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ABSTRACT 

Genomic sequences with high sequence similarity, such as parent-pseudogene pairs, 

cause short sequencing reads to align to multiple locations, thus complicating 

genomic analyses1. However, their impact on transcriptomic analyses, including the 

estimation of gene expression and transcript annotation, has been less studied. Here, 

we investigated the impact of pseudogenes on transcriptomic analyses by focusing 

on the disease-relevant example of GBA1 and its expressed pseudogene GBAP1. 

Using short-read RNA-sequencing data from human brain samples2, we found that 

only 42% of all reads mapping to GBA1 did so uniquely, with the remaining reads 

mapping primarily to GBAP1. This resulted in a significant misestimation of the 

relative expression of GBA1 to GBAP1. Using targeted long-read RNA-sequencing of 

12 human brain regions we identified 18 GBA1 transcripts that had a novel open 

reading frame (ORF) and 7 GBAP1 transcripts predicted to encode a protein, despite 

GBAP1 being classified as a pseudogene. Furthermore, we demonstrated the ability 

of these transcripts to generate stable protein that lacked GBA9s important function 
as a lysosomal glucocerebrosidase (GCase). However, we found that transcripts were 

surprisingly common, collectively accounting for 32% of transcription from the GBA1 

locus in the caudate nucleus, and their usage showed cell type selectivity in human 

brain. Finally, we used annotation-independent analyses of both long and short-read 

RNA-sequencing data sets to show that parent genes were more likely to have 

evidence of incomplete annotation. Given that 734 (17%) genes causing Mendelian 

disease have at least one pseudogene, these findings significantly impact our 

understanding of human disease and highlight the need for long-read RNA-

sequencing analyses at many loci.   
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MAIN TEXT 

The human genome contains regions that cannot be adequately captured using 

short-read sequencing technologies and thus remain poorly studied. Such <dark= 
regions result from difficulties with sequencing (e.g. high GC content), while others 

are sequenced accurately but, due to duplicated genomic regions, sequence reads 

align equally well to two or more genomic regions - a phenomenon known as 

multimapping. Given that defective gene copies, termed pseudogenes, are frequently 

found in the human genome this is a common problem3. While the impact of 

multimapping has been investigated in the context of pathogenic variant detection 

and can cause variants to be <missed= using conventional analyses, the effect of 
multimapping on transcriptomic analyses has received less attention despite the 

problem being similar in nature1. This is surprising given the potentially large number 

of genes affected and the crucial role that short-read RNA-sequencing has played in 

(i) gene quantification and annotation and (ii) our understanding of tissue-specific 

gene expression and regulation. The aim of this study was to investigate the impact 

of pseudogenes on transcriptomic analyses by focusing on the disease-relevant 

example of GBA1 and its expressed pseudogene GBAP1 (Fig. 1a). 

GBAP1 is only one of 14,709 pseudogenes (GENCODE v 38)3,4 contained in the 

human genome (Fig. 1b). Pseudogenes are commonly subdivided into processed 

pseudogenes, derived from retrotransposition of processed mRNAs (n = 10,666), and 

unprocessed pseudogenes (n = 3,565), derived from segmental duplications; GBAP1 

is an example of an unprocessed pseudogene. To date, 10,370 pseudogenes have 

been confidently assigned to 3,665 unique parent genes (Supplementary Table 1)5, 

with 734 parent genes (20.0%; Fig. 1c) linked to 1,015 OMIM phenotypes accounting 

for 17.0% of all OMIM disease genes (https://omim.org/)6. Consistent with the 

observation that a proportion of pseudogenes are of functional importance7, we 

found that 64.7% of pseudogenes are expressed in ≥ 1 tissue (Fig. 1d) and that on 

average 25.7 ± 2.5% of pseudogenes are expressed in each tissue (Supplementary 
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Fig. 1). Consequently, genomic regions containing pseudogenes have the potential 

to complicate transcriptomic analyses in all human tissues for a large proportion of 

protein-coding genes, including those parent genes causally linked to disease. 

We reasoned that parent genes with high sequence similarity to their corresponding 

pseudogenes would be most prone to inaccuracies in gene expression measures and 

transcript annotation. To explore this notion, we used the parent-pseudogene pair, 

GBA-GBAP18, as an example on account of three reasons. First, GBA-GBAP1 had a 

high sequence similarity of 96% (Fig. 1e). Second, GBAP1 had broad tissue 

expression, as determined using human tissues available through the Genotype-

Tissue Expression (GTEx)9,10 Consortium (v8, accessed 10/11/2021; Supplementary 

Fig. 2), but no annotated transcript with an ORF. Third, GBA1 has been extensively 

studied and its pseudogene is well recognised. Indeed, GBA1 encodes 

glucocerebrosidase (GCase), a lysosomal hydrolase11 that degrades the 

glycosphingolipid, glucosylceramide12. Mutations in GBA1 result in decreased GCase 

activity causing Gaucher disease (GD)13317 when biallelic, and when heterozygous are 

among the most important genetic risk factors for Parkinson's disease (PD)18321 and 

PD progression22325.  

We began by studying GBA1 and GBAP1 expression using gene-level measures from 

41 human tissues available through GTEx. Counter to previous RT-PCR-based 

quantifications showing that GBA1 is expressed at significantly higher levels than 

GBAP126, we found GBA1 and GBAP1 expression to be equivalent in many tissues 

(Supplementary Fig. 3), including the human brain (log2 fold change = 0.9 ± 0.5) 

(Fig. 1f). We questioned whether this observation could be explained by 

multimapping reads, which are often discarded in standard processing and so do not 

contribute to gene-level quantification of expression in many publicly available data 

sets (e.g. GTEx9, PsychENCODE27 and recount328). To explore this question, we re-

analysed publicly available short-read RNA-sequencing of human anterior cingulate 

cortex samples derived from 18 individuals, (n, control = 5, PD, with or without 
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dementia = 13)2. Using this high-depth data set (100-bp paired-end reads, with a 

mean depth of 182.9 ± 14.9 million read pairs per sample), we assessed the 

proportion of reads that uniquely mapped to GBA. We found that only 41.7 ± 11.2% 

of all reads mapped to GBA1 were uniquely mapped (Extended Data Fig. 1a), with 

96.0 ± 2.0% of multimapped reads assigned to GBAP1 (Extended Data Fig. 1b). As a 

class, parent genes had significantly lower rates of uniquely mapped reads when 

compared to all other protein-coding genes, including paralogs (Wilcoxon rank sum 

test, p = 0.02). Considering that the majority of reads mapped to GBA1 and GBAP1 

are not used for quantification, we concluded that long-read RNA-sequencing would 

be required to assess their relative gene-level expression. Therefore, we applied 

direct cDNA Oxford Nanopore sequencing (ONT) to pooled human frontal lobe (n 

individuals = 26) and hippocampus samples (n individuals = 27) (total library size: 

42.7 million and 48.0 million reads, respectively) and found higher expression of 

GBA1 (numerator) compared to GBAP1 (denominator) (frontal lobe, log2 fold change 

= 2.3; hippocampus, log2 fold change = 3.1). That is, quantification with short-read 

RNA-sequencing wrongly estimated the relative expression of this parent-

pseudogene pair by 2-3-fold (frontal cortex, Grubbs' test statistic = 3.58, P = 0.03; 

hippocampus, Grubbs' test statistic = 4.27, P < 0.01, Grubbs test for one outlier) (Fig. 

1g). 

The inaccuracies in quantification suggested that high dependence on short-read 

RNA-sequencing technologies may have also led to inaccuracies in GBA1 and GBAP1 

transcript structures. Indeed, it is challenging to annotate full-length transcript 

structures from short reads, as they rarely span multiple splice junctions29. This 

problem that can be addressed using long-read sequencing. Thus, we applied 

targeted Pacific Biosciences (PacBio) isoform sequencing (Iso-Seq) (Extended Data 

Fig. 2a) to 12 human brain regions. Brain tissue was used because of GBA9s 
importance in neurological disease18321,30,31, and previous evidence to suggest that 

transcriptome annotation is most incomplete in human brain32. PacBio Iso-Seq was 
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used due to the high base pair accuracy (>99% accuracy) enabled by circular 

consensus sequencing (CCS) reads, which in turn, allows accurate mapping. To 

ensure that full-length reads were generated from mature mRNA alone, high-quality 

polyadenylated RNA (RNA integrity number > 8) pooled from multiple individuals 

per tissue was used (Supplementary Table 2). GBA1 and GBAP1 cDNAs were 

enriched using biotinylated hybridization probes designed against exonic and 

intronic genic regions (Supplementary fig. 4) to ensure that few assumptions were 

made regarding transcript structure. Collapsing mapped reads resulted in 2,368 

GBA1 and 3,083 GBAP1 unique transcripts, each supported by ≥ 2 full-length (FL) 

CCS reads across all samples (Extended Data Fig. 3a,b). After QC and filtering for a 

minimum of 0.3% transcript usage per sample we identified 32 GBA1 and 48 GBAP1 

transcripts (Fig. 2), thus providing the most reliable annotation of GBA1 and GBAP1 

transcription to date. 

