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ABSTRACT 

 

Recent work has demonstrated that the relationship between structural and functional connectivity 

varies regionally across the human brain, with reduced coupling emerging along the sensory-

association cortical hierarchy. The biological underpinnings driving this expression, however, 

remain largely unknown. Here, we postulated that intracortical myelination and excitation-

inhibition (EI) balance mediate the heterogeneous expression of structure-function coupling (SFC) 

and its temporal variance across the cortical hierarchy. We employed atlas- and voxel-based 

connectivity approaches to analyze neuroimaging data acquired from two groups of healthy 

participants. Our findings were consistent across processing pipelines: 1) increased myelination 

and lower EI-ratio associated with more rigid SFC and restricted moment-to-moment SFC 

fluctuations; 2) a gradual shift from EI-ratio to myelination as the principal predictor of SFC 

occurred when traversing from granular to agranular cortical regions. Collectively, our work 

delivers a novel framework to conceptualize structure-function relationships in the human brain, 

paving the way for an improved understanding of how demyelination and/or EI-imbalances induce 

reorganization in brain disorders. 
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INTRODUCTION 

 

The structural and functional connectivity patterns of the human brain have been extensively 

mapped using macroscale neuroimaging. To elucidate how the anatomical wiring of the brain 

sculpts its functional connectivity in support of flexible cognition, recent studies have increasingly 

focused on the extent to which structure and function are coupled across brain regions.133 A brain 

region9s 8structure-function coupling9 (SFC) refers to the manner in which its functional and 

structural connectivity statistically depend upon one another. Here, a structural connection is the 

white matter projections linking two brain regions, as measured by diffusion magnetic resonance 

imaging (MRI), whereas a functional connection is the statistical similarity between hemodynamic 

responses arising from two brain regions, as measured by functional MRI (fMRI). Intuitively, a 

brain region with high SFC has a stronger statistical correlation between its structural and 

functional connectivity to other regions in the brain.  

 

Regional variations in SFC among individuals track differences in cognitive performance. For 

example, enhanced working memory performance is correlated with weaker SFC in the unimodal 

somatosensory cortex and with stronger coupling in transmodal regions within the fronto-parietal 

and default mode networks.4 Further, individual differences in SFC predict cognitive flexibility in 

a perceptual switching task,5 as well as composite cognition scores encompassing multiple 

cognitive domains.6 Beyond tracking individual differences in cognition, SFC is altered in a range 

of neurological and psychiatric disorders, including mild cognitive impairment and Alzheimer9s 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.20.512802doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.20.512802
http://creativecommons.org/licenses/by-nd/4.0/


disease,739 stroke,10,11 Parkinson9s disease,12,13 multiple sclerosis,14,15 epilepsy,16,17 bipolar 

disorder,18,19 and schizophrenia.20 

 

In parallel, multiple lines of evidence from studies in healthy individuals have consistently 

demonstrated that the macroscale coupling of structure and function varies spatially, with a gradual 

reduction in coupling emerging along a cognitive representational hierarchy.1,4,21323 Specifically, 

evolutionarily conserved primary sensory (unimodal) regions such as visual and somatomotor 

cortices display relatively strong SFC, whereas evolutionarily rapidly-expanded transmodal 

association regions such as limbic and default mode areas display weaker SFC.6,21323 The weaker 

SFC in higher-level association cortices is thought to foster the emergence of a wide range of 

functional responses untethered from the underlying anatomical backbone, in turn supporting 

flexible cognition.4,5,24326  

 

Understanding precisely why the coupling between structure and function varies across different 

brain regions is a key challenge in the field.4,21,22 Insight could be gained by examining how SFC 

varies across different4yet complementary4types of cortical hierarchies defined by cyto-

architectonic and functional properties, as such an examination could clarify to what extent SFC 

captures the brain9s microscale cyto-architectonic and macroscale functional principles. 

Complementary insights could also be gained by pinpointing specific biological substrates that 

statistically track (and conceptually explain) regional variation in SFC. Recent evidence suggests 

that the differential expression of neuronal circuit properties4including intracortical myelination 

and synaptic excitation or inhibition4could serve as such biological substrates. Histological and 

neuroimaging studies show that high SFC areas in primary sensory and motor cortex are heavily 

myelinated, whereas lower SFC areas in association cortex are less myelinated.6,25,27331 Following 

a similar spatial pattern, synaptic excitation increases from unimodal sensory to transmodal 

association cortex, tracking a concomitant increase in dendritic complexity and spine count.32 

Further, immunostaining investigations tracking the differential expression of inhibitory neuron 

subtypes, evince a unimodal-transmodal gradient of dynamic inhibitory control.32,33 Put together, 

the ratio between excitatory and inhibitory receptor densities (EI-ratio) appears to increase along 

the sensory-association hierarchy.34 It remains unknown, however, whether the differential 

expression of intracortical myelination and EI-ratio formally mediate the observed differences in 

macroscale SFC across the cortex. 

 

Here, we use neuroimaging data acquired from two groups of healthy participants, analyzed using 

three image processing pipelines, to address three complementary aims. First, to determine 

whether SFC captures macroscale functional and microscale cyto-architectonic principles, we 

assess the spatial distribution of SFC along four cortical gradients spanning the unimodal(sensory)-

transmodal(association) hierarchy: two functional gradients and two cyto-architectonic gradients. 

Second, to determine why SFC varies across the brain, we examine the relationship between SFC 

and two biological substrates of interest4intracortical myelination and EI-ratio. Third and finally, 

by combining elements from the two previous aims, we investigate how SFC is dynamically 

shaped by these biological substrates across different cyto-architectonic systems of varying 

laminar differentiation. Collectively, this work aims to elucidate the biological factors that explain 

the heterogeneous coupling between structural and functional connectivity across the human 

cortex. 
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RESULTS 

 

Structure-Function Coupling variations along the cortical hierarchy 

 

We first examined the heterogeneous expression of SFC and its temporal variance (Methods: 

Structure-Function Coupling) across the unimodal(sensory)-transmodal(association) hierarchy 

in 100 unrelated subjects drawn from the Human Connectome Project (HCP) (Methods: 

Datasets). For this purpose, the unimodal-transmodal hierarchy was characterized using four 

complementary cortical annotations (Methods: Cortical Hierarchies): two derived from 

annotating the cortex according to macroscale functional connectivity profiles (the coarse 7 

resting-state systems35 and the continuous principal functional gradient36), and two derived from 

annotating the cortex according to microscale cyto-architectonic profile similarities (the coarse 5 

von Economo/Koskinas-inspired cyto-architectonic classes37 and the continuous <BigBrain= 
gradient38,39). These four annotations were chosen to broadly canvas the space of sensory-

association hierarchy from the lenses of both macroscale functional and microscale cyto-

architectonic organization.  

 

Atlas-based analyses 

After parcellating each HCP subject9s cortex into spatially contiguous regions (Schaefer 

parcellation;40 400 brain regions), we computed each brain region9s average SFC across subjects 
and designated its regional membership into each of the four aforementioned cortical annotations. 

In the 7 resting-state systems, SFC was highest in the primary visual and somatomotor cortices, 

intermediate in the default mode, dorsal attention, fronto-parietal, and ventral attention association 

systems, and lowest in the limbic system (Figure 1A; Supplemental Table 1). A decrease in SFC 

along the unimodal-transmodal hierarchy was also evident along the principal functional gradient, 

in the form of a significant negative correlation between a brain region9s SFC and its assigned 
principal gradient scalar (Figure 1C; r=-0.34; pspin=0.009); lower assignments within this gradient 

capture primary sensory and motor regions, whereas higher assignments capture regions within 

the default mode network. Across the 5 cyto-architectonic classes, SFC gradually decreased from 

granular (typically capturing sensory regions)30,41,42 to agranular (typically capturing motor and 

association regions)30,41,42 types and displayed its lowest value in the polar cortical type (Figure 

1B; Supplemental Table 2). Similarly, we observed a significant negative correlation between a 

brain region9s SFC and its assigned location along the BigBrain gradient of microstructure profile 
covariance (Figure 1D; r=-0.39; pspin=0.024); primary sensory regions occupy the lower end of 

this gradient while limbic regions represent its apex.  

 

Next, in order to examine how much SFC deviated from its mean value over time, we assessed its 

moment-to-moment variance throughout the duration of the resting-state fMRI scan. Specifically, 

we computed each brain region9s average temporal SFC variance across subjects and examined its 
heterogeneous expression along the unimodal(sensory)-transmodal(association) hierarchy. In 

contrast to SFC, temporal SFC variance was highest in the limbic system (Figure 2A; 

Supplemental Table 3); an increase in temporal SFC variance was observed along the unimodal-

transmodal hierarchy, as captured by the principal gradient (Figure 2C; r=0.20; pspin=0.096). 

Using cyto-architectonic annotations, temporal SFC variance (unlike SFC itself) was highest in 

the polar cortical type; the remaining 4 cortical types displayed4for the most part4similar 
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degrees of temporal SFC variance (Figure 2B; Supplemental Table 4). Under the more 

continuous BigBrain gradient, we observed a significant positive correlation between a brain 

region9s temporal SFC variance and its assigned location along the gradient (Figure 2D; r=0.32; 

pspin=0.035). 

 

To evaluate the reproducibility of our findings, we repeated the above analyses using a different 

widely-used cortical parcellation (HCP multi-modal parcellation;43 360 brain regions), and 

observed consistent results (Supplemental Material: Replication Analysis; Supplemental 

Figures 1–2; Supplemental Tables 5–8).  

 

Voxel-based analyses 

In order to further investigate whether our findings were influenced by the spatial scale of the 

cortical parcels used (400 and 360 brain regions, respectively), we repeated the above analyses 

using an independent sample of healthy adults scanned at the University of Pennsylvania (n=14) 

with particularly high-resolution diffusion spectrum imaging (DSI). Capitalizing on this sample9s 
higher-resolution diffusion scans than the HCP sample9s, the data were processed at the voxel level 

such that each subject9s cortical voxel was designated as a separate region (number of regions 

ranged between 60,744 and 83,680, depending on the subject; Methods: Voxel-based approach).  

