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Abstract

Gene regulatory network (GRN) inference that incorporates single-cell RNA-seq (scRNA-

seq) differentiation trajectories or RNA velocity can reveal causal links between transcription

factors and their target genes. However, current GRN inference methods require a total order-

ing of cells along a linear pseudotemporal axis, which is biologically inappropriate since tra-

jectories with branches cannot be reduced to a single time axis. Such orderings are especially

difficult to derive from RNA velocity studies since they characterize each cell’s state transition

separately. Here, we introduce Velorama, a novel conceptual approach to causal GRN infer-

ence that newly represents scRNA-seq differentiation dynamics as a partial ordering of cells

and operates on the directed acyclic graph (DAG) of cells constructed from pseudotime or RNA

velocity measurements. To our knowledge, Velorama is the first GRN inference method that

can work directly with RNA velocity-based cell-to-cell transition probabilities. On a standard

set of synthetic datasets, we first demonstrate Velorama’s use with just pseudotime, finding that

it improves area under the precision-recall curve (AUPRC) by 1.25-3x over state-of-the-art ap-

proaches. Using RNA velocity instead of pseudotime as the input to Velorama further improves

AUPRC by an additional 1.75-3x. We also applied Velorama to study cell differentiation in

pancreas, dentate gyrus, and bone marrow from real datasets and obtained intriguing evidence

for the relationship between regulator interaction speeds and mechanisms of gene regulatory

control during differentiation. We expect Velorama to be a critical part of the RNA velocity

toolkit for investigating the causal drivers of differentiation and disease.
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1 Introduction

Inference of gene regulatory networks (GRNs), which capture regulator–target gene interactions, from ex-

pression assays has been a long-standing research focus in computational biology [1–3]. Single-cell RNA-

seq (scRNA-seq) technologies have the potential to revolutionize our ability to estimate cell type-specific

GRNs. We focus here on a potent innovation in scRNA-seq-based GRN inference: taking advantage of

scRNA-seq datasets’ ability to capture snapshots of cell states along dynamic biological processes [4]. By

exploiting pseudotime computed from trajectory analysis, recent GRN inference methods have constructed

an ordering of cells over which they compare the expression profile of a gene against the lagged profile

of its putative regulators [5–11]. This ordering of cells with respect to time (or pseudotime) enables more

accurate inference and brings us closer to discovering causal regulatory relationships rather than just gene

associations.

Unfortunately, existing GRN inference methods that incorporate differentiation information have a fun-

damental limitation; they require a total, or linear, ordering over cells (or groups of cells) in order to create

a “time” axis along which each gene’s expression profile can be correlated with others (Figure 1a). For a

trajectory with multiple branches, which frequently occurs with scRNA-seq, a total ordering of cells would

collapse these distinct branches down into a single global sequence of cells.

A related and even more pressing challenge is incorporating RNA velocity into GRN inference methods.

RNA velocity compares the spliced and unspliced counts of genes to predict per-cell state transitions during a

differentiation process [12,13]. RNA velocity has proven powerful in understanding how differentiating cells

commit to specific fates [14], and Qiu et al. [9] have argued that it more faithfully captures the expression

dynamics of differentiation than pseudotime. These advantages suggest that the rich information encoded

in RNA velocity data could be beneficial for inferring gene regulatory interactions. However, it is unclear

how RNA velocity can be adapted as an input to existing GRN approaches, since they require a global

pseudotime estimate (on a timeline) while RNA velocity is an inherently local measure. One workaround

could entail using RNA velocity vectors to forcibly collapse cells into a global pseudotime-series over the

full dataset, but doing so removes much of the rich local information provided by this data.