Next, we examined the identified transcripts for coding potential, nonsense-

mediated decay (NMD) and similarity with the existing annotation from GENCODE, 

based on which we categorised the transcripts into the following five categories: (1) 

coding known (alternate 39/59 end); (2) coding novel; (3) NMD novel; (4) non-coding 

known; and (5) non-coding novel (Methods and Extended Data Fig. 2b). We noted 

that 24 of the 32 identified GBA1 transcripts and all 48 identified GBAP1 transcripts 

were absent from GENCODE (Fig. 2a,d). Contrary to the expectation that most 

protein-coding genes express one dominant transcript33335, we did not find a 

dominant GBA1 transcript across any of the 12 brain regions sequenced. In fact, the 

most highly expressed GBA1 transcript (PB.845.2786; a full splice match to 

ENST00000368373), only corresponded to a mean of 41.4 ± 8.3% of total 

transcription at the locus (Fig. 2b and Fig. 3a). Furthermore, 18 GBA1 transcripts had 

a novel ORF and 7 GBAP1 transcripts were predicted to encode a protein, despite 

GBAP1 being classified as a pseudogene (Fig. 3a,c). Since usage of unannotated 59 
transcription start sites (TSSs) was a common feature of GBA1 and GBAP1 transcripts 
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with novel ORFs (Supplementary Fig. 5), we specifically focused on validating these 

sites using Cap Analysis Gene Expression (CAGE) peaks (defined by FANTOM536,37). 

Although CAGE seq only captures the first 20330 nucleotides from the 59-end (unique 

mapping only) we found that 57% (n = 4) and 50% (n = 9) of novel GBA1 and GBAP1 

59 TSSs, respectively, were located within 50 bp of CAGE peaks providing additional 
confidence in calling of these transcripts. Most importantly, additional targeted Iso-

Seq of GBA1 and GBAP1 in iPSC-derived cortical neurons (n = 6), astrocytes (n = 3) 

and microglia (n = 3) validated all novel ORFs. In summary, GBA1 and GBAP1 

transcripts with novel ORFs could be detected using a different RNA-sequencing 

technology and validated in an independent data set. 

Given the reliability of GBA1 and GBAP1 transcripts with novel ORFs, we next sought 

to explore their coding potential. Using a sequence-based approach and 

AlphaFold238 (which accurately predicts GBA1 structure; Supplementary Fig. 6), we 

focused on the most highly expressed GBA1 (n = 3) and GBAP1 (n = 2) ORFs (Fig. 3a, 

b). While protein isoforms of both genes were predicted to have highly similar 

tertiary structures with respect to the C-terminus, protein products would be unlikely 

to have GCase activity due was partial or full loss of key enzymatic sites, or the 

absence of the lysosomal targeting sequence (LIMP2-interface region; Extended 

Data Fig. 4 and Fig. 3c-h)39,40. To further assess the coding potential of these novel 

GBA1 and GBAP1 transcripts, we amplified the ORFs and cloned them into a vector 

with a C-terminus FLAG tag. Transfection into H4 cells with homozygous knockout of 

GBA1 resulted in translation of all transcripts as detected with both an anti-FLAG 

antibody and an antibody directed to the conserved C-terminus (Fig. 4a). However, 

none of these transcripts encoded protein isoforms with GCase activity, including 

those transcribed from GBAP1 (Fig. 4b). Furthermore, we found no evidence to 

suggest that these protein isoforms inhibited constitutive GCase activity in H4 

parental cells expressing GBA1 (Fig. 4c). Consistent with these findings, 

immunohistochemcal analysis in H4 GBA1 KO and the H4 parental line (expressing 
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endogenous GBA) showed the lack of lysosomal localization of novel GBA1 and 

GBAP1 protein isoforms (Fig. 4d). To explore translation in vivo we interrogated 

public mass spectrometry dataset of human prefrontal cortex41. Since novel GBA1 

isoforms have no unique sequences that differentiate them, we focused on GBAP1 

isoforms. We found proteomic support for GBAP1 (PB.845.1693) within the dataset 

with a protein Q-value of <0.01. In particular, the unique amino acid sequence 

QWALDGAEYR was identified. This unique sequence is unique to this GBAP1 and was 

not identified when searched within the UniProt human protein reviewed dataset. 

This is therefore suggestive of GBAP1 translation within the human prefrontal cortex. 

We found that novel protein-coding transcripts of GBA1 without predicted GCase 

activity were common, collectively accounting for between 15.8% (cerebellum) - 

31.7% (caudate nucleus) of transcription from the GBA1 locus. Notably, only 48% of 

transcription in the caudate nucleus was predicted to encode a protein isoform with 

GCase activity, an interesting finding given that caudate dopaminergic dysfunction is 

implied in the pathophysiology of PD. The high variability in the usage of GBA1 

transcripts with novel ORFs across the human brain led us to hypothesise that these 

transcripts may have high cell type specificity. To test this, we used the previously 

mentioned targeted PacBio Iso-Seq of human iPSC-derived brain-relevant cell types. 

Using this data, we found evidence of cell type differences in GBA1 transcript usage 

(Fig. 5). Strikingly, we observed that there was significantly lower usage of shorter 

ORFs with no GCase activity (PB.275.2954 and PB.845.2888) in microglia relative to 

neurons or astrocytes (Fig. 5b). We were able to replicate these findings using 59 
single-nucleus RNA-sequencing of human frontal cortex and similarly demonstrated 

the absence of signal at the first exon of PB.845.2888 specifically in microglia (Fig. 

5a). Significant differences in GBAP1 ORF usage across cell types were also observed, 

with significantly lower usage of all GBAP1 ORFs in microglia compared to excitatory 

neurons and astrocytes (Fig. 5d). Again, 59 single-nucleus RNA-sequencing of human 

frontal cortex supported these findings, with higher expression of GBAP1 in 
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excitatory neurons relative to all other cell types, particularly microglia (Fig. 5b). 

Furthermore, CUT&RUN42 profiling of the H3K4me3 mark in neurons was consistent 

with transcriptional activity at the 59 TSS of GBAP1 ORF transcripts (Extended Data 

Fig. 5).  

Our analyses of GBA1 and GBAP1 show how pseudogenes limit the identification of 

both common and rare transcripts of known protein-coding genes. However, since 

the human genome contains 3,665 known parent genes (734 of which cause 

mendelian disease) we wanted to explore the extent of this problem. To do this, we 

compared inaccuracies in annotation of parent genes with other protein-coding 

genes (including paralogs). Initially, we used public long-read RNA-sequencing data 

from nine frontal cortex samples to assess the proportion of transcripts per gene, 

with at least one novel splice site in the coding sequence that would result in a novel 

ORF. Despite a low sequencing depth (mean, 2.2 ± 0.9 million full-length reads per 

sample), we found a significant increase in such events among parent genes 

compared to other protein-coding genes (parent genes = 23.9 ± 11.5%; protein-

coding genes = 22.7 ± 11.4%; two-sided Wilcoxon rank-sum test p < 0.01; Fig. 6a). 

We extended this analysis to a greater number of samples (n = 7,595) and human 

tissues (n = 41, GTEx) using annotation-independent short-read RNA-sequencing 

analyses to quantify the proportion of parent genes with evidence of novel 

annotation (Methods). Based on the identification of novel expressed genomic 

regions32 and novel splice site usage, we found that the proportion of genes with 

incomplete annotation was significantly higher among parent genes compared to 

other protein-coding genes (expression regions: parent genes = 13.9 ± 1.4%; 

protein-coding genes = 10.8 ± 1.3%; two-sided Wilcoxon rank-sum test p < 0.01; Fig. 