 

As above, for each subject we computed each cortical voxel9s SFC and determined its membership 

into the four cortical annotations. Similar to the atlas-based results, we observed a decrease in SFC 

along the unimodal(sensory)-transmodal(association) hierarchy. The primary somatomotor and 

limbic cortices displayed the highest and lowest SFC, respectively, within the 7 resting-state 

systems (Supplemental Figure 4A; Supplemental Table 10). Further, we observed a significant 

negative association between SFC and the assigned principal functional gradient scalar across 

subjects (Supplemental Figure 4C; mean r=-0.16; range: [-0.24, -0.05]; pfisher<0.001). Within the 

5 cyto-architectonic types, SFC gradually decreased from granular to agranular types, and 

displayed its lowest value in the polar type (Supplemental Figure 4B; Supplemental Table 11). 

 

We next computed each cortical voxel9s temporal SFC variance across subjects. In general 

agreement with the atlas-based results, the transmodal default mode and limbic systems displayed 

the highest temporal SFC variance. The dorsal and ventral attention systems displayed the lowest 

temporal SFC variance (Supplemental Figure 5A; Supplemental Table 12). Along the principal 

functional gradient, there was a prominent increase in temporal SFC variance as one traversed 

from lower to higher assigned gradient scalars (Supplemental Figure 5C; mean r=0.16; range: 

[0.01, 0.35]; pfisher<0.001). As for the 5 cyto-architectonic classes, temporal SFC variance was 

highest in the frontal type and lowest in the agranular type (Supplemental Figure 5B; 

Supplemental Table 13).   

 

Biological correlates of Structure-Function Coupling: whole-brain perspective 

 

To better understand why SFC and temporal SFC variance vary across the unimodal(sensory)-

transmodal(association) hierarchy, we next examined their relation to two microstructural markers: 

intracortical myelination and EI-ratio (Figure 3). Both markers were assessed by non-invasive 

neuroimaging using previously established approaches. Intracortical myelination was estimated 

using the subjects9 T1-weighted/T2-weighted ratio signal intensity, whereby a greater intensity 
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reflects greater intracortical myelination (Methods: Intracortical Myelination).28 The EI-ratio 

was quantified using the functional signal time series9 Hurst exponent, whereby a smaller exponent 

reflects a heightened EI-ratio (Methods: Excitation-Inhibition Balance).44  

 

Atlas-based analyses 

Across the 400 brain regions defined by the Schaefer parcellation, we observed a significant 

positive correlation between SFC and intracortical myelin content (Figure 4A; r=0.49; 

pspin<0.001), and a negative, albeit non-significant, correlation between temporal SFC variance 

and intracortical myelin content (Figure 4B; r=-0.08; pspin=0.31). Higher SFC values corresponded 

to larger Hurst exponents and thus a decreased EI-ratio (Figure 4C; r=0.41; pspin<0.001), whereas 

higher temporal variance in SFC corresponded to lower Hurst exponents and thus a heightened EI-

ratio (Figure 4D; r=-0.44; pspin<0.001). 

 

To ensure that the association between a region9s SFC and either biological marker was 
independent of the other marker and also independent from that region9s position along the cortical 
hierarchy, we re-examined the above relationships using multiple linear regression models. We 

found that SFC (dependent variable) was independently and positively correlated with intracortical 

myelin content (βstand=0.356; 95% non-parametric bootstrap confidence interval [BCI]=[0.355, 

0.357]; p<0.001; variance inflation factor [VIF]=1.51) and with the Hurst exponent (βstand=0.356; 

95% BCI=[0.356, 0.357]; p<0.001; VIF=1.05), after adjusting for the other biological marker as 

well as the principal gradient scalar assignments. Further, the correspondence between temporal 

SFC variance (dependent variable) and the Hurst exponent (βstand=-0.467; 95% BCI=[-0.468, -

0.465]; p<0.001; VIF=1.05), but not intracortical myelin content (βstand=0.013; 95% BCI=[0.013, 

0.014]; p=0.71; VIF=1.51), remained significant after adjusting for the other marker and the 

principal gradient scalar assignments. A potential causal relationship between temporal SFC 

variance, intracortical myelination, and the Hurst exponent was further explored via a mediation 

model. Notably, the Hurst exponent was found to significantly mediate the correlation between 

intracortical myelination and temporal SFC variance (total effect=-0.005; p<0.001, indirect 

effect=-0.002; BCI=[-0.0037 -0.0007]). 

 

To assess reproducibility and robustness to parcellation choice, we repeated all aforementioned 

analyses using the HCP multi-modal cortical parcellation, and observed consistent results 

(Supplemental Material: Replication Analysis). 

 

Voxel-based analyses 

To complement our atlas-based results, we also evaluated the relationships between SFC, temporal 

SFC variance, intracortical myelination, and the Hurst exponent at the voxel level. Across the 

cortical voxels, there was once again a positive correlation between SFC and intracortical myelin 

content (Figure 5A; Supplemental Figure 6A; mean r=0.11; range: [0.08, 0.18]; pfisher<0.001), 

and a negative correlation between temporal SFC variance and intracortical myelin content 

(Figure 5B; Supplemental Figure 6B; mean r=-0.06; range: [-0.13, -0.01]; pfisher<0.001). 

Stronger SFC was also associated with decreased EI-ratio in the form of higher Hurst exponents 

(Figure 5C; Supplemental Figure 6C; mean r=0.12; range: [0.03, 0.27]; pfisher<0.001). 

Interestingly, the relationship between temporal SFC variance and Hurst exponents was non-linear 

and heteroscedastic (Breusch-Pagan test: pfisher<0.001). Accordingly, we used a quadratic 

regression and found that the highest temporal variance in SFC occurred for middle Hurst exponent 
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values (Figure 5D; Supplemental Figure 6D; mean βstand for quadratic term=-0.47; range: [-1.13, 

0.26]; pfisher<0.001); this finding points towards temporal fluctuations in SFC reaching a plateau 

with increasing levels of relative synaptic inhibition.   

 

We next re-examined the above relationships using multiple linear regression models. Cortical 

voxels9 SFC was independently and positively correlated with intracortical myelin content (mean 

βstand=0.07; range: [0.02, 0.11]; pfisher<0.001; mean VIF=1.06; range: [1.04, 1.08]) and with the 

Hurst exponent (mean βstand=0.12; range: [0.05, 0.25]; pfisher<0.001; mean VIF=1.02; range: [1, 

1.05]), even after adjusting for the effects of the other biological marker and the voxels9 placement 
along the cortical hierarchy. After additionally including a non-linear (Hurst exponent squared) 

component in the multiple regression model to account for the non-linear relationship between 

temporal SFC variance and the Hurst exponent, we found that temporal SFC variance was 

independently and negatively correlated with intracortical myelin content (mean βstand=-0.05; 

range: [-0.09, -0.01]; pfisher<0.001, mean VIF=1.06; range: [1.04, 1.08]) and with the squared Hurst 

exponent (mean βstand=-0.46; range: [-0.82, 0.18]; pfisher<0.001), after adjusting for the other 

biological marker of interest and the principal gradient assignment.  

 

Biological correlates of Structure-Function Coupling: regional perspective 

 

To further decipher how SFC is dynamically regulated within different networks along the cortical 

hierarchy, we next combined elements from the previous two sections to investigate the dynamic 

relationship between SFC, temporal SFC variance, intracortical myelination, and Hurst exponents 

across different cyto-architectonic systems of varying laminar differentiation. Specifically, instead 

of applying multiple regression models at the whole-brain level as we did in the previous section, 

here we separately applied them on each von Economo/Koskinas-inspired cyto-architectonic class. 

 

Atlas-based analyses 

We begin with the cyto-architectonic class that displayed the highest SFC: the granular type. We 

observed a significant positive association between SFC (dependent variable) and the Hurst 

exponent but not with intracortical myelin content, after adjusting for the effects of the other 

biological marker (Table 1A). In the parietal and frontal types, we observed a significant positive 

association between SFC and the Hurst exponent as well as the intracortical myelin content (Table 

1A). Within the agranular cyto-architectonic class, we observed that SFC was positively correlated 

only with intracortical myelin content but not with the Hurst exponent, within the same regression 

model (Table 1A). Taking these results together, we notice a distinct pattern as we transition from 

granular to agranular cortical regions: a gradual shift from the Hurst exponent to intracortical 

myelin content as being the principal predictor of SFC (as supported by the numerical changes in 

the standardized β and false discovery rate-adjusted p values: Table 1A; Figure 6). Importantly, 

this pattern was also reproduced with the HCP multi-modal (360 regions) cortical parcellation 

(Supplemental Material: Replication Analysis; Supplemental Table 9). Notably, the cortical 

type with the lowest SFC and relatively high levels of granularization4the polar type4was an 

exception to this rule, with SFC not being significantly correlated with intracortical myelin content 

or the Hurst exponent (Table 1A; Supplemental Material: Methodological Considerations and 

Study Limitations). 
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Interestingly, dynamic regulation of temporal SFC variance (as opposed to SFC itself) was more 

persistently dependent upon the Hurst exponent, across the cyto-architectonic classes. Specifically, 

temporal SFC variance independently and significantly correlated only with the Hurst exponent 

across all cortical types, after adjusting for the effects of intracortical myelin content (Table 1B). 

 

Voxel-based analyses 

Using the voxel-based approach produced similar results. Specifically, within the granular type, 

we again observed a positive independent correlation between SFC and the Hurst exponent but not 

with intracortical myelin content (Table 2A). Within the polar and parietal types, intracortical 

myelination9s effect size in predicting SFC increased; SFC independently correlated with both 

myelin content and the Hurst exponent (Table 2A). Further, SFC independently correlated with 

both biological markers within the frontal and agranular types, with intracortical myelination9s 
predictive effect of SFC surpassing that of the Hurst exponent within the frontal type (Table 2A). 

Thus, these voxel-level results support, once again, the notion of a gradual transition from granular 

to agranular cortical regions in the degree to which the Hurst exponent (and therefore EI-ratio) and 

intracortical myelination predict SFC. 

 

Similar to the atlas-based results, temporal SFC variance displayed a stronger dependence upon 

the Hurst exponent as its predictor across all cyto-architectonic classes. Specifically, temporal SFC 

variance was independently correlated with the squared Hurst exponent, after adjusting for the 

effects of the Hurst exponent and intracortical myelin content in each cyto-architectonic class 

(Table 2B). In the voxel-based analyses, intracortical myelin content was also independently 

correlated with temporal SFC variance across all classes with a lower, however, overall effect size 

compared to that of the Hurst exponent (Table 2B).   