Here, we present Velorama, a novel method for gene regulatory network inference on scRNA-seq data

that does not require a total ordering over the differentiation landscape. To our knowledge, Velorama is the

first method to fully incorporate per-cell RNA velocities for GRN inference. Our key conceptual advance

is to perform causal GRN inference while modeling the differentiation landscape as a partial, rather than

total, ordering of cells (Figure 1a). Thus, we model cell-differentiation in a local, rather than global, con-

text, which enables us to better capture cell dynamics. Instead of a linear pseudotemporal axis, we perform

inference on a directed acyclic graph (DAG) of cells that encodes the partial ordering: edges in this graph

connect transcriptionally related cells, with the edge direction capturing the local direction of cell differenti-

ation. When RNA velocity data is available, the DAG is constructed directly from the cell transition matrix,

allowing us to leverage the full richness of RNA velocity data. When only pseudotime information is avail-

able, we construct the DAG by orienting the edges of a k-nearest-neighbor graph of cells in the direction of

increasing pseudotime, which allows us to appropriately model merging and branching trajectories without

collapsing them onto a single axis.

To address the algorithmic challenge of performing causal inference on a partial ordering, we build upon

recent innovations in Granger causal (GC) inference. In a gene regulatory context, Granger causality rea-

sons that a causal regulatory gene’s past expression will be significantly predictive of its target gene’s current

expression. While standard GC inference approaches are limited to total orderings, we recently introduced

a generalization of Granger causality to partial orderings that uses a graph neural network framework to

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.18.512766doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.18.512766
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Schematic of Velorama: Existing methods need to impose a total (i.e., linear) ordering on cells in order

to perform gene regulatory network (GRN) inference. When supplied with RNA velocity, they convert it to a global

pseudotime measure and do not make use of the cell transition matrix. (a) Our key insight is that the differentiation

landscape is more faithfully captured by a partial ordering, or directed acyclic graph (DAG), of cells constructed

from RNA velocity (or pseudotime, as available) data. (b) We perform Granger causal inference on this DAG, taking

advantage of a recent advance in generalizing Granger causality with the use of graph neural networks. At each node

(cell), we collect the expression of putative regulators (e.g., three genes per cell) at the cell’s ancestor nodes (e.g.,

we look back three lags). These are applied to predict the target gene’s expression. A key component of our neural

network is the first hidden layer where regularization of the weights is performed to identify statistically significant

regulator–target relationships.

perform GC inference on a DAG [15]. Our previous work assessed pairwise interactions between each

ATAC-seq peak (chromatin accessibility) and a candidate gene in its genomic neighborhood. However, this

is insufficient for assessing gene–gene interactions, as transcriptional regulation often requires the coordi-

nation of multiple co-regulators [16]. We therefore introduce here a different mathematical formulation of

GC inference that allows us to simultaneously consider all potential regulators and their non-linear, combi-

natorial effects. In Velorama, regulator–target gene comparisons are made locally for each node, by relating

the target gene’s value at a node to the values of all candidate regulators at the node’s ancestors in the DAG

(Figure 1b).

We evaluated Velorama on a variety of synthetic and real scRNA-seq datasets, on which it demonstrated

significantly greater accuracy than existing methods. On synthetic datasets with associated ground-truth

GRNs made available by Dibaeinia et al. [17], we first applied Velorama using only pseudotime data,

benchmarking it against other GRN methods. Velorama offers state-of-the-art precision and recall, sub-

stantially outperforming a diverse set of pseudotime-based GRN inference techniques on the area under

precision recall curve (AUPRC) metric. By applying Velorama on RNA velocity data, generated from the

same ground-truth GRNs, we show that the use of RNA velocity can dramatically improve the quality of

GRN inference, leading to an additional 1.75-3x improvement in AUPRC over what was achieved with

pseudotime. These findings suggest that Velorama can help unlock insights unattainable by current meth-
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ods. When run on real datasets characterizing brain, pancreas, and bone marrow differentiation, Velorama

with RNA velocity better captures relevant regulatory interactions in each dataset compared to pseudotime.

As RNA velocity assays are increasingly being leveraged to reveal fine-grained dynamics of differentiation

and disease, Velorama’s unprecedented ability to identify causal regulatory drivers from RNA velocity data

opens the door to uncovering deeper mechanistic insights into dynamic gene regulatory processes.

