein is secreted in a T6SS-
163 dependent manner from a surrogate strain (**Fig. 4B**).

Fig. 3. RIX-containing proteins are delivered and secreted by T6SS. (A) Viability counts (CFU) of *V. parahaemolyticus* RIMD 2210633 $\Delta hcp1$ prey strains harboring either an empty plasmid (pEmpty) or a plasmid for the arabinose-inducible expression of WP_005534960.1 (pEffect+Immunity) before (0 h) and after (4 h) co-incubation with a surrogate attacker strain (*V. parahaemolyticus* RIMD 2210633 derivative) or its T6SS1⁻ derivative ($\Delta hcp1$) carrying an empty plasmid or a plasmid for the arabinose-inducible expression of WP_005534959.1 and WP_005534960.1 (pEffect+Immunity). The statistical significance between samples at the 4 h timepoint was calculated using an unpaired, two-tailed Student's *t*-test; ns, no significant difference ($p>0.05$). Data are shown as the mean \pm SD; $n = 3$. **(B)** Expression (cells) and secretion (media) of the indicated C-terminal FLAG-tagged proteins expressed from pBAD33.1^F-based plasmids in a *V. parahaemolyticus* RIMD 2210633-derivative surrogate (T6SS1⁺) strain or its $\Delta hcp1$ derivative (T6SS1⁻). Samples were grown in MLB supplemented with chloramphenicol and 0.05% (wt/vol) L-arabinose (to induce expression from plasmids) for 4 h at 30°C. Loading control (LC) is shown for the total protein lysates. **(C)** Tenfold serial dilutions of yeast strains carrying pGML10 plasmids for the galactose-inducible expression of the indicated C-terminal Myc-tagged protein were spotted on repressing (4% glucose) or inducing (2% wt/vol galactose and 1% wt/vol raffinose) agar plates.

Fig. 4. RIX-containing proteins are secreted by their endogenous T6SS. Expression (cells) and secretion (media) of a C-terminal FLAG-tagged WP_157622110.1 expressed from a pBAD33.1^F-based plasmid in (A) a *V. corallilyticus* BAA-450 wild-type strain (T6SS1⁺) or its $\Delta hcp1$ derivative (T6SS1⁻), or (B) a *V. parahaemolyticus* RIMD 2210633-derivative surrogate (T6SS1⁺) strain or its $\Delta hcp1$ derivative (T6SS1⁻). Samples were grown in MLB supplemented with chloramphenicol and 0.05% (wt/vol) L-arabinose (to induce expression from the plasmid) for 4 h at 30°C. Loading control (LC) is shown for the total protein lysates.

165 A RIX tether-dependent mechanism for T6SS effector delivery

166 Unlike most RIX domain-containing proteins, which have a predicted C-terminal toxin domain,
167 WP_157622110.1 has a predicted C-terminal TTR (Transthyretin-like) domain (TTR_1; see
168 **Table 1**). This domain was previously identified at C-terminal extensions of secreted T6SS
169 spike components, such as VgrG and PAAR, and it was suggested to function as an internal
170 adaptor for cargo effectors^{12,39–41}. Therefore, we reasoned that WP_157622110.1 is not a toxic
171 effector.

172 In *V. corallilyticus* BAA-450, WP_157622110.1 is encoded by the first gene in a three-gene
173 operon; notably, homologous modules comprising the TTR domain and the two downstream
174 encoded proteins are also found fused to the T6SS-secreted components PAAR and VgrG in
175 other bacteria (Fig. 5A). The genetic composition of the three-gene operon and the presence of
176 the TTR domain in WP_157622110.1 led us to hypothesize that: (1) the second and third genes
177 in the operon encode an antibacterial T6SS cargo effector and its cognate immunity protein, and
178 (2) the RIX domain-containing protein acts as a tether that mediates the effector's delivery via
179 T6SS.

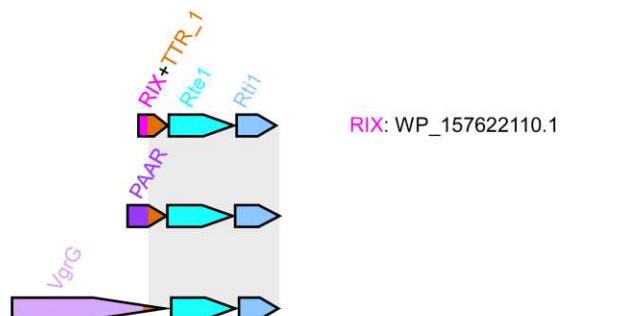
180 Before addressing these hypotheses experimentally, we used AlphaFold2 to predict whether the
181 RIX-containing protein interacts with its downstream encoded protein. Indeed, AlphaFold2
182 predicted that the C-terminus of the RIX-containing WP_157622110.1, corresponding to the
183 TTR domain, interacts with the N-terminus of the predicted effector (WP_006958655.1;
184 hereafter named Rte1 for RIX-tethered effector 1) to complete a barrel-like fold (Fig. 5B). This
185 inter-domain prediction was made with a high degree of certainty, according to the AlphaFold2
186 predicted aligned error analysis (Fig. 5C). In addition, an AlphaFold2 structure prediction
187 indicated that Rte1 and its predicted immunity protein, WP_0507786602.1 (hereafter named
188 Rti1 for RIX-tethered immunity 1), interact with a high degree of certainty (**Supplementary Fig.**
189 **S7A,B**). Furthermore, sequence (HHpred⁴²) and structure prediction (AlphaFold2 prediction
190 followed by DALI server analysis⁴³) analyses suggest that Rte1 contains an ADPRT-like

191 domain with a fold similar to that of the pertussis toxin (**Supplementary Fig. S7A**), to which Rti1
192 is expected to bind (**Supplementary Fig. S7A,B**), and a C-terminal glycine-zipper-like domain.
193 A conservation logo assembled from a multiple sequence alignment of Rte1 homologs revealed
194 conserved residues (H94, S106, and E174) that are similar to the catalytic residues of ADPRT
195 toxins⁴⁴, which localize to a cleft within the predicted Rte1 structure (**Supplementary Fig.**
196 **S7A,C**); this cleft corresponds to the ADPRT-like domain active site and is predicted to be
197 occluded by Rti1 (**Supplementary Fig. S7A**).