 

 

DISCUSSION 

 

In order to better understand how structure shapes and constrains function in the human brain, 

recent work has introduced the notion of SFC, a metric quantifying how strongly a brain region9s 
functional connectivity with other brain regions mirrors its structural connectivity. SFC has often 

been found to capture more than just the sum of its parts: regional variations in SFC can more 

accurately predict differences in cognitive performance as well as track neurological disease 

symptomatology and duration, than structural or functional connectivity alone.6,16,17,19,45,46 Hence, 

we sought to understand how SFC varies across different brain regions within the healthy human 

brain, as well as why4what underlying biological factors mediate such variation?  

 

We specifically addressed three complementary aims. First, we assessed changes in SFC and 

temporal SFC variance across the sensory-association gradient. Second, we examined whether the 

spatial expressions of SFC and its temporal variance were correlated with those of intracortical 

myelination and EI-ratio across the cortex. Third, we analyzed the association of SFC and its 

temporal variance with both intracortical myelination and EI-ratio, within different cyto-

architectonic cortical types, in order to investigate how SFC is dynamically regulated at the level 

of individual networks. To ensure generalizability of our results, we analyzed neuroimaging data 

obtained from two independent groups of healthy participants using three complementary 

processing pipelines: an atlas-based approach capitalizing on two different brain parcellation 
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schemes, and a voxel-based approach of uncommonly high resolution wherein each subject9s 
cortical voxel was designated as a stand-alone brain region.  

 

Structure-Function Coupling and the Sensory-Association Gradient  

 

Addressing our first aim, we asked to what extent SFC captures macroscale functional and 

microscale cyto-architectonic organization principles, and we answered that question by 

examining regional variations in SFC and its temporal variance across the cortical hierarchy. 

Across all processing pipelines, we found an overall increase in temporal SFC variance along the 

unimodal(sensory)-transmodal(association) hierarchy, where the highest deviations from the mean 

occurred in the limbic regions. This finding largely parallels results from a recent study using a 

different definition of temporal SFC variance (see Supplemental Material: Methodological 

Considerations and Study Limitations), also demonstrating that a region9s ability to dynamically 
fluctuate its SFC over time depends on its location along the unimodal-transmodal hierarchy.47 

Collectively, these observations could indeed reflect the inherently increased functional 

connectivity variability found in heteromodal association cortices, compared to unimodal 

cortices.48  

 

Moreover, SFC consistently and gradually decreased along the unimodal-transmodal hierarchy, in 

agreement with previous work on the field.1,4,6,21323,47 Specifically, in our analyses, SFC decreased 

while transitioning from granular cortical areas with pronounced laminar organization (i.e., 

granularization), such as the primary sensory regions, to areas with progressively diminishing 

laminar differentiation, namely the parietal, frontal, and finally agranular cyto-architectonic 

cortical types, reaching its lowest value in the agranular limbic regions. The sole deviation from 

this pattern was found in the polar cortical type, which had a significantly lower SFC and higher 

temporal SFC variance compared to the remaining four cyto-architectonic classes, despite its 

relatively high granularization. This result can be usefully interpreted from a functional 

perspective: this cortical type predominantly comprises higher-order visual association areas and 

a large portion of the transmodal orbitofrontal cortex.42 The latter region flexibly encodes reward 

and punishment values of stimuli,49 supporting the notion that higher-order association areas 

heavily involved in emotional regulation have particularly low 8static9 SFC that fluctuates 

markedly across time. 

 

Biological Substrates of Structure-Function Coupling 

 

Addressing our second aim, we asked why SFC regionally varies across the brain, and we answered 

that question by examining whether the heterogeneous spatial expressions of SFC and temporal 

SFC variance across the cortex were correlated with that of intracortical myelination and the 

functional time series9 Hurst exponent, which represents a proxy for EI-ratio. Across both atlas- 

and voxel-based analyses, we found that the functional connectivity patterns of heavily myelinated 

brain regions strongly reflect their underlying structural connectivity patterns; increased 

myelination also constrained how much the correlation between structure and function deviated 

from its mean value over time. Similarly, the functional connectivity of brain regions characterized 

by increased levels of relative inhibition, in the form of an increased Hurst exponent, largely 

mirrored the strength of the underlying anatomical connectivity; regions with increased levels of 

relative inhibition exhibited lower SFC variance over time, as well. Notably, in both atlas-based 
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analyses, the EI-ratio accounted for 40-50% of the correlation between intracortical myelin and 

temporal SFC variance.  

 

Our results highlight the critical role that both myelination and EI balance play in regulating how 

much and how often the blood oxygen level-dependent (BOLD) signal propagation patterns 

deviate from the underlying anatomical backbone. Increased levels of myelination have been 

reported to suppress the formation of new axonal tracts and synapses,27,50 thus potentially 

constraining the emergence of functional signals that deviate from structural paths. Lower levels 

of myelination, on the other hand, allow for greater functional signal variability and continuous 

neuronal remodeling to take place at various time scales,29,31,51 enabling the emergence of 

functional dynamics that can more richly diverge from structural connectivity.  

 

In parallel, brain regions predominantly characterized by inhibitory regimes would also be 

expected to display functional dynamics that deviate less from the underlying structural paths. 

Indeed, neuronal assemblies characterized by increased relative inhibition4whether due to 

decreased synaptic excitation or increased inhibition4favor BOLD activity of decreased signal 

amplitude,52,53 a decreased plateau phase following the initial peak (i.e., faster response 

adaptation),54 and lower overall baseline neuronal firing rates.54356 Additionally, inhibition acts as 

a stabilizing agent of cortical activity, constraining any aberrant amplification of neuronal firing 

arising from recurrent excitation;57,58 synaptic inhibition can also spatially and temporally 

constrain the spread as well as sharpen the evoked BOLD signals in response to sensory input.593

63 

 

Dynamic Interplay between the Biological Substrates of Structure-Function Coupling 

 

Addressing our third and last aim, we asked whether the relation between SFC and the two 

biological substrates of interest changes across the sensory-association hierarchy, and specifically 

within cortical regions of varying cyto-architectonic properties. Pioneering work in the early 20th 

century led to the parcellation of the cerebral cortex into 5 distinct structural types based on cellular 

morphology, cyto-architectonic properties, and cortical thickness: granular, polar, parietal, frontal, 

and agranular.37,41,42,64,65 At one end of the spectrum, the thin granular cortex (also known as 

koniocortex) is distinguished by well-defined, highly-developed cortical layers II and IV, and 

houses densely packed small stellate and pyramidal cells, collectively referred to as granule 

neurons;37,41,64 these cells typically have short axons projecting locally within the cortex and very 

small multi-polar cell bodies, with a cell body diameter ≲ 10μm.66 Functionally, granular cortex 

encompasses primary sensory (visual, auditory, and somatosensory) areas and parts of the 

parahippocampal gyrus.41,42,65 At the opposite end of the laminar differentiation spectrum, the 

thicker agranular cortex has particularly thin or absent granular laminae II and IV, and 

predominantly houses large pyramidal neurons spanning multiple cortical layers.41,66 Although 

typically associated with motor cortices, the agranular cortex also encompasses limbic regions 

such as the anterior fronto-insular and cingulate cortices.65,67 The remaining cortical types (polar, 

parietal, frontal) capture intermediate, progressively decreasing levels of granularization with 

generally increasing neuronal cell sizes.41  

 

Across processing pipelines, we observed a gradual shift when traversing from granular to 

agranular cortical types, from the EI-ratio (i.e., Hurst exponent) to intracortical myelin content as 
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being the principal predictor of SFC. Given the aforementioned differences in the cyto-

architectonic properties of the cortical types, this finding is intuitive: granule cells predominantly 

found in the granular cortical regions are typically unmyelinated, mainly due to their small axonal 

diameters (≲ 0.3μm;65,68,69 neurons in the central nervous system with axonal diameters ≲ 0.3μm 

are usually unmyelinated70373) and the increased metabolic cost that would be required to myelinate 

such short axons projecting locally, without necessarily an accompanying enhancement of signal 

conduction velocity.73,74 In turn, the lack of myelin sheath directly exposes these axons to the 

extracellular space, making them particularly susceptible to subthreshold excitability changes.74 

Therefore, the correspondence between structural and functional connectivity within cortical 

regions characterized by increased levels of granule cells would be expected to be more dependent 

upon fluctuations in excitation and inhibition, rather than intracortical myelin levels.  

 

On the other hand, the large pyramidal neurons prominently occupying cortical areas with 

decreased levels of granularization are highly myelinated;75,76 small granule cells are significantly 

sparser in these layers. Following the same line of reasoning as above, it would thus be expected 

that the contribution of intracortical myelination levels in these regions in predicting their 

macroscale SFC would significantly increase. Interestingly, in our voxel-based analyses both 

intracortical myelination and EI-ratio played a significant role in predicting SFC in the agranular 

cortical regions. In the coarser atlas-based analyses, however, this effect was averaged out, leaving 

only intracortical myelination as the primary predictor of SFC in that cortical type. This finding 

could indicate that on the macroscale level captured by the atlas-based parcellations, intracortical 

myelination cumulatively plays a more significant role than EI balance in shaping the coupling 

between structure and function in agranular cortical regions.  

 

Finally, intracortical myelination and EI-ratio together played a significant role in shaping 

temporal fluctuations in SFC. Overall, the EI-ratio had a larger overall effect size in predicting 

moment-to-moment SFC variance than intracortical myelination, and consistently correlated with 

the amount of moment-to-moment SFC variance across each cyto-architectonic class in both atlas- 

and voxel-based analyses. This finding is not surprising given how the balance between excitation 

and inhibition also fluctuates on a moment-to-moment basis.77 Intracortical myelination, on the 

other hand, does not typically fluctuate on such short timescales in the resting brain, and it is thus 

likely to constrain how often the BOLD signal propagation patterns can deviate from the 

anatomical backbone on a slower time scale. 