6b; splice site usage: parent genes = 66.5 ± 3.5%; protein-coding genes = 54.8 ± 4.3; 

two-sided Wilcoxon rank-sum test p < 0.01; Fig. 6c). This observation was consistent 

across all tissues analysed (supplementary fig. X). 
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Together, these findings highlight that there remain loci containing parent-

pseudogene pairs, such as GBA1 and GBAP1, which are poorly annotated, with 

significant implications for our understanding of gene function, in addition to 

common and rare diseases. Importantly, such loci can be predicted based on 

sequence similarity between parent-pseudogene pairs and the technology to resolve 

these <problem= loci is available. Application of targeted long-read RNA-sequencing 

technologies to RNA extracted from relatively pure cell types generated through 

iPSC- and single-cell-based methods, has the potential to yield important biological 

insights and drive novel therapeutic approaches.  
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ONLINE METHODS 

PSEUDOGENES AND PARENTAL GENES 

Pseudogene and parent gene annotations 

Pseudogene annotations were obtained from GENCODE v 384 

(https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/). We included all 

HAVANA annotated pseudogenes excluding polymorphic pseudogenes. Biotypes 

were clustered using the <gene_type= column so that "IG_V_pseudogene", 
"IG_C_pseudogene", "IG_J_pseudogene", "IG_pseudogene", =TR=, "TR_J_pseudogene", 
"TR_V_pseudogene", "transcribed_unitary_pseudogene", "unitary_pseudogene" = 

"Unitary"; "rRNA_pseudogene", "pseudogene" = "Other"; 

"transcribed_unprocessed_pseudogene", "unprocessed_pseudogene", 

"translated_unprocessed_pseudogene" = <Unprocessed=; "processed_pseudogene", 
"transcribed_processed_pseudogene", "translated_processed_pseudogene" = 

"Processed". Parent genes have previously been inferred5 and were obtained from 

psiCube (http://pseudogene.org/psicube/index.html). 

Expression analysis from GTEx 

Pseudogene and parent gene expression was assessed using median transcript per 

million (TPM) expression per tissue generated by the Genotype-Tissue Expression 

Consortium (GTEx, v8, accessed on 10/11/2021). As GTEx only use uniquely mapped 

reads for expression and multimapping was a concern, expression was assessed as a 

binary variable. That is, a gene with a median TPM > 0 was considered to be 

expressed.  

For quantitative expression of GBA1 and GBAP1 we used RNA-sequencing data for 

17,510 human samples originating from 54 different human tissues (GTEx, v8) that 

was downloaded using the R package recount (v 1.4.6)43. Cell lines, sex-specific 

tissues, and tissues with 10 samples or below were removed. Samples with large 

chromosomal deletions and duplications or large copy number variation previously 
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associated with disease were filtered out (smafrze != "EXCLUDE"). For any log2 fold 

change calculations GBA1 is the numerator and GBAP1 is the denominator. 

Online Mendelian Inheritance in Man data 

Phenotype relationships and clinical synopses of all Online Mendelian Inheritance in 

Man (OMIM) genes were downloaded using API through https://omim.org/api 

(accessed 14/04/2022)6. Parent genes were annotated genes as OMIM morbid if they 

were listed as causing a mendelian phenotype. 

Sequence similarity 

Sequence similarity of parent genes and pseudogenes has previously been calculated 

by Pei et al.3 and is available through The Pseudogene Decoration Resource (psiDr; 

http://www.pseudogene.org/psidr/similarity.dat; accessed 14/04/2022). We 

compared the sequence similarity of parent and pseudogenes considering the 

coding sequence (CDS) of parent genes. 

Multimapping from short-read RNA-sequencing 

Multimapping rates of parent genes, including GBA1 and GBAP1, were investigated 

in human anterior cingulate cortex samples previously reported in Feleke & Reynolds 

et al2. Here, we used control individuals (n = 5) and individuals with Parkinson9s 
disease (PD) with or without dementia (n = 13). Adapter trimming and read quality 

filtering was performed with default options using Fastp (v 0.23.2; 

RRID:SCR_016962)44, with quality control metrics generated using both Fastp and 

FastQC (v 0.11.9; RRID:SCR_014583). Alignment to the GRCh38 genome using 

GENCODE v 38 was performed using STAR (v 2.7.10; RRID:SCR_004463)45. ENCODE 

standard options for long RNA-sequencing were used with STAR, with the exception 

of alignSJDBoverhangMin, outSAMmultNmax and outFilterMultimapNmax. 

outFilterMultimapNmax sets the rate of multimapping permitted; as a conservative 

estimate we set this to 10, half the ENCODE standard. outSAMmultNmax was set to -

1, which allowed multimapped reads to be kept in the same output SAM/BAM file. 
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The QC and alignment processes were performed using a nextflow46 pipeline. BAM 

files were sorted and indexed using Samtools (v 1.14; RRID:SCR_002105) 47 and 

filtered in R (v 4.0.5; RRID:SCR_001905) for reads overlapping the GBA1 or GBAP1 

locus, using GenomicRanges (v 1.42.0; RRID:SCR_000025)48 and Rsamtools (version 

2.6.0). Only paired first mate reads on the correct strand (minus for both GBA1 and 

GBAP1) selected. The <NH= tag, which provides the number of alignments for a read 
was also extracted from the SAM header. The CIGAR string of the read was used to 

provide a width of the reads relative to the reference by adding operations that 

consume the reference together. Reads were then filtered, using dplyr (v 1.0.9; 

RRID:SCR_016708)49 and tibble (v 3.1.6)49, with this new width to leave reads that 

aligned completely within the GBA1 and GBAP1 locus. Reads were then split between 

unique alignment and multimapping alignments based on the <NH= tag. The 

percentage of reads (uniquely mapped / (uniquely mapped + multimapped)) that 

mapped uniquely to either the GBA1 or GBAP1 locus was then calculated. 

Additionally, for reads that multimapped to the GBA1 or GBAP1 locus the read name 

was extracted and searched for within the reads that multimapped to the alternate 

locus (i.e. reads names from reads that multimapped to the GBA1 locus were 

searched against read names for reads that multimapped to the GBAP1 locus). This 

provided a percentage of reads that aligned to GBA1 that that also aligned elsewhere 

and the percentage of reads aligning to GBAP1. Code and commentary can be found 

here: https://github.com/Jbrenton191/GBA_multimapping_2022. 

OXFORD NANOPORE DIRECT CDNA SEQUENCING 

Samples 

Human Poly A+ RNA of healthy individuals that passed away from sudden 

death/trauma derived from frontal lobe and hippocampus were commercially 

purchased through Clontech (Supplementary Table 2). 

Direct cDNA sequencing 
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A total of 100ng of Poly A+ RNA per sample was used for initial cDNA synthesis and 

subsequent library preparation according to the direct cDNA sequencing (SQK-

DCS109) protocol described in detail at protocols.io 

(dx.doi.org/10.17504/protocols.io.yxmvmkpxng3p/v1). Sequencing was performed on 

the PromethION using one R9.4.1 flow cell per sample and base-called using Guppy 

(v 4.0.11; Oxford Nanopore Technologies4ONT, Oxford, UK). Resulting fastq files 

were processed through the <pipeline-nanopore-ref-isoforms= 
(https://github.com/nanoporetech/pipeline-nanopore-ref-isoforms). Gene 

abundances was calculated implementing the -A parameter in StringTie (v 2.1.1 

RRID:SCR_016323)50. Data is available and deposited in the Gene Expression Omnibus 

under accession GSE215459 

Comparing short-read quantification versus long-read quantification 

For each sample in GTEx a log2 fold change was calculated with GBA1 as the 

numerator and GBAP1 as the denominator across frontal cortex and hippocampus. 

Shapiro-Wilk normality test in each tissue was used to confirm a normal distribution. 

To compare against ONT long-read quantification we used Grubbs' test (maximum 

normalized residual test) for a single outlier. 

PACBIO TARGETED ISO-SEQ 

Samples 

Human brain samples: Human Poly A+ RNA of healthy individuals that passed away 

from sudden death/trauma derived from caudate nucleus, cerebellum, cerebral 

cortex, corpus callosum, dorsal root ganglion, frontal lobe, hippocampus, medulla 

oblongata, pons, spinal cord, temporal lobe and thalamus were commercially 

purchased through Clontech (Supplementary Table 2). 

iPSC, neuroepithelial, neural progenitor, cortical neuron, astrocyte and 

microglia cells: Control iPSCs consisted of the previously characterized lines Ctrl151, 

ND41866 (Coriel), RBi001 (EBiSC/Sigma) and SIGi1001 (EBiSC/Sigma) as well as the 
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isogenic line previously generated52. Reagents were purchased from Thermo Fisher 

Scientific unless otherwise stated. iPSCs lines were grown in Essential 8 media on 

geltrex substrate and passaged using 0.5M EDTA. Cortical neurons were 

differentiated using dual SMAD inhibition for 10 days (10µM SB431542 and 1µM 

dorsomorphin, Tocris) in N2B27 media before maturation in N2B27 alone53. Day 100 

+/- 5 days was taken as the final timepoint. Astrocytes were generated following a 

similar neural induction protocol until day 80 before repeatedly passaging cortical 

neuronal inductions in 10ng/ml FGF2 (Peprotech) to enrich for astrocyte precursors. 