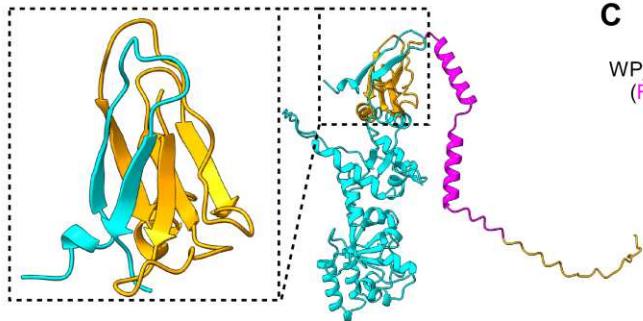
198 Using these predictions, we set out to test our hypotheses. First, we determined whether Rte1 is
199 toxic when expressed in bacteria. Indeed, its expression in *E. coli* was toxic; however, it was
200 antagonized by co-expressing Rti1 (**Supplementary Fig. S7D**). Substitution of either H94 or
201 S106, corresponding to conserved residues that were identified as the possible active site in the
202 sequence and the structural analyses of Rte1, for alanine abolished the toxic activity of Rte1 in
203 *E. coli* (**Supplementary Fig. S7E**). The expression of all Rte1 forms in *E. coli* was confirmed in
204 immunoblots (**Supplementary Fig. S7F**).

205 Next, we tested whether Rte1 is secreted in a T6SS-dependent manner from the T6SS
206 surrogate system, in the presence and absence of its cognate RIX domain-containing protein.
207 To avoid self-intoxication of the surrogate strain by the effector, we used an inactive mutant of
208 Rte1 (Rte1^{H94A}; see **Supplementary Fig. S7E**). As shown in **Fig. 5D**, a plasmid-encoded
209 Rte1^{H94A} was secreted in a T6SS-dependent manner when the upstream-encoded RIX domain-
210 containing protein, WP_157622110.1, was co-expressed; however, in the absence of the RIX-
211 domain-containing protein, Rte1^{H94A} was not detected in the medium. These results indicate that
212 the RIX and TTR domains-containing protein is required for T6SS-mediated secretion of Rte1.

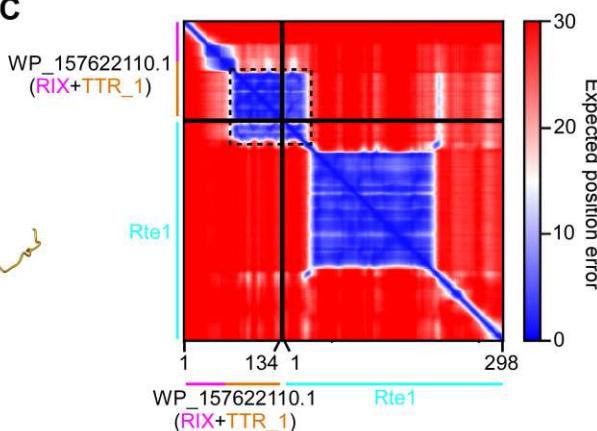
213 In addition, we investigated whether Rte1 and Rti1 function as an antibacterial T6SS effector
214 and immunity pair in which the effector is dependent on a tether protein for delivery. To this end,
215 we performed self-competition assays using the surrogate T6SS system. As shown in **Fig. 5E**,
216 T6SS-dependent toxicity against a sensitive prey strain was only observed when Rte1 and Rti1
217 were expressed together with the upstream-encoded RIX domain-containing protein
218 (pRIX+Rte1), but not when they were expressed alone (pRte1). Notably, expression of the RIX
219 domain-containing protein alone (pRIX) did not result in prey intoxication. Expression of Rti1
220 from a plasmid in the prey strain protected it from the T6SS-mediated toxicity. Taken together,
221 our results support a role for a RIX domain-containing protein as a tether that mediates the
222 delivery of a cargo effector via T6SS.

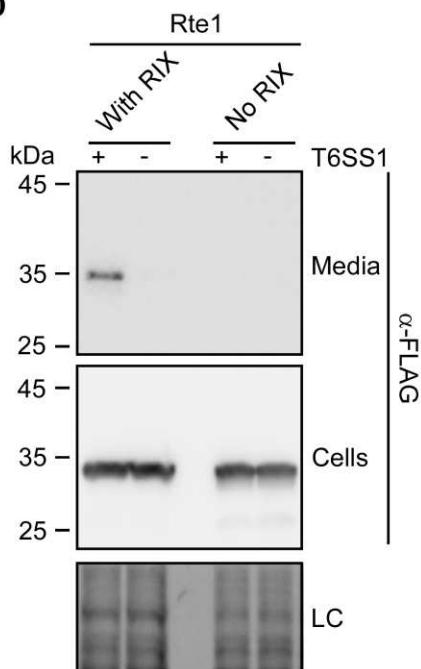

223 When we examined other RIX domain-containing proteins that had no predicted toxin domain at
224 their C-terminus, we identified two additional types of predicted RIX-associated T6SS tethers.
225 As exemplified by WP_095560627.1 and WP_152436132.1, these RIX domain-containing
226 proteins are encoded by the first gene in a three-gene operon (**Supplementary Fig. S8A**).
227 Notably, the effectors encoded by the second gene within these two operons are known: a Tae4
228 peptidoglycan amidase effector¹⁷ and a homolog of the TseH cysteine hydrolase effector^{41,45},
229 respectively. The third gene in these operons encodes the predicted cognate immunity protein.
230 Similar to the Rte1 tether example described above, a module encompassing the C-terminal
231 extension of the RIX domain (i.e., the predicted loading platform), the effector, and the immunity
232 protein can be found fused to a PAAR domain in other vibrios. Structure predictions using
233 AlphaFold2 suggest that the RIX-fused C-terminal domain and the N-terminus of the
234 downstream encoded effector interact (**Supplementary Fig. S8B**), thus further supporting the
235 notion that RIX domain-containing proteins can serve as T6SS tethers for cargo effectors.

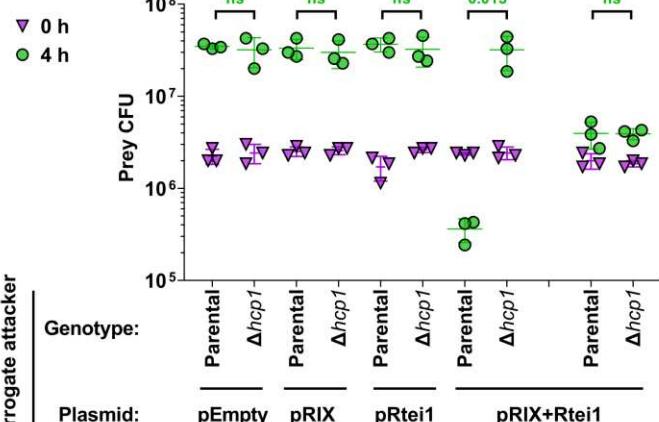
A


V. corallilyticus ATCC BAA-450
NZ_ACZN01000014.1; VIC_RS26010-VIC_RS26015

Aeromonas hydrophila strain CN17A0136
NZ_JAEHIT010000001.1; JD550_RS00060-JD550_RS00050