2 Algorithm

2.1 Background: classical Granger causal inference and its non-linear extensions

Granger causal (GC) inference, a statistical approach for estimating causal relationships within dynamical

systems, has been effectively used in many settings for which only observational data is available [18–22].

Granger causality leverages the key intuition that since a cause precedes its effect, temporally-predictive

relationships between dynamically changing variables could be indicative of causal relationships.

Statistical and machine learning methods have been developed to recover such temporally-predictive

relationships. Broadly, there are two strategies to assess the existence of a GC relationship between variables

x and y: ablation and invariance [15]. The ablation approach involves training two predictive models of

y, denoted as u and u\x, where u includes the history of every variable in the system and u\x excludes

the history of x. If u performs significantly better than u\x, as determined by a one-tailed F-test, then x

Granger-causes y. The invariance approach involves training just one predictive model of y, denoted as f ,

using the history of every variable. In this approach, x does not Granger-cause y if and only if the learned

weights governing the interaction between x and y are all equal to 0. Equivalently, no causal relationship

exists exactly when the prediction of y is invariant to the history of x. Unlike our previous work [15], here

we chose the invarance-based approach since it allows multiple candidate Granger causal variables to be

evaluated simultaneously, enables the lag associated with each Granger causal interaction to be determined,

and reduces training time.

While the classic formulation of GC inference assumes linear interactions, extensions have been devel-

oped to capture the nonlinear interactions more often seen in real-world datasets. Many of these extensions

have been based on deep learning-based architectures. Tank et al. [23] introduce a regularized multilayer

perceptron and a long short-term memory network that model nonlinear relationships while simultaneously

determining the lag of each putative causal relationship. Marcinkevičs and Vogt [24] extend self-explaining

neural networks to multivariate time series data in order to determine whether a causal relationship induces

a positive or negative effect.

Given a dynamical system with a totally-ordered sequence of N observations, each over G variables,

Granger causal inference involves training per-variable models f1, f2, . . . , fG. Here, fj models variable j

as a function of the previous L observations:

zj(t) = fj
(

z1(t− L; t− 1), z2(t− L; t− 1), . . . , zG(t− L; t− 1)
)

+ ej(t)

Here, zj(t) denotes the value of the variable j at observation t, ej(t) denotes an error term, and zk(t−L; t−1)
is the sequence of L past observations of variable k: (zk(t−L), . . . , zk(t− 1)) [23]. Each pair of variables

(i, j) has an associated weight tensor W(i,j) that defines how variable j depends on past lags of variable i.

The sub-tensor Wl
(i,j) refers to the lag-l value of interaction between zi(t − l) and zj(t). Variable i is then

said to Granger-cause j if |W(i,j)| ≠ 0, meaning that fj is not invariant to zi. During training, regularization

can be applied to each weight tensor W(i,j) to assist in achieving exact zeros for the non-causal relationships.

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.18.512766doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.18.512766
http://creativecommons.org/licenses/by-nc-nd/4.0/


By applying additional regularization terms on each Wl
(i,j), we can automatically detect the relevant lags of

each putative causal relationship [23].

2.2 Velorama: non-linear Granger causal inference on partially ordered observations

In both the linear and non-linear formulations above, zt is defined to temporally precede zt+1, which means

that a total ordering on the N observations is required. Thus, dynamical systems that consist of branching

points, such as cellular differentiation trajectories, are not compatible with these approaches. To address this,

Velorama extends the nonlinearity and automatic lag selection of modern GC methods to DAG-structured

dynamical systems that encode a partial ordering of observations.

Velorama takes in two inputs, A ∈ RN×N and X ∈ RN×G, and produces one output GC ∈ RG×G.

A is the adjacency matrix of the DAG, where each node represents an observation and edges connect these

observations. X is the feature matrix which describes the values of the G variables over the N observations,

and GC summarizes the inferred causal graph, where GCij represents the strength of the causal relationship

between variables i and j. We pre-compute a modified matrix A
′, defined to be the normalized transpose of

A, where row sums to 1 so as to account for variability in the in-degrees of the DAG. If a row of AT consists

of all zeros, the row is unaltered. A′ serves as a graph diffusion operator that aggregates information over

each observation’s ancestors.