At day 150, to generate mature astrocytes, a two-week maturation consisted of 

BMP4 (10ng/ml, Thermo Fisher) and LIF (10ng/ml, Sigma)54. To induce inflammatory 

conditions, astrocytes were stimulated with TNFα (30ng/ml, Peprotech), IL1α (3ng/ml, 
Peprotech) and C1q (400ng/ml, Merck)55. iPSC-microglia were differentiated 

following the protocol of Xiang at al56. Embryoid bodies were generated using 10,000 

iPSCs and myeloid differentiation was initiated in Lonza XVivo 15 media, IL3 

(25ng/ml, Peprotech) and MCSF (100ng/ml, Peprotech). Microglia released from 

embryoid bodies were harvested weekly from 4 weeks and matured in DMEM-F12 

supplemented with 2% insulin/transferrin/selenium, 1% N2 supplement, 1X glutamax, 

1X NEAA and 5ng/ml insulin supplemented with IL34 (100ng/ml, Peprotech), MCSF 

(25ng/ml, Peprotech), TGFβ1 (5ng/ml, Peprotech). A final two-day maturation 

consisted of CXC3L1 (100ng/ml, Peprotech) and CD200 (100ng/ml, 2B Scientific). 

Inflammation was stimulated with lipopolysaccharide (10ng/ml, Sigma). 

Total RNA was extracted using the Qiagen RNeasy kit according to the 

manufacturer's protocol with β-mercaptoethanol added to buffer RLT and with a 

DNase digestion step included. 

cDNA synthesis 

A total of 250ng of RNA was used per sample for reverse transcription. Two different 

cDNA synthesis approaches were used: (i) Human brain cDNA was generated by 

SMARTer PCR cDNA synthesis (Takara) and (ii) iPSC derived cell lines were generated 
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using NEBNext® Single Cell/Low Input cDNA Synthesis & Amplification Module 

(New England Biolabs). For both reactions sample-specific barcoded oligo dT (12 µM) 

with PacBio 16mer barcode sequences were added (Supplementary Table 3). 

SMARTer PCR cDNA synthesis: First strand synthesis was performed as per 

manufacturer instructions, using sample-specific barcoded primers instead of the 39 
SMART CDS Primer II A. We used a 90 min incubation to generate full-length cDNAs. 

cDNA amplification was performed using a single primer (59 PCR Primer II A from the 
SMARTer kit, 5′ AAG CAG TGG TAT CAA CGC AGA GTA C 3′) and was used for all PCR 
reactions post reverse transcription. We followed the manufacturer9s protocol with 
our determined optimal number of 18 cycles for amplification; this was used for all 

samples. We used a 6 min extension time in order to capture longer cDNA 

transcripts. PCR products were purified separately with 1X ProNex® Beads. 

NEBNext® Single Cell/Low Input cDNA Synthesis & Amplification Module: A 

reaction mix of 5.4 μL of total RNA (250 ng in total), 2 μL of barcoded primer, 1.6 μL 
of dNTP (25 mM) held at 70°C for 5 min. This reaction mix was then combined with 5 

μL of NEBNext Single Cell RT Buffer, 3 μL of nuclease-free H2O and 2 μL NEBNext 
Single Cell RT Enzyme Mix. The reverse transcription mix was then placed in a 

thermocycler at 42°C with the lid at 52°C for 75 minutes then held at 4°C. On ice, we 

added 1 μL of Iso-Seq Express Template Switching Oligo and then placed the 

reaction mix in a thermocycler at 42°C with the lid at 52°C for 15 minutes. We then 

added 30 μL elution buffer (EB) to the 20 μL Reverse Transcription and Template 
Switching reaction (for a total of 50 μL), which was then purified with 1X ProNex® 

Beads and eluted in 46 μL of EB. cDNA amplification was performed by combining 
the eluted Reverse Transcription and Template Switching reaction with 50 μL of 
NEBNext Single Cell cDNA PCR Master Mix, 2 μL of NEBNext Single Cell cDNA PCR 
Primer, 2 μL of Iso-Seq Express cDNA PCR Primer and 0.5 μL of NEBNext Cell Lysis 
Buffer. 

cDNA Capture Using IDT Xgen® Lockdown® Probes  
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We used the xGen Hyb Panel Design Tool 

(https://eu.idtdna.com/site/order/designtool/index/XGENDESIGN) to design non-

overlapping 120-mer hybridization probes against GBA1 and GBAP1. We removed 

any overlapping probes with repetitive sequences (repeatmasker) and to reduce the 

density of probes mapping to intronic regions 0.2, which means 1 probes per 1.2kb. 

In the end, our probe pool consisted of 119 probes of which 54 were targeted 

towards GBA1 and 65 were targeted towards GBAP1. 

We pooled an equal mass of barcoded cDNA for a total of 500 ng per capture 

reaction. Pooled cDNA was combined with 7.5 μL of Cot DNA in a 1.5 mL LoBind 
tube. We then added 1.8X of ProNex beads to the cDNA pool with Cot DNA, gently 

mixed the reaction mix 10 times (using a pipette) and incubated for 10 min at room 

temperature. After two washes with 200 μL of freshly prepared 80% ethanol, we 

removed any residual ethanol and immediately added 19 μL hybridization mix 
consisting of: 9.5 μL of 2X Hybridization Buffer, 3 μL of Hybridization Buffer Enhancer, 
1 μL of xGen Asym TSO block (25 nmole), 1 μL of polyT block (25 nmole) and 4.5 μL 
of 1X xGen Lockdown Probe pool. 

The PacBio targeted Iso-Seq protocol is described in detail at protocols.io 

(dx.doi.org/10.17504/protocols.io.n92ld9wy9g5b/v1). 

Automated Analysis of Iso-Seq data using Snakemake 

For the analysis of targeted PacBio Iso-Seq data, we created two Snakemake57 (v 

5.32.2; RRID:SCR_003475) pipelines to robustly and systematically analyse targeted 

long-read RNA-sequencing data: 

APTARS (Analysis of PacBio TARgeted Sequencing, https://github.com/sid-

sethi/APTARS): For each SMRT cell, two files were required for processing: (i) a 

subreads.bam and (ii) a FASTA file with primer sequences, including barcode 

sequences.  
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Each sequencing run was processed by ccs (v 5.0.0; RRID:SCR_021174; 

https://ccs.how/), which combines multiple subreads of the same SMRTbell molecule 

and to produce one highly accurate consensus sequence, also called a HiFi read (≥ 
Q20). We used the following parameters: --minLength 10 3maxLength 50000 3
minPasses 3 3minSnr 2.5 3maxPoaCoverage 0 3minPredictedAccuracy 0.99. 

Identification of barcodes, demultiplexing and removal of primers was then 

performed using lima (v 2.0.0; https://lima.how/) invoking 3isoseq 3peek-guess. 

Isoseq3 (v 3.4.0; https://github.com/PacificBiosciences/IsoSeq) was then used to (i) 

remove polyA tails and (ii) identify and remove concatemers using, with the following 

parameters refine 3require-polya, --log-level DEBUG. This was followed by clustering 

and polishing with the following parameters using: cluster flnc.fofn clustered.bam 3
verbose 3use-qvs. 

Reads with predicted accuracy ≥ 0.99 were aligned to the GRCh38 reference genome 
using minimap258 (v 2.17; RRID:SCR_018550) using -ax splice:hq -uf 3secondary=no. 

samtools47 (RRID:SCR_002105; http://www.htslib.org/) was then used to sort and filter 

the output SAM for the locus of gene of interest, as defined in the config.yml.  

We used cDNA_Cupcake (v 22.0.0; https://github.com/Magdoll/cDNA_Cupcake) to: (i) 

collapse redundant transcripts, using collapse_isoforms_by_sam.py (--dun-merge-5-

shorter) and (ii) obtain read counts per sample, using 

get_abundance_post_collapse.py followed by demux_isoseq_with_genome.py. 