V. ruber DSM 16370 strain CECT 7878T
NZ_FULE01000046.1; VR7878_RS16305-VR7878_RS16315


B


C

D

E Prey plasmid:

236

Fig. 5. RIX-containing proteins can serve as tether for T6SS cargo effectors. **(A)** The gene structure of the operon encoding WP_157622110.1 in *V. corallilyticus* BAA-450. Operons encoding a module homologous to the C-terminal extension of WP_157622110.1, Rte1, and Rti1 are shown below; a gray rectangle denotes the region of homology. The strain names, the GenBank accession numbers, and the locus tags are provided. Genes are denoted by arrows indicating the direction of transcription. The names of encoded proteins or domains are denoted above. **(B)** An AlphaFold2 structure prediction of the complex between WP_157622110.1 (orange, the region corresponding to RIX is shown in magenta) and Rte1 (cyan). The interaction interface, corresponding to amino acids 73-134 of WP_157622110.1 (orange) and 1-25 of Rte1 (cyan), is shown inside the dashed rectangle on the left. **(C)** The predicted aligned error of the complex shown in (B). A low predicted aligned error value indicates that the predicted relative position and orientation of two residues is well defined. **(D)** Expression (cells) and secretion (media) of the C-terminal FLAG-tagged Rte1^{H94A}, either encoded alone (No RIX) or with the upstream-encoded WP_157622110.1 (With RIX), expressed from pBAD33.1^F-based plasmids in a *V. parahaemolyticus* RIMD 2210633-derivative surrogate strain (T6SS1⁺) or its $\Delta hcp1$ derivative strain (T6SS1⁻). Samples were grown in MLB supplemented with chloramphenicol and 0.01% (wt/vol) L-arabinose (to induce expression from plasmids) for 4 h at 30°C. Loading control (LC) is shown for the total protein lysates. **(E)** Viability counts (CFU) of *V. parahaemolyticus* RIMD 2210633 $\Delta hcp1$ prey strains harboring either an empty plasmid (pEmpty) or a plasmid for the arabinose-inducible expression of Rti1 (pRti1) before (0 h) and after (4 h) co-incubation with a surrogate attacker strain (*V. parahaemolyticus* RIMD 2210633 derivative) or its T6SS1⁻ derivative ($\Delta hcp1$) carrying an empty plasmid or a plasmid for the arabinose-inducible expression of WP_157622110.1 (pRIX), Rte1 and Rti1 (pRtei1), or the three-gene operon including WP_157622110.1, Rte1 and Rti1 (pRIX-Rtei1). The statistical significance between samples at the 4 h timepoint was calculated using an unpaired, two-tailed Student's *t*-test; ns, no significant difference (*p*>0.05). Data are shown as the mean \pm SD; *n* = 3.

237

238 Discussion

239

240 In this work, we identified a new class of T6SS-secreted proteins that are widespread in
241 *Vibrionaceae*. These proteins share an N-terminal domain that we named RIX; however, they
242 have polymorphic C-terminal extensions with predicted antibacterial, anti-eukaryotic, or cargo
243 binding activities (i.e., tethers). We showed that RIX is necessary for T6SS-mediated secretion,
244 and we experimentally confirmed the T6SS-mediated secretion of six representative RIX-
245 containing proteins: two antibacterial effectors (Tme1 and WP_005534959.1), three anti-
246 eukaryotic effectors (WP_005536620.1, WP_005530005.1, and WP_038863399.1), and one
247 tether (WP_157622110.1). In addition, we identified a novel, non-RIX-containing T6SS cargo
248 effector, Rte1. Notably, without RIX, the identification of these polymorphic T6SS effectors
249 would not have been trivial, since all RIX-encoding genes are orphan (i.e., they are not located
250 near a T6SS-associated gene), and because many of the predicted toxin domains found in RIX-
251 containing proteins have not been previously associated with T6SS effectors.

252 Revealing many RIX-containing proteins that have predicted anti-eukaryotic toxin domains
253 suggests that we have underappreciated the potential role played by T6SS in the interactions

254 between vibrios and eukaryotic organisms, whether they are hosts or predators. Although T6SS
255 was originally described as an anti-eukaryotic determinant, allowing *V. cholerae* to escape
256 predation by grazing amoeba¹, most *Vibrio* T6SSs investigated to date were shown to play a
257 role in interbacterial competitions^{46–52}, and only a handful of *Vibrio* T6SSs have been implicated
258 in anti-eukaryotic activities. These *Vibrio* T6SSs include T6SS1 and T6SS3 in *V. proteolyticus*
259^{48,53}, T6SS1 in *V. tasmaniensis*⁵⁴, and T6SS in *V. crassostreae*⁵⁵. Several additional *Vibrio*
260 T6SSs were also suggested to play a role in interactions with eukaryotes based on the
261 presence of a predicted anti-eukaryotic MIX-effector in their genome²³. Furthermore, only a few
262 T6SS effectors with anti-eukaryotic activities have been described to date, in vibrios and in other
263 bacteria⁵. Therefore, our identification of diverse families of RIX-containing effectors with known
264 or predicted anti-eukaryotic activities substantially enlarges this list, and it may instigate future
265 studies to identify the eukaryotic targets and the mechanisms of action of these novel effectors.
266 Future work is also required to identify the potential eukaryotic organisms that are targeted by
267 these potentially anti-eukaryotic T6SSs found in vibrios, and to determine whether their role is
268 offensive or defensive.

269 In addition to effectors, RIX domains are also found in T6SS tethers, revealing a new
270 mechanism of tether-mediated secretion for T6SS cargo effectors. Our results indicated that
271 RIX domains replace PAAR and VgrG proteins, which are secreted structural components of the
272 T6SS, in modules comprising a C-terminal loading platform extension and a cargo effector and
273 immunity pair. We experimentally demonstrated that a new cargo effector, Rte1, required an
274 upstream-encoded RIX-containing protein in order to be secreted by the T6SS and delivered
275 into prey cells during bacterial competition. This tether-mediated secretion mechanism is similar
276 to the recently described mechanism involving a MIX domain-containing co-effector²², yet it is
277 distinct since the RIX-containing tether is secreted via T6SS on its own, whereas the MIX-
278 containing co-effector requires its effector partner for secretion. Notably, our attempts to
279 determine the T6SS tube-spike component with which RIX domain-containing proteins interact
280 have been inconclusive; therefore, future work is also required to determine the mechanism
281 governing the secretion of RIX domain-containing proteins.

282 In conclusion, we identified a new class of polymorphic T6SS cargo effectors widespread in
283 vibrios, and we revealed a new, tether-mediated secretion mechanism for T6SS cargo effectors.
284 In future work, we will determine how RIX-containing proteins are loaded onto the secreted
285 T6SS, and we will explore the potential use of RIX domains and RIX-containing tethers to
286 deliver engineered, non-canonical cargo effectors via T6SS to be used as bio-treatments⁵⁶ or
287 molecular biology tools⁵⁷.

