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ABSTRACT

Recent work has demonstrated that the relationship between structural and functional connectivity
varies regionally across the human brain, with reduced coupling emerging along the sensory-
association cortical hierarchy. The biological underpinnings driving this expression, however,
remain largely unknown. Here, we postulated that intracortical myelination and excitation-
inhibition (EI) balance mediate the heterogeneous expression of structure-function coupling (SFC)
and its temporal variance across the cortical hierarchy. We employed atlas- and voxel-based
connectivity approaches to analyze neuroimaging data acquired from two groups of healthy
participants. Our findings were consistent across processing pipelines: 1) increased myelination
and lower El-ratio associated with more rigid SFC and restricted moment-to-moment SFC
fluctuations; 2) a gradual shift from El-ratio to myelination as the principal predictor of SFC
occurred when traversing from granular to agranular cortical regions. Collectively, our work
delivers a novel framework to conceptualize structure-function relationships in the human brain,
paving the way for an improved understanding of how demyelination and/or EI-imbalances induce
reorganization in brain disorders.
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INTRODUCTION

The structural and functional connectivity patterns of the human brain have been extensively
mapped using macroscale neuroimaging. To elucidate how the anatomical wiring of the brain
sculpts its functional connectivity in support of flexible cognition, recent studies have increasingly
focused on the extent to which structure and function are coupled across brain regions.!= A brain
region’s ‘structure-function coupling’ (SFC) refers to the manner in which its functional and
structural connectivity statistically depend upon one another. Here, a structural connection is the
white matter projections linking two brain regions, as measured by diffusion magnetic resonance
imaging (MRI), whereas a functional connection is the statistical similarity between hemodynamic
responses arising from two brain regions, as measured by functional MRI (fMRI). Intuitively, a
brain region with high SFC has a stronger statistical correlation between its structural and
functional connectivity to other regions in the brain.

Regional variations in SFC among individuals track differences in cognitive performance. For
example, enhanced working memory performance is correlated with weaker SFC in the unimodal
somatosensory cortex and with stronger coupling in transmodal regions within the fronto-parietal
and default mode networks.* Further, individual differences in SFC predict cognitive flexibility in
a perceptual switching task,’ as well as composite cognition scores encompassing multiple
cognitive domains.® Beyond tracking individual differences in cognition, SFC is altered in a range
of neurological and psychiatric disorders, including mild cognitive impairment and Alzheimer’s
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disease,”” stroke,!®!! Parkinson’s disease,!>!3 1415 epilepsy,!®!7 bipolar

disorder,'®!” and schizophrenia.?’

multiple sclerosis,

In parallel, multiple lines of evidence from studies in healthy individuals have consistently
demonstrated that the macroscale coupling of structure and function varies spatially, with a gradual
reduction in coupling emerging along a cognitive representational hierarchy.'*2!-23 Specifically,
evolutionarily conserved primary sensory (unimodal) regions such as visual and somatomotor
cortices display relatively strong SFC, whereas evolutionarily rapidly-expanded transmodal
association regions such as limbic and default mode areas display weaker SFC.%21-23 The weaker
SFC in higher-level association cortices is thought to foster the emergence of a wide range of
functional responses untethered from the underlying anatomical backbone, in turn supporting
flexible cognition.*>-2426

Understanding precisely why the coupling between structure and function varies across different
brain regions is a key challenge in the field.*?!-?? Insight could be gained by examining how SFC
varies across different—yet complementary—types of cortical hierarchies defined by cyto-
architectonic and functional properties, as such an examination could clarify to what extent SFC
captures the brain’s microscale cyto-architectonic and macroscale functional principles.
Complementary insights could also be gained by pinpointing specific biological substrates that
statistically track (and conceptually explain) regional variation in SFC. Recent evidence suggests
that the differential expression of neuronal circuit properties—including intracortical myelination
and synaptic excitation or inhibition—could serve as such biological substrates. Histological and
neuroimaging studies show that high SFC areas in primary sensory and motor cortex are heavily
myelinated, whereas lower SFC areas in association cortex are less myelinated.®2>27-3! Following
a similar spatial pattern, synaptic excitation increases from unimodal sensory to transmodal
association cortex, tracking a concomitant increase in dendritic complexity and spine count.
Further, immunostaining investigations tracking the differential expression of inhibitory neuron
subtypes, evince a unimodal-transmodal gradient of dynamic inhibitory control.?>33 Put together,
the ratio between excitatory and inhibitory receptor densities (El-ratio) appears to increase along
the sensory-association hierarchy.’* It remains unknown, however, whether the differential
expression of intracortical myelination and El-ratio formally mediate the observed differences in
macroscale SFC across the cortex.

Here, we use neuroimaging data acquired from two groups of healthy participants, analyzed using
three image processing pipelines, to address three complementary aims. First, to determine
whether SFC captures macroscale functional and microscale cyto-architectonic principles, we
assess the spatial distribution of SFC along four cortical gradients spanning the unimodal(sensory)-
transmodal(association) hierarchy: two functional gradients and two cyto-architectonic gradients.
Second, to determine why SFC varies across the brain, we examine the relationship between SFC
and two biological substrates of interest—intracortical myelination and El-ratio. Third and finally,
by combining elements from the two previous aims, we investigate how SFC is dynamically
shaped by these biological substrates across different cyto-architectonic systems of varying
laminar differentiation. Collectively, this work aims to elucidate the biological factors that explain
the heterogeneous coupling between structural and functional connectivity across the human
cortex.
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RESULTS
Structure-Function Coupling variations along the cortical hierarchy

We first examined the heterogeneous expression of SFC and its temporal variance (Methods:
Structure-Function Coupling) across the unimodal(sensory)-transmodal(association) hierarchy
in 100 unrelated subjects drawn from the Human Connectome Project (HCP) (Methods:
Datasets). For this purpose, the unimodal-transmodal hierarchy was characterized using four
complementary cortical annotations (Methods: Cortical Hierarchies): two derived from
annotating the cortex according to macroscale functional connectivity profiles (the coarse 7
resting-state systems>> and the continuous principal functional gradient), and two derived from
annotating the cortex according to microscale cyto-architectonic profile similarities (the coarse 5
von Economo/Koskinas-inspired cyto-architectonic classes®’ and the continuous “BigBrain”
gradient’®%). These four annotations were chosen to broadly canvas the space of sensory-
association hierarchy from the lenses of both macroscale functional and microscale cyto-
architectonic organization.

Atlas-based analyses

After parcellating each HCP subject’s cortex into spatially contiguous regions (Schaefer
parcellation;** 400 brain regions), we computed each brain region’s average SFC across subjects
and designated its regional membership into each of the four aforementioned cortical annotations.
In the 7 resting-state systems, SFC was highest in the primary visual and somatomotor cortices,
intermediate in the default mode, dorsal attention, fronto-parietal, and ventral attention association
systems, and lowest in the limbic system (Figure 1A; Supplemental Table 1). A decrease in SFC
along the unimodal-transmodal hierarchy was also evident along the principal functional gradient,
in the form of a significant negative correlation between a brain region’s SFC and its assigned
principal gradient scalar (Figure 1C; r=-0.34; pin=0.009); lower assignments within this gradient
capture primary sensory and motor regions, whereas higher assignments capture regions within
the default mode network. Across the 5 cyto-architectonic classes, SFC gradually decreased from
granular (typically capturing sensory regions)3%#!42 to agranular (typically capturing motor and
association regions)**#142 types and displayed its lowest value in the polar cortical type (Figure
1B; Supplemental Table 2). Similarly, we observed a significant negative correlation between a
brain region’s SFC and its assigned location along the BigBrain gradient of microstructure profile
covariance (Figure 1D; r=-0.39; psin=0.024); primary sensory regions occupy the lower end of
this gradient while limbic regions represent its apex.

Next, in order to examine how much SFC deviated from its mean value over time, we assessed its
moment-to-moment variance throughout the duration of the resting-state fMRI scan. Specifically,
we computed each brain region’s average temporal SFC variance across subjects and examined its
heterogeneous expression along the unimodal(sensory)-transmodal(association) hierarchy. In
contrast to SFC, temporal SFC variance was highest in the limbic system (Figure 2A;
Supplemental Table 3); an increase in temporal SFC variance was observed along the unimodal-
transmodal hierarchy, as captured by the principal gradient (Figure 2C; r=0.20; pspin=0.096).
Using cyto-architectonic annotations, temporal SFC variance (unlike SFC itself) was highest in
the polar cortical type; the remaining 4 cortical types displayed—for the most part—similar
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degrees of temporal SFC variance (Figure 2B; Supplemental Table 4). Under the more
continuous BigBrain gradient, we observed a significant positive correlation between a brain
region’s temporal SFC variance and its assigned location along the gradient (Figure 2D; r=0.32;
pspinzo.o35).

To evaluate the reproducibility of our findings, we repeated the above analyses using a different
widely-used cortical parcellation (HCP multi-modal parcellation;** 360 brain regions), and
observed consistent results (Supplemental Material: Replication Analysis; Supplemental
Figures 1-2; Supplemental Tables 5-8).

Voxel-based analyses

In order to further investigate whether our findings were influenced by the spatial scale of the
cortical parcels used (400 and 360 brain regions, respectively), we repeated the above analyses
using an independent sample of healthy adults scanned at the University of Pennsylvania (n=14)
with particularly high-resolution diffusion spectrum imaging (DSI). Capitalizing on this sample’s
higher-resolution diffusion scans than the HCP sample’s, the data were processed at the voxel level
such that each subject’s cortical voxel was designated as a separate region (number of regions
ranged between 60,744 and 83,680, depending on the subject; Methods: Voxel-based approach).

As above, for each subject we computed each cortical voxel’s SFC and determined its membership
into the four cortical annotations. Similar to the atlas-based results, we observed a decrease in SFC
along the unimodal(sensory)-transmodal(association) hierarchy. The primary somatomotor and
limbic cortices displayed the highest and lowest SFC, respectively, within the 7 resting-state
systems (Supplemental Figure 4A; Supplemental Table 10). Further, we observed a significant
negative association between SFC and the assigned principal functional gradient scalar across
subjects (Supplemental Figure 4C; mean r=-0.16; range: [-0.24, -0.05]; pfisher<0.001). Within the
5 cyto-architectonic types, SFC gradually decreased from granular to agranular types, and
displayed its lowest value in the polar type (Supplemental Figure 4B; Supplemental Table 11).

We next computed each cortical voxel’s temporal SFC variance across subjects. In general
agreement with the atlas-based results, the transmodal default mode and limbic systems displayed
the highest temporal SFC variance. The dorsal and ventral attention systems displayed the lowest
temporal SFC variance (Supplemental Figure SA; Supplemental Table 12). Along the principal
functional gradient, there was a prominent increase in temporal SFC variance as one traversed
from lower to higher assigned gradient scalars (Supplemental Figure SC; mean r=0.16; range:
[0.01, 0.35]; pfisher<0.001). As for the 5 cyto-architectonic classes, temporal SFC variance was
highest in the frontal type and lowest in the agranular type (Supplemental Figure 5B;
Supplemental Table 13).

Biological correlates of Structure-Function Coupling: whole-brain perspective

To better understand why SFC and temporal SFC variance vary across the unimodal(sensory)-
transmodal(association) hierarchy, we next examined their relation to two microstructural markers:
intracortical myelination and El-ratio (Figure 3). Both markers were assessed by non-invasive
neuroimaging using previously established approaches. Intracortical myelination was estimated
using the subjects’ T1-weighted/T2-weighted ratio signal intensity, whereby a greater intensity
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reflects greater intracortical myelination (Methods: Intracortical Myelination).® The El-ratio
was quantified using the functional signal time series’ Hurst exponent, whereby a smaller exponent
reflects a heightened El-ratio (Methods: Excitation-Inhibition Balance).**

Atlas-based analyses

Across the 400 brain regions defined by the Schaefer parcellation, we observed a significant
positive correlation between SFC and intracortical myelin content (Figure 4A; r=0.49;
pspin<0.001), and a negative, albeit non-significant, correlation between temporal SFC variance
and intracortical myelin content (Figure 4B; r=-0.08; psi»=0.31). Higher SFC values corresponded
to larger Hurst exponents and thus a decreased El-ratio (Figure 4C; r=0.41; ps»in<0.001), whereas
higher temporal variance in SFC corresponded to lower Hurst exponents and thus a heightened EI-
ratio (Figure 4D; r=-0.44; psin<0.001).