 

Conclusion 

 

In this study, we examined the regional dependence between structure and function across 

complementary cortical hierarchies, and aimed to identify the biological factors that mediate such 

coupling in the human brain. We assessed the correlation between structure and function using 

atlas- as well as voxel-based connectivity, capturing the underlying anatomy and dynamics in 

marked detail. Our findings were consistent across all processing pipelines and cohorts employed, 

and are three-fold: 1) SFC and its temporal variance respectively decrease and increase across the 

unimodal-transmodal and granular-agranular gradients, 2) increased intracortical myelination and 

lower EI-ratio are associated with a more rigid coupling between structure and function and 

restricted moment-to-moment SFC fluctuations, and 3) there is a gradual shift from EI-ratio to 

intracortical myelination as being the principal predictor of SFC when traversing from granular to 
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agranular cortical types; EI-ratio appears to be the principal predictor of temporal SFC variance 

within each cyto-architectonic type. Overall, our results identify regional intracortical myelination 

and EI balance as factors that synergistically shape how strongly coupled the functional expression 

of the human cortex is to its underlying anatomical connectivity. Such an explanatory relationship 

could provide invaluable insight into the aberrant coupling between structure and function in 

neurological and psychiatric disorders characterized by demyelination and/or EI imbalances. 

 

 

METHODS 

 

DATASETS 

 

Human Connectome Project 

A sample of 100 unrelated healthy subjects (54% female; mean age = 29.13.7 years; age range = 

22-36 years) was drawn from the HCP dataset, as publicly provided by the HCP1200 subjects data 

release.78 Subjects within this sample were scanned on a customized Siemens <Connectome= Skyra 

3T scanner (32-channel Siemens head coil) and underwent high-resolution 3T MRI, including T1-

weighted (3D Multi-echo Magnetization3Prepared Rapid Gradient Echo [MEMPRAGE] 

sequence; voxel size: 0.7 mm isotropic; repetition time [TR]: 2400 ms; echo time [TE]: 2.14 ms), 

T2-weighted (3D sampling perfection with application-optimized contrasts by using flip angle 

evolution [SPACE] sequence; voxel size: 0.7 mm isotropic; TR: 3200 ms; TE: 565 ms), resting-

state fMRI (gradient-echo echo-planar imaging [EPI] sequence; four runs; 1200 volumes/run, 

14:33 min:sec each; voxel size: 2 mm isotropic; TR: 720 ms; TE: 33.1 ms), and high angular 

resolution diffusion imaging (spin-echo planar imaging sequence; voxel size: 1.25 mm isotropic; 

TR: 5520 ms; TE: 89.5 ms; max b-value: 3000 s/mm2; 270 non-colinear directions; 18 b0 

acquisitions) sequences.79,80 Informed consent was obtained from all subjects, and the procedures 

were approved by the Washington University Institutional Review Board. 

 

Penn Sample 

Healthy individuals (n = 14; 78.6% female; mean age = 22.83.2 years; age range = 18-28 years) 

were prospectively enrolled at the University of Pennsylvania between November 16, 2016 and 

May 19, 2018, and recruited from the local community. Subjects within this sample were scanned 

using a Siemens Magnetom Prisma 3T scanner (64-channel head/neck coil) and underwent high-

resolution 3T MRI, including T1-weighted (3D MEMPRAGE sequence; voxel size: 0.9 mm 

isotropic; TR: 2500 ms; TE: 2.18 ms), T2-weighted (3D SPACE sequence; voxel size: 0.9 mm 

isotropic; TR: 3200 ms; TE: 565 ms), resting-state functional MRI (two runs; 1200 volumes/run, 

20:07 min:sec each; voxel size: 3 mm isotropic; TR: 500 ms; TE: 25 ms), and diffusion spectrum 

imaging (DSI; voxel size: 1.8 mm isotropic; TR: 4300 ms; TE: 102 ms; max b-value: 5000 s/mm2; 

731 directions; 22 b0 acquisitions) sequences. Informed consent was obtained from all subjects, 

and the procedures were approved by the University of Pennsylvania Institutional Review Board. 

 

PROCESSING PIPELINES 

 

In order to analyze our two samples and test the reproducibility of our results, we utilized three 

complementary processing pipelines: 1) an atlas-based approach wherein each subject9s cortex 
was parcellated using two common brain atlases; structural and functional connectivity values 
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were estimated between all region pairs defined by these coarse-grained atlases, and 2) a 

significantly more fine-grained voxel-based approach, wherein each subject9s cortical voxel was 

designated as a stand-alone brain region; for each participant, structural and functional 

connectivity values were estimated between all possible pairs of their cortical voxels.  

 

Atlas-based approach 

 

This approach was used to analyze the HCP sample. For each subject, we first estimated their 

structural connectivity, then their functional connectivity, and lastly their SFC. The different types 

of connectivity were quantified using two commonly used brain atlases: the functionally-inspired 

Schaefer atlas40 (400 cortical parcels) and the HCP multi-modal atlas43 (360 cortical parcels). 

 

Structural Connectivity 

HCP subjects9 diffusion scans were first minimally pre-processed by the HCP consortium, which 

included applying b0 intensity normalization, correcting for EPI distortion, Eddy currents, subject 

motion, and gradient nonlinearity, and registering them to the subject9s native T1-weighted 

anatomical scan.81 Further processing of diffusion data was carried out using the MRtrix3 

toolbox.82 Multi-shell, multi-tissue constrained spherical deconvolution was first performed to 

generate fiber orientation densities. Anatomically constrained probabilistic tractography was then 

applied using a second-order integration over fiber orientation distributions method, to more 

accurately track fibers through crossing regions.83 An initial whole-brain tractogram containing 

ten million streamlines was generated for each subject, which was then corrected by assigning 

each streamline a weight to reduce known biases in tractography data and better match the 

diffusion properties of the empirical data (SIFT2 approach).6,84 Each subject9s refined whole-brain 

tractogram was finally mapped to each parcellated brain atlas (Schaefer and HCP multi-modal) 

that had been registered to the subject9s native space, to produce two subject-specific, symmetric, 

weighted structural connectomes (Schaefer atlas: 400 ROIs x 400 ROIs, HCP multi-modal atlas: 

360 ROIs x 360 ROIs). In each connectome, the structural connectivity between any two given 

brain regions (i.e., network edge) was defined as the SIFT2-weighted sum of the streamlines 

connecting these two regions divided by the sum of the regions9 gray matter volumes.6 

 

Functional Connectivity 

Similar to the diffusion scans, the resting-state fMRI scans were also minimally pre-processed by 

the HCP consortium. This pre-processing pipeline included correcting for gradient distortion, 

subject motion, and EPI image distortion, as well as intensity normalization and registration of the 

functional scans to the standard MNI space.81 The resulting functional signal time series were 

accurately aligned across subjects using an areal feature-based cross-subject alignment method 

(MSMAll)43 and further denoised from artifact and linear trends using an independent component 

analysis and hierarchical fusion of classifiers approach (sICA+FIX).85 The pre-processed time 

series corresponding to each run were then demeaned and normalized; all four runs were 

concatenated across time (1200 volumes x 4 runs) for each subject, using the Connectome 

Workbench toolbox. Lastly, the time series corresponding to the voxels within broader brain 

regions were averaged to produce matrices of size: number of ROIs x 4800 volumes (Schaefer 

atlas: 400 ROIs x 4800 volumes, HCP multi-modal atlas: 360 ROIs x 4800 volumes), for each 

subject.  
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8Static9 functional connectivity matrices for each atlas were computed by calculating the Pearson9s 
correlation between the average signal time series of any two given brain regions; each entry in 

the functional connectome is equal to the correlation coefficient between the activity time series 

of the regions corresponding to the matrix element9s row and column. In order to examine how 

each subject9s functional connectivity changes across time, we split each atlas9 signal time series 
matrix into 20 continuous non-overlapping time windows of size: number of ROIs x 240 volumes. 

This procedure allowed us to generate 20 8temporally-contiguous9 functional connectomes per 

subject. 

 

Structure-Function Coupling 

For each atlas, the SFC of each subject9s brain region was defined as the Pearson9s correlation 
coefficient between the row corresponding to that region in the structural connectome and the row 

corresponding to that region in the 8static9 functional connectome (Schaefer atlas: 1 x 400 ROIs, 

HCP multi-modal atlas: 1 x 360 ROIs), after excluding the self-connection and any other entries 

where either the regional structural or functional connectivity was equal to zero. 

 

To examine how much SFC deviates from its mean value over time, we also computed its moment-

to-moment variance throughout the duration of the resting-state fMRI scan. Here, instead of 

computing one 8static9 SFC value for each brain region4as was done in the analyses described 

earlier4we computed an SFC value for each one of the 8temporally-contiguous9 functional 

connectivity matrices defined in the 8Functional Connectivity9 section above, and the underlying 

structural connectivity matrix (once again, self-connections and entries where either the regional 

structural or functional connectivity was equal to zero were excluded). Since we used 20 non-

overlapping time windows, we ended up with 20 SFC values for each brain region, for each 

subject. Each brain region9s temporal SFC variance was then defined as the variance across their 

corresponding 20 8temporally-contiguous9 SFC values. 

 

The two analyses just described produced two metrics that quantified the nature of coupling 

between a brain region9s structural and functional connectivity: (i) a 8static9 SFC, a metric 

indicating how strongly coupled functional connectivity is to the underlying structural 

connectivity, overall, and (ii) the temporal SFC variance, a metric indicating how much SFC 

deviates from its mean value over time. 

 

Intracortical Myelination 

Intracortical myelination in the HCP sample was assessed using a previously validated T1-

weighted/T2-weighted ratio approach,81 the scripts for which were provided by the latest HCP1200 

subjects data release. There are three main pipelines used by the HCP consortium to compute 

intracortical myelin surface maps for each subject, and we describe them briefly here: within the 

first PreFreeSurfer pipeline, the T1- and T2-weighted sequences are first corrected for gradient 

and readout distortions. The undistorted T2-weighted image is then registered to the undistorted 

T1-weighted image, after which they are both bias-field corrected. In the subsequent FreeSurfer 

pipeline, the undistorted bias-corrected T1-weighted image in each subject9s native volume space 
is input into the FreeSurfer software suite (https://www.surfer.nmr.mgh.harvard.edu)86 to generate 

highly accurate white matter and pial cortical surfaces. The T1-weighted image is then intensity 

normalized, and contrast signal intensity information from the undistorted bias-corrected T2-

weighted image is used to update the pial surfaces such that they exclude dura and blood vessels. 
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Registration of the T2- to the T1-weighted image is fine-tuned even further throughout this 

pipeline, using FreeSurfer9s boundary-based registration tool by incorporating information from 

the reconstructed surfaces. During the last PostFreeSurfer processing pipeline, the FreeSurfer-

derived white and pial surfaces, along with other morphometric measurements such as cortical 

thickness, curvature, and folding patterns, are used to define a highly accurate, high-resolution 

cortical ribbon volume. The T1-weighted image is then divided by the aligned T2-weighted 

image4a mathematical process shown to enhance the contrast related to myelin content.27,28,81 

The resulting T1-weighted/T2-weighted ratio of the voxels within the cortical ribbon is mapped 

onto the mid-thickness surface (the latter of which was created by averaging the white and pial 

surfaces) to reduce partial volume effects. This overall process produces T1-weighted/T2-

weighted ratio volumetric as well as surface-based 8intracortical myelin maps9 in both the subject9s 
native as well as standardized space. 