288

289 Materials and Methods

290 **Strains and Media:** For a complete list of strains used in this study, see **Supplementary Table**
291 **S1**. *Escherichia coli* strains BL21 (DE3), DH5α (λ-pir), and *Pseudomonas aeruginosa* PAO1
292 were grown in 2xYT broth (1.6% wt/vol tryptone, 1% wt/vol yeast extract, and 0.5% wt/vol NaCl)
293 or on lysogeny broth agar (LB; 1.5% wt/vol) plates at 37°C, or at 30°C when harboring effector
294 expression plasmids. The media were supplemented with chloramphenicol (10 µg/ml) and/or
295 kanamycin (30 µg/ml) to maintain plasmids and with 0.4% (wt/vol) glucose to repress protein
296 expression from the arabinose-inducible promoter, *Pbad*. To induce expression from *Pbad*, L-
297 arabinose was added to the media at 0.05–0.1% (wt/vol), as indicated.

298 *Vibrio parahaemolyticus* strains BB22OP, RIMD 2210633, and their derivatives, as well as
299 *Vibrio natriegens* ATCC 14048 and *Vibrio coralliilyticus* ATCC BAA-450, were grown in Marine
300 Lysogeny Broth (MLB; LB containing 3% w/v NaCl) and on Marine Minimal Media (MMM) agar
301 plates (1.5% wt/vol agar, 2% wt/vol NaCl, 0.4% wt/vol galactose, 5 mM MgSO₄, 7 mM K₂SO₄,

302 77 mM K₂HPO₄, 35 mM KH₂PO₄, and 2 mM NH₄Cl) at 30°C. The media were supplemented
303 with chloramphenicol (10 µg/ml) or kanamycin (250 µg/ml) to maintain plasmids. To induce
304 expression from *Pbad*, L-arabinose was added to media at 0.01-0.1% (wt/vol), as indicated.
305 *Saccharomyces cerevisiae* BY4741 (MATa, his3Δ0, leu2Δ0, met15Δ0, and ura3Δ0) yeast were
306 grown in Yeast Extract–Peptone–Dextrose broth (YPD; 1% wt/vol yeast extract, 2% wt/vol
307 peptone, and 2% wt/vol glucose) or on YPD agar (2% wt/vol) plates at 30°C. Yeast containing
308 plasmids that provide prototrophy to leucine were grown in Synthetic Drop-out media (SD; 6.7
309 g/l yeast nitrogen base without amino acids, 1.4 g/l yeast synthetic drop-out medium
310 supplement) supplemented with histidine (2 ml/l from a 1% wt/vol stock solution), tryptophan (2
311 ml/l from 1% wt/vol stock solution), uracil (10 ml/l from a 0.2% wt/vol stock solution), and
312 glucose (4% wt/vol). For galactose-inducible expression from a plasmid, cells were grown in SD
313 media or on SD agar plates supplemented with galactose (2% wt/vol) and raffinose (1% wt/vol).

314 **Plasmid construction:** For a complete list of plasmids used in this study, see [Supplementary](#)
315 [Table S2](#). For expression in bacteria or yeast, the coding sequences (CDS) of the following
316 protein accession numbers: WP_015297525.1 (Tme1), WP_003088027.1 (Tse1),
317 WP_005534959.1, WP_005534960.1, WP_005536620.1, WP_005530005.1, WP_038863399.1,
318 WP_157622110.1, WP_006958655.1, and WP_050778602.1 were PCR amplified from the
319 respective genomic DNA of the encoding bacterium. Next, amplicons were inserted into the
320 multiple cloning site (MCS) of pBAD^K/Myc-His, pBAD33.1^F, or their derivatives using the Gibson
321 assembly method⁵⁸. Plasmids were introduced into *E. coli* BL21 (DE3) or DH5 α (λ -pir) by
322 electroporation, and into vibrios via conjugation. Transconjugants were selected on MMM agar
323 plates supplemented with the appropriate antibiotics to select clones containing the desired
324 plasmids. For galactose-inducible expression in yeast, genes were inserted into the MCS of the
325 shuttle vector pGML10 (Riken) using the Gibson assembly method, in-frame with a C-terminal
326 Myc-tag. Yeast transformations were performed using the lithium acetate method, as previously
327 described⁵⁹.

328 **Construction of deletion strains:** The construction of the *V. parahaemolyticus* RIMD 2210633
329 surrogate strain and of the *V. parahaemolyticus* BB22OP and *V. corallilyticus* BAA-450
330 derivatives was reported previously^{29,37}. Briefly, 1 kb sequences upstream and downstream of
331 each gene to be deleted were cloned into pDM4, a Cm^ROriR6K suicide plasmid. The pDM4
332 constructs were transformed into *E. coli* DH5 α (λ pir) by electroporation, and then transferred
333 into *Vibrio* isolates via conjugation. Transconjugants were selected on agar plates
334 supplemented with chloramphenicol, and then counter-selected on agar plates containing 15%
335 (wt/vol) sucrose for loss of the sacB-containing plasmid. Deletions were confirmed by PCR.

336 **Toxicity assays in *E. coli*:** For testing the toxicity of proteins during the growth of bacteria in
337 suspension, *E. coli* strains carrying arabinose-inducible expression plasmids were grown in
338 2xYT broth supplemented with the appropriate antibiotics and 0.4% (wt/vol) glucose (to repress
339 expression from the *Pbad* promotor) at 30°C. Overnight cultures were washed twice with fresh
340 2xYT broth, normalized to an OD₆₀₀ of 0.01 in 2xYT broth and then transferred to 96-well plates
341 (200 µl per well) in quadruplicate. Cultures were grown at 37°C in a BioTek SYNERGY H1
342 microplate reader with constant shaking (205 cpm). After 2 h, L-arabinose was added to a final
343 concentration of 0.05% (wt/vol) to induce protein expression. OD₆₀₀ readings were acquired
344 every 10 min.

345 For testing the toxicity of proteins during the growth of bacteria on solid media, *E. coli* strains
346 carrying arabinose-inducible expression plasmids were streaked onto LB agar plates
347 supplemented with the appropriate antibiotics and 0.4% (wt/vol) glucose (repressing plates) or
348 0.1% (wt/vol) L-arabinose (inducing plates). Plates were incubated for 16 h at 37°C. The

349 experiments were performed at least three times with similar results. Results from a
350 representative experiment are shown.