To infer causal relationships, we train G separate models f1, f2, . . . , fG. We propose fj to be a multi-

layer neural network that models variable j as a nonlinear function of ancestors within the DAG. The key

component of our model architecture is the first hidden layer, which takes on the form

h
(1) = Ã

(

L
∑

l=1

(A′)lXW
1,l + b1

)

Here, (A′)l represents the lth power of A′, W1,l ∈ RG×d is a learned weight matrix and b1 ∈ RN×d

is a learned bias term. d is the number of hidden units per layer. (A′)lXW
1,l represents the information

aggregated over l hops backward in the DAG (Figure A.1a). Note that, as the A
′ and X matrices are fixed,

we can pre-compute (A′)lX = A
′
(

(A′)l−1
X
)

inductively for 1 f l f L . Ã(·) is a nonlinear activation

function. In a K layer model, the hidden layers h(k) for 2 f k < K are given by

h
(k) = Ã

(

h
(k−1)

W
k + bk

)

where h
(k) ∈ RN×d, Wk ∈ Rd×d and bk ∈ RN×d (Figure A.1b). Finally, the output fj ∈ RN of the

autoregressive model is given by

s
(

h
(K−1)

W
K + bK

)

where W
K ∈ Rd×1 and bK ∈ RN×1. s(·) is an optional element-wise decoder function that links the real

numbers to a domain-specific output. Here, we use the identity function for s(·).

Granger causal inference via regularization of W1. To infer causality, we concatenate the per-lag W
1,l

matrices into W
1 ∈ RL×G×d. Let W1

i ∈ RL×d denote the weights that govern the interaction between

variable i (regulator) and variable j (target) (Figure A.1c). Variable i does not Granger-cause variable j if
∥

∥W
1
i

∥

∥

F
= 0, where || · ||F denotes the Frobenius matrix norm. Similarly, let W

1,l
i ∈ Rd denote the weights

that govern the interaction between variable i and variable j at a particular lag l. If variable i Granger-causes

j, then l is not a relevant lag when

∥

∥

∥
W

1,l
i

∥

∥

∥

2
= 0, where || · ||2 denotes the ℓ2-norm.
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We simultaneously reduce the prediction error of each model fj while encouraging exact zeros within

the W
1
i matrices in order to induce sparsity in the causal graph. To achieve this, our loss function L is

defined to be the sum of the mean-squared error (MSE) loss ℓ(·) and a regularization penalty applied to W
1:

L = ℓ(fj ,X:j) + ¼R(W1).

Here, X:j ∈ R
N denotes the value of variable j over all N observations and R: RL×G×d → R is the

regularization loss function. The hyperparameter ¼ controls their relative weight.

The specific form of R is guided by the regularization characteristics sought by the user. Tank et al. [23]

introduced three regularization schemes: group, lag-selection, and hierarchical, with the last one being the

broadest. Here we use the hierarchical formulation, though our implementation makes all three available

(Appendix A.1 for details). Hierarchical regularization merges weights from the same lag (this aids in

automatic lag detection), and further penalizes longer lags more than shorter lags (Figure A.1d):

R(W1) =
G
∑

i=1

( L
∑

l=1

∥

∥

∥

(

W
1,l
i , . . . ,W

1,L
i

)

∥

∥

∥

F

)

.

Traditional gradient descent algorithms such as Adam [25] and stochastic gradient descent often fail to

converge the learned weights to exact zeros, hindering causal detection. We thus optimize the objective

function L via proximal gradient descent, a specialized algorithm designed to induce sparsity [26].

2.3 Constructing the DAG from RNA velocity or pseudotime data

If only pseudotime data is available, we first construct a k-nearest-neighbor graph G of the cells. In this

work, we chose k = 15. Next, we orient each edge e ∈ G in the direction of increasing pseudotime. Doing

so preserves the underlying differentiation structure while ensuring that the constructed graph is acyclic.