Isoforms detected were characterized and classified using SQANTI359 (v 4.2; 

https://github.com/ConesaLab/SQANTI3) in combination with GENCODE (v 38) 

comprehensive gene annotation. An isoform was classified as full splice match (FSM) 

if it aligned with reference genome with the same splice junctions and contained the 

same number of exons, incomplete splice match (ISM) if it contained fewer 5′ exons 
than reference genome, novel in catalog (NIC) if it is a novel isoform containing a 

combination of known donor or acceptor sites, or novel not in catalog (NNC) if it is a 

novel isoform with at least one novel donor or acceptor site.  
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PSQAN (Post Sqanti QC Analysis, https://github.com/sid-sethi/PSQAN)Following 

transcript characterisation from SQANTI3, we applied a set of filtering criteria to 

remove potential genomic contamination and rare PCR artifacts. We removed an 

isoform if: (1) the percent of genomic <A=s in the downstream 20 bp window was 

more than 80% (<perc_A_downstream_TTS= > 80); (2) one of the junctions was 

predicted to be template switching artifact (<RTS_stage= = TRUE); or (3) it was not 
associated with the gene of interest. Using SQANTI9s output of ORF prediction, NMD 
prediction and structural categorisation based on comparison with the reference 

annotation (GENCODE), we grouped the identified isoforms into the following 

categories: (1) Non-coding novel 3 if predicted to be non-coding and not a full-

splice match with the reference; (2) Non-coding known 3 if predicted to be non-

coding and a full-splice match with the reference; (3) NMD novel 3 if predicted to be 

coding & NMD, and not a full-splice match with the reference; (4) NMD known 3 if 

predicted to be coding & NMD, and a full-splice match with the reference; (5) 

Coding novel 3 if predicted to be coding & not NMD, and not a full-splice match 

with the reference; (6) Coding known (complete match) 3 if predicted to be coding 

& not NMD, and a full-splice & UTR match with the reference; and (7) Coding 

known (alternate 3’/5’ end) 3 if predicted to be coding & not NMD, and a full-

splice match with the reference but with an alternate 39 end, 59 end or both 39 and 59 
end. 

Given a transcript � in sample ÿ with �ÿ� as the number of full-length reads mapped 

to the transcript �, we calculated the normalised full-length reads (ā�ÿ��ÿ) as the 

percentage of total transcription in the sample: 

ā�ÿ��ÿ =  �ÿ��ÿ∑ �ÿ��ÿý�=1  × 100 

where, ā�ÿ��ÿ represents the normalised full-length read count of transcript � in 

sample ÿ, �ÿ��ÿ is the full-length read count of transcript � in sample ÿ and Ā is the 

total number of transcripts identified to be associated with the gene after filtering. 
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Finally, to summarise the expression of a transcript associated with a gene, we 

calculated the mean of normalised full-length reads (ā�ÿ��ÿ) across all the samples: 

ā�ÿ�� =  ∑ ā�ÿ��ÿþÿ=1 ā  

where, ā�ÿ�� represents the mean expression of transcript � across all samples and ā is the total number of samples. To remove low-confidence isoforms arising from 

artefacts, we only selected isoforms fulfilling the following three criteria: (1) 

expression of minimum 0.1% of total transcription per sample, i.e., ā�ÿ��ÿ ≥ 0.1; (2) 

a minimum of 80% of total samples passing the ā�ÿ��ÿ threshold; and (3) expression 

of minimum 0.3% of total transcription across samples, i.e., ā�ÿ�� ≥ 0.3. 

Quality control 

Quality control involved removal of potential genomic contamination and rare PCR 

artifacts to obtain the final set of on-target GBA1 and GBAP1 isoforms. Filtering 

criteria included that each final isoform must: (i) be supported by a total of 10 FL 

reads; (ii) not have ≥ 80% genomic 8A9s in the 39 downstream 20-bp window and; (iii) 

have no junctions that are predicted to be template switching artifacts as 

implemented by SQANTI3.  

Visualizations of transcripts 

For any visualization of transcript structures we have recently developed 

ggtranscript60 (v 0.99.03; https://github.com/dzhang32/ggtranscript), a R package 

that extends the incredibly popular tool ggplot249 (v 3.3.5 RRID; SCR_014601) for 

visualizing transcript structure and annotation. 

CAGE-seq analysis 

To assess whether predicted 59 TSSs of novel transcript were in proximity of Cap 

Analysis Gene Expression (CAGE) peaks we used data from the FANTOM5 dataset36,37. 

CAGE is based on <cap trapping=: capturing capped full-length RNAs and sequencing 

only the first 20330 nucleotides from the 59-end. CAGE peaks were downloaded from 
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the FANTOM5 project 

(https://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_latest/extra/CAGE_peaks/h

g38_liftover+new_CAGE_peaks_phase1and2.bed.gz; accessed 20/05/2022).  

SINGLE NUCLEAR RNA-SEQUENCING 

Nuclei extraction of cortical post-mortem tissue 

Post-mortem brain tissue from control individuals with no known history of 

neurological or neuropsychiatric symptoms was acquired from the Cambridge Brain 

Bank (ethical approval from the London-Bloomsbury Research Ethics Committee, REC 

reference:16/LO/0508). Brains were bisected in the sagittal plane with one half flash-

frozen and stored at -80 °C and the other half fixed in 10% neutral buffered formalin 

for 233 weeks. From the flash-frozen blocks, 50-100mg were sampled from the 

dorsolateral prefrontal cortex (Brodmann area 46) and stored at -80 °C until use.  

Nuclei were isolated as previously described61, with minor modifications45. 

Approximately 20 μg of -80 °C-conserved tissue was thawed and dissociated in ice-

cold lysis buffer (0.32M sucrose, 5 mM CaCl2, 3 mM MgAc, 0.1 mM Na2EDTA, 10 mM 

Tris-HCl pH 8.0, 1 mM DTT) using a 1 mL glass dounce tissue grinder (Wheaton). The 

homogenate was slowly and carefully layered on top of a sucrose layer (1.8 M 

sucrose, 3 mM MgAc, 10 mM Tris-HCl pH 8.0, 1 mM DTT) in centrifuge tubes to 

create a gradient, and then centrifuged at 15,500 rpm for 2 h 15 min. After 

centrifugation, the supernatant was removed, and the pellet softened for 10 minutes 

in 100 μL of nuclear storage buffer (15% sucrose, 10 mM Tris-HCl pH 7.2, 70 mM KCl, 

2 mM MgCl2) before resuspension in 300 μL of dilution buffer (10 mM Tris-HCl pH 

7.2, 70 mM KCl, 2 mM MgCl2, Draq7 1:1000). The suspension was then filtered (70 

μm cell strainer) and sorted via FACS (FACS Aria III, BD Biosciences) at 4 °C at a low 

flowrate, using a 100 μm nozzle (Pipette tips and Eppendorf tubes for transferring 

nuclei were pre-coated with 1% BSA). 8,500 nuclei were sorted for single-nucleus 

RNA-sequencing and then loaded on to the Chromium Next GEM Single Cell 59 Kit 
(10x Genomics, PN-1000263). Sequencing libraries were generated with unique dual 
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indices (TT set A) and pooled for sequencing on a NovaSeq 6000 (Illumina) using a 

100-cycle kit and 28-10-10-90 reads. 

Single nucleus RNA-sequencing analysis 

Raw base calls were demultiplexed to obtain sample specific FASTQ files using Cell 

Ranger mkfastq and default parameters (v 6; 10x Genomics; RRID:SCR_017344). 

Reads were aligned to the GRCh38 genome assembly using the Cell Ranger count (v 

6; 10x Genomics; RRID:SCR_017344) with default parameters (--include-introns was 

used for nuclei mapping)62. Nuclei were filtered based on the number of genes 

detected - nuclei with less of the mean minus a standard deviation, or more than the 

mean plus two standard deviations were discarded to exclude low quality nuclei or 

possible doublets. The data was normalized to center log ratio (CLR) to reduce 

sequencing depth variability. Clusters were defined with Seurat function FindClusters 

(v; RRID:SCR_007322), using resolution of 0.5. Obtained clusters were manually 

annotated using canonical marker gene expression as following: 

Cell type Markers used 

Excitatory neurons RBFOX3, GRIN1, HS3ST2 

Interneurons GAD1, GAD2, CALB2, CNR1 

Astrocytes GFAP, AQP4, GJA1, SLC1A3 

Oligodendrocytes PLP1, MOG, MBP 

OPC COL9A1, VCAN, PDGFRA 

Microglia FYB1, P2RY12 

 

Signal of GBA/GBAP1 per cell type 

Barcodes (grouped by sample and cell type) were used to create Cluster objects from 

the python package trusTEr (version 0.1.1; https://github.com/raquelgarza/truster) 

and processed with the following functions: 

1) tsv_to_bam() 3 extracts the given barcodes from a sample9s BAM file 
(outs/possorted_genome_bam.bam output from Cell Ranger count) using the 

subset-bam software from 10x Genomics (v 1.0). Outputs one BAM file for 

each cell type per sample, which contains all alignments.  
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2) filter_UMIs() 3 filters BAM files to only keep unique combinations of cell 

barcodes, UMI, and sequences. 