351 **Protein expression in *E. coli*:** *E. coli* cultures harboring arabinose-inducible expression
352 plasmids were grown overnight in 2xYT broth supplemented with appropriate antibiotics to
353 maintain the expression plasmids. Bacterial cultures were then washed with fresh 2xYT and
354 resuspended in 3 ml of 2xYT supplemented with appropriate antibiotics. Next, bacterial cultures
355 were incubated with constant shaking (220 rpm) at 37°C for 2 hours. After 2 h, L-arabinose was
356 added to a final concentration of 0.05% (wt/vol) to induce protein expression, and cultures were
357 grown for 2 additional hours. Cells equivalent to 0.5 OD₆₀₀ units were collected, and cell pellets
358 were resuspended in 50 µl of 2x Tris-glycine SDS sample buffer (Novex, Life Sciences). Next,
359 samples were boiled at 95°C for 10 minutes, and then loaded onto TGX stain-free gels (Bio-
360 Rad) for SDS-PAGE. Proteins were transferred onto nitrocellulose membranes, which were
361 immunoblotted with α-FLAG (Sigma-Aldrich, F1804), α-Myc (Santa Cruz, 9E10, sc-40), or
362 custom-made α-VgrG1⁶⁰ antibodies at 1:1000 dilution, as indicated. Finally, protein signals
363 were visualized in a Fusion FX6 imaging system (Vilber Lourmat) using enhanced
364 chemiluminescence (ECL). The experiments were performed at least three times with similar
365 results. Results from a representative experiment are shown.

366 **Toxicity assays in yeast:** The experiments were performed as previously described⁵⁹. Briefly,
367 yeast cells were grown overnight in appropriate media supplemented with 4% (wt/vol) glucose,
368 washed twice with ultrapure milli-Q water, and then normalized to an OD₆₀₀ of 1.0 in milli-Q
369 water. Next, 10-fold serial dilutions were spotted onto synthetic dropout agar plates containing
370 either 4% (wt/vol) glucose (repressing plates) or 2% (wt/vol) galactose and 1% (wt/vol) raffinose
371 (inducing plates). The plates were incubated at 30°C for two days. The experiments were
372 performed at least three times with similar results. Results from a representative experiment are
373 shown.

374 **Protein expression in yeast:** Yeast cells harboring galactose-inducible expression plasmids
375 were grown overnight in selective media supplemented with glucose, washed twice with
376 ultrapure milli-Q water, and then normalized to OD₆₀₀ = 1.0 in selective media supplemented
377 with galactose and raffinose to induce protein expression. Next, the cells were grown at 30°C for
378 16 h, and 1.0 OD₆₀₀ units of cells were pelleted and lysed, as previously described⁵⁹. Proteins
379 were detected in immunoblots using α-Myc antibodies at a 1:1000 dilution. The experiments
380 were performed at least three times with similar results. Results from a representative
381 experiment are shown.

382 **Bacterial competition assays:** Competition assays were performed as previously described⁴⁶,
383 with minor modifications. Briefly, attacker and prey *Vibrio* strains were grown overnight,
384 normalized to an OD₆₀₀ of 0.5, and then mixed at a 4:1 (attacker:prey) ratio in triplicate. Then, 25
385 µl of the mixtures were spotted onto MLB agar competition plates supplemented with 0.05%
386 (wt/vol) L-arabinose when induction of protein expression from a plasmid was required.
387 Competition plates were incubated at the indicated temperatures for 4 h. The colony-forming
388 units (CFU) of the prey strains at t = 0 h were determined by plating 10-fold serial dilutions on
389 selective media plates. After 4 h of co-incubation of the attacker and prey mixtures on the
390 competition plates, the bacteria were harvested and the CFUs of the surviving prey strains were
391 determined by plating 10-fold serial dilutions on selective media plates. The experiments were
392 performed at least three times with similar results. Results from a representative experiment are
393 shown.

394 **Protein secretion assays:** Secretion assays were performed as previously described²², with
395 minor modifications. Briefly, *Vibrio* strains were grown overnight and then normalized to an
396 OD₆₀₀ of 0.18 in 3 ml MLB broth supplemented with appropriate antibiotics and 0.01-0.05%

397 (wt/vol) L-arabinose, when expression from an arabinose-inducible plasmid was required.
398 Bacterial cultures were incubated with constant shaking (220 rpm) at the indicated temperatures
399 for the specified durations. For expression fractions (cells), cells equivalent to 0.5 OD₆₀₀ units
400 were collected, and cell pellets were resuspended in 50 µl of 2x Tris-glycine SDS sample buffer
401 (Novex, Life Sciences). For secretion fractions (media), supernatant volumes equivalent to 10
402 OD₆₀₀ units were filtered (0.22 µm), and proteins were precipitated using the deoxycholate and
403 trichloroacetic acid method ⁶¹. The precipitated proteins were washed twice with cold acetone,
404 and then air-dried before resuspension in 20 µl of 100 mM Tris-Cl (pH = 8.0) and 20 µl of 2X
405 protein sample buffer with 5% β-mercaptoethanol. Next, samples were incubated at 95°C for 5
406 or 10 min and then resolved on TGX Stain-free gel (Bio-Rad). The proteins were transferred
407 onto 0.2 µm nitrocellulose membranes using Trans-Blot Turbo Transfer (Bio-Rad) according to
408 the manufacturer's protocol. Membranes were then immunoblotted with α-FLAG (Sigma-Aldrich,
409 F1804) or custom-made α-VgrG1 ⁶⁰ antibodies at 1:1000 dilution. Protein signals were
410 visualized in a Fusion FX6 imaging system (Vilber Lourmat) using enhanced
411 chemiluminescence (ECL) reagents. The experiments were performed at least three times with
412 similar results. Results from a representative experiment are shown.

413 **Identifying RIX-containing proteins:** The position-specific scoring matrix (PSSM) of RIX was
414 constructed using the N-terminal 55 residues of Tme1 (WP_015297525.1) from *V.*
415 *parahaemolyticus* BB22OP. Five iterations of PSI-BLAST were performed against the RefSeq
416 protein database. In each iteration, a maximum of 500 hits with an expect value threshold of 10⁻⁶
417 were used. Compositional adjustments and filters were turned off. The genomic neighborhoods
418 of RIX-containing proteins (**Supplementary Dataset S1**) were analyzed as described previously
419 ^{23,29}. Duplicated protein accessions appearing in the same genome in more than one genomic
420 accession were removed if the same downstream protein existed at the same distance. The
421 T6SS core components in the RIX-containing bacterial genomes (**Supplementary Dataset S2**)
422 were identified as previously described ¹⁶).

423 **Illustration of the conserved residues of the RIX domain:** RIX domain sequences were
424 aligned using Clustal Omega ⁶². Aligned columns not found in the RIX domain of Tme1 were
425 discarded. The RIX domain-conserved residues were illustrated using the WebLogo server ⁶³
426 (<https://weblogo.threethreeplusone.com>).