To ensure that the association between a region’s SFC and either biological marker was
independent of the other marker and also independent from that region’s position along the cortical
hierarchy, we re-examined the above relationships using multiple linear regression models. We
found that SFC (dependent variable) was independently and positively correlated with intracortical
myelin content (fsand=0.356; 95% non-parametric bootstrap confidence interval [BCI]=[0.355,
0.357]; p<0.001; variance inflation factor [VIF]=1.51) and with the Hurst exponent (fstand=0.356;
95% BCI=[0.356, 0.357]; p<0.001; VIF=1.05), after adjusting for the other biological marker as
well as the principal gradient scalar assignments. Further, the correspondence between temporal
SFC variance (dependent variable) and the Hurst exponent (fsiandi=-0.467; 95% BCI=[-0.468, -
0.465]; p<0.001; VIF=1.05), but not intracortical myelin content (Ssans=0.013; 95% BCI=[0.013,
0.014]; p=0.71; VIF=1.51), remained significant after adjusting for the other marker and the
principal gradient scalar assignments. A potential causal relationship between temporal SFC
variance, intracortical myelination, and the Hurst exponent was further explored via a mediation
model. Notably, the Hurst exponent was found to significantly mediate the correlation between
intracortical myelination and temporal SFC variance (total effect=-0.005; p<0.001, indirect
effect=-0.002; BCI=[-0.0037 -0.0007]).

To assess reproducibility and robustness to parcellation choice, we repeated all aforementioned
analyses using the HCP multi-modal cortical parcellation, and observed consistent results
(Supplemental Material: Replication Analysis).

Voxel-based analyses

To complement our atlas-based results, we also evaluated the relationships between SFC, temporal
SFC variance, intracortical myelination, and the Hurst exponent at the voxel level. Across the
cortical voxels, there was once again a positive correlation between SFC and intracortical myelin
content (Figure SA; Supplemental Figure 6A; mean r=0.11; range: [0.08, 0.18]; pfisher<0.001),
and a negative correlation between temporal SFC variance and intracortical myelin content
(Figure 5B; Supplemental Figure 6B; mean r=-0.06; range: [-0.13, -0.01]; pfisher<0.001).
Stronger SFC was also associated with decreased El-ratio in the form of higher Hurst exponents
(Figure 5C; Supplemental Figure 6C; mean r=0.12; range: [0.03, 0.27]; pfisner<0.001).
Interestingly, the relationship between temporal SFC variance and Hurst exponents was non-linear
and heteroscedastic (Breusch-Pagan test: pfisher<0.001). Accordingly, we used a quadratic
regression and found that the highest temporal variance in SFC occurred for middle Hurst exponent
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values (Figure 5D; Supplemental Figure 6D; mean fsna for quadratic term=-0.47; range: [-1.13,
0.26]; pfisher<0.001); this finding points towards temporal fluctuations in SFC reaching a plateau
with increasing levels of relative synaptic inhibition.

We next re-examined the above relationships using multiple linear regression models. Cortical
voxels’ SFC was independently and positively correlated with intracortical myelin content (mean
Pstana=0.07; range: [0.02, 0.11]; pfisher<0.001; mean VIF=1.06; range: [1.04, 1.08]) and with the
Hurst exponent (mean fsana=0.12; range: [0.05, 0.25]; pfisher<0.001; mean VIF=1.02; range: [1,
1.05]), even after adjusting for the effects of the other biological marker and the voxels’ placement
along the cortical hierarchy. After additionally including a non-linear (Hurst exponent squared)
component in the multiple regression model to account for the non-linear relationship between
temporal SFC variance and the Hurst exponent, we found that temporal SFC variance was
independently and negatively correlated with intracortical myelin content (mean Sswand=-0.05;
range: [-0.09, -0.01]; pfisner<0.001, mean VIF=1.06; range: [1.04, 1.08]) and with the squared Hurst
exponent (mean fsana=-0.46; range: [-0.82, 0.18]; prisher<0.001), after adjusting for the other
biological marker of interest and the principal gradient assignment.

Biological correlates of Structure-Function Coupling: regional perspective

To further decipher how SFC is dynamically regulated within different networks along the cortical
hierarchy, we next combined elements from the previous two sections to investigate the dynamic
relationship between SFC, temporal SFC variance, intracortical myelination, and Hurst exponents
across different cyto-architectonic systems of varying laminar differentiation. Specifically, instead
of applying multiple regression models at the whole-brain level as we did in the previous section,
here we separately applied them on each von Economo/Koskinas-inspired cyto-architectonic class.

Atlas-based analyses

We begin with the cyto-architectonic class that displayed the highest SFC: the granular type. We
observed a significant positive association between SFC (dependent variable) and the Hurst
exponent but not with intracortical myelin content, after adjusting for the effects of the other
biological marker (Table 1A). In the parietal and frontal types, we observed a significant positive
association between SFC and the Hurst exponent as well as the intracortical myelin content (Table
1A). Within the agranular cyto-architectonic class, we observed that SFC was positively correlated
only with intracortical myelin content but not with the Hurst exponent, within the same regression
model (Table 1A). Taking these results together, we notice a distinct pattern as we transition from
granular to agranular cortical regions: a gradual shift from the Hurst exponent to intracortical
myelin content as being the principal predictor of SFC (as supported by the numerical changes in
the standardized f and false discovery rate-adjusted p values: Table 1A; Figure 6). Importantly,
this pattern was also reproduced with the HCP multi-modal (360 regions) cortical parcellation
(Supplemental Material: Replication Analysis; Supplemental Table 9). Notably, the cortical
type with the lowest SFC and relatively high levels of granularization—the polar type—was an
exception to this rule, with SFC not being significantly correlated with intracortical myelin content
or the Hurst exponent (Table 1A ; Supplemental Material: Methodological Considerations and
Study Limitations).
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Interestingly, dynamic regulation of temporal SFC variance (as opposed to SFC itself) was more
persistently dependent upon the Hurst exponent, across the cyto-architectonic classes. Specifically,
temporal SFC variance independently and significantly correlated only with the Hurst exponent
across all cortical types, after adjusting for the effects of intracortical myelin content (Table 1B).

Voxel-based analyses

Using the voxel-based approach produced similar results. Specifically, within the granular type,
we again observed a positive independent correlation between SFC and the Hurst exponent but not
with intracortical myelin content (Table 2A). Within the polar and parietal types, intracortical
myelination’s effect size in predicting SFC increased; SFC independently correlated with both
myelin content and the Hurst exponent (Table 2A). Further, SFC independently correlated with
both biological markers within the frontal and agranular types, with intracortical myelination’s
predictive effect of SFC surpassing that of the Hurst exponent within the frontal type (Table 2A).
Thus, these voxel-level results support, once again, the notion of a gradual transition from granular
to agranular cortical regions in the degree to which the Hurst exponent (and therefore El-ratio) and
intracortical myelination predict SFC.

Similar to the atlas-based results, temporal SFC variance displayed a stronger dependence upon
the Hurst exponent as its predictor across all cyto-architectonic classes. Specifically, temporal SFC
variance was independently correlated with the squared Hurst exponent, after adjusting for the
effects of the Hurst exponent and intracortical myelin content in each cyto-architectonic class
(Table 2B). In the voxel-based analyses, intracortical myelin content was also independently
correlated with temporal SFC variance across all classes with a lower, however, overall effect size
compared to that of the Hurst exponent (Table 2B).

DISCUSSION

In order to better understand how structure shapes and constrains function in the human brain,
recent work has introduced the notion of SFC, a metric quantifying how strongly a brain region’s
functional connectivity with other brain regions mirrors its structural connectivity. SFC has often
been found to capture more than just the sum of its parts: regional variations in SFC can more
accurately predict differences in cognitive performance as well as track neurological disease
symptomatology and duration, than structural or functional connectivity alone.%!6:17:1943.46 Hence,
we sought to understand how SFC varies across different brain regions within the healthy human
brain, as well as why—what underlying biological factors mediate such variation?

We specifically addressed three complementary aims. First, we assessed changes in SFC and
temporal SFC variance across the sensory-association gradient. Second, we examined whether the
spatial expressions of SFC and its temporal variance were correlated with those of intracortical
myelination and El-ratio across the cortex. Third, we analyzed the association of SFC and its
temporal variance with both intracortical myelination and El-ratio, within different cyto-
architectonic cortical types, in order to investigate how SFC is dynamically regulated at the level
of individual networks. To ensure generalizability of our results, we analyzed neuroimaging data
obtained from two independent groups of healthy participants using three complementary
processing pipelines: an atlas-based approach capitalizing on two different brain parcellation
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schemes, and a voxel-based approach of uncommonly high resolution wherein each subject’s
cortical voxel was designated as a stand-alone brain region.

Structure-Function Coupling and the Sensory-Association Gradient

Addressing our first aim, we asked to what extent SFC captures macroscale functional and
microscale cyto-architectonic organization principles, and we answered that question by
examining regional variations in SFC and its temporal variance across the cortical hierarchy.
Across all processing pipelines, we found an overall increase in temporal SFC variance along the
unimodal(sensory)-transmodal(association) hierarchy, where the highest deviations from the mean
occurred in the limbic regions. This finding largely parallels results from a recent study using a
different definition of temporal SFC variance (see Supplemental Material: Methodological
Considerations and Study Limitations), also demonstrating that a region’s ability to dynamically
fluctuate its SFC over time depends on its location along the unimodal-transmodal hierarchy.*’
Collectively, these observations could indeed reflect the inherently increased functional
connectivity variability found in heteromodal association cortices, compared to unimodal
cortices.*

Moreover, SFC consistently and gradually decreased along the unimodal-transmodal hierarchy, in
agreement with previous work on the field.!*%21-2347 Specifically, in our analyses, SFC decreased
while transitioning from granular cortical areas with pronounced laminar organization (i.e.,
granularization), such as the primary sensory regions, to areas with progressively diminishing
laminar differentiation, namely the parietal, frontal, and finally agranular cyto-architectonic
cortical types, reaching its lowest value in the agranular limbic regions. The sole deviation from
this pattern was found in the polar cortical type, which had a significantly lower SFC and higher
temporal SFC variance compared to the remaining four cyto-architectonic classes, despite its
relatively high granularization. This result can be usefully interpreted from a functional
perspective: this cortical type predominantly comprises higher-order visual association areas and
a large portion of the transmodal orbitofrontal cortex.*? The latter region flexibly encodes reward
and punishment values of stimuli,* supporting the notion that higher-order association areas
heavily involved in emotional regulation have particularly low °‘static’ SFC that fluctuates
markedly across time.

Biological Substrates of Structure-Function Coupling

Addressing our second aim, we asked why SFC regionally varies across the brain, and we answered
that question by examining whether the heterogeneous spatial expressions of SFC and temporal
SFC variance across the cortex were correlated with that of intracortical myelination and the
functional time series’ Hurst exponent, which represents a proxy for El-ratio. Across both atlas-
and voxel-based analyses, we found that the functional connectivity patterns of heavily myelinated
brain regions strongly reflect their underlying structural connectivity patterns; increased
myelination also constrained how much the correlation between structure and function deviated
from its mean value over time. Similarly, the functional connectivity of brain regions characterized
by increased levels of relative inhibition, in the form of an increased Hurst exponent, largely
mirrored the strength of the underlying anatomical connectivity; regions with increased levels of
relative inhibition exhibited lower SFC variance over time, as well. Notably, in both atlas-based
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analyses, the El-ratio accounted for 40-50% of the correlation between intracortical myelin and
temporal SFC variance.

Our results highlight the critical role that both myelination and EI balance play in regulating how
much and how often the blood oxygen level-dependent (BOLD) signal propagation patterns
deviate from the underlying anatomical backbone. Increased levels of myelination have been
reported to suppress the formation of new axonal tracts and synapses,?’? thus potentially
constraining the emergence of functional signals that deviate from structural paths. Lower levels
of myelination, on the other hand, allow for greater functional signal variability and continuous
neuronal remodeling to take place at various time scales,?®3'”! enabling the emergence of
functional dynamics that can more richly diverge from structural connectivity.