3) bam_to_fastq() 3 uses bamtofastq from 10x Genomics (version 1.2.0) to 

outputs the filtered BAM files as fastQ files. 

4) concatenate_lanes() 3 concatenates the different lanes (as output from 

bamtofastq) from one library and generates one FASTQ file per cluster. 

5) merge_clusters() 3 concatenates the resulting FASTQ files (one for each cell 

type and sample) in defined groups of samples. Here, groups were set to PD 

or Control depending on the diagnosis of the individual from which the 

sample was derived. Output is a FASTQ file per cell type per condition. 

6) map_clusters() 3 the resulting FASTQ files were then mapped using STAR (v 

2.7.8a). Multimapping reads were allowed to map up to 100 loci 

(outFilterMultimapNmax 100, winAnchorMultimapNmax 200), the rest of the 

parameters were used as default. 

The resulting BAM files were converted to bigwig files using bamCoverage and 

normalized by the number of nuclei per group (expression was multiplied by a scale 

factor of 1e+07 and divided by the number of nuclei in a particular cell type) 

(deeptools v 2.5.4; RRID:SCR_016366).  

For more details, please refer to the scripts process_celltypes_control_PFCTX.py, 

celltypes_characterization_PFCTX_Ctl.Rmd, and Snakefile_celltypes_control_PFCTX at 

the github 

https://github.com/raquelgarza/GBA_snRNAseq_cutnrun_Gustavsson2022.git.  

CUT&RUN 

Post-mortem brain tissue from control individuals with no known history of 

neurological or neuropsychiatric symptoms was acquired from the Skåne University 

Hospital Tissue Bank (ethical approvement Ethical Committee in Lund, 06582-2019 & 
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00080-2019). From the flash-frozen tissue, 50-100 mg were sampled from the 

dorsolateral prefrontal cortex and stored at -80 °C until use.   

CUT&RUN was performed as previously described 63, with minor modifications. 

ConA-coated magnetic beads (Epicypher) were activated by washing twice in bead 

binding buffer (20 mM HEPES pH 7.5, 10 mM KCl, 1 mM CaCl, 1 mM MnCl2) and 

placed on ice until use. For adult neuronal samples, nuclei were isolated from frozen 

tissue as described above (see, <Nuclei extraction of cortical post-mortem tissue=). 
Prior to FACS, nuclei were incubated with Recombinant Alexa Fluor® 488 Anti-NeuN 

antibody [EPR12763] - Neuronal Marker (ab190195) at a concentration of 1:500 for 

30 minutes on ice. The nuclei were run through the FACS at 4 °C at a low flowrate, 

using a 100 μm nozzle.  300,000 Alexa Fluor 3 488 positive nuclei were sorted. The 

sorted nuclei were pelleted at 1,300 x g for 15 min and resuspended in 1 mL of ice-

cold nuclear wash buffer (20 mM HEPES, 150 mM NaCl, 0.5 mM spermidine, 1x 

cOmplete protease inhibitors, 0.1% BSA). 30 µL (10 µL per antibody treatment) of 

ConA-coated magnetic beads (Epicypher) were added during gentle vortexing 

(pipette tips for transferring nuclei were pre-coated with 1% BSA). Binding of nuclei 

to beads proceeded for 10 min at room temperature with gentle rotation, and then 

bead-bound nuclei were split into equal volumes (corresponding to IgG control and 

H3K4me3 treatments). After removal of the wash buffer, nuclei were then 

resuspended in 100 µL cold nuclear antibody buffer (20 mM HEPES pH 7.5, 0.15 M 
NaCl, 0.5 mM Spermidine, 1x Roche complete protease inhibitors, 0.02% w/v 
digitonin, 0.1% BSA, 2 mM EDTA) containing primary antibody (rabbit anti-H3K4me3 

Active Motif 39159, RRID:AB_2615077; or goat anti-rabbit IgG, Abcam ab97047, 

RRID:AB_10681025) at 1:50 dilution and incubated at 4 ºC overnight with gentle 

shaking. Nuclei were washed thoroughly with nuclear digitonin wash buffer (20 mM 
HEPES pH 7.5, 150 mM NaCl, 0.5 mM Spermidine, 1x Roche cOmplete protease 
inhibitors, 0.02% digitonin, 0.1% BSA) on the magnetic stand. After the final wash, 

pA-MNase (a generous gift from Steve Henikoff) was added in nuclear digitonin 

wash buffer and incubated with the nuclei at 4 ºC for 1 h. Nuclei were washed twice, 
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resuspended in 100 µL digitonin buffer, and chilled to 0-2 ºC in a metal block sitting 

in wet ice. Genome cleavage was stimulated by addition of 2 mM CaCl2 at 0 ºC for 

30 min. The reaction was quenched by addition of 100 µL 2x stop buffer (0.35 M 

NaCl, 20 mM EDTA, 4 mM EGTA, 0.02% digitonin, 50 ng/µL glycogen, 50 ng/µL 

RNase A, 10 fg/µL yeast spike-in DNA (a generous gift from Steve Henikoff)) and 

vortexing. After 30 min incubation at 37 ºC to release genomic fragments, bead-

bound nuclei were placed on the magnet stand and fragments from the supernatant 

purified by a NucleoSpin clean-up kit (Macherey-Bagel). Illumina sequencing libraries 

were prepared using the Hyperprep kit (KAPA) with unique dual-indexed adapters 

(KAPA), pooled and sequenced on a Nextseq500 instrument (Illumina). 

CUT&RUN analysis 

Paired-end reads (2x150 bp) were aligned to the hg38 genome using bowtie264 (v 

2.3.4.2; RRID:SCR_016368) (--local 3very-sensitive-local 3no-mixed 3no-discordant 3
phred33 -I 10 -X 700), converted to bam files with samtools47 (v 1.4; 

RRID:SCR_002105), and indexed with samtools47 (v 1.9; RRID:SCR_002105). 

Normalized bigwig coverage tracks were made with bamCoverage  (deepTools 65 v 

2.5.4; RRID:SCR_016366), with RPKM normalization. For more details, please refer to 

the pipeline Snakefile_Neun_cutnrun in the github 

https://github.com/raquelgarza/GBA_snRNAseq_cutnrun_Gustavsson2022.git.  

TRANSLATION OF NOVEL TRANSCRIPTS 

Structure predictions 

Protein sequences of the different isoforms were aligned pairwise to MANE select 

with BioPython using a BLOSUM62 scoring matrix with gap open penalty of -3 and 

gap extend penalty of -0.1. pLDDT scores for residues from AlphaFold2 models were 

extracted and mapped onto the sequence of MANE select according to the 

alignment. While the structure of the predictions of newly detected isoforms follows 

mostly the known GBA1 structure a noteworthy breakdown of the confidence score 

in regions with deletions is visible. This might indicate a conflict between coevolution 
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information and structural templates from dominant isoforms vs. the learned 

physico-chemical properties of protein structures, which might be unfavorable in 

those regions. 

Cell culture 

H4 cells (ATCC® HTB-148148™) with homozygous knockout of GBA1 

(ENSG00000177628) were generated using indels-based CRISPR/Cas9 technology 

[gRNA 59-TCCATTGGTCTTGAGCCAAG-39 (reverse orientation) targeting exon 7] via 

Horizon Discovery Ltd. Cells were cultured in DMEM supplemented with 10% foetal 

bovine serum at 37 °C, 5% CO2. Cells were sub-cultured every 3-4 days at a split ratio 

of 1:6. 

Cell transfection 

Cells were transfected using Lipofectamine 3000 reagent (Invitrogen L3000008) 

according to manufacturer9s instructions. GBA1 or GBAP1 transcripts subcloned in 

the pcDNA3.1(+)-C-DYK vector were designed using the GenSmart design tool and 

acquired from GenScript. 