427 **Constructing a phylogenetic tree of RIX-encoding bacterial strains:** DNA sequences of
428 *rpoB* were aligned using MAFFT v7.505 FFT-NS-2 (<https://mafft.cbrc.jp/alignment/server>)⁶⁴.
429 Partial and pseudogene sequences were discarded. The evolutionary history was inferred using
430 the neighbor-joining method ⁶⁵ with the Jukes-Cantor substitution model (JC69). The analysis
431 included 686 nucleotide sequences and 4,021 conserved sites.

432 **Protein structure predictions:** Predicted protein structures were downloaded from the
433 AlphaFold Protein Structure Database ^{36,66} in August 2022 (<https://alphafold.ebi.ac.uk/>). The
434 structures of proteins that were not available on the database and of protein complexes were
435 predicted in ColabFold: AlphaFold2 using MMseqs2 ³⁵. All PDB files used in this work are
436 available as **Supplementary File S1**. Protein structures were visualized using ChimeraX 1.4 ⁶⁷.

437 **Analyses of RIX C-terminal sequences:** Amino acid sequences C-terminal to RIX were
438 clustered in two dimensions using CLANS ³⁴. To predict the activities or domains in each
439 cluster, at least two representative sequences (when more than one was available) were
440 analyzed using the NCBI Conserved Domain Database ⁶⁸ and HHpred ⁴². If no activity or
441 domain could be predicted, the protein sequences were further used for AlphaFold2 structure
442 prediction ³⁵ followed by a 3D protein structure comparison in the Dali server ⁴³.

443 **Illustration of the conserved residues of Rte1:** Homologs of Rte1 (WP_006958655.1) from
444 *Vibrio corallilyticus* were identified using PSI-BLAST (4 iterations; a maximum of 500 hits with

445 an expect value threshold of 10^{-6} and a query coverage of 70% were used). Rte1 homologs
446 were aligned using Clustal Omega and conserved residues were illustrated using WebLogo 3.

447

448 **Acknowledgments**

449 This project received funding from the European Research Council under the European Union's
450 Horizon 2020 research and innovation program (grant agreement no. 714224), and from the
451 Israel Science Foundation (grant no. 920/17 to D Salomon, and grant no. 1362/21 to D Salomon
452 and E Bosis). CM Fridman was supported by a scholarship from the Clore Israel Foundation
453 and by a scholarship for outstanding doctoral students from the Orthodox community from the
454 Council for Higher Education. We thank Kinga Keppel and Biswanath Jana for technical
455 assistance, and the rest of the members of the Salomon and Bosis labs for helpful discussions
456 and suggestions. This work was performed in partial fulfillment of the requirements for a PhD
457 degree for K Kanarek at the Sackler Faculty of Medicine, Tel Aviv University.

458

459 **Author Contributions**

460 K Kanarek: conceptualization, investigation, methodology, and writing—original draft.
461 CM Fridman: investigation, methodology, and writing—review and editing.
462 E Bosis: conceptualization, investigation, methodology, funding acquisition, and writing—original
463 draft.
464 D Salomon: conceptualization, supervision, funding acquisition, investigation, methodology, and
465 writing—original draft.

466

467 **Conflict of Interest**

468 The authors declare that they have no conflict of interest.

469

470 **References**

- 471 1. Pukatzki, S. *et al.* Identification of a conserved bacterial protein secretion system in *Vibrio*
472 *cholerae* using the *Dictyostelium* host model system. *Proc. Natl. Acad. Sci.* **103**, 1528–
473 1533 (2006).
- 474 2. Mougous, J. D. *et al.* A virulence locus of *Pseudomonas aeruginosa* encodes a protein
475 secretion apparatus. *Science* **312**, 1526–1530 (2006).
- 476 3. Hood, R. D. *et al.* A type VI secretion system of *Pseudomonas aeruginosa* targets a toxin
477 to bacteria. *Cell Host Microbe* **7**, 25–37 (2010).
- 478 4. Jana, B. & Salomon, D. Type VI secretion system: a modular toolkit for bacterial
479 dominance. *Future Microbiol.* **14**, fmb-2019-0194 (2019).
- 480 5. Monjarás Feria, J. & Valvano, M. A. An Overview of Anti-Eukaryotic T6SS Effectors.
481 *Frontiers in Cellular and Infection Microbiology* vol. 10 (2020).
- 482 6. Hachani, A., Wood, T. E. & Filloux, A. Type VI secretion and anti-host effectors. *Curr.*
483 *Opin. Microbiol.* **29**, 81–93 (2016).

484 7. Jurénas, D. & Journet, L. Activity, delivery, and diversity of Type VI secretion effectors.
485 *Mol. Microbiol.* **115**, 383–394 (2021).

486 8. Hernandez, R. E., Gallegos-Monterrosa, R. & Coulthurst, S. J. Type VI secretion system
487 effector proteins: Effective weapons for bacterial competitiveness. *Cellular Microbiology*
488 vol. 22 (2020).

489 9. Cherrak, Y., Flaughnati, N., Durand, E., Journet, L. & Cascales, E. Structure and Activity
490 of the Type VI Secretion System. *Microbiol. Spectr.* **7**, (2019).

491 10. Basler, M., Pilhofer, M., Henderson, G. P., Jensen, G. J. & Mekalanos, J. J. Type VI
492 secretion requires a dynamic contractile phage tail-like structure. *Nature* **483**, 182–6
493 (2012).

494 11. Hachani, A., Allsopp, L. P., Oduko, Y. & Filloux, A. The VgrG proteins are 'à la carte'
495 delivery systems for bacterial type VI effectors. *J. Biol. Chem.* **289**, 17872–84 (2014).

496 12. Shneider, M. M. *et al.* PAAR-repeat proteins sharpen and diversify the type VI secretion
497 system spike. *Nature* **500**, 350–353 (2013).

498 13. Pukatzki, S., Ma, A. T., Revel, A. T., Sturtevant, D. & Mekalanos, J. J. Type VI secretion
499 system translocates a phage tail spike-like protein into target cells where it cross-links
500 actin. *Proc. Natl. Acad. Sci.* **104**, 15508–15513 (2007).

501 14. Ma, J. *et al.* The Hcp proteins fused with diverse extended-toxin domains represent a
502 novel pattern of antibacterial effectors in type VI secretion systems. *Virulence* **8**, 1189–
503 1202 (2017).

504 15. Salomon, D. *et al.* Marker for type VI secretion system effectors. *Proc. Natl. Acad. Sci.*
505 **111**, 9271–9276 (2014).

506 16. Jana, B., Fridman, C. M., Bosis, E. & Salomon, D. A modular effector with a DNase
507 domain and a marker for T6SS substrates. *Nat. Commun.* **10**, 3595 (2019).