 

In order to extract brain regions9 intracortical myelin content, we set each subject9s surface-based 

8intracortical myelin map9 and the cortical parcellation of interest mapped into the same space 

(standardized fsaverage_LR32k space) as inputs for the wb_command -cifti-parcellate and -cifti-

convert -to-text commands. The latter generated a text file for each atlas containing each brain 

region9s ID and its corresponding average T1-weighted/T2-weighted ratio signal intensity; the 

signal intensity was used as a proxy of that region9s intracortical myelin content. 

 

Excitation-Inhibition Balance 

The balance between synaptic excitation and inhibition at the neuronal or neuronal circuit level 

broadly refers to the relative amounts of excitatory and inhibitory synaptic inputs at that level, at 

any given time scale.77 It is typically expressed as the ratio of excitatory to inhibitory inputs. This 

EI-ratio is under tight neuromodulatory control and is critical for circuit function and stability; 

deviations outside a narrow range have been reported to be pathogenic.44,77,87,88 Previous work 

using models of neuronal networks has indicated that changes in EI-ratio are captured by the 

spectral properties of the recorded electrophysiological signal activity and particularly by the 

exponent of its 1/f spectral power law, an index that is mathematically related to the signal time 

series9 Hurst exponent.44,89 This relationship between the Hurst exponent and EI-ratio was also 

validated in stimulated functional BOLD signal data; according to that relationship, a heightened 

EI-ratio would then be reflected as a decrease in the Hurst exponent of the functional signal.44  

 

Because changes in the Hurst exponent of resting-state fMRI time series can be interpreted as a 

shift in synaptic EI-ratio,44 we computed the Hurst exponent of each brain region9s pre-processed 

resting-state signal time series and used it as a proxy of the overall EI-ratio within that region. The 

methodological approach used to perform this computation is described in detail elsewhere.44 In 

brief, for each atlas and for each subject, each brain region9s pre-processed resting-state signal 

time series were modeled as multivariate fractionally integrated processes and the corresponding 

Hurst exponent was estimated via the univariate maximum likelihood method and a discrete 

wavelet transform.44,90 

 

Voxel-based approach  

 

We used a voxel-based approach to analyze the Penn sample. For each subject, we first assessed 

their structural connectivity, then their functional connectivity, and lastly their SFC. In this case4
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and in contrast to the atlas-based approach4the different types of connectivity were investigated 

at the cortical voxel level where each subject9s cortical voxel was defined as a separate brain 
region. 

 

Structural Connectivity 

The Penn subjects9 high-resolution DSI scans were first pre-processed using QSIPrep 

(https://qsiprep.readthedocs.io/en/latest/; version 0.8.0).91 Initial motion correction was performed 

using only the b=0 images; an unbiased b0 template was constructed over three iterations of affine 

registrations. Then, the SHORELine method was used to estimate head motion in b>0 images.92 

This procedure entails leaving out each b>0 image and reconstructing the others using 3dSHORE;93 

the signal for the left-out image served as the registration target. A total of two iterations were run 

using an affine transform. Model-generated images were transformed into alignment with each 

b>0 image. Both slice-wise and whole-brain Quality Control measures (cross correlation and R2) 

were calculated. A deformation field to correct for susceptibility distortions was estimated based 

on fMRIPrep9s fieldmap-less approach. The deformation field resulted after co-registering the b0 

reference to the same-subject T1-weighted-reference with its intensity inverted.94 Registration was 

performed with antsRegistration (ANTs 2.3.1), and the process was regularized by constraining 

deformation to be nonzero only along the phase-encoding direction and modulated with an average 

fieldmap template. Based on the estimated susceptibility distortion, an unwarped b0 reference was 

calculated for a more accurate co-registration with the anatomical reference. Each subject9s DSI 

time series were resampled to AC-PC orientation, generating a pre-processed DSI run in AC-PC 

space (output space: T1-weighted image; output resolution: 1.8 mm isotropic). After the diffusion 

scans were pre-processed, QSIPrep was used to estimate the diffusion orientation distribution 

functions (dODF) at each voxel, using generalized q-sampling imaging with a mean diffusion 

distance of 1.25 mm. 

 

After pre-processing and reconstructing the diffusion scans, we invoked the MITTENS Python 

library (https://github.com/mattcieslak/MITTENS) to perform analytic tractography on the 

reconstructed DSI data.95 In contrast to deterministic and probabilistic tractography, this recently 

established tractography approach calculates connection probabilities between different brain 

regions without relying on extensive simulations. Given each voxel9s dODF and a set of a priori 

anatomical/geometric constraints, analytic tractography can be used to derive closed-form 

solutions to the tracking problem, directly computing voxel-to-voxel transition probabilities.95 

First, we calculated inter-voxel fiber transition probabilities by using the reference b0 image 

generated by the pre-processing stage and the diffusion dODF output by the reconstruction stage 

of QSIPrep as inputs (maximum turning angle = 35 degrees; step size in voxel units = 
√32 ). This 

process outputs volumetric (nifti) files for each neighbor direction. We then constructed directed 

graphs for each voxel, where edges were formed to each of that voxel9s 26 spatial neighbors and 

weighted by the negative logarithm of transition probability from one voxel to another, all while 

taking into account the dODF of both the source and destination voxels (double-ODF method). 

After supplying MITTENS with a cortical mask where each cortical voxel was designated with a 

different index, the likelihood that a cortical voxel was connected to any other cortical voxel was 

calculated as the geometric mean of the product of the transition probabilities along the shortest 

path between the two voxels; the shortest path between voxels was found using Dijkstra9s 
algorithm.96 A structural connectivity matrix was thus generated for each subject, where each row 

and column corresponded to a different cortical voxel; each entry was set equal to the likelihood 
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that that voxel was connected to any other cortical voxel. Because each subject had a different 

number of cortical voxels, the resulting structural connectivity matrices ranged in size between 

60,744 x 60,744 and 83,680 x 83,680, depending on the subject. Given the substantial number of 

brain regions (and their potential interactions) considered, we thresholded our structural 

connectivity matrices in order to mitigate the presence of spurious connections that could have 

potentially biased our results.97 We specifically applied density-based thresholding where we kept 

70% of the strongest edges in the connectome and set all others to zero.   

 

Functional Connectivity 

The Penn group9s resting-state fMRI scans were pre-processed using the CONN (https://web.conn-

toolbox.org/home; version 20.b) toolbox.98,99 We specifically ran CONN9s <default pre-processing 

pipeline for volume-based analyses (direct normalization to MNI-space).= Each subject9s 
functional scans were first co-registered and resampled to a reference image (set as the first scan 

of the first session). A slice-timing correction procedure then followed, correcting for any potential 

temporal misalignment that may have occurred during the sequential acquisition of the fMRI data; 

acquisitions with a framewise displacement above 0.9 mm or global BOLD signal changes above 

5 standard deviations were flagged as potential outlier scans. The structural scans were segmented 

into gray matter, white matter, and cerebrospinal fluid tissue classes using SPM (version 12), and 

both structural and functional scans were subsequently normalized into MNI space (180 x 216 x 

180 mm3 bounding box; functional scans set to 2 mm isotropic; structural scans set to 1 mm 

isotropic). Lastly, the functional images were smoothed using an 8 mm full-width half-maximum 

Gaussian kernel, in order to increase the BOLD signal-to-noise ratio.99 CONN9s default denoising 
pipeline was then applied, which used linear regression of potential confounders identified in the 

BOLD signal and temporal high-pass filtering. Potential confounding effects that were regressed 

out of the BOLD signal time series included noise components from white matter and 

cerebrospinal areas, estimated subject motion parameters (i.e., 3 rotation and 3 translation 

parameters, and their 6 associated first-order derivatives), identified outlier scans from the pre-

processing step, as well as session-related effects (such as constant and linear BOLD signal trends). 

Temporal frequencies below 0.008 Hz were also removed from the BOLD signal in order to 

mitigate the effects of low-frequency drifts. Denoising outputs were manually inspected to ensure 

approximately centered distributions of the resulting functional connectivity data. 

 

We then registered the pre-processed, denoised functional image from MNI into the subject9s b0 

reference image created by MITTENS in our structural connectivity analyses. The same cortical 

mask as the one supplied to MITTENS was then overlayed onto the registered functional image, in 

order to extract the BOLD signal time series corresponding to each cortical voxel, for each subject. 

Similarly to the atlas-based approach, a 8static9 functional connectivity matrix was computed by 
calculating the Pearson9s correlation between the signal time series of any two given cortical 

voxels. Voxel-based 8temporally-contiguous9 functional connectomes (20 per subject) were also 
generated as described in the atlas-based approach. 

 

Exclusion criteria 

After the structural and functional scans had been pre-processed and denoised, we manually 

examined the Quality Control files exported by MITTENS and CONN, to assess the quality of the 

data. Given that structural and functional connectivity were being assessed at the voxel-level, we 

chose to apply particularly conservative quality control criteria when deciding which subjects to 
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include in our analyses: subjects with at least one <bad= slice found (i.e., slices that significantly 

differed in intensity patterns from the slices acquired before and after)91 in the pre-processed 

diffusion images (n = 2) or resting-state functional scans with mean framewise displacement 

exceeding 0.2 mm (n = 3) were excluded from the analysis.100,101 Using these criteria, we included 

9 (88.9% female; mean age = 22.82.7 years; age range = 19-27 years) of the total 14 subjects 

scanned with both diffusion spectrum and resting-state functional imaging.  

 

Structure-Function Coupling 

The SFC of each subject9s cortical voxel was defined as the Spearman9s correlation coefficient 
between the matrix row corresponding to that voxel in the thresholded structural connectome and 

the matrix row corresponding to that voxel in the 8static9 functional connectome, after excluding 
the self-connection and any other entries where either the regional structural or functional 

connectivity was equal to zero. Using this definition of SFC and the same approach as the one 

described in the atlas-based analyses, we also computed each cortical voxel9s moment-to-moment 

(temporal) SFC variance across 20 contiguous non-overlapping time windows.  