Western blot 

Protein was extracted from whole cells using MSD lysis buffer (MSD R60TX-3) 

containing 1x cOmplete Mini Protease Inhibitor Cocktail (Roche 11836153001) and 

1x PhosSTOP Phosphatase Inhibitor Cocktail (Roche 4906845001). Protein 

concentration was determined by Bicinchoninic acid (BCA) assay according to 

manufacturer9s instructions (Pierce 23225). 10-20 µg of protein diluted in NuPAGE™ 

LDS Sample Buffer (Invitrogen NP0007) and 200 mM DTT was loaded on NuPAGE™ 

4-12% Bis-Tris mini protein gels. Gels were run in NuPAGE™ MES SDS Running Buffer 

(Invitrogen NP0002) at 150V and transferred to 0.2 µm nitrocellulose membranes in 

Tris-glycine transfer buffer containing 20% MeOH at 30V for 1.5 hrs. Subsequently, 

membranes were blocked in Intercept Blocking Buffer (LI-COR 927-60001), incubated 

with primary antibodies overnight at 4 °C, then IRdye-conjugated secondary 
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antibodies before imaging on the LI-COR Biosciences- Odyssey CLx imaging system. 

Primary antibodies used include mouse anti-FLAG (Sigma F3165), rabbit anti-GBA1 

(C-terminal; Sigma G4171) and rabbit anti-GAPDH (Abcam ab9485). 

GCase activity assay 

Cells cultured on a 96-well plate were washed with PBS (no Ca2+, no Mg2+) and 

harvested in activity assay buffer containing 50 mM citric acid/potassium phosphate 

pH 5.0-5.4, 0.25% (v/v) Triton X-100, 1% (w/v) sodium taurocholate, and 1 mM EDTA. 

After a cycle of freeze/thaw and 30 min incubation on ice, samples were centrifuged 

at 3,500 rpm for 5 min in 4 °C. Supernatant was collected and incubated in 1% BSA 

and 2 mM 4-methylumbelliferyl-β-D-galactopyranoside (4-MUG, Sigma M3633) for 

90 min at 37 °C. The reaction was stopped by addition of 1 M glycine pH 12.5, and 

fluorescence (Ex 365 nm; Em 445 nm) was measured using SpectraMax M2 

microplate reader (Molecular Devices). Enzyme activity was normalised to 

untransfected controls. 

Immunofluorescence 

Cells cultured on a 96-well plate were fixed in 4% PFA for 10 min, methanol for 10 

min, and permeabilized in 0.3% Triton X-100 for 10 min at room temperature. Cells 

were then blocked in BlockAce blocking reagent (BioRad BUF029) for 60 min then 

incubated with primary antibodies at 4 °C overnight. Following washing with PBS 

with 0.1% Tween-20, cells were incubated with Alexa Fluor secondary antibodies and 

Hoechst nucleic acid stain. Imaging was performed on the Thunder imager (Leica). 

Primary antibodies used include mouse anti-FLAG (Sigma F3165), mouse anti-GBA1 

(Abcam ab55080) and rabbit anti-Cathepsin D (Abcam ab75852). 

Mass spectrometric analysis of prefrontal cortex proteomes 

A public mass spectrometry dataset was retrieved from ProteomeXchange ( 

PXD026370). This data set consists of human brain tissue was collected post mortem 

from patients diagnosed with multiple system atrophy (n=45) and from controls 
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(n=30) in order to perform a comparative quantitative proteome profiling of tissue 

from the prefrontal cortex (Broadman area 9)41. 

The data analysis was performed using MetaMorpheus66 (v 0.0.320; 

https://github.com/smith-chem-wisc/MetaMorpheus). The search was conducted for 

two 2 GBAP1 isoforms (PB.845.1693 and PB.845.525), and a list of 267 frequent 

protein contaminants found within mass spectrometry data as provided by 

MetaMorpheus. An FDR (false discovery rate) of 1% was applied for presentation of 

PSMs (peptide spectrum matches), peptides, and proteins following review of decoy 

target sequences. 

The following search settings were used: protease = trypsin; maximum missed 

cleavages = 2; minimum peptide length = 7; maximum peptide length = unspecified; 

initiator methionine behavior = Variable; fixed modifications = Carbamidomethyl on 

C, Carbamidomethyl on U; variable modifications = Oxidation on M; max mods per 

peptide = 2; max modification isoforms = 1024; precursor mass tolerance = ±5.0000 

PPM; product mass tolerance = ±20.0000 PPM; report PSM ambiguity = True. 

ANNOTATION OF PARENT GENES AND PROTEIN-CODING GENES 

To explore inaccuracies in annotation of parent genes and protein-coding genes we 

applied three independent approaches: 

Long-read RNA sequencing 

To identify novel full-length transcripts we used publicly available frontal cortex from 

ENCODE67 (https://www.encodeproject.org/rna-seq/long-read-rna-seq/) and 

processed with the ENCODE DCC deployment of the TALON pipeline (v v2.0.0; 

https://github.com/ENCODE-DCC/long-read-rna-pipeline)68. Samples used had the 

following accession IDs: # ENCSR462COR, ENCSR169YNI, ENCSR257YUB, 

ENCSR690QHM, ENCSR316ZTD, ENCSR697ASE, ENCSR094NFM, ENCSR463IDK and 

ENCSR205QMF. These samples were all sequenced on the PacBio Sequel II platform.  

Novel expressed regions 
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Novel unannotated expression32 was downloaded from Visualisation of Expressed 

Regions (vizER; https://rytenlab.com/browser/app/vizER). The data originates from 

RNA-sequencing data in base-level coverage format for 7,595 samples originating 

from 41 different GTEx tissues. Cell lines, sex-specific tissues, and tissues with 10 

samples or below were removed. Samples with large chromosomal deletions and 

duplications or large copy number variation previously associated with disease were 

filtered out (smafrze = <USE ME=). Coverage for all remaining samples was 
normalized to a target library size of 40 million 100-bp reads using the area under 

coverage value provided by recount243. For each tissue, base-level coverage was 

averaged across all samples to calculate the mean base-level coverage. GTEx junction 

reads, defined as reads with a non-contiguous gapped alignment to the genome, 

were downloaded using the recount2 resource and filtered to include only junction 

reads detected in at least 5% of samples for a given tissue and those that had 

available donor and acceptor splice sequences. 

Splice junctions 

To identify novel junctions with potential evidence of incomplete annotation, we 

used data provided by IntroVerse. 

IntroVerse is a relational database that comprises exon-exon split-read data on the 

splicing of human introns (Ensembl v105) across 17,510 human control RNA samples 

and 54 tissues originally made available by GTEx and processed by the recount3 

project28. RNA-seq reads provided by the GTEx v8 project were sequenced using the 

Illumina TruSeq library construction protocol (non-stranded 76bp-long reads, polyA+ 

selection). Samples from GTEx v8 were processed by recount3 through Monorail 

(STAR45) to detect and summarise splice junctions and Megadepth69 to analyse the 

bam files produced by STAR). Additional quality-control criteria applied by IntroVerse 

included: (i) exclusively analysing samples passing the GTEx v8 minimum standards 

(smafrze != "EXCLUDE"); (ii) discarding any split-reads overlapping any of the 
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sequences included in the ENCODE Blacklist70; (iii) or split reads that presented an 

implied intron length shorter than 25 base pairs. 

Second, we extracted all novel donor and acceptor junctions that had evidence of 

use in >=5% of the samples of each tissue, and grouped them by gene. We then 

classify those genes either as <parent= or <protein-coding=. Finally, we calculated the 

proportion that each category of genes presented within each tissue. Focusing on 

the parent genes category, this can be described as it follows: 

��Ā = Ā� 

Let Ā denote the total number of parent genes containing at least one novel junction 

shared by >=5% of the samples of the current tissue. Let � denote the total number 

of parent genes available for study. Let � denote the current tissue.  

We mirrored the formula above to calculate the proportion of protein-coding genes 

per tissue. 