For RNA velocity datasets, we apply Lange et al.’s CellRank to calculate cell–cell transition probabili-

ties [14]. The probability pij of cell i transitioning into a neighboring cell j captures differentiation in a local

context: it is based on the alignment of the velocity vector of cell i and the transcriptomic displacement vec-

tor between cell i and cell j. Since our problem formulation is fully compatible with having edge-weights

on the DAG, the transition matrix can directly be used as the Velorama adjacency matrix A. Later, we de-

scribe an ablation study comparing the use of an A constructed with edge-weights (as pij) versus a binarized

version of A (only choosing edges where pij is greater than some threshold).

A possible complication with directly using the cell transition matrix is that it may contain cycles. In

Velorama, we only consider ancestors up to L hops away, so only cycles of up to length L are relevant. To

combat the possibility of cycles, we first remove cycles of length 2 by setting pji = 0 if pij > pji. When

we pre-compute powers of A′, we then set all non-zero diagonal terms back to zero after each successive

multiplication with A
′, as cycles can be identified by non-zero terms along the diagonal.

2.4 Identification of Granger-causal interactions

The hyperparameter ¼ plays a key role in regularization, with higher values of ¼ leading to sparser GRNs.

However, selecting the appropriate hyperparameters for a specific setting can be a challenge. To address

this, we sweep over a range of ¼ values and compute the GRN by aggregating over their results. Thus, the

user can simply use Velorama with its default settings. We sweep ¼ uniformly over the log-scaled range of

[0.01, 10]. To aggregate results over the various ¼, we retain only those GC matrices (recall GC ∈ RG×G)
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with between 1% and 95% non-zero values. We then sum the retained GC matrices corresponding to each

lag, which results in L composite GC matrices (one for each lag). These per-lag matrices are themselves

summed to produce a single GC matrix, which we report as the GRN.

Training details. We trained using proximal gradient descent, which minimizes the sum of the mean

squared error and the hierarchical regularization. For all results shown in this work, we used a single hidden

layer with 32 nodes, a learning rate of 0.01, and a maximum of 10,000 epochs (with early stopping along

the lines of Tank et al. [23]). The hyperparameter sweep of ¼ covered 19 log-spaced values in the range

[0.01, 10]. Model training was performed on a mix of Nvidia V100 (32 GB memory) and A100 (80 GB

memory) GPUs.

Scalability and runtime. We perform GΛ training runs where G is the number of target genes and Λ
is the number of ¼ choices we sweep over. Each run is relatively light and we were able to perform 10

parallel runs for ¼ settings on a single V100 GPU. While N (the number of cells) is not a major runtime

scalability concern, the input matrices (of size O(NG′), where G′ is the number of candidate regulators)

need to fit into GPU memory. For large datasets (e.g., with over 100,000 cells), we recommend sketching the

data [27, 28] to first extract a smaller representative sample. When the list of potential targets or regulators

is known, the scope of computation can be constrained. For example, in our analysis of biological data,

we limited candidate regulators to the set of transcription factors in the dataset. The (A′)lX inputs to the

first hidden layer are pre-computed and amortized over all target genes, and thus this computation is not

meaningful to the overall runtime. For a synthetic dataset with 1,800 cells and 100 genes, the full run of

Velorama (including hyperparameter sweep) required approximately 55 minutes on an Nvidia V100 GPU.

For real scRNA-seq datasets with between 2,531–5,780 cells, 245–499 candidate regulators, and 1,585–

1,873 candidate target genes, each full run took roughly 3–5 hours on a Nvidia A100 GPU.

3 Results

Datasets. We benchmarked Velorama on a series of synthetic datasets for which the underlying ground-

truth GRN is known. We used four differentiation datasets from SERGIO [17], which simulates single-

cell expression dynamics according to a given GRN. These datasets, which we obtained from the SER-

GIO Github repository, span a range of differentiation landscapes, including linear (Dataset A), bifurcation

(Dataset B), trifurcation (