 

Intracortical Myelination 

Intracortical myelination in the Penn sample was assessed using the previously validated HCP 

Pipeline (https://github.com/Washington-University/HCPpipelines/wiki/Installation-and-Usage-

Instructions#running-the-hcp-pipelines-on-example-data; version 4.3.0). Specifically, the scripts 

in the three HCP pipelines (PreFreeSurfer, FreeSurfer, and PostFreeSurfer) were run to generate 

the T1-weighted/T2-weighted 8myelin maps9 for each subject as a proxy for their intracortical 

myelin content. The individual steps performed by each pipeline have been described above in our 

atlas-based approach. For each subject, the resulting T1-weighted/T2-weighted ratio volumetric 

file was then registered from MNI into the subject9s b0 reference image (obtained from MITTENS); 

the signal intensity at each cortical voxel was then extracted using the same cortical mask as the 

one used in our structural and functional connectivity analyses. In order to exclude voxels that 

might potentially represent non-brain tissue or voxels with aberrantly high or low signal intensity, 

we only kept values within one standard deviation away from the mean signal intensity of the non-

zero intensity voxels within the cortical ribbon mask.28  

 

Excitation-Inhibition Balance 

The same pipeline used to estimate the EI-ratio in our atlas-based approach4in the form of the 

functional signal time series9 Hurst exponent4was also used here. Specifically, each cortical 

voxel9s pre-processed resting-state signal time series were modelled as multivariate fractionally 

integrated processes and the corresponding Hurst exponent was estimated via the univariate 

maximum likelihood method and a discrete wavelet transform.44,90  

 

CORTICAL HIERARCHIES 

 

To examine the regional distribution of the variables of interest across the cortex, we assigned each 

brain region (as defined in the 8Atlas-based approach9 and 8Voxel-based approach9 sections above) 
with an index representing its putative placement along the broader cognitive representational and 

cyto-architectural hierarchy. For that purpose, we utilized four complementary cortical 

annotations: 1) 7 resting-state systems (visual, somatomotor, dorsal attention, ventral attention, 

limbic, fronto-parietal, and default mode) estimated by intrinsic functional connectivity35 (resting-
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state systems; coarse metric), 2) the principal gradient of cortical organization derived by the 

decomposition of connectivity data and intrinsic geometry of the cortex36 (principal functional 

gradient; continuous metric), 3) 5 cyto-architectonic classes/types (agranular, frontal, parietal, 

polar, and granular) derived from cellular morphological properties37 (cyto-architectonic classes; 

coarse metric), and 4) the <BigBrain= cortical gradient derived by modeling the similarity of 
cortical columns9 microstructural profiles38,39 (BigBrain gradient of microstructure profile 

covariance; continuous metric). The first two annotations spatially group brain regions along the 

unimodal(sensory)3transmodal(association) hierarchy based on their functional connectivity 

profiles; the latter two assign brain regions into the same cortical class/type based on their cellular 

morphological profiles. The membership of each brain region into each of the four mentioned 

cortical annotations was assigned in the following way: 

 

Atlas-based approach 

 

Schaefer ROI → Resting-state systems: 

The assignment of each Schaefer (400 parcels) ROI into its corresponding resting-state system (1-

7 systems) was provided as part of the Schaefer atlases download 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaef

er2018_LocalGlobal).40  

 

Schaefer ROI → Principal functional gradient: 

The Schaefer (400 parcels) atlas (filename: 

Schaefer2018_400Parcels_7Networks_order_FSLMNI152_2mm.nii.gz) and the principal 

functional gradient (filename: volume.grad_1.MNI2mm.nii.gz) were provided by their respective 

downloads (mentioned above), in the same space. We then extracted the principal gradient scalars 

corresponding to all voxels within a given Schaefer ROI and computed their mean, which was then 

set as the average principal gradient scalar of that Schaefer ROI. 

 

Schaefer ROI → Cyto-architectonic classes: 

The csv files containing vertices9 assignments to the Schaefer 400 parcels and von 

Economo/Koskinas-inspired cyto-architectonic parcellations (sampled on the standardized 

Conte69 surface template) were downloaded from the ENIGMA toolbox102 (https://enigma-

toolbox.readthedocs.io/en/latest/index.html). Using these files, we extracted the cyto-architectonic 

assignments corresponding to all vertices within each Schaefer ROI and computed their mode; the 

corresponding mode was set as the cyto-architectonic assignment of that Schaefer ROI. 

 

Schaefer ROI → <BigBrain= gradient: 

The BigBrain gradient scalar corresponding to each Schaefer ROI was calculated as previously 

described38,39 and provided as part of the ENIGMA toolbox as a csv file. 

 

HCP multi-modal ROI → Resting-state networks: 

The HCP multi-modal atlas in cifti file format was first mapped to the resting-state functional 

systems in the same format and grayordinates space (RSN-networks.32k_fs_LR.dlabel.nii; 

https://balsa.wustl.edu/study/show/WG33), using the Connectome Workbench toolbox 

(wb_command -cifti-create-dense-from-template). We then extracted the resting-state assignments 

corresponding to all grayordinates within a given HCP multi-modal ROI and computed their mode; 
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the corresponding mode was set as the resting-state system assignment of that HCP multi-modal 

ROI.103  

 

HCP multi-modal ROI → Principal functional gradient: 

We used the principal functional gradient in the same grayordinate space as the HCP multi-modal 

atlas (cifti file format: hcp.gradients.dscalar.nii; 

https://github.com/neuroanatomyAndConnectivity/gradient_analysis). We then extracted the 

principal gradient scalars corresponding to all grayordinates within a given HCP multi-modal ROI 

and computed their mean, which was then set as the average principal gradient scalar of that HCP 

multi-modal ROI. 

 

HCP multi-modal ROI → Cyto-architectonic classes: 

The csv files containing vertices9 assignments to the HCP multi-modal and the von 

Economo/Koskinas-inspired cyto-architectonic parcellations (sampled on the standardized 

Conte69 surface template) were downloaded from the ENIGMA toolbox102 (https://enigma-

toolbox.readthedocs.io/en/latest/index.html). Using these files, we extracted the cyto-architectonic 

assignments corresponding to all vertices within each HCP multi-modal ROI and computed their 

mode; the corresponding mode was set as the cyto-architectonic assignment of that HCP multi-

modal ROI. 

 

HCP multi-modal ROI → <BigBrain= gradient: 

The BigBrain gradient scalar corresponding to each HCP multi-modal ROI was calculated as 

previously described38,39 and publicly provided as part of the ENIGMA toolbox as a csv file. 

 

Voxel-based approach 

 

Cortical voxels → Resting-state systems: 

Using the guidelines provided in the resting-state systems9 online documentation35 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Yeo20

11_fcMRI_clustering/1000subjects_reference/Yeo_JNeurophysiol11_SplitLabels/project_to_ind

ividual), we registered the resting-state systems from the standardized fsaverage space into each 

subject9s volumetric space (in FreeSurfer terminology: their orig.mgz space). Afterwards, we 

registered those systems into each subject9s reference b0 space (generated by MITTENS) using the 

antsApplyTransforms command (ANTs 2.3.1) with the <MultiLabel= interpolation flag. The 

resulting atlas was dilated three times to ensure that all cortical voxels were assigned a resting-

state system affiliation. Lastly, using this dilated atlas and the same cortical ribbon mask as the 

one mentioned in our voxel-based structural and functional connectivity analyses, we extracted 

each cortical voxel9s resting-state system affiliation. 

 

Cortical voxels → Principal functional gradient: 

We first registered the principal functional gradient (volume.grad_1.MNI2mm.nii.gz; 

https://github.com/neuroanatomyAndConnectivity/gradient_analysis) from MNI into each 

subject9s reference b0 space (generated by MITTENS) using the antsApplyTransforms command 

(ANTs 2.3.1). The registered gradient was dilated once to ensure that all cortical voxels were 

assigned a gradient scalar. Lastly, using this dilated atlas and the same cortical ribbon mask as the 
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one mentioned in our voxel-based structural and functional connectivity analyses, we extracted 

each cortical voxel9s corresponding principal gradient scalar. 
 

Cortical voxels → Cyto-architectonic classes: 

The von Economo/Koskinas-inspired cyto-architectonic atlas was downloaded in MNI ICBM 

2009a Nonlinear Symmetric stereotaxic space (http://www.dutchconnectomelab.nl).104 We then 

registered this atlas into each subject9s reference b0 space (generated by MITTENS) using the 

antsApplyTransforms command (ANTs 2.3.1) with the <MultiLabel= interpolation flag. The 

resulting atlas was dilated three times in order to ensure that all cortical voxels were assigned a 

cyto-architectonic cortical type affiliation. Lastly, using this dilated atlas and the same cortical 

ribbon mask as the one mentioned in our voxel-based structural and functional connectivity 

analyses, we extracted each cortical voxel9s cyto-architectonic cortical type affiliation. 

 

STATISTICAL ANALYSES 

 

Statistical analyses were performed using the SPSS statistical software (version 28: IBM Corp.), 

MATLAB (version R2021a: The MathWorks, Inc.), and Python (version 3.7).  

 

Atlas-based approach: Dataset 

For our 8Atlas-based approach9 analyses delineated above, we generated and analyzed two 

datasets: one wherein each row corresponded to each Schaefer ROI (for a total of 400 rows) and 

another wherein each row corresponded to each HCP multi-modal ROI (for a total of 360 rows). 

Each dataset9s column corresponded to the variable of interest (e.g., SFC, temporal SFC variance, 

intracortical myelin content, and Hurst exponent) averaged across the 100 unrelated HCP subjects 

(unless otherwise specified above). 

 

Voxel-based approach: Dataset 

For our voxel-based approach, we generated one dataset for each Penn subject that passed our 

quality control assessments (for a total of 9 datasets), as each subject had a different number of 

cortical voxels. Within each dataset, each row corresponded to each cortical voxel of that subject, 

and each column reflected the variable of interest corresponding to that subject9s cortical voxel.  
 

Each statistical analysis described below was applied separately on each one of these 9 datasets. 