In parallel, brain regions predominantly characterized by inhibitory regimes would also be
expected to display functional dynamics that deviate less from the underlying structural paths.
Indeed, neuronal assemblies characterized by increased relative inhibition—whether due to
decreased synaptic excitation or increased inhibition—favor BOLD activity of decreased signal
amplitude,’>> a decreased plateau phase following the initial peak (i.e., faster response
adaptation),’* and lower overall baseline neuronal firing rates.’*>® Additionally, inhibition acts as
a stabilizing agent of cortical activity, constraining any aberrant amplification of neuronal firing
arising from recurrent excitation;*”>® synaptic inhibition can also spatially and temporally

constrain the spread as well as sharpen the evoked BOLD signals in response to sensory input.>°~
63

Dynamic Interplay between the Biological Substrates of Structure-Function Coupling

Addressing our third and last aim, we asked whether the relation between SFC and the two
biological substrates of interest changes across the sensory-association hierarchy, and specifically
within cortical regions of varying cyto-architectonic properties. Pioneering work in the early 20™
century led to the parcellation of the cerebral cortex into 5 distinct structural types based on cellular
morphology, cyto-architectonic properties, and cortical thickness: granular, polar, parietal, frontal,
and agranular.’7#1426465 At one end of the spectrum, the thin granular cortex (also known as
koniocortex) is distinguished by well-defined, highly-developed cortical layers II and IV, and
houses densely packed small stellate and pyramidal cells, collectively referred to as granule
neurons;3’#1:64 these cells typically have short axons projecting locally within the cortex and very
small multi-polar cell bodies, with a cell body diameter S 10um.% Functionally, granular cortex
encompasses primary sensory (visual, auditory, and somatosensory) areas and parts of the
parahippocampal gyrus.*'#29 At the opposite end of the laminar differentiation spectrum, the
thicker agranular cortex has particularly thin or absent granular laminae II and IV, and
predominantly houses large pyramidal neurons spanning multiple cortical layers.*%¢ Although
typically associated with motor cortices, the agranular cortex also encompasses limbic regions
such as the anterior fronto-insular and cingulate cortices.®>” The remaining cortical types (polar,
parietal, frontal) capture intermediate, progressively decreasing levels of granularization with
generally increasing neuronal cell sizes.*!

Across processing pipelines, we observed a gradual shift when traversing from granular to
agranular cortical types, from the El-ratio (i.e., Hurst exponent) to intracortical myelin content as
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being the principal predictor of SFC. Given the aforementioned differences in the cyto-
architectonic properties of the cortical types, this finding is intuitive: granule cells predominantly
found in the granular cortical regions are typically unmyelinated, mainly due to their small axonal
diameters (< 0.3um;%-%8% neurons in the central nervous system with axonal diameters < 0.3um
are usually unmyelinated’®7%) and the increased metabolic cost that would be required to myelinate
such short axons projecting locally, without necessarily an accompanying enhancement of signal
conduction velocity.”>’* In turn, the lack of myelin sheath directly exposes these axons to the
extracellular space, making them particularly susceptible to subthreshold excitability changes.”
Therefore, the correspondence between structural and functional connectivity within cortical
regions characterized by increased levels of granule cells would be expected to be more dependent
upon fluctuations in excitation and inhibition, rather than intracortical myelin levels.

On the other hand, the large pyramidal neurons prominently occupying cortical areas with
decreased levels of granularization are highly myelinated;’>’® small granule cells are significantly
sparser in these layers. Following the same line of reasoning as above, it would thus be expected
that the contribution of intracortical myelination levels in these regions in predicting their
macroscale SFC would significantly increase. Interestingly, in our voxel-based analyses both
intracortical myelination and El-ratio played a significant role in predicting SFC in the agranular
cortical regions. In the coarser atlas-based analyses, however, this effect was averaged out, leaving
only intracortical myelination as the primary predictor of SFC in that cortical type. This finding
could indicate that on the macroscale level captured by the atlas-based parcellations, intracortical
myelination cumulatively plays a more significant role than EI balance in shaping the coupling
between structure and function in agranular cortical regions.

Finally, intracortical myelination and El-ratio together played a significant role in shaping
temporal fluctuations in SFC. Overall, the El-ratio had a larger overall effect size in predicting
moment-to-moment SFC variance than intracortical myelination, and consistently correlated with
the amount of moment-to-moment SFC variance across each cyto-architectonic class in both atlas-
and voxel-based analyses. This finding is not surprising given how the balance between excitation
and inhibition also fluctuates on a moment-to-moment basis.”’ Intracortical myelination, on the
other hand, does not typically fluctuate on such short timescales in the resting brain, and it is thus
likely to constrain how often the BOLD signal propagation patterns can deviate from the
anatomical backbone on a slower time scale.

Conclusion

In this study, we examined the regional dependence between structure and function across
complementary cortical hierarchies, and aimed to identify the biological factors that mediate such
coupling in the human brain. We assessed the correlation between structure and function using
atlas- as well as voxel-based connectivity, capturing the underlying anatomy and dynamics in
marked detail. Our findings were consistent across all processing pipelines and cohorts employed,
and are three-fold: 1) SFC and its temporal variance respectively decrease and increase across the
unimodal-transmodal and granular-agranular gradients, 2) increased intracortical myelination and
lower El-ratio are associated with a more rigid coupling between structure and function and
restricted moment-to-moment SFC fluctuations, and 3) there is a gradual shift from El-ratio to
intracortical myelination as being the principal predictor of SFC when traversing from granular to
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agranular cortical types; El-ratio appears to be the principal predictor of temporal SFC variance
within each cyto-architectonic type. Overall, our results identify regional intracortical myelination
and EI balance as factors that synergistically shape how strongly coupled the functional expression
of the human cortex is to its underlying anatomical connectivity. Such an explanatory relationship
could provide invaluable insight into the aberrant coupling between structure and function in
neurological and psychiatric disorders characterized by demyelination and/or EI imbalances.

METHODS
DATASETS

Human Connectome Project

A sample of 100 unrelated healthy subjects (54% female; mean age = 29.143.7 years; age range =
22-36 years) was drawn from the HCP dataset, as publicly provided by the HCP1200 subjects data
release.”® Subjects within this sample were scanned on a customized Siemens “Connectome” Skyra
3T scanner (32-channel Siemens head coil) and underwent high-resolution 3T MRI, including T1-
weighted (3D Multi-echo Magnetization—Prepared Rapid Gradient Echo [MEMPRAGE]
sequence; voxel size: 0.7 mm isotropic; repetition time [TR]: 2400 ms; echo time [TE]: 2.14 ms),
T2-weighted (3D sampling perfection with application-optimized contrasts by using flip angle
evolution [SPACE] sequence; voxel size: 0.7 mm isotropic; TR: 3200 ms; TE: 565 ms), resting-
state fMRI (gradient-echo echo-planar imaging [EPI] sequence; four runs; 1200 volumes/run,
14:33 min:sec each; voxel size: 2 mm isotropic; TR: 720 ms; TE: 33.1 ms), and high angular
resolution diffusion imaging (spin-echo planar imaging sequence; voxel size: 1.25 mm isotropic;
TR: 5520 ms; TE: 89.5 ms; max b-value: 3000 s/mm?; 270 non-colinear directions; 18 b0
acquisitions) sequences.’”?” Informed consent was obtained from all subjects, and the procedures
were approved by the Washington University Institutional Review Board.

Penn Sample
Healthy individuals (n = 14; 78.6% female; mean age = 22.8+3.2 years; age range = 18-28 years)

were prospectively enrolled at the University of Pennsylvania between November 16, 2016 and
May 19, 2018, and recruited from the local community. Subjects within this sample were scanned
using a Siemens Magnetom Prisma 3T scanner (64-channel head/neck coil) and underwent high-
resolution 3T MRI, including T1-weighted (3D MEMPRAGE sequence; voxel size: 0.9 mm
isotropic; TR: 2500 ms; TE: 2.18 ms), T2-weighted (3D SPACE sequence; voxel size: 0.9 mm
isotropic; TR: 3200 ms; TE: 565 ms), resting-state functional MRI (two runs; 1200 volumes/run,
20:07 min:sec each; voxel size: 3 mm isotropic; TR: 500 ms; TE: 25 ms), and diffusion spectrum
imaging (DSI; voxel size: 1.8 mm isotropic; TR: 4300 ms; TE: 102 ms; max b-value: 5000 s/mm?;
731 directions; 22 b0 acquisitions) sequences. Informed consent was obtained from all subjects,
and the procedures were approved by the University of Pennsylvania Institutional Review Board.

PROCESSING PIPELINES

In order to analyze our two samples and test the reproducibility of our results, we utilized three
complementary processing pipelines: 1) an atlas-based approach wherein each subject’s cortex
was parcellated using two common brain atlases; structural and functional connectivity values
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were estimated between all region pairs defined by these coarse-grained atlases, and 2) a
significantly more fine-grained voxel-based approach, wherein each subject’s cortical voxel was
designated as a stand-alone brain region; for each participant, structural and functional
connectivity values were estimated between all possible pairs of their cortical voxels.

Atlas-based approach

This approach was used to analyze the HCP sample. For each subject, we first estimated their
structural connectivity, then their functional connectivity, and lastly their SFC. The different types
of connectivity were quantified using two commonly used brain atlases: the functionally-inspired
Schaefer atlas*® (400 cortical parcels) and the HCP multi-modal atlas*} (360 cortical parcels).

Structural Connectivity

HCP subjects’ diffusion scans were first minimally pre-processed by the HCP consortium, which
included applying b0 intensity normalization, correcting for EPI distortion, Eddy currents, subject
motion, and gradient nonlinearity, and registering them to the subject’s native T1-weighted
anatomical scan.3! Further processing of diffusion data was carried out using the MRtrix3
toolbox.¥? Multi-shell, multi-tissue constrained spherical deconvolution was first performed to
generate fiber orientation densities. Anatomically constrained probabilistic tractography was then
applied using a second-order integration over fiber orientation distributions method, to more
accurately track fibers through crossing regions.®* An initial whole-brain tractogram containing
ten million streamlines was generated for each subject, which was then corrected by assigning
each streamline a weight to reduce known biases in tractography data and better match the
diffusion properties of the empirical data (SIFT2 approach).®8* Each subject’s refined whole-brain
tractogram was finally mapped to each parcellated brain atlas (Schaefer and HCP multi-modal)
that had been registered to the subject’s native space, to produce two subject-specific, symmetric,
weighted structural connectomes (Schaefer atlas: 400 ROIs x 400 ROIs, HCP multi-modal atlas:
360 ROIs x 360 ROIs). In each connectome, the structural connectivity between any two given
brain regions (i.e., network edge) was defined as the SIFT2-weighted sum of the streamlines
connecting these two regions divided by the sum of the regions’ gray matter volumes.®

Functional Connectivity

Similar to the diffusion scans, the resting-state fMRI scans were also minimally pre-processed by
the HCP consortium. This pre-processing pipeline included correcting for gradient distortion,
subject motion, and EPI image distortion, as well as intensity normalization and registration of the
functional scans to the standard MNI space.?! The resulting functional signal time series were
accurately aligned across subjects using an areal feature-based cross-subject alignment method
(MSMAII)* and further denoised from artifact and linear trends using an independent component
analysis and hierarchical fusion of classifiers approach (SICA+FIX).%> The pre-processed time
series corresponding to each run were then demeaned and normalized; all four runs were
concatenated across time (1200 volumes x 4 runs) for each subject, using the Connectome
Workbench toolbox. Lastly, the time series corresponding to the voxels within broader brain
regions were averaged to produce matrices of size: number of ROIs x 4800 volumes (Schaefer
atlas: 400 ROIs x 4800 volumes, HCP multi-modal atlas: 360 ROIs x 4800 volumes), for each
subject.
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‘Static’ functional connectivity matrices for each atlas were computed by calculating the Pearson’s
correlation between the average signal time series of any two given brain regions; each entry in
the functional connectome is equal to the correlation coefficient between the activity time series
of the regions corresponding to the matrix element’s row and column. In order to examine how
each subject’s functional connectivity changes across time, we split each atlas’ signal time series
matrix into 20 continuous non-overlapping time windows of size: number of ROIs x 240 volumes.
This procedure allowed us to generate 20 ‘temporally-contiguous’ functional connectomes per
subject.

Structure-Function Coupling

For each atlas, the SFC of each subject’s brain region was defined as the Pearson’s correlation
coefficient between the row corresponding to that region in the structural connectome and the row
corresponding to that region in the ‘static’ functional connectome (Schaefer atlas: 1 x 400 ROIs,
HCP multi-modal atlas: 1 x 360 ROIs), after excluding the self-connection and any other entries
where either the regional structural or functional connectivity was equal to zero.

To examine how much SFC deviates from its mean value over time, we also computed its moment-
to-moment variance throughout the duration of the resting-state fMRI scan. Here, instead of
computing one ‘static’ SFC value for each brain region—as was done in the analyses described
earlier—we computed an SFC value for each one of the ‘temporally-contiguous’ functional
connectivity matrices defined in the ‘Functional Connectivity’ section above, and the underlying
structural connectivity matrix (once again, self-connections and entries where either the regional
structural or functional connectivity was equal to zero were excluded). Since we used 20 non-
overlapping time windows, we ended up with 20 SFC values for each brain region, for each
subject. Each brain region’s temporal SFC variance was then defined as the variance across their
corresponding 20 ‘temporally-contiguous’ SFC values.