508 17. Russell, A. B. *et al.* A widespread bacterial type VI secretion effector superfamily
509 identified using a heuristic approach. *Cell Host Microbe* **11**, 538–549 (2012).

510 18. Whitney, J. C. *et al.* Identification, structure, and function of a novel type VI secretion
511 peptidoglycan glycoside hydrolase effector-immunity pair. *J. Biol. Chem.* **288**, 26616–24
512 (2013).

513 19. Russell, A. B. *et al.* Diverse type VI secretion phospholipases are functionally plastic
514 antibacterial effectors. *Nature* **496**, 508–512 (2013).

515 20. Manera, K., Kamal, F., Burkinshaw, B. & Dong, T. G. Essential functions of chaperones
516 and adaptors of protein secretion systems in Gram-negative bacteria. *FEBS J.* (2021)
517 doi:10.1111/FEBS.16056.

518 21. Unterweger, D., Kostiuk, B. & Pukatzki, S. Adaptor proteins of type VI secretion system
519 effectors. *Trends Microbiol.* **25**, 8–10 (2017).

520 22. Dar, Y., Jana, B., Bosis, E. & Salomon, D. A binary effector module secreted by a type VI
521 secretion system. *EMBO Rep.* **23**, e53981 (2022).

522 23. Dar, Y., Salomon, D. & Bosis, E. The antibacterial and anti-eukaryotic Type VI secretion
523 system MIX-effector repertoire in Vibrionaceae. *Mar. Drugs* **16**, 433 (2018).

524 24. Koskineni, S. *et al.* Rhs proteins from diverse bacteria mediate intercellular competition.
525 *Proc. Natl. Acad. Sci. U. S. A.* **110**, 7032–7 (2013).

526 25. Jurénas, D. *et al.* Mounting, structure and autocleavage of a type VI secretion-associated
527 Rhs polymorphic toxin. *Nat. Commun.* **12**, (2021).

528 26. Pei, T. T. *et al.* Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a
529 type VI secretion system. *Nat. Commun.* **11**, 1–13 (2020).

530 27. Cianfanelli, F. R. *et al.* VgrG and PAAR proteins define distinct versions of a functional
531 type VI secretion system. *PLoS Pathog.* **12**, 1–27 (2016).

532 28. Alcoforado Diniz, J. & Coulthurst, S. J. Intraspecies competition in *Serratia marcescens* is
533 mediated by type VI-secreted Rhs effectors and a conserved effector-associated
534 accessory protein. *J. Bacteriol.* **197**, 2350–60 (2015).

535 29. Fridman, C. M., Keppel, K., Gerlic, M., Bosis, E. & Salomon, D. A comparative genomics
536 methodology reveals a widespread family of membrane-disrupting T6SS effectors. *Nat.*
537 *Commun.* **11**, 1085 (2020).

538 30. Brutto, M. *et al.* *Vibrio crassostreiae*, a benign oyster colonizer turned into a pathogen after
539 plasmid acquisition. *ISME J.* **11**, 1043–1052 (2017).

540 31. Ben-Haim, Y., Zicherman-Keren, M. & Rosenberg, E. Temperature-regulated bleaching
541 and lysis of the coral *Pocillopora damicornis* by the novel pathogen *Vibrio coralliilyticus*.
542 *Appl. Environ. Microbiol.* **69**, 4236–42 (2003).

543 32. Haldar, S. *et al.* Identification of *Vibrio campbellii* isolated from diseased farm-shrimps
544 from south India and establishment of its pathogenic potential in an *Artemia* model.
545 *Microbiology* **157**, 179–188 (2011).

546 33. Baker-Austin, C. *et al.* *Vibrio* spp. infections. *Nat. Rev. Dis. Prim.* **4**, 1–19 (2018).

547 34. Frickey, T. & Lupas, A. CLANS: a Java application for visualizing protein families based
548 on pairwise similarity. *Bioinformatics* **20**, 3702–3704 (2004).

549 35. Mirdita, M. *et al.* ColabFold: making protein folding accessible to all. *Nat. Methods* **2022**
550 **19**, 679–682 (2022).

551 36. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nat.* **2021**
552 **596** 596, 583–589 (2021).

553 37. Jana, B., Keppel, K., Fridman, C. M., Bosis, E. & Salomon, D. Multiple T6SSs, Mobile
554 Auxiliary Modules, and Effectors Revealed in a Systematic Analysis of the *Vibrio*
555 *parahaemolyticus* Pan-Genome. *mSystems* (2022) doi:10.1128/MSYSTEMS.00723-22.

556 38. Siggers, K. A. & Lesser, C. F. The Yeast *Saccharomyces cerevisiae*: A Versatile Model
557 System for the Identification and Characterization of Bacterial Virulence Proteins. *Cell*
558 *Host Microbe* **4**, 8–15 (2008).

559 39. Flaugnatti, N. *et al.* Structural basis for loading and inhibition of a bacterial T6 SS
560 phospholipase effector by the VgrG spike. *EMBO J.* **39**, e104129 (2020).

561 40. Flaugnatti, N. *et al.* A phospholipase A1 antibacterial Type VI secretion effector interacts
562 directly with the C-terminal domain of the VgrG spike protein for delivery. *Mol. Microbiol.*
563 **99**, (2016).

564 41. Hersch, S. J. *et al.* Envelope stress responses defend against type six secretion system
565 attacks independently of immunity proteins. *Nat. Microbiol.* **5**, 706–714 (2020).

566 42. Zimmermann, L. *et al.* A completely reimplemented MPI bioinformatics toolkit with a new
567 HHpred server at its core. *J. Mol. Biol.* **430**, 2237–2243 (2018).

568 43. Holm, L. Dali server: structural unification of protein families. *Nucleic Acids Res.* **50**,
569 W210–W215 (2022).

570 44. Barth, H., Preiss, J. C., Hofmann, F. & Aktories, K. Characterization of the Catalytic Site
571 of the ADP-Ribosyltransferase Clostridium botulinum C2 Toxin by Site-directed
572 Mutagenesis. *J. Biol. Chem.* **273**, 29506–29511 (1998).

573 45. Altindis, E., Dong, T., Catalano, C. & Mekalanos, J. Secretome Analysis of Vibrio
574 cholerae Type VI Secretion System Reveals a New Effector-Immunity Pair. *MBio* **6**,
575 e00075 (2015).

576 46. Salomon, D., Gonzalez, H., Updegraff, B. L. & Orth, K. Vibrio parahaemolyticus Type VI
577 secretion system 1 is activated in marine conditions to target bacteria, and is differentially
578 regulated from system 2. *PLoS One* **8**, e61086 (2013).

579 47. Salomon, D. *et al.* Type VI secretion system toxins horizontally shared between marine
580 bacteria. *PLoS Pathog.* **11**, 1–20 (2015).