Correlation and regression coefficients corresponding to each dataset were then averaged and a 

mean value was reported. In order to combine the p-values generated for each analysis pertaining 

to each dataset (subject) into one representative combined p-value, we applied Fisher9s method of 
meta-analysis.105 This method entailed calculating first the following test statistic T with a χ2-

distribution and 18 degrees of freedom (= number of datasets x 2): 

 � = −2∑ln(�ÿ)�
ÿ=1  

 

where ln is the natural logarithm and pi the p-value corresponding to dataset i. The combined p-

value (referred to as pfisher in the manuscript) is then calculated as follows: 
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�ĀÿĀ/ÿÿ = 1 − �ýþĀ2 (�; � = 2�) 
 

where �ýþĀ2  is the cumulative distribution function (cdf) for a χ2-distribution with � degrees of 

freedom (here, n = 9).106,107 

 

ANOVA tests 

One-way analysis of variance (ANOVA) tests were used to statistically compare the overall 

differences in SFC and temporal SFC variance across the 7 resting-state systems and 5 cyto-

architectonic classes, described in the 8Structure-Function Coupling variations along the cortical 

hierarchy9 section of the Results. The ANOVA tests were followed by post-hoc correction for 

multiple comparisons (Tamhane9s T24equal variances not assumed) analyses to examine the 

statistical differences between all possible pairs among the resting-state systems and all possible 

pairs among the cyto-architectonic classes.  

 

Bivariate Analyses and Spatial Permutation Tests 

Comparisons between the four variables of interest: SFC, temporal SFC variance, intracortical 

myelin content, and the Hurst exponent, were carried out in the form of previously established 

spatial permutation tests (threshold for significance: p < 0.05).108,109 In contrast to bivariate 

correlations such as Spearman9s or Pearson9s, spatial permutation tests take into account the 

potential spatial autocorrelation that might exist between variables and neighboring brain regions 

as well as hemispheric symmetry, by generating a set of appropriate spatial autocorrelation-

preserving null models for each hemisphere. Specifically, the empirical Spearman9s correlation 

between any two spatial maps (i.e., two variables) is compared to a distribution of null Spearman9s 
correlations, generated by projecting one of the spatial maps into a sphere, randomly rotating that 

sphere, and then projecting the rotated spherical map back onto the brain surface.108,109 In our 

study, this 8spin test9 was repeated 10,000 times to generate 10,000 null correlations, for each 

comparison. The empirical Spearman9s correlation coefficient (r) and the p-value derived by 

comparing the empirical with the null correlations (referred to in the manuscript as pspin) were 

reported for each bivariate comparison described in our atlas-based analyses. In the voxel-based 

analyses, we reported a mean r, its [min max] range across the 9 subjects, and the combination of 

all subjects9 pspin values into one combined pfisher value, as described in the <Voxel-based approach: 

Dataset= section above. 
 

Furthermore, we also tested the assumption of homoscedasticity in our analyses (i.e., the 

assumption that the variance of the residuals in the regression model is constant as the independent 

variable changes) using the Breusch-Pagan test: we (i) first fit the regression model using our 

empirical dependent and independent variables, (ii) calculated the square of the unstandardized 

residuals of the model, and (iii) then fit a new regression model using the squared residuals as the 

new dependent variable. The p-value between the squared residuals and the independent variable 

was then calculated for each subject; these p-values were then combined into one pfisher value, as 

described in the <Voxel-based approach: Dataset= section above. 

 

Multiple Linear Regression Analyses and Non-Parametric Bootstrapping 

Multiple linear regression models were used to examine the statistical relationship between two 

variables, after adjusting for the effects of other pertinent variables. SFC and temporal SFC 

variance were designated as the dependent variables, whereas intracortical myelin content and the 
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Hurst exponent were designated as the independent variables. In the 8Biological correlates of 

Structure-Function Coupling: whole-brain perspective9 section, we also included the principal 

functional gradient assignment as an independent variable, so that we could ensure that any 

potential relationships were not driven by a similar co-variation of the given variables across the 

same cortical hierarchy. Moreover, to address the non-linear relationship and significant 

heteroscedasticity between the temporal SFC variance and the Hurst exponent in our voxel-based 

analyses, we incorporated a non-linear term (square of the Hurst exponent) as an additional 

independent variable in the 8Biological correlates of Structure-Function Coupling: whole-brain 

perspective9 and 8Biological correlates of Structure-Function Coupling: regional perspective9 
sections.  

 

Standardized β (βstand) coefficients and p-values were computed for each independent variable 

within each multiple linear regression model (ordinary least squares regression), using non-

parametric bootstrapping. This process entailed (i) fitting the original empirical data into the 

multiple regression model and calculating the βstand coefficients, (ii) sampling the original 

empirical data with replacement, and (iii) re-fitting the multiple regression model on this newly 

sampled dataset and extracting the resulting βstand coefficients. We repeated steps (ii)-(iii) 10,000 

times to generate robust confidence intervals for the βstand coefficients and the corresponding 

8bootstrapped9 p-values. For each multiple regression model mentioned in the atlas-based analyses 

of our Results section, we reported the empirically derived βstand coefficient for each independent 

variable, the corresponding 95% confidence interval as calculated by the non-parametric 

bootstrapping approach (and referred to in the text as 95% BCI), and the resulting p-value. 

Similarly, for our voxel-based analyses, we reported the mean empirically-derived βstand coefficient 

for each independent variable across subjects, its [min max] range across the 9 subjects, and the 

combination of all subjects9 p-values into one combined pfisher value, as described in the <Voxel-

based approach: Dataset= section above. Overall, applying non-parametric bootstrapping into our 

regression models allowed us to robustly examine how variable the βstand coefficients were in each 

model, without making any assumptions about the distribution of the data. 

  

Lastly, to ensure that there were no collinearities among our variables within the multiple 

regression models, we also reported the variance inflation factor (VIF) within each analysis; a 

threshold of VIF > 5 was used to indicate significant collinearity.110 

 

Mediation Model 

The mediation analysis reported in our atlas-based analyses in the Results section: 8Biological 

correlates of Structure-Function Coupling: whole-brain perspective9 was performed using the 

PROCESS (v3.4) statistical macro for SPSS.111 Intracortical myelin content was designated as the 

independent variable, the Hurst exponent of the functional signal time series as the mediator, and 

the temporal SFC variance as the dependent variable. The Hurst exponent (as a proxy of EI-ratio) 

was chosen as the mediator in this model4rather than the independent variable4as it fluctuates 

on a moment-to-moment basis.77 The hypothesized mediation effect was tested using 

bootstrapping (10,000 samples); a BCI that did not include zero indicated a significant mediation 

effect. 
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Recent work in several fields of science has identified a bias in citation practices such that papers 

from women and other minority scholars are under-cited relative to the number of such papers in 

the field.1123116 We obtained the predicted gender of the first and last author of each reference by 

using databases that store the probability of a first name being carried by a woman.116 By this 

measure (and excluding self-citations to the first and last authors of our current paper), our 

references contain 10% woman(first)/woman(last), 10% man/woman, 22.7% woman/man, and 

57.3% man/man. This method is limited in that a) names, pronouns, and social media profiles used 

to construct the databases may not, in every case, be indicative of gender identity and b) it cannot 

account for intersex, non-binary, or transgender people. We look forward to future work that could 

help us better understand how to support equitable practices in science. 
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Figure 1 
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Figure 1 – Regional variations in structure-function coupling: atlas-based analysis.  

A: Boxplots showing the mean differences in structure-function coupling across the 7 resting-state functional systems 

(generated using the 100 unrelated HCP subjects and Schaefer 400 atlas). The brain regions in each functional system 

are overlayed on the standardized fsaverage brain9s surface and illustrated on the left side. LIM: Limbic, VEN: Ventral 
Attention, FP: Fronto-Parietal, DMN: Default Mode Network, DOR: Dorsal Attention, MOT: Somatomotor, VIS: 

Visual. B: Boxplots showing the mean differences in structure-function coupling across the 5 cyto-architectonic 

classes (generated using the 100 unrelated HCP subjects and Schaefer 400 atlas). The brain regions involved within 

each class are overlayed on the standardized fsaverage brain9s surface and illustrated on the left side. POL: Polar, 
AGR: Agranular, FRO: Frontal, PAR: Parietal, GRA: Granular. C: Scatterplot between the principal functional 

gradient scalar of each brain region and its corresponding structure-function coupling (n=400 brain 

regions/datapoints). A linear regression was fit (shown in red); the correlation coefficient (Spearman9s ρ: r), p-value 

corresponding to the spatial permutation test (pspin), and histograms corresponding to each variable are reported. D: 

Scatterplot between the <BigBrain= gradient scalar of each brain region and its corresponding structure-function 

coupling (n=400 brain regions/datapoints). A linear regression was fit (shown in red); the correlation coefficient 

(Spearman9s ρ: r), p-value corresponding to the spatial permutation test (pspin), and histograms corresponding to each 

variable are reported. 
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Figure 2 
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Figure 2 – Regional variations in temporal structure-function coupling variance: atlas-based analysis.  

A: Boxplots showing the mean differences in temporal structure-function coupling variance across the 7 resting-state 

functional systems (generated using the 100 unrelated HCP subjects and Schaefer 400 atlas). The brain regions 

involved within each functional system are overlayed on the standardized fsaverage brain9s surface and illustrated on 
the left side. DOR: Dorsal Attention, VIS: Visual, MOT: Somatomotor, VEN: Ventral Attention, FP: Fronto-parietal, 

DMN: Default Mode Network, LIM: Limbic. B: Boxplots showing the mean differences in temporal structure-

function coupling variance across the 5 cyto-architectonic classes (generated using the 100 unrelated HCP subjects 

and Schaefer 400 atlas). The brain regions involved within each class are overlayed on the standardized fsaverage 

brain9s surface and illustrated on the left side. PAR: Parietal, AGR: Agranular, FRO: Frontal, GRA: Granular, POL: 
Polar. C: Scatterplot between the principal functional gradient scalar of each brain region and its corresponding 

temporal structure-function coupling variance (n=400 brain regions/datapoints). A linear regression was fit (shown in 

red); the correlation coefficient (Spearman9s ρ: r), p-value corresponding to the spatial permutation test (pspin), and 

histograms corresponding to each variable are reported. D: Scatterplot between the <BigBrain= gradient scalar of each 
brain region and its corresponding temporal structure-function coupling variance (n=400 brain regions/datapoints). A 

linear regression was fit (shown in red); the correlation coefficient (Spearman9s ρ: r), p-value corresponding to the 

spatial permutation test (pspin), and histograms corresponding to each variable are reported. 
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Figure 3 

 

 
Figure 3 – Spatial distributions of the variables of interest. 