The two analyses just described produced two metrics that quantified the nature of coupling
between a brain region’s structural and functional connectivity: (i) a ‘static’ SFC, a metric
indicating how strongly coupled functional connectivity is to the underlying structural
connectivity, overall, and (ii) the temporal SFC variance, a metric indicating how much SFC
deviates from its mean value over time.

Intracortical Myelination

Intracortical myelination in the HCP sample was assessed using a previously validated T1-
weighted/T2-weighted ratio approach,®' the scripts for which were provided by the latest HCP1200
subjects data release. There are three main pipelines used by the HCP consortium to compute
intracortical myelin surface maps for each subject, and we describe them briefly here: within the
first PreFreeSurfer pipeline, the T1- and T2-weighted sequences are first corrected for gradient
and readout distortions. The undistorted T2-weighted image is then registered to the undistorted
T1-weighted image, after which they are both bias-field corrected. In the subsequent FreeSurfer
pipeline, the undistorted bias-corrected T1-weighted image in each subject’s native volume space
is input into the FreeSurfer software suite (https://www .surfer.nmr.mgh.harvard.edu)® to generate
highly accurate white matter and pial cortical surfaces. The T1-weighted image is then intensity
normalized, and contrast signal intensity information from the undistorted bias-corrected T2-
weighted image is used to update the pial surfaces such that they exclude dura and blood vessels.
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Registration of the T2- to the T1-weighted image is fine-tuned even further throughout this
pipeline, using FreeSurfer’s boundary-based registration tool by incorporating information from
the reconstructed surfaces. During the last PostFreeSurfer processing pipeline, the FreeSurfer-
derived white and pial surfaces, along with other morphometric measurements such as cortical
thickness, curvature, and folding patterns, are used to define a highly accurate, high-resolution
cortical ribbon volume. The T1-weighted image is then divided by the aligned T2-weighted
image—a mathematical process shown to enhance the contrast related to myelin content.?’-2881
The resulting T1-weighted/T2-weighted ratio of the voxels within the cortical ribbon is mapped
onto the mid-thickness surface (the latter of which was created by averaging the white and pial
surfaces) to reduce partial volume effects. This overall process produces TI1-weighted/T2-
weighted ratio volumetric as well as surface-based ‘intracortical myelin maps’ in both the subject’s
native as well as standardized space.

In order to extract brain regions’ intracortical myelin content, we set each subject’s surface-based
‘intracortical myelin map’ and the cortical parcellation of interest mapped into the same space
(standardized fsaverage_ILLR32k space) as inputs for the wb_command -cifti-parcellate and -cifti-
convert -to-text commands. The latter generated a text file for each atlas containing each brain
region’s ID and its corresponding average T1-weighted/T2-weighted ratio signal intensity; the
signal intensity was used as a proxy of that region’s intracortical myelin content.

Excitation-Inhibition Balance

The balance between synaptic excitation and inhibition at the neuronal or neuronal circuit level
broadly refers to the relative amounts of excitatory and inhibitory synaptic inputs at that level, at
any given time scale.”’ It is typically expressed as the ratio of excitatory to inhibitory inputs. This
El-ratio is under tight neuromodulatory control and is critical for circuit function and stability;
deviations outside a narrow range have been reported to be pathogenic.**"78788 Previous work
using models of neuronal networks has indicated that changes in El-ratio are captured by the
spectral properties of the recorded electrophysiological signal activity and particularly by the
exponent of its 1/f spectral power law, an index that is mathematically related to the signal time
series’ Hurst exponent.**%° This relationship between the Hurst exponent and El-ratio was also
validated in stimulated functional BOLD signal data; according to that relationship, a heightened
El-ratio would then be reflected as a decrease in the Hurst exponent of the functional signal.**

Because changes in the Hurst exponent of resting-state fMRI time series can be interpreted as a
shift in synaptic El-ratio,** we computed the Hurst exponent of each brain region’s pre-processed
resting-state signal time series and used it as a proxy of the overall El-ratio within that region. The
methodological approach used to perform this computation is described in detail elsewhere.** In
brief, for each atlas and for each subject, each brain region’s pre-processed resting-state signal
time series were modeled as multivariate fractionally integrated processes and the corresponding
Hurst exponent was estimated via the univariate maximum likelihood method and a discrete
wavelet transform. %

Voxel-based approach

We used a voxel-based approach to analyze the Penn sample. For each subject, we first assessed
their structural connectivity, then their functional connectivity, and lastly their SFC. In this case—
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and in contrast to the atlas-based approach—the different types of connectivity were investigated
at the cortical voxel level where each subject’s cortical voxel was defined as a separate brain
region.

Structural Connectivity

The Penn subjects’ high-resolution DSI scans were first pre-processed using QSIPrep
(https://gsiprep.readthedocs.io/en/latest/; version 0.8.0).°! Initial motion correction was performed
using only the =0 images; an unbiased b0 template was constructed over three iterations of affine
registrations. Then, the SHORELine method was used to estimate head motion in b>0 images.*?
This procedure entails leaving out each 5>0 image and reconstructing the others using 3dSHORE;”?
the signal for the left-out image served as the registration target. A total of two iterations were run
using an affine transform. Model-generated images were transformed into alignment with each
b>0 image. Both slice-wise and whole-brain Quality Control measures (cross correlation and R?)
were calculated. A deformation field to correct for susceptibility distortions was estimated based
on fMRIPrep’s fieldmap-less approach. The deformation field resulted after co-registering the b0
reference to the same-subject T1-weighted-reference with its intensity inverted.”* Registration was
performed with antsRegistration (ANTs 2.3.1), and the process was regularized by constraining
deformation to be nonzero only along the phase-encoding direction and modulated with an average
fieldmap template. Based on the estimated susceptibility distortion, an unwarped b0 reference was
calculated for a more accurate co-registration with the anatomical reference. Each subject’s DSI
time series were resampled to AC-PC orientation, generating a pre-processed DSI run in AC-PC
space (output space: T1-weighted image; output resolution: 1.8 mm isotropic). After the diffusion
scans were pre-processed, QSIPrep was used to estimate the diffusion orientation distribution
functions (dODF) at each voxel, using generalized g-sampling imaging with a mean diffusion
distance of 1.25 mm.

After pre-processing and reconstructing the diffusion scans, we invoked the MITTENS Python
library (https://github.com/mattcieslak/MITTENS) to perform analytic tractography on the
reconstructed DSI data.®> In contrast to deterministic and probabilistic tractography, this recently
established tractography approach calculates connection probabilities between different brain
regions without relying on extensive simulations. Given each voxel’s dODF and a set of a priori
anatomical/geometric constraints, analytic tractography can be used to derive closed-form
solutions to the tracking problem, directly computing voxel-to-voxel transition probabilities.”
First, we calculated inter-voxel fiber transition probabilities by using the reference b0 image
generated by the pre-processing stage and the diffusion dODF output by the reconstruction stage

of OSIPrep as inputs (maximum turning angle = 35 degrees; step size in voxel units = %). This

process outputs volumetric (nifti) files for each neighbor direction. We then constructed directed
graphs for each voxel, where edges were formed to each of that voxel’s 26 spatial neighbors and
weighted by the negative logarithm of transition probability from one voxel to another, all while
taking into account the dODF of both the source and destination voxels (double-ODF method).
After supplying MITTENS with a cortical mask where each cortical voxel was designated with a
different index, the likelihood that a cortical voxel was connected to any other cortical voxel was
calculated as the geometric mean of the product of the transition probabilities along the shortest
path between the two voxels; the shortest path between voxels was found using Dijkstra’s
algorithm.”® A structural connectivity matrix was thus generated for each subject, where each row
and column corresponded to a different cortical voxel; each entry was set equal to the likelihood
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that that voxel was connected to any other cortical voxel. Because each subject had a different
number of cortical voxels, the resulting structural connectivity matrices ranged in size between
60,744 x 60,744 and 83,680 x 83,680, depending on the subject. Given the substantial number of
brain regions (and their potential interactions) considered, we thresholded our structural
connectivity matrices in order to mitigate the presence of spurious connections that could have
potentially biased our results.”” We specifically applied density-based thresholding where we kept
70% of the strongest edges in the connectome and set all others to zero.

Functional Connectivity

The Penn group’s resting-state fMRI scans were pre-processed using the CONN (https://web.conn-
toolbox.org/home; version 20.b) toolbox.*®* We specifically ran CONN’s “default pre-processing
pipeline for volume-based analyses (direct normalization to MNI-space).” Each subject’s
functional scans were first co-registered and resampled to a reference image (set as the first scan
of the first session). A slice-timing correction procedure then followed, correcting for any potential
temporal misalignment that may have occurred during the sequential acquisition of the fMRI data;
acquisitions with a framewise displacement above 0.9 mm or global BOLD signal changes above
5 standard deviations were flagged as potential outlier scans. The structural scans were segmented
into gray matter, white matter, and cerebrospinal fluid tissue classes using SPM (version 12), and
both structural and functional scans were subsequently normalized into MNI space (180 x 216 x
180 mm?® bounding box; functional scans set to 2 mm isotropic; structural scans set to 1 mm
isotropic). Lastly, the functional images were smoothed using an 8 mm full-width half-maximum
Gaussian kernel, in order to increase the BOLD signal-to-noise ratio.” CONN’s default denoising
pipeline was then applied, which used linear regression of potential confounders identified in the
BOLD signal and temporal high-pass filtering. Potential confounding effects that were regressed
out of the BOLD signal time series included noise components from white matter and
cerebrospinal areas, estimated subject motion parameters (i.e., 3 rotation and 3 translation
parameters, and their 6 associated first-order derivatives), identified outlier scans from the pre-
processing step, as well as session-related effects (such as constant and linear BOLD signal trends).
Temporal frequencies below 0.008 Hz were also removed from the BOLD signal in order to
mitigate the effects of low-frequency drifts. Denoising outputs were manually inspected to ensure
approximately centered distributions of the resulting functional connectivity data.

We then registered the pre-processed, denoised functional image from MNI into the subject’s b0
reference image created by MITTENS in our structural connectivity analyses. The same cortical
mask as the one supplied to MITTENS was then overlayed onto the registered functional image, in
order to extract the BOLD signal time series corresponding to each cortical voxel, for each subject.
Similarly to the atlas-based approach, a ‘static’ functional connectivity matrix was computed by
calculating the Pearson’s correlation between the signal time series of any two given cortical
voxels. Voxel-based ‘temporally-contiguous’ functional connectomes (20 per subject) were also
generated as described in the atlas-based approach.

Exclusion criteria

After the structural and functional scans had been pre-processed and denoised, we manually
examined the Quality Control files exported by MITTENS and CONN, to assess the quality of the
data. Given that structural and functional connectivity were being assessed at the voxel-level, we
chose to apply particularly conservative quality control criteria when deciding which subjects to
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include in our analyses: subjects with at least one “bad” slice found (i.e., slices that significantly
differed in intensity patterns from the slices acquired before and after)®! in the pre-processed
diffusion images (n = 2) or resting-state functional scans with mean framewise displacement
exceeding 0.2 mm (n = 3) were excluded from the analysis.!%19! Using these criteria, we included
9 (88.9% female; mean age = 22.842.7 years; age range = 19-27 years) of the total 14 subjects
scanned with both diffusion spectrum and resting-state functional imaging.

Structure-Function Coupling

The SFC of each subject’s cortical voxel was defined as the Spearman’s correlation coefficient
between the matrix row corresponding to that voxel in the thresholded structural connectome and
the matrix row corresponding to that voxel in the ‘static’ functional connectome, after excluding
the self-connection and any other entries where either the regional structural or functional
connectivity was equal to zero. Using this definition of SFC and the same approach as the one
described in the atlas-based analyses, we also computed each cortical voxel’s moment-to-moment
(temporal) SFC variance across 20 contiguous non-overlapping time windows.

Intracortical Myelination

Intracortical myelination in the Penn sample was assessed using the previously validated HCP
Pipeline (https://github.com/Washington-University/HCPpipelines/wiki/Installation-and-Usage-
Instructions#running-the-hcp-pipelines-on-example-data; version 4.3.0). Specifically, the scripts
in the three HCP pipelines (PreFreeSurfer, FreeSurfer, and PostFreeSurfer) were run to generate
the T1-weighted/T2-weighted ‘myelin maps’ for each subject as a proxy for their intracortical
myelin content. The individual steps performed by each pipeline have been described above in our
atlas-based approach. For each subject, the resulting T1-weighted/T2-weighted ratio volumetric
file was then registered from MNI into the subject’s b0 reference image (obtained from MITTENS);
the signal intensity at each cortical voxel was then extracted using the same cortical mask as the
one used in our structural and functional connectivity analyses. In order to exclude voxels that
might potentially represent non-brain tissue or voxels with aberrantly high or low signal intensity,
we only kept values within one standard deviation away from the mean signal intensity of the non-
zero intensity voxels within the cortical ribbon mask.?