FIGURE GENERATION 

The code for all figures in this manuscript can be accessed through: 

https://github.com/egustavsson/GBA_GBAP1_manuscript.git  
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Fig. 1: Pseudogenes are frequent and complicate transcriptomic analysis of 

their corresponding parent genes. a, Schematic outlining the methodological 

framework used in this study. b, Pie chart showing the number of annotated 

pseudogenes that represent processed, unprocessed or other pseudogenes. Other 

pseudogenes includes unitary, IG (Inactivated immunoglobulin) and TR (T-cell 

receptor) pseudogenes. c, Pie chart depicting the percentage of parent genes that 

are OMIM disease genes (https://omim.org). d, Histogram showing tissue expression 

of pseudogenes as assessed using uniquely mapping reads (generated by the 

Genotype-Tissue Expression Consortium, GTEx v8). e, Histogram depicting sequence 

similarity of parent-pseudogene pairs across coding sequences (CDS). GBA1 and 

GBAP1 96% sequence similarity. f, Expression in transcripts per million (TPM) of GBA1 

and GBAP1 from GTEx using gene-level expression measures (10/11/2021, v8). g, 

Density plot of log2 fold change of GBA1 (numerator) and GBAP1 (denominator) 

from GTEx using gene-level expression measures (10/11/2021, v8). The black dotted 

line represents the mean log2 fold change of GBA1 and GBAP1 using GTEx-derived 

data, while the red dotted line represents the log2 fold change generated through 

direct cDNA Oxford Nanopore technologies (ONT) sequencing from pooled human 

frontal cortex (n = 26) and hippocampus (n = 27) (total library size: 42.7 million and 

48.04 million reads, respectively).  
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Fig. 2: Targeted long-read RNA-sequencing of GBA1 and GBAP1 identifies 

frequent novel transcription. a, Bar chart depicting the number of unique GBA1 

transcripts identified per transcript category through targeted long-read RNA 

sequencing across 12 human brain regions. b, Normalised expression per GBA1 

transcripts corresponding to the percentage of expression per transcripts out of total 

expression of the loci. c, Stacked bar chart showing expression per transcript 

category of GBA1 across 12 human brain regions. d, Bar chart depicting the number 

of unique GBAP1 transcripts identified per transcript category through targeted 

long-read RNA sequencing across 12 human brain regions. e, Normalised expression 

per GBAP1 transcripts corresponding to the percentage of expression per transcripts 

out of total expression of the loci. f, Stacked bar chart showing the expression per 

transcript category of GBAP1 across 12 human brain regions. 
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Fig. 3: Novel protein-coding transcripts of GBA1 and GBAP1 share a similar 

structure at the C-terminus but with partial or full loss of key domains. a, Novel 

coding GBA1 transcripts plotted using ggtranscript with differences as compared to 
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MANE select (ENST00000368373) highlighted in blue and red. b, Novel predicted 

coding GBAP1 transcripts plotted using ggtranscript with differences as compared to 

ensemble canonical (ENST00000566701) highlighted in blue and red. c, Schematic 

representation of GBA1 with the signal peptide (amino acids 1-39), glyco_hydro_30 

(amino acids 117-446), and glycol_hydro_30C (amino acids 469-531). d, X-ray 

structure of GBA1 (PDB 2v3f) with catalytic Glu residues highlighted in yellow and 

probable LIMP-2 interface region highlighted in purple. e, Alphafold2 predictions of 

GBA1 MANE select (ENST00000368373) and f, the three most highly expressed novel 

protein-coding GBA1 isoforms colored by prediction confidence score (pLDDT). g, X-

ray structure of GBA1 (PDB 2v3f) (violet) superimposed on AlphaFold2 predicted 

structure of the longer ORF generated by GBAP1 PB.845.1693 (green). h, Alphafold2 

predictions of the two most highly expressed novel protein-coding GBAP1 isoforms 

colored by prediction confidence score (pLDDT). 
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Fig. 4: Novel GBA1 and GBAP1 transcripts are translated with no GCase activity 

and impaired lysosomal co-localization. a, Immunoblot of H4 GBA(-/-/-) knockout 

cells transiently transfected with GBA1 and GBAP1 constructs containing a c-terminus 

FLAG-tag. GBA1 and GBAP1 expression was detected using FLAG-tag antibody, 

GAPDH was used as a loading control. The predicted protein sizes are: PB.845.525 

(GBAP1; 321 aa; 35 kDa), PB.845.2627 (GBA1 affecting GH30 and SP; 219 aa; 24 kDa), 

PB.845.2629 (GBA1 affecting GH30 and SP; 164 aa; 18 kDa), PB.845.1693 (GBAP1; 399 

aa; 44 kDa), ENST00000368373 (GBA1 MANE select; 537 aa; 62 kDa) and PB.845.2954 

(GBA1 affecting GH30 and SP; 414 aa; 46 kDa). b, Lysosomal enzyme assay of H4 

GBA(-/-/-) knockout cells transiently transfected with GBA1 and GBAP1 constructs, c, 

and in H4 parental. GCase enzyme activity was significantly increased only in H4 

parental and GBA(-/-/-) knockout cells transiently transfected with the GBA1 full-

length construct (ENST00000368373), compared to the empty vector control (n=3). 

d, Lysosomal co-localisation is impaired in novel GBA1 and GBAP1 transcripts. 

Immunohistochemistry of H4 parental and GBA(-/-/-) knockout cells transiently 
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transfected with GBA1 and GBAP1 constructs containing a c-terminus Flag tag. Co-

localisation of GBA-Flag and GBAP1-Flag (Green) with CathepsinD (Red) was 

detected using Flag tag antibody. 
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Fig. 5: Novel protein-coding transcripts of GBA1 and GBAP1 shows cell type 

specific usage. a, GBA1 expression from 59 single-nucleus RNA-sequencing of 

human frontal cortex . b, GBAP1 expression from 59 single-nucleus RNA-sequencing 

of human frontal cortex. c, Expression of GBA1 ORFs from PacBio Iso-Seq data 

generated from human iPSC-derived cortical neuron (n = 6), astrocyte (n = 3) and 

microglia (n = 3) cultures. d, Expression of GBAP1 ORFs from PacBio Iso-Seq data 

generated from human iPSC-derived cortical neuron (n = 6), astrocyte (n = 3) and 

microglia (n = 3) cultures. 

  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513169doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.21.513169
http://creativecommons.org/licenses/by/4.0/


 

Fig. 6: Inaccuracies in annotation is common for parent genes on a genome-

wide scale. a, Proportion of transcripts per parent gene and per protein coding gene 

without a pseudogene with a novel splice site from long-read RNA-sequencing data 

of 9 frontal cortex samples. b, Proportion of genes with evidence of incomplete 

annotation based on the identification of novel expressed genomic regions from 

short-read RNA-sequencing data. c, Proportion of genes with evidence of incomplete 

annotation based on the identification novel splice junctions found in at least 5% of 

samples from short-read RNA-sequencing data. 
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EXTENDED DATA FIGURES 

 

Extended Data Fig. 1: Most short RNA seq reads mapping to GBA1 multimap to 

GBAP1. a, Violin plots showing multimapping of GBA1 from short-read RNA-seq 

data (100bp paired end reads, mean reads per sample of 182.9 ± 14.9M) from human 

post-mortem anterior cingulate cortex samples generated from control (n = 5) and 

PD-affected individuals (n = 7)2. b, Violin plots showing the percentage of GBA1 

short RNA-sequencing multimapping reads that that also map to GBAP1.  
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Extended Data Fig. 2:  Approach for targeted long-read RNA sequencing. a, 

Schematic illustration showing the approach taken for targeted long-read RNA 

sequencing of GBA1 and GBAP1 in human brain tissues and iPSC derived neurons, 

microglia and astrocytes. b, Flowchart showing the categorization of transcripts 

generated though long-read RNA  sequencing. 

  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513169doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.21.513169
http://creativecommons.org/licenses/by/4.0/


 

Extended Data Fig. 3:  Total number of unique transcripts of GBA1 and GBAP1 

by normalized expression. a, Depreciation curve showing the number of unique 

GBA1 transcripts on the Y-axis increased by increasing the normalized full-length 

read count of transcript (NFLRT) on the X-axis. NFLRT is the total number of reads per 

transcript normalized by the total number of reads of the loci. b,  Depreciation curve 

showing the number of unique GBAP1 transcripts on the Y-axis increased by 

increasing the NFLRT on the X-axis. 
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Extended Data Fig. 4:  Alignment of novel GBA1 and GBAP1 protein sequences. 

Protein sequences of novel GBA1 and GBAP1 isoforms pairwise aligned to GBA1 

MANE select. 
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Extended Data Fig. 5:  Transcriptionally active euchromatin at the 5’ TSS of 
GBAP1 ORF transcripts. a, Novel protein coding transcripts of GBA1 CUT&RUN 

profiling of H3K4me3 marks in neurons (based on NeuN+) and CAGE sequencing 

data from FANTOM5. b, Novel protein coding transcripts of GBAP1 CUT&RUN 

profiling of H3K4me3 marks in neurons (based on NeuN+) and CAGE sequencing 

data from FANTOM5. 
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