Schematic of the spatial cortical maps corresponding to structure-function coupling (A), temporal structure-function 

coupling variance (B), T1-weighted/T2-weighted signal intensity ratio as a proxy of intracortical myelin content (C), 

and the Hurst exponent of the functional signal time series as a proxy of excitation-inhibition balance (D). For 

visualization purposes, each variable of interest was normalized between 0 and 1 and mapped onto the standardized 

Conte69 surface space; the medial wall was excluded from the analysis and is shown in dark gray.  
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Figure 4 

 

 
 
Figure 4 – Scatterplots between the variables of interest: atlas-based analysis. 

Scatterplot showing the association between each brain region9s: mean structure-function coupling and intracortical 

myelin content as estimated by the T1-weighted/T2-weighted signal intensity ratio (A), mean temporal structure-

function coupling variance and intracortical myelin content (B), mean structure-function coupling and the Hurst 

exponent of the functional signal time series (C), and mean temporal structure-function coupling variance and the 

Hurst exponent of the functional signal time series (D). For each scatterplot, a linear regression was fit (shown in red); 

correlation coefficients (Spearman9s ρ: r), p-values corresponding to the spatial permutation test (pspin), and histograms 

corresponding to each variable are displayed. Note: n=400 brain regions in all panels. 
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Figure 5 

 

 
 

Figure 5 – High density plots between the variables of interest: voxel-based analysis – representative subject 

shown. 

High density plots showing the association between each cortical voxel9s: mean structure-function coupling and 

intracortical myelin content estimated by the T1-weighted/T2-weighted signal intensity ratio (A), mean temporal 

structure-function coupling variance and intracortical myelin content (B), mean structure-function coupling and the 

Hurst exponent of the functional signal time series (C), and mean temporal structure-function coupling variance and 

the Hurst exponent of the functional signal time series (D). For plots (A), (B), and (C), a linear regression was fit 

(shown in red); correlation coefficients (Spearman9s ρ: r), p-values corresponding to the spatial permutation test (pspin), 

and histograms corresponding to each variable are displayed. In plot (D), a quadratic regression was fit (shown in 

red); the standardized β coefficient and bootstrapped p-value corresponding to the quadratic regression mentioned in 

the voxel-based analysis component of our Results section: 8Biological correlates of Structure-Function Coupling: 

whole-brain perspective,9 are also reported. Data shown in this figure were obtained from a representative subject that 
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was analyzed using our voxel-based connectivity approach. Scatterplot versions of the above plots are shown in 

Supplemental Figure 6. Note: n=71,561 voxels in all panels. 
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Figure 6 

 

 
 

Figure 6 – Shift from intracortical myelination to excitation-inhibition ratio as the principal predictor of 

structure-function coupling, when transitioning from agranular to granular cortical regions: an illustration. 

A: Parcellation of the cortex into the 5 von Economo/Koskinas-inspired cyto-architectonic classes: agranular (orange), 

frontal (red), parietal (blue), polar (green), and granular (purple). B: Using the same colors, we showcase a schematic 

illustration of the types and distribution of cells that are expected to occupy the cortical layers (numbered on the left 

and right sides of the panel) within each cyto-architectonic class/type. Purple cells represent Cajal-Retzius neurons; 

red star-shaped cells represent stellate cells; green cells with triangular somata represent pyramidal cells; myelin 

sheaths are shown in dark yellow; and the stripes across each column represent the outer (layer IV) and inner (layer 

V) stripes (or bands) of Baillarger (myelinated fibers arising mostly from the thalamus) in dark yellow. While 

transitioning from granular to agranular cortical types, we notice an increase in axonal myelination, an increase in the 

number and size of pyramidal neurons, and a decrease in the number of small stellate neurons. C-G: On the left side 

of each panel, we isolated and colored only the brain regions corresponding to each cyto-architectonic class; the rest 
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of the brain surface was grayed out. The middle figure corresponds to the expected cellular distribution and 

composition of each class as defined in panel (B). The third figure on the right represents a visual scale wherein the 

contributions of intracortical myelination and excitation-inhibition (EI) ratio (in the form of the Hurst exponent) in 

predicting structure-function coupling are <weighed= against each other. For each cyto-architectonic class, such 

<weight= was determined by computing the ratio between the βstand coefficient corresponding to the Hurst exponent 

and the βstand coefficient corresponding to intracortical myelin across our three processing pipelines: the Schaefer 400 

atlas-based (Table 1), the HCP multi-modal atlas-based (Supplemental Table 9), and the voxel-based (Table 2) 

analyses. This generated three ratio values for each cortical type (one corresponding to each atlas-based analysis and 

one to the voxel-based analysis) which were then averaged, in order to generate one representative ratio value per 

cortical type indicating how much4on average4one variable contributes more than the other in predicting structure-

function coupling. The averaged ratio is shown underneath the 8dominant9 variable9s name across each scale. Created 

with BioRender.com. 
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TABLES 

 

Table 1 

 

A. Structure-Function Coupling  

 

 Intracortical Myelin Hurst Exponent  

Cortical 

Type 

 

βstand 

 

95% BCI 

Bootstrapped 

p-value 

(FDR) 

 

βstand 

 

95% BCI 

Bootstrapped 

p-value 

(FDR) 

 

VIF 

Granular 0.178 [0.132, 

0.141] 

0.300 0.704 [0.716, 

0.722] 

<0.001 1.01 

Polar 0.303 [0.239,  

0.249] 

0.300 -0.275 [-0.261,  

-0.251] 

0.421 1.04 

Parietal 0.416 [0.414, 

0.417] 

<0.001 0.538 [0.531, 

0.534] 

<0.001 1.01 

Frontal 0.437 [0.438, 

0.441] 

<0.001 0.275 [0.272, 

0.275] 

<0.001 1.08 

Agranular 0.456 [0.455, 

0.459] 

<0.001 0.050 [0.050, 

0.056] 

0.738 1.32 

 

B. Temporal Structure-Function Coupling Variance 

 

 Intracortical Myelin Hurst Exponent  

Cortical 

Type 

 

βstand 

 

95% BCI 

Bootstrapped 

p-value 

(FDR) 

 

βstand 

 

95% BCI 

Bootstrapped 

p-value 

(FDR) 

 

VIF 

Granular 0.326 [0.279, 

0.287] 

0.217 -0.462 [-0.451,  

-0.444] 

0.022 1.01 

Polar -0.171 [-0.179,  

-0.175] 

0.217 -0.759 [-0.753,  

-0.746] 

<0.001 1.04 

Parietal -0.002 [-0.003,  

0.001] 

0.972 -0.433 [-0.432,  

-0.427] 

0.005 1.01 

Frontal 0.024 [0.024, 

0.027] 

0.865 -0.428 [-0.426,  

-0.423] 

<0.001 1.08 

Agranular -0.106 [-0.102,  

-0.100] 

0.217 -0.627 [-0.614,  

-0.607] 

<0.001 1.32 

 
Table 1: Atlas-based multiple linear regression analyses 3 Results corresponding to the atlas-based analyses 

discussed in section: 8Biological correlates of Structure-Function Coupling: regional perspective.9 βstand: standardized 

β coefficient; 95% BCI: 95% bootstrapped standardized β coefficient confidence interval; Bootstrapped p-value 

(FDR): bootstrapped p-value adjusted for multiple comparisons (false discovery rate [FDR]: Benjamini-Hochberg 

method); VIF: Variance Inflation Factor. 
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Table 2 
 

A. Structure-Function Coupling  

 

 Intracortical Myelin Hurst Exponent  

Cortical 

Type 

Mean 

βstand 

 

Range βstand 

Fisher9s  

p-value 

(FDR) 

Mean 

βstand 

 

Range βstand 

Fisher9s  

p-value 

(FDR) 

Mean 

VIF 

 

Range VIF 

Granular 0.01 [-0.02, 0.04] 0.084 0.05 [-0.09, 0.35] <0.001 1 [1.00, 1.01] 

Polar 0.03 [-0.05, 0.12] <0.001 0.18 [-0.16, 0.57] <0.001 1.05 [1.01, 1.07] 

Parietal 0.02 [-0.07, 0.09] <0.001 0.05 [-0.07, 0.17] <0.001 1 [1.00, 1.01] 

Frontal 0.13 [0.05, 0.18] <0.001 0.11 [0.01, 0.29] <0.001 1.02 [1.01, 1.05] 

Agranular 0.16 [0.06, 0.24] <0.001 0.23 [0.05, 0.42] <0.001 1.02 [1.00, 1.08] 

 

B. Temporal Structure-Function Coupling Variance 

 

 Intracortical Myelin Hurst Exponent2  

Cortical 

Type 

Mean 

βstand 

 

Range βstand 

Fisher9s  

p-value 

(FDR) 

Mean 

βstand 

 

Range βstand 

Fisher9s  

p-value 

(FDR) 

Mean 

VIF 

 

Range VIF 

Granular -0.002 [-0.03, 0.06] 0.005 -0.10 [-2.37, 2.00] <0.001 1.01 [1.00, 1.01] 

Polar -0.05 [-0.13, 0.09] <0.001 0.27 [-2.41, 2.38] <0.001 1.06 [1.01, 1.08] 

Parietal -0.09 [-0.15, -0.03] <0.001 -0.68 [-1.26, -0.15] <0.001 1.01 [1.00, 1.01] 

Frontal -0.12 [-0.17, -0.05] <0.001 -0.48 [-1.23, 0.58] <0.001 1.02 [1.01, 1.05] 

Agranular -0.04 [-0.13, 0.05] <0.001 0.09 [-0.80, 1.43] <0.001 1.02 [1.01, 1.08] 

 
Table 2: Voxel-based multiple linear regression analyses 3 Results corresponding to the voxel-based analyses 

discussed in section: 8Biological correlates of Structure-Function Coupling: regional perspective.9 Mean βstand: the 

mean standardized β coefficient across the 9 subjects; Range βstand: [min max] range of the standardized β coefficient 
across the 9 subjects; Fisher9s p-value (FDR): Fisher9s p-value adjusted for false discovery rate [FDR] using the 

Benjamini-Hochberg method; Mean VIF: the mean Variance Inflation Factor across the 9 subjects; Range VIF: [min 

max] range of VIF values across the 9 subjects; Hurst Exponent2: Hurst exponent squared.  
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