Excitation-Inhibition Balance

The same pipeline used to estimate the El-ratio in our atlas-based approach—in the form of the
functional signal time series’ Hurst exponent—was also used here. Specifically, each cortical
voxel’s pre-processed resting-state signal time series were modelled as multivariate fractionally
integrated processes and the corresponding Hurst exponent was estimated via the univariate
maximum likelihood method and a discrete wavelet transform.*+%°

CORTICAL HIERARCHIES

To examine the regional distribution of the variables of interest across the cortex, we assigned each
brain region (as defined in the ‘Atlas-based approach’ and ‘Voxel-based approach’ sections above)
with an index representing its putative placement along the broader cognitive representational and
cyto-architectural hierarchy. For that purpose, we utilized four complementary cortical
annotations: 1) 7 resting-state systems (visual, somatomotor, dorsal attention, ventral attention,
limbic, fronto-parietal, and default mode) estimated by intrinsic functional connectivity®’ (resting-
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state systems; coarse metric), 2) the principal gradient of cortical organization derived by the
decomposition of connectivity data and intrinsic geometry of the cortex*® (principal functional
gradient; continuous metric), 3) 5 cyto-architectonic classes/types (agranular, frontal, parietal,
polar, and granular) derived from cellular morphological properties®’ (cyto-architectonic classes;
coarse metric), and 4) the “BigBrain” cortical gradient derived by modeling the similarity of
cortical columns’ microstructural profiles’®3° (BigBrain gradient of microstructure profile
covariance; continuous metric). The first two annotations spatially group brain regions along the
unimodal(sensory)—transmodal(association) hierarchy based on their functional connectivity
profiles; the latter two assign brain regions into the same cortical class/type based on their cellular
morphological profiles. The membership of each brain region into each of the four mentioned
cortical annotations was assigned in the following way:

Atlas-based approach

Schaefer ROI = Resting-state systems:

The assignment of each Schaefer (400 parcels) ROl into its corresponding resting-state system (1-
7  systems) was provided as part of the Schaefer atlases download
(https://github.com/ThomasY eolL.ab/CBIG/tree/master/stable projects/brain parcellation/Schaef
er2018 LocalGlobal).*

Schaefer ROI = Principal functional gradient:

The Schaefer (400 parcels) atlas (filename:
Schaefer2018_400Parcels_7Networks_order FSLMNI152_2mm.nii.gz) and the principal
functional gradient (filename: volume.grad_1.MNI2mm.nii.gz) were provided by their respective
downloads (mentioned above), in the same space. We then extracted the principal gradient scalars
corresponding to all voxels within a given Schaefer ROI and computed their mean, which was then
set as the average principal gradient scalar of that Schaefer ROL.

Schaefer ROI - Cyto-architectonic classes:

The csv files containing vertices’ assignments to the Schaefer 400 parcels and von
Economo/Koskinas-inspired cyto-architectonic parcellations (sampled on the standardized
Conte69 surface template) were downloaded from the ENIGMA toolbox!'?? (https:/enigma-
toolbox.readthedocs.io/en/latest/index.html). Using these files, we extracted the cyto-architectonic
assignments corresponding to all vertices within each Schaefer ROI and computed their mode; the
corresponding mode was set as the cyto-architectonic assignment of that Schaefer ROI.

Schaefer ROI = “BigBrain” gradient:
The BigBrain gradient scalar corresponding to each Schaefer ROI was calculated as previously
described*®* and provided as part of the ENIGMA toolbox as a csv file.

HCP multi-modal ROI = Resting-state networks:

The HCP multi-modal atlas in cifti file format was first mapped to the resting-state functional
systems in the same format and grayordinates space (RSN-networks.32k_fs_ILR.dlabel.nii;
https://balsa.wustl.edu/study/show/WG33), wusing the Connectome Workbench toolbox
(wb_command -cifti-create-dense-from-template). We then extracted the resting-state assignments
corresponding to all grayordinates within a given HCP multi-modal ROI and computed their mode;
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the corresponding mode was set as the resting-state system assignment of that HCP multi-modal
ROL.10

HCP multi-modal ROI = Principal functional gradient:

We used the principal functional gradient in the same grayordinate space as the HCP multi-modal
atlas (cifti file format: hcp.gradients.dscalar.nii;
https://github.com/neuroanatomyAndConnectivity/eradient analysis). We then extracted the
principal gradient scalars corresponding to all grayordinates within a given HCP multi-modal ROI
and computed their mean, which was then set as the average principal gradient scalar of that HCP
multi-modal ROI.

HCP multi-modal ROI & Cyto-architectonic classes:

The csv files containing vertices’ assignments to the HCP multi-modal and the von
Economo/Koskinas-inspired cyto-architectonic parcellations (sampled on the standardized
Conte69 surface template) were downloaded from the ENIGMA toolbox'%? (https://enigma-
toolbox.readthedocs.io/en/latest/index.html). Using these files, we extracted the cyto-architectonic
assignments corresponding to all vertices within each HCP multi-modal ROI and computed their
mode; the corresponding mode was set as the cyto-architectonic assignment of that HCP multi-
modal ROI.

HCP multi-modal ROI & “BigBrain” gradient:
The BigBrain gradient scalar corresponding to each HCP multi-modal ROI was calculated as
previously described*®* and publicly provided as part of the ENIGMA toolbox as a csv file.

Voxel-based approach

Cortical voxels = Resting-state systems:

Using the guidelines provided in the resting-state systems’ online documentation®
(https://github.com/ThomasY eoLL.ab/CBIG/tree/master/stable projects/brain_parcellation/Yeo20

11 fcMRI clustering/1000subjects reference/Yeo JNeurophysiolll Splitlabels/project to_ind
ividual), we registered the resting-state systems from the standardized fsaverage space into each
subject’s volumetric space (in FreeSurfer terminology: their orig.mgz space). Afterwards, we
registered those systems into each subject’s reference b0 space (generated by MITTENS) using the
antsApplyTransforms command (ANTs 2.3.1) with the “MultiLabel” interpolation flag. The
resulting atlas was dilated three times to ensure that all cortical voxels were assigned a resting-
state system affiliation. Lastly, using this dilated atlas and the same cortical ribbon mask as the
one mentioned in our voxel-based structural and functional connectivity analyses, we extracted
each cortical voxel’s resting-state system affiliation.

Cortical voxels = Principal functional gradient:

We first registered the principal functional gradient (volume.grad_1.MNI2mm.nii.gz;
https://eithub.com/neuroanatomyAndConnectivity/gradient analysis) from MNI into each
subject’s reference b0 space (generated by MITTENS) using the antsApplyTransforms command
(ANTs 2.3.1). The registered gradient was dilated once to ensure that all cortical voxels were
assigned a gradient scalar. Lastly, using this dilated atlas and the same cortical ribbon mask as the
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one mentioned in our voxel-based structural and functional connectivity analyses, we extracted
each cortical voxel’s corresponding principal gradient scalar.

Cortical voxels = Cyto-architectonic classes:

The von Economo/Koskinas-inspired cyto-architectonic atlas was downloaded in MNI ICBM
2009a Nonlinear Symmetric stereotaxic space (http://www.dutchconnectomelab.nl).!®* We then
registered this atlas into each subject’s reference b0 space (generated by MITTENS) using the
antsApplyTransforms command (ANTs 2.3.1) with the “MultiLabel” interpolation flag. The
resulting atlas was dilated three times in order to ensure that all cortical voxels were assigned a
cyto-architectonic cortical type affiliation. Lastly, using this dilated atlas and the same cortical
ribbon mask as the one mentioned in our voxel-based structural and functional connectivity
analyses, we extracted each cortical voxel’s cyto-architectonic cortical type affiliation.

STATISTICAL ANALYSES

Statistical analyses were performed using the SPSS statistical software (version 28: IBM Corp.),
MATLAB (version R2021a: The MathWorks, Inc.), and Python (version 3.7).

Atlas-based approach: Dataset

For our ‘Atlas-based approach’ analyses delineated above, we generated and analyzed two
datasets: one wherein each row corresponded to each Schaefer ROI (for a total of 400 rows) and
another wherein each row corresponded to each HCP multi-modal ROI (for a total of 360 rows).
Each dataset’s column corresponded to the variable of interest (e.g., SFC, temporal SFC variance,
intracortical myelin content, and Hurst exponent) averaged across the 100 unrelated HCP subjects
(unless otherwise specified above).

Voxel-based approach: Dataset

For our voxel-based approach, we generated one dataset for each Penn subject that passed our
quality control assessments (for a total of 9 datasets), as each subject had a different number of
cortical voxels. Within each dataset, each row corresponded to each cortical voxel of that subject,
and each column reflected the variable of interest corresponding to that subject’s cortical voxel.

Each statistical analysis described below was applied separately on each one of these 9 datasets.
Correlation and regression coefficients corresponding to each dataset were then averaged and a
mean value was reported. In order to combine the p-values generated for each analysis pertaining
to each dataset (subject) into one representative combined p-value, we applied Fisher’s method of
meta-analysis.'® This method entailed calculating first the following test statistic 7 with a -
distribution and 18 degrees of freedom (= number of datasets x 2):

n
T=-2 Z In(p;)
i=1

where [n is the natural logarithm and p: the p-value corresponding to dataset i. The combined p-
value (referred to as pyisher in the manuscript) is then calculated as follows:
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Dfisher = 1 _Xczdf(T; v =2n)

where )(?df is the cumulative distribution function (cdf) for a y>-distribution with v degrees of
freedom (here, n = 9).106.107

ANOVA tests

One-way analysis of variance (ANOVA) tests were used to statistically compare the overall
differences in SFC and temporal SFC variance across the 7 resting-state systems and 5 cyto-
architectonic classes, described in the ‘Structure-Function Coupling variations along the cortical
hierarchy’ section of the Results. The ANOVA tests were followed by post-hoc correction for
multiple comparisons (Tamhane’s T2—equal variances not assumed) analyses to examine the
statistical differences between all possible pairs among the resting-state systems and all possible
pairs among the cyto-architectonic classes.

Bivariate Analyses and Spatial Permutation Tests

Comparisons between the four variables of interest: SFC, temporal SFC variance, intracortical
myelin content, and the Hurst exponent, were carried out in the form of previously established
spatial permutation tests (threshold for significance: p < 0.05).19%1% In contrast to bivariate
correlations such as Spearman’s or Pearson’s, spatial permutation tests take into account the
potential spatial autocorrelation that might exist between variables and neighboring brain regions
as well as hemispheric symmetry, by generating a set of appropriate spatial autocorrelation-
preserving null models for each hemisphere. Specifically, the empirical Spearman’s correlation
between any two spatial maps (i.e., two variables) is compared to a distribution of null Spearman’s
correlations, generated by projecting one of the spatial maps into a sphere, randomly rotating that
sphere, and then projecting the rotated spherical map back onto the brain surface.!%1% In our
study, this ‘spin test’ was repeated 10,000 times to generate 10,000 null correlations, for each
comparison. The empirical Spearman’s correlation coefficient (r) and the p-value derived by
comparing the empirical with the null correlations (referred to in the manuscript as pspin) were
reported for each bivariate comparison described in our atlas-based analyses. In the voxel-based
analyses, we reported a mean r, its [min max] range across the 9 subjects, and the combination of
all subjects’ pspin values into one combined pyisher value, as described in the “Voxel-based approach:
Dataset” section above.

Furthermore, we also tested the assumption of homoscedasticity in our analyses (i.e., the
assumption that the variance of the residuals in the regression model is constant as the independent
variable changes) using the Breusch-Pagan test: we (i) first fit the regression model using our
empirical dependent and independent variables, (ii) calculated the square of the unstandardized
residuals of the model, and (iii) then fit a new regression model using the squared residuals as the
new dependent variable. The p-value between the squared residuals and the independent variable
was then calculated for each subject; these p-values were then combined into one pyisher Value, as
described in the “Voxel-based approach: Dataset” section above.