581 48. Ray, A. *et al.* Type VI secretion system MIX-effectors carry both antibacterial and anti-
582 eukaryotic activities. *EMBO Rep.* **18**, e201744226 (2017).

583 49. Speare, L. *et al.* Bacterial symbionts use a type VI secretion system to eliminate
584 competitors in their natural host. *Proc. Natl. Acad. Sci. U. S. A.* **115**, E8528–E8537
585 (2018).

586 50. Church, S. R., Lux, T., Baker-Austin, C., Buddington, S. P. & Michell, S. L. Vibrio
587 vulnificus type 6 secretion system 1 contains anti-bacterial properties. *PLoS One* **11**, 1–
588 17 (2016).

589 51. Pan, J. *et al.* Integration Host Factor Modulates the Expression and Function of T6SS2 in
590 Vibrio fluvialis. *Front. Microbiol.* **9**, 962 (2018).

591 52. Guillemette, R., Ushijima, B., Jalan, M., Häse, C. C. & Azam, F. Insight into the resilience
592 and susceptibility of marine bacteria to T6SS attack by Vibrio cholerae and Vibrio
593 coralliilyticus. *PLoS One* **15**, (2020).

594 53. Cohen, H. *et al.* Post-phagocytosis activation of NLRP3 inflammasome by two novel
595 T6SS effectors. *Elife* **11**, e82766 (2022).

596 54. Rubio, T. *et al.* Species-specific mechanisms of cytotoxicity toward immune cells
597 determine the successful outcome of Vibrio infections. *Proc. Natl. Acad. Sci. U. S. A.* **116**,
598 (2019).

599 55. Piel, D. *et al.* Selection of Vibrio crassostreeae relies on a plasmid expressing a type 6
600 secretion system cytotoxic for host immune cells. *Environ. Microbiol.* **22**, (2020).

601 56. Jana, B., Keppel, K. & Salomon, D. Engineering a customizable antibacterial T6SS-based
602 platform in Vibrio natriegens. *EMBO Rep.* **22**, e53681 (2021).

603 57. Hersch, S. J., Lam, L. & Dong, T. G. Engineered Type Six Secretion Systems Deliver
604 Active Exogenous Effectors and Cre Recombinase. *MBio* **12**, (2021).

605 58. Gibson, D. G. *et al.* Enzymatic assembly of DNA molecules up to several hundred
606 kilobases. *Nat. Methods* **6**, 343–345 (2009).

607 59. Salomon, D. & Sessa, G. Identification of growth inhibition phenotypes induced by
608 expression of bacterial type III effectors in yeast. *J. Vis. Exp.* 4–7 (2010)
609 doi:10.3791/1865.

610 60. Li, P. *et al.* Acute hepatopancreatic necrosis disease-causing *Vibrio parahaemolyticus*
611 strains maintain an antibacterial type VI secretion system with versatile effector
612 repertoires. *Appl. Environ. Microbiol.* **83**, e00737-17 (2017).

613 61. Bensadoun, A. & Weinstein, D. Assay of proteins in the presence of interfering materials.
614 *Anal. Biochem.* **70**, 241–250 (1976).

615 62. Madeira, F. *et al.* Search and sequence analysis tools services from EMBL-EBI in 2022.
616 *Nucleic Acids Res.* **50**, (2022).

617 63. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo
618 generator. *Genome Res.* **14**, 1188–90 (2004).

619 64. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple
620 sequence alignment based on fast Fourier transform. *Nucleic Acids Res.* **30**, 3059–66
621 (2002).

622 65. Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: Multiple sequence
623 alignment, interactive sequence choice and visualization. *Brief. Bioinform.* **20**, 1160–1166
624 (2018).

625 66. Varadi, M. *et al.* AlphaFold Protein Structure Database: Massively expanding the
626 structural coverage of protein-sequence space with high-accuracy models. *Nucleic Acids
627 Res.* **50**, (2022).

628 67. Pettersen, E. F. *et al.* UCSF ChimeraX: Structure visualization for researchers,
629 educators, and developers. *Protein Sci.* **30**, (2021).

630 68. Marchler-Bauer, A. *et al.* CDD: a conserved domain database for interactive domain
631 family analysis. *Nucleic Acids Res.* **35**, D237-40 (2007).

632

633 **Table 1. RIX-associated C-terminal extensions.**

Predicted role	Predicted C-terminal activity/domain ^{a,b,c,d}	Representative accession number	Number of unique proteins identified
Antibacterial	T6SS membrane-disrupting (Tme) ^a	WP_015297525.1	137
	Colicin A-like pore-forming ^b	WP_130243383.1	42
	HNH nuclease ^d	WP_130243482.1	24
	Cysteine hydrolase ^b	WP_099165670.1	11
	Lyz-like ^d	WP_012127347.1	11
	Unknown_1	WP_169608408.1	6
	DUF3289 ^d	WP_152430150.1	4
	Unknown_2	WP_005534959.1	3
	Murein Transglycosylase ^b	WP_042605467.1	1
Anti-eukaryotic	Glycosyltransferase_2 ^b	WP_009697472.1	72
	Deamidase_2 ^b	WP_005530005.1	63
	ADP ribosylation Factor (ARF) ^c	WP_006961831.1	36
	ADP ribosyltransferase ADPRT_3 ^b	WP_045402837.1	27
	Glycosyltransferase_1 ^b	WP_102362992.1	21
	Deamidase_1 ^b	WP_005536620.1	6
	ADPRT_2 ^b	WP_171802566.1	5
	GogB-like ^d	WP_142566755.1	4
	ADPRT_1 ^d	WP_246210427.1	3
	Actin cross-linking (ACD) ^d	WP_038863399.1	3
	Unknown_3	WP_012533558.1	3
	Cysteine protease_1 ^c	WP_186004041.1	1
	Cysteine protease_2 ^c	WP_137358098.1	1
	Adenylate cyclase ^b	WP_146866449.1	1
	Anthrax toxin LF-like ^{b,c}	WP_082041646.1	1
	Tox-ART-HYE1 ^b	WP_048666209.1	1
	M34 peptidase ^d	WP_146866447.1	1
Tether	Glycosyltransferase_3 ^{a,b}	WP_192890785.1	1
	C2-2 ^b	WP_236797446.1	1
	TTR_1 ^c	WP_157622110.1	4
	Tether for Tae4	WP_095560627.1	3
	TTR_2 ^c	WP_152436132.1	2
Unknown	Unknown_4	WP_005537230.1	2
Truncated	None	WP_107210948.1	1

634 ^a Predicted by homology to a known effector, ^b Predicted using HHpred, ^c Predicted using
 635 AlphaFold2 structure prediction followed by analysis in the Dali server, ^d Predicted using NCBI's
 636 Conserved Domain Database