Multiple Linear Regression Analyses and Non-Parametric Bootstrapping

Multiple linear regression models were used to examine the statistical relationship between two
variables, after adjusting for the effects of other pertinent variables. SFC and temporal SFC
variance were designated as the dependent variables, whereas intracortical myelin content and the
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Hurst exponent were designated as the independent variables. In the ‘Biological correlates of
Structure-Function Coupling: whole-brain perspective’ section, we also included the principal
functional gradient assignment as an independent variable, so that we could ensure that any
potential relationships were not driven by a similar co-variation of the given variables across the
same cortical hierarchy. Moreover, to address the non-linear relationship and significant
heteroscedasticity between the temporal SFC variance and the Hurst exponent in our voxel-based
analyses, we incorporated a non-linear term (square of the Hurst exponent) as an additional
independent variable in the ‘Biological correlates of Structure-Function Coupling: whole-brain
perspective’ and ‘Biological correlates of Structure-Function Coupling: regional perspective’
sections.

Standardized f (fsana) coefficients and p-values were computed for each independent variable
within each multiple linear regression model (ordinary least squares regression), using non-
parametric bootstrapping. This process entailed (i) fitting the original empirical data into the
multiple regression model and calculating the Ssand coefficients, (ii) sampling the original
empirical data with replacement, and (ii1) re-fitting the multiple regression model on this newly
sampled dataset and extracting the resulting fswand coefficients. We repeated steps (ii)-(iii) 10,000
times to generate robust confidence intervals for the fsand coefficients and the corresponding
‘bootstrapped’ p-values. For each multiple regression model mentioned in the atlas-based analyses
of our Results section, we reported the empirically derived fsw.na coefficient for each independent
variable, the corresponding 95% confidence interval as calculated by the non-parametric
bootstrapping approach (and referred to in the text as 95% BCI), and the resulting p-value.
Similarly, for our voxel-based analyses, we reported the mean empirically-derived fsuana coefficient
for each independent variable across subjects, its [min max] range across the 9 subjects, and the
combination of all subjects’ p-values into one combined pyisrer Value, as described in the “Voxel-
based approach: Dataset” section above. Overall, applying non-parametric bootstrapping into our
regression models allowed us to robustly examine how variable the Ssana coefficients were in each
model, without making any assumptions about the distribution of the data.

Lastly, to ensure that there were no collinearities among our variables within the multiple
regression models, we also reported the variance inflation factor (VIF) within each analysis; a
threshold of VIF > 5 was used to indicate significant collinearity.!'!"

Mediation Model

The mediation analysis reported in our atlas-based analyses in the Results section: ‘Biological
correlates of Structure-Function Coupling: whole-brain perspective’ was performed using the
PROCESS (v3.4) statistical macro for SPSS.!!! Intracortical myelin content was designated as the
independent variable, the Hurst exponent of the functional signal time series as the mediator, and
the temporal SFC variance as the dependent variable. The Hurst exponent (as a proxy of El-ratio)
was chosen as the mediator in this model—rather than the independent variable—as it fluctuates
on a moment-to-moment basis.”” The hypothesized mediation effect was tested using
bootstrapping (10,000 samples); a BCI that did not include zero indicated a significant mediation
effect.
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Recent work in several fields of science has identified a bias in citation practices such that papers
from women and other minority scholars are under-cited relative to the number of such papers in
the field.!'?-!16 We obtained the predicted gender of the first and last author of each reference by
using databases that store the probability of a first name being carried by a woman.!!¢ By this
measure (and excluding self-citations to the first and last authors of our current paper), our
references contain 10% woman(first)/woman(last), 10% man/woman, 22.7% woman/man, and
57.3% man/man. This method is limited in that a) names, pronouns, and social media profiles used
to construct the databases may not, in every case, be indicative of gender identity and b) it cannot
account for intersex, non-binary, or transgender people. We look forward to future work that could
help us better understand how to support equitable practices in science.
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Figure 1 — Regional variations in structure-function coupling: atlas-based analysis.

A: Boxplots showing the mean differences in structure-function coupling across the 7 resting-state functional systems
(generated using the 100 unrelated HCP subjects and Schaefer 400 atlas). The brain regions in each functional system
are overlayed on the standardized fsaverage brain’s surface and illustrated on the left side. LIM: Limbic, VEN: Ventral
Attention, FP: Fronto-Parietal, DMN: Default Mode Network, DOR: Dorsal Attention, MOT: Somatomotor, VIS:
Visual. B: Boxplots showing the mean differences in structure-function coupling across the 5 cyto-architectonic
classes (generated using the 100 unrelated HCP subjects and Schaefer 400 atlas). The brain regions involved within
each class are overlayed on the standardized fsaverage brain’s surface and illustrated on the left side. POL: Polar,
AGR: Agranular, FRO: Frontal, PAR: Parietal, GRA: Granular. C: Scatterplot between the principal functional
gradient scalar of each brain region and its corresponding structure-function coupling (n=400 brain
regions/datapoints). A linear regression was fit (shown in red); the correlation coefficient (Spearman’s p: r), p-value
corresponding to the spatial permutation test (pspin), and histograms corresponding to each variable are reported. D:
Scatterplot between the “BigBrain” gradient scalar of each brain region and its corresponding structure-function
coupling (n=400 brain regions/datapoints). A linear regression was fit (shown in red); the correlation coefficient
(Spearman’s p: r), p-value corresponding to the spatial permutation test (pspin), and histograms corresponding to each
variable are reported.
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Figure 2 — Regional variations in temporal structure-function coupling variance: atlas-based analysis.

A: Boxplots showing the mean differences in temporal structure-function coupling variance across the 7 resting-state
functional systems (generated using the 100 unrelated HCP subjects and Schaefer 400 atlas). The brain regions
involved within each functional system are overlayed on the standardized fsaverage brain’s surface and illustrated on
the left side. DOR: Dorsal Attention, VIS: Visual, MOT: Somatomotor, VEN: Ventral Attention, FP: Fronto-parietal,
DMN: Default Mode Network, LIM: Limbic. B: Boxplots showing the mean differences in temporal structure-
function coupling variance across the 5 cyto-architectonic classes (generated using the 100 unrelated HCP subjects
and Schaefer 400 atlas). The brain regions involved within each class are overlayed on the standardized fsaverage
brain’s surface and illustrated on the left side. PAR: Parietal, AGR: Agranular, FRO: Frontal, GRA: Granular, POL:
Polar. C: Scatterplot between the principal functional gradient scalar of each brain region and its corresponding
temporal structure-function coupling variance (n=400 brain regions/datapoints). A linear regression was fit (shown in
red); the correlation coefficient (Spearman’s p: r), p-value corresponding to the spatial permutation test (pspin), and
histograms corresponding to each variable are reported. D: Scatterplot between the “BigBrain” gradient scalar of each
brain region and its corresponding temporal structure-function coupling variance (n=400 brain regions/datapoints). A
linear regression was fit (shown in red); the correlation coefficient (Spearman’s p: r), p-value corresponding to the
spatial permutation test (pspin), and histograms corresponding to each variable are reported.
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Figure 3 — Spatial distributions of the variables of interest.

Schematic of the spatial cortical maps corresponding to structure-function coupling (A), temporal structure-function
coupling variance (B), T1-weighted/T2-weighted signal intensity ratio as a proxy of intracortical myelin content (C),
and the Hurst exponent of the functional signal time series as a proxy of excitation-inhibition balance (D). For
visualization purposes, each variable of interest was normalized between 0 and 1 and mapped onto the standardized
Conte69 surface space; the medial wall was excluded from the analysis and is shown in dark gray.
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Figure 4 — Scatterplots between the variables of interest: atlas-based analysis.

Scatterplot showing the association between each brain region’s: mean structure-function coupling and intracortical
myelin content as estimated by the T1-weighted/T2-weighted signal intensity ratio (A), mean temporal structure-
function coupling variance and intracortical myelin content (B), mean structure-function coupling and the Hurst
exponent of the functional signal time series (C), and mean temporal structure-function coupling variance and the
Hurst exponent of the functional signal time series (D). For each scatterplot, a linear regression was fit (shown in red);
correlation coefficients (Spearman’s p: r), p-values corresponding to the spatial permutation test (pspin), and histograms
corresponding to each variable are displayed. Note: n=400 brain regions in all panels.
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Figure 5 — High density plots between the variables of interest: voxel-based analysis — representative subject
shown.

High density plots showing the association between each cortical voxel’s: mean structure-function coupling and
intracortical myelin content estimated by the T1-weighted/T2-weighted signal intensity ratio (A), mean temporal
structure-function coupling variance and intracortical myelin content (B), mean structure-function coupling and the
Hurst exponent of the functional signal time series (C), and mean temporal structure-function coupling variance and
the Hurst exponent of the functional signal time series (D). For plots (A), (B), and (C), a linear regression was fit
(shown in red); correlation coefficients (Spearman’s p: r), p-values corresponding to the spatial permutation test (Pspin),
and histograms corresponding to each variable are displayed. In plot (D), a quadratic regression was fit (shown in
red); the standardized B coefficient and bootstrapped p-value corresponding to the quadratic regression mentioned in
the voxel-based analysis component of our Results section: ‘Biological correlates of Structure-Function Coupling:
whole-brain perspective,” are also reported. Data shown in this figure were obtained from a representative subject that
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was analyzed using our voxel-based connectivity approach. Scatterplot versions of the above plots are shown in
Supplemental Figure 6. Note: n=71,561 voxels in all panels.
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Figure 6

Cyto-architectonic classes

Figure 6 — Shift from intracortical myelination to excitation-inhibition ratio as the principal predictor of
structure-function coupling, when transitioning from agranular to granular cortical regions: an illustration.

A: Parcellation of the cortex into the 5 von Economo/Koskinas-inspired cyto-architectonic classes: agranular (orange),
frontal (red), parietal (blue), polar (green), and granular (purple). B: Using the same colors, we showcase a schematic
illustration of the types and distribution of cells that are expected to occupy the cortical layers (numbered on the left
and right sides of the panel) within each cyto-architectonic class/type. Purple cells represent Cajal-Retzius neurons;
red star-shaped cells represent stellate cells; green cells with triangular somata represent pyramidal cells; myelin
sheaths are shown in dark yellow; and the stripes across each column represent the outer (layer IV) and inner (layer
V) stripes (or bands) of Baillarger (myelinated fibers arising mostly from the thalamus) in dark yellow. While
transitioning from granular to agranular cortical types, we notice an increase in axonal myelination, an increase in the
number and size of pyramidal neurons, and a decrease in the number of small stellate neurons. C-G: On the left side
of each panel, we isolated and colored only the brain regions corresponding to each cyto-architectonic class; the rest
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of the brain surface was grayed out. The middle figure corresponds to the expected cellular distribution and
composition of each class as defined in panel (B). The third figure on the right represents a visual scale wherein the
contributions of intracortical myelination and excitation-inhibition (EI) ratio (in the form of the Hurst exponent) in
predicting structure-function coupling are “weighed” against each other. For each cyto-architectonic class, such
“weight” was determined by computing the ratio between the Pyana coefficient corresponding to the Hurst exponent
and the Bswna coefficient corresponding to intracortical myelin across our three processing pipelines: the Schaefer 400
atlas-based (Table 1), the HCP multi-modal atlas-based (Supplemental Table 9), and the voxel-based (Table 2)
analyses. This generated three ratio values for each cortical type (one corresponding to each atlas-based analysis and
one to the voxel-based analysis) which were then averaged, in order to generate one representative ratio value per
cortical type indicating how much—on average—one variable contributes more than the other in predicting structure-
function coupling. The averaged ratio is shown underneath the ‘dominant’ variable’s name across each scale. Created
with BioRender.com.
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TABLES
Table 1
A. Structure-Function Coupling
Intracortical Myelin Hurst Exponent
Cortical Bootstrapped Bootstrapped
Type Bstand 95% BClI p-Value Bstand 95% BCI p-Value VIF
(FDR) (FDR)

Granular 0.178 [0.132, 0.300 0.704 [0.716, <0.001 1.01
0.141] 0.722]

Polar 0.303 [0.239, 0.300 -0.275 | [-0.261, 0.421 1.04
0.249] -0.251]

Parietal 0.416 [0.414, <0.001 0.538 [0.531, <0.001 1.01
0.417] 0.534]

Frontal 0.437 [0.438, <0.001 0.275 [0.272, <0.001 1.08
0.441] 0.275]

Agranular | 0.456 [0.455, <0.001 0.050 [0.050, 0.738 1.32
0.459] 0.056]

B. Temporal Structure-Function Coupling Variance
Intracortical Myelin Hurst Exponent
Cortical Bootstrapped Bootstrapped
Type Bstand | 95% BCI p-value Bstand | 95% BCI p-value VIF
(FDR) (FDR)

Granular 0.326 [0.279, 0.217 -0.462 | [-0.451, 0.022 1.01
0.287] -0.444]

Polar -0.171 | [-0.179, 0.217 -0.759 | [-0.753, <0.001 1.04
-0.175] -0.746]

Parietal -0.002 | [-0.003, 0.972 -0.433 | [-0.432, 0.005 1.01
0.001] -0.427]

Frontal 0.024 [0.024, 0.865 -0.428 | [-0.426, <0.001 1.08
0.027] -0.423]

Agranular | -0.106 | [-0.102, 0.217 -0.627 | [-0.614, <0.001 1.32
-0.100] -0.607]

Table 1: Atlas-based multiple linear regression analyses — Results corresponding to the atlas-based analyses
discussed in section: ‘Biological correlates of Structure-Function Coupling: regional perspective.’ Bsana: Standardized
B coefficient; 95% BCI: 95% bootstrapped standardized B coefficient confidence interval; Bootstrapped p-value
(FDR): bootstrapped p-value adjusted for multiple comparisons (false discovery rate [FDR]: Benjamini-Hochberg
method); VIF: Variance Inflation Factor.
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Table 2
A. Structure-Function Coupling
Intracortical Myelin Hurst Exponent
Cortical Mean Fisher’s Mean Fisher’s Mean
Type Bstand Range Bstand p-value Bstand Range Bstand p-value VIF Range VIF
(FDR) (FDR)
Granular 0.01 [-0.02, 0.04] 0.084 0.05 [-0.09, 0.35] <0.001 1 [1.00, 1.01]
Polar 0.03 [-0.05, 0.12] <0.001 0.18 [-0.16, 0.57] <0.001 1.05 [1.01, 1.07]
Parietal 0.02 [-0.07, 0.09] <0.001 0.05 [-0.07, 0.17] <0.001 1 [1.00, 1.01]
Frontal 0.13 [0.05, 0.18] <0.001 0.11 [0.01, 0.29] <0.001 1.02 [1.01, 1.05]
Agranular 0.16 [0.06, 0.24] <0.001 0.23 [0.05, 0.42] <0.001 1.02 [1.00, 1.08]
B. Temporal Structure-Function Coupling Variance
Intracortical Myelin Hurst Exponent?
Cortical Mean Fisher’s Mean Fisher’s Mean
Type PBstand Range Bstand p-value Bstand Range Bstand p-value VIF Range VIF
(FDR) (FDR)
Granular -0.002 [-0.03, 0.06] 0.005 -0.10 [-2.37,2.00] <0.001 1.01 [1.00, 1.01]
Polar -0.05 [-0.13, 0.09] <0.001 0.27 [-2.41, 2.38] <0.001 1.06 [1.01, 1.08]
Parietal -0.09 [-0.15, -0.03] <0.001 -0.68 [-1.26, -0.15] <0.001 1.01 [1.00, 1.01]
Frontal -0.12 [-0.17, -0.05] <0.001 -0.48 [-1.23, 0.58] <0.001 1.02 [1.01, 1.05]
Agranular -0.04 [-0.13, 0.05] <0.001 0.09 [-0.80, 1.43] <0.001 1.02 [1.01, 1.08]

Table 2: Voxel-based multiple linear regression analyses — Results corresponding to the voxel-based analyses
discussed in section: ‘Biological correlates of Structure-Function Coupling: regional perspective.” Mean Bguna: the
mean standardized B coefficient across the 9 subjects; Range Bgna: [min max] range of the standardized 8 coefficient
across the 9 subjects; Fisher’s p-value (FDR): Fisher’s p-value adjusted for false discovery rate [FDR] using the
Benjamini-Hochberg method; Mean VIF: the mean Variance Inflation Factor across the 9 subjects; Range VIF: [min
max] range of VIF values across the 9 subjects; Hurst Exponent?: Hurst exponent squared.


https://doi.org/10.1101/2022.10.20.512802
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.20.512802; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

REFERENCES

1. Sudrez, L. E., Markello, R. D., Betzel, R. F. & Misic, B. Linking Structure and Function in
Macroscale Brain Networks. Trends Cogn. Sci. 24, 302—315 (2020).

2. Srivastava, P., Fotiadis, P., Parkes, L. & Bassett, D. S. The expanding horizons of network
neuroscience: From description to prediction and control. Neurolmage 258, 119250 (2022).

3. Gu,S. et al. Network controllability mediates the relationship between rigid structure and
flexible dynamics. Netw. Neurosci. 6, 275-297 (2022).

4. Baum, G. L. et al. Development of structure—function coupling in human brain networks
during youth. Proc. Natl. Acad. Sci. 117, 771-778 (2020).

5. Medaglia, J. D. et al. Functional alignment with anatomical networks is associated with
cognitive flexibility. Nat. Hum. Behav. 2, 156—-164 (2018).

6. Gu, Z., Jamison, K. W., Sabuncu, M. R. & Kuceyeski, A. Heritability and interindividual
variability of regional structure-function coupling. Nat. Commun. 12, 4894 (2021).

7. Wang, J. et al. Alterations in Brain Network Topology and Structural-Functional Connectome
Coupling Relate to Cognitive Impairment. Front. Aging Neurosci. 10, 404 (2018).

8. Cao, R. et al. Abnormal Anatomical Rich-Club Organization and Structural—Functional
Coupling in Mild Cognitive Impairment and Alzheimer’s Disease. Front. Neurol. 11, 53
(2020).

9. Dai, Z. et al. Disrupted structural and functional brain networks in Alzheimer’s disease.
Neurobiol. Aging 75, 71-82 (2019).

10. Zhang, J. et al. Disrupted structural and functional connectivity networks in ischemic stroke

patients. Neuroscience 364, 212—-225 (2017).


https://doi.org/10.1101/2022.10.20.512802
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.20.512802; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

11. Chen, H. et al. Alterations of brain network topology and structural connectivity-functional
connectivity coupling in capsular versus pontine stroke. Eur. J. Neurol. 28, 1967-1976
(2021).

12. Zarkali, A. et al. Organisational and neuromodulatory underpinnings of structural-functional
connectivity decoupling in patients with Parkinson’s disease. Commun. Biol. 4, 86 (2021).

13. Garcia-Garcia, D. et al. Posterior parietooccipital hypometabolism may differentiate mild
cognitive impairment from dementia in Parkinson’s disease. Eur. J. Nucl. Med. Mol. Imaging
39, 1767-1777 (2012).

14. Koubiyr, I. et al. Dynamic modular-level alterations of structural-functional coupling in
clinically isolated syndrome. Brain 142, 3428-3439 (2019).

15. Koubiyr, I. et al. Structural constraints of functional connectivity drive cognitive impairment
in the early stages of multiple sclerosis. Mult. Scler. J. 27, 559-567 (2021).

16. Chiang, S., Stern, J. M., Engel, J. & Haneef, Z. Structural-functional coupling changes in
temporal lobe epilepsy. Brain Res. 1616, 45-57 (2015).

17. Zhang, Z. et al. Altered functional—structural coupling of large-scale brain networks in
idiopathic generalized epilepsy. Brain 134, 2912—-2928 (2011).

18. Collin, G., Scholtens, L. H., Kahn, R. S., Hillegers, M. H. J. & van den Heuvel, M. P. Affected
Anatomical Rich Club and Structural-Functional Coupling in Young Offspring of
Schizophrenia and Bipolar Disorder Patients. Biol. Psychiatry 82, 746—755 (2017).

19. Zhang, R. et al. Aberrant brain structural-functional connectivity coupling in euthymic

bipolar disorder. Hum. Brain Mapp. 40, 3452—-3463 (2019).


https://doi.org/10.1101/2022.10.20.512802
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.20.512802; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

20. Sun, Y., Dai, Z., Li, J., Collinson, S. L. & Sim, K. Modular-Level Alterations of Structure-
Function Coupling in Schizophrenia Connectome. Hum. Brain Mapp. 38, 2008-2025 (2017).

21. Vazquez-Rodriguez, B. et al. Gradients of structure—function tethering across neocortex.
Proc. Natl. Acad. Sci. 116, 21219-21227 (2019).

22. Preti, M. G. & Van De Ville, D. Decoupling of brain function from structure reveals regional
behavioral specialization in humans. Nat. Commun. 10, 4747 (2019).

23. Luo, N. et al. Structural Brain Architectures Match Intrinsic Functional Networks and Vary
across Domains: A Study from 15 000+ Individuals. Cereb. Cortex 30, 5460-5470 (2020).

24. Yeo, B. T. T. et al. Functional Specialization and Flexibility in Human Association Cortex.
Cereb. Cortex 25, 3654-3672 (2015).

25. Wu, D. et al. Hierarchy of Connectivity—Function Relationship of the Human Cortex
Revealed through Predicting Activity across Functional Domains. Cereb. Cortex 30, 4607—
4616 (2020).

26. Buckner, R. L. & Krienen, F. M. The evolution of distributed association networks in the
human brain. Trends Cogn. Sci. 17, 648—665 (2013).

27. Glasser, M. F., Goyal, M. S., Preuss, T. M., Raichle, M. E. & Van Essen, D. C. Trends and
properties of human cerebral cortex: Correlations with cortical myelin content. Neurolmage
93, 165-175 (2014).

28. Glasser, M. F. & Van Essen, D. C. Mapping Human Cortical Areas In Vivo Based on Myelin
Content as Revealed by T1- and T2-Weighted MRI. J. Neurosci. 31, 11597-11616 (2011).

29. Huntenburg, J. M. et al. A Systematic Relationship Between Functional Connectivity and

Intracortical Myelin in the Human Cerebral Cortex. Cereb. Cortex 27, 981-997 (2017).


https://doi.org/10.1101/2022.10.20.512802
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.20.512802; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

30. Burt, J. B. et al. Hierarchy of transcriptomic specialization across human cortex captured by
structural neuroimaging topography. Nat. Neurosci. 21, 1251-1259 (2018).

31. Paquola, C. et al. Shifts in myeloarchitecture characterise adolescent development of
cortical gradients. eLife 8, e50482 (2019).

32. Wang, X.-J. Macroscopic gradients of synaptic excitation and inhibition in the neocortex.
Nat. Rev. Neurosci. 21, 169-178 (2020).

33. DeFelipe, J., Gonzalez-Albo, M. C., Del Rio, M. R. & Elston, G. N. Distribution and patterns of
connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual
areas of the occipital and temporal lobes of the macaque monkey. J. Comp. Neurol. 412,
515-526 (1999).

34. Goulas, A. et al. The natural axis of transmitter receptor distribution in the human cerebral
cortex. Proc. Natl. Acad. Sci. 118, e2020574118 (2021).

35. Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic
functional connectivity. J. Neurophysiol. 106, 1125-1165 (2011).

36. Margulies, D. S. et al. Situating the default-mode network along a principal gradient of
macroscale cortical organization. Proc. Natl. Acad. Sci. 113, 12574-12579 (2016).

37. von Economo, C. & Koskinas, G. Die Cytoarchitectonik der Hirnrinde des Erwachsenen
Menschen. (Springer Verlag, 1925).

38. Paquola, C. et al. Microstructural and functional gradients are increasingly dissociated in
transmodal cortices. PLOS Biol. 17, e3000284 (2019).

39. Amunts, K. et al. BigBrain: An Ultrahigh-Resolution 3D Human Brain Model. Science 340,

1472-1475 (2013).


https://doi.org/10.1101/2022.10.20.512802
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.20.512802; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

40. Schaefer, A. et al. Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic
Functional Connectivity MRI. Cereb. Cortex 28, 3095-3114 (2018).

41. Fukutomi, H. et al. Neurite imaging reveals microstructural variations in human cerebral
cortical gray matter. Neurolmage 182, 488—-499 (2018).

42. Solari, S. V. H. & Stoner, R. Cognitive Consilience: Primate Non-Primary Neuroanatomical
Circuits Underlying Cognition. Front. Neuroanat. 5, 65 (2011).

43. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171—
178 (2016).

44. Trakoshis, S. et al. Intrinsic excitation-inhibition imbalance affects medial prefrontal cortex
differently in autistic men versus women. elLife 9, e55684 (2020).

45, Jiang, X. et al. Connectome analysis of functional and structural hemispheric brain networks
in major depressive disorder. Transl. Psychiatry 9, 136 (2019).

46. Caeyenberghs, K., Leemans, A., Leunissen, |., Michiels, K. & Swinnen, S. P. Topological
correlations of structural and functional networks in patients with traumatic brain injury.
Front. Hum. Neurosci. 7, (2013).

47. Liu, Z.-Q. et al. Time-resolved structure-function coupling in brain networks. Commun. Biol.
5, 1-10 (2022).

48. Mueller, S. et al. Individual Variability in Functional Connectivity Architecture of the Human
Brain. Neuron 77, 586-595 (2013).

49. O’Doherty, J. P. & Dolan, R. J. Chapter 10: The role of human orbitofrontal cortex in reward
prediction and behavioral choice: insights from neuroimaging. in The Orbitofrontal Cortex

(eds. Zald, D. & Rauch, S.) (Oxford University Press, 2006).


https://doi.org/10.1101/2022.10.20.512802
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.20.512802; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

50. Sampaio-Baptista, C. & Johansen-Berg, H. White Matter Plasticity in the Adult Brain. Neuron
96, 1239-1251 (2017).

51. Cui, Z. et al. Individual Variation in Functional Topography of Association Networks in Youth.
Neuron 106, 340-353.e8 (2020).

52. Kurcyus, K. et al. Opposite Dynamics of GABA and Glutamate Levels in the Occipital Cortex
during Visual Processing. J. Neurosci. 38, 9967-9976 (2018).

53. Chen, Z,, Silva, A. C., Yang, J. & Shen, J. Elevated endogenous GABA level correlates with
decreased fMRI signals in the rat brain during acute inhibition of GABA transaminase. J.
Neurosci. Res. 79, 383—-391 (2005).

54. Aksenov, D. P., Li, L., Miller, M. J. & Wyrwicz, A. M. Role of the inhibitory system in shaping
the BOLD fMRI response. Neurolmage 201, 116034 (2019).

55. Gu, H., Hu, Y., Chen, X,, He, Y. & Yang, Y. Regional Excitation-Inhibition Balance Predicts
Default-mode Network Deactivation via Functional Connectivity. Neurolmage 185, 388—397
(2019).

56. Rocchi, F. et al. Increased fMRI connectivity upon chemogenetic inhibition of the mouse
prefrontal cortex. Nat. Commun. 13, 1056 (2022).

57. Sadeh, S. & Clopath, C. Excitatory-inhibitory balance modulates the formation and dynamics
of neuronal assemblies in cortical networks. Sci. Adv. 7, eabg8411 (2021).

58. Sadeh, S. & Clopath, C. Inhibitory stabilization and cortical computation. Nat. Rev. Neurosci.
22, 21-37 (2021).

59. Haider, B., Hausser, M. & Carandini, M. Inhibition dominates sensory responses in awake

cortex. Nature 493, 97—-100 (2013).


https://doi.org/10.1101/2022.10.20.512802
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.20.512802; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

60. Moon, H. S. et al. Contribution of Excitatory and Inhibitory Neuronal Activity to BOLD fMRI.
Cereb. Cortex N. Y. NY 31, 4053-4067 (2021).

61. Li, N. et al. Spatiotemporal constraints on optogenetic inactivation in cortical circuits. eLife
8, e48622 (2019).

62. Harris, J. J., Reynell, C. & Attwell, D. The physiology of developmental changes in BOLD
functional imaging signals. Dev. Cogn. Neurosci. 1, 199-216 (2011).

63. Wehr, M. & Zador, A. M. Balanced inhibition underlies tuning and sharpens spike timing in
auditory cortex. Nature 426, 442-446 (2003).

64. von Economo, C. Cellular Structure of the Human Cerebral Cortex. (Karger, 2009).

65. Fatterpekar, G. M. et al. Cytoarchitecture of the Human Cerebral Cortex: MR Microscopy of
Excised Specimens at 9.4 Tesla. AINR Am. J. Neuroradiol. 23, 1313-1321 (2002).

66. Vanderah, T. W. & Gould, D. J. Cerebral Cortex. in Nolte’s The Human Brain 513-545
(Elsevier, 2021).

67. Seeley, W. W. et al. Distinctive Neurons of the Anterior Cingulate and Frontoinsular Cortex:
A Historical Perspective. Cereb. Cortex 22, 245-250 (2012).

68. Debanne, D., Campanac, E., Bialowas, A., Carlier, E. & Alcaraz, G. Axon Physiology. Physiol.
Rev. 91, 555-602 (2011).

69. D’Angelo, E. Cerebellar Granule Cell. in Handbook of the Cerebellum and Cerebellar
Disorders (eds. Manto, M., Schmahmann, J. D., Rossi, F., Gruol, D. L. & Koibuchi, N.) 765—

791 (Springer Netherlands, 2013). doi:10.1007/978-94-007-1333-8_31.


https://doi.org/10.1101/2022.10.20.512802
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.20.512802; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

70. Sloper, J. J. & Powell, T. P. S. A Study of the Axon Initial Segment and Proximal Axon of
Neurons in the Primate Motor and Somatic Sensory Cortices. Philos. Trans. R. Soc. Lond. B.
Biol. Sci. 285, 173-197 (1979).

71. Almeida, R. G. The Rules of Attraction in Central Nervous System Myelination. Front. Cell.
Neurosci. 12, (2018).

72. Stedehouder, J. et al. Local axonal morphology guides the topography of interneuron
myelination in mouse and human neocortex. elife 8, e48615 (2019).

73. Waxman, S. G. & Bennett, M. V. Relative Conduction Velocities of Small Myelinated and
Non-myelinated Fibres in the Central Nervous System. Nat. Cell Biol. 238, (1972).

74. Hildebrand, C., Remahl, S., Persson, H. & Bjartmar, C. Myelinated Nerve Fibres in the CNS.
Prog. Neurobiol. 40, 319-384 (1993).

75. Micheva, K. D. et al. A large fraction of neocortical myelin ensheathes axons of local
inhibitory neurons. eLife 5, e15784 (2016).

76. Tomassy, G. S. et al. Distinct profiles of myelin distribution along single axons of pyramidal
neurons in the neocortex. Science 344, 319-324 (2014).

77. He, H. & Cline, H. T. What Is Excitation/Inhibition and How Is It Regulated? A Case of the
Elephant and the Wisemen. J. Exp. Neurosci. 13, 1179069519859371 (2019).

78. Van Essen, D. C. et al. The WU-Minn Human Connectome Project: An Overview.
Neurolmage 80, 62—79 (2013).

79. Ugurbil, K. et al. Pushing spatial and temporal resolution for functional and diffusion MRl in

the Human Connectome Project. Neuro/lmage 80, 80—104 (2013).


https://doi.org/10.1101/2022.10.20.512802
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.20.512802; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

80. Sotiropoulos, S. N. et al. Advances in diffusion MRI acquisition and processing in the Human
Connectome Project. Neurolmage 80, 125-143 (2013).

81. Glasser, M. F. et al. The Minimal Preprocessing Pipelines for the Human Connectome
Project. Neurolmage 80, 105-124 (2013).

82. Tournier, J.-D. et al. MRtrix3: A fast, flexible and open software framework for medical
image processing and visualisation. Neurolmage 202, 116137 (2019).

83. Tournier, J.-D., Calamante, F. & Connelly, A. Improved probabilistic streamlines
tractography by 2nd order integration over fibre orientation distributions. Proc. Int. Soc.
Magn. Reson. Med. 18, 1670 (2010).

84. Smith, R. E., Tournier, J.-D., Calamante, F. & Connelly, A. SIFT2: Enabling dense quantitative
assessment of brain white matter connectivity using streamlines tractography. Neurolmage
119, 338-351 (2015).

85. Salimi-Khorshidi, G. et al. Automatic denoising of functional MRI data: Combining
independent component analysis and hierarchical fusion of classifiers. Neurolmage 90,
449-468 (2014).

86. Fischl, B. FreeSurfer. Neurolmage 62, 774-781 (2012).

87. Eichler, S. & Meier, J. E-l balance and human diseases - from molecules to networking.
Front. Mol. Neurosci. 1, (2008).

88. Larsen, B. & Luna, B. Adolescence as a neurobiological critical period for the development
of higher-order cognition. Neurosci. Biobehav. Rev. 94, 179-195 (2018).

89. Gao, R., Peterson, E. J. & Voytek, B. Inferring synaptic excitation/inhibition balance from

field potentials. Neurolmage 158, 70-78 (2017).


https://doi.org/10.1101/2022.10.20.512802
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.20.512802; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

90. You, W., Achard, S., Stadler, J., Bruekner, B. & Seiffert, U. Fractal analysis of resting state
functional connectivity of the brain. 2012 Int. Jt. Conf. Neural Netw. (2012).

91. Cieslak, M. et al. QSIPrep: an integrative platform for preprocessing and reconstructing
diffusion MRI data. Nat. Methods 18, 775778 (2021).

92. Cieslak, M. et al. Diffusion MRI Head Motion Correction Methods are Highly Accurate but
Impacted by Denoising and Sampling Scheme. bioRxiv Preprint at
https://doi.org/10.1101/2022.07.21.500865 (2022).

93. Merlet, Sylvain. L. & Deriche, R. Continuous diffusion signal, EAP and ODF estimation via
Compressive Sensing in diffusion MRI. Med. Image Anal. 17, 556-572 (2013).

94. Wang, S. et al. Evaluation of Field Map and Nonlinear Registration Methods for Correction
of Susceptibility Artifacts in Diffusion MRI. Front. Neuroinformatics 11, 17 (2017).

95. Cieslak, M. et al. Analytic tractography: A closed-form solution for estimating local white
matter connectivity with diffusion MRI. Neurolmage 169, 473-484 (2018).

96. Greene, C. et al. Finding maximally disconnected subnetworks with shortest path
tractography. Neurolmage Clin. 23, 101903 (2019).

97. Fornito, A., Zalesky, A. & Bullmore, E. Fundamentals of Brain Network Analysis. (Academic
Press, 2016).

98. Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: a functional connectivity toolbox for
correlated and anticorrelated brain networks. Brain Connect. 2, 125-141 (2012).

99. Nieto-Castanon, A. Handbook of fcMRI methods in CONN. (Hilbert Press, 2020).

100. Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting

state fMRI. Neurolmage 84, 10.1016/j.neuroimage.2013.08.048 (2014).


https://doi.org/10.1101/2022.10.20.512802
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.20.512802; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

101. Gu,S. et al. Emergence of system roles in normative neurodevelopment. Proc. Natl.
Acad. Sci. 112, 13681-13686 (2015).

102. Lariviere, S. et al. The ENIGMA Toolbox: multiscale neural contextualization of multisite
neuroimaging datasets. Nat. Methods 18, 698-700 (2021).

103. Byrge, L. & Kennedy, D. P. High-accuracy individual identification using a “thin slice” of
the functional connectome. Netw. Neurosci. 3, 363—383 (2019).

104. Pijnenburg, R. et al. Myelo- and cytoarchitectonic microstructural and functional human
cortical atlases reconstructed in common MRI space. Neurolmage 239, 118274 (2021).

105. Fisher, R. A. Statistical Methods for Research Workers. (Oliver & Boyd, 1932).

106. Yoon, S., Baik, B., Park, T. & Nam, D. Powerful p-value combination methods to detect
incomplete association. Sci. Rep. 11, (2021).

107. Winkler, A. M. et al. Non-Parametric Combination and Related Permutation Tests for
Neuroimaging. Hum. Brain Mapp. 37, 14861511 (2016).

108. Alexander-Bloch, A. et al. On testing for spatial correspondence between maps of
human brain structure and function. Neurolmage 178, 540-551 (2018).

109. Vasa, F. et al. Adolescent Tuning of Association Cortex in Human Structural Brain
Networks. Cereb. Cortex 28, 281-294 (2018).

110. James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning
with Applications in R. (Springer, 2013).

111. Hayes, A. F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A

Regression-Based Approach. (The Guilford Press, 2017).


https://doi.org/10.1101/2022.10.20.512802
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.20.512802; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

112. Mitchell, S. M., Lange, S. & Brus, H. Gendered Citation Patterns in International
Relations Journals. Int. Stud. Perspect. 14, 485-492 (2013).

113. Dion, M. L,, Sumner, J. L. & Mitchell, S. M. Gendered Citation Patterns across Political
Science and Social Science Methodology Fields. Polit. Anal. 26, 312—-327 (2018).

114. Caplar, N., Tacchella, S. & Birrer, S. Quantitative evaluation of gender bias in
astronomical publications from citation counts. Nat. Astron. 1, 1-5 (2017).

115. Maliniak, D., Powers, R. & Walter, B. F. The Gender Citation Gap in International
Relations. Int. Organ. 67, 889-922 (2013).

116. Dworkin, J. D. et al. The extent and drivers of gender imbalance in neuroscience

reference lists. Nat. Neurosci. 23, 918-926 (2020).


https://doi.org/10.1101/2022.10.20.512802
http://creativecommons.org/licenses/by-nd/4.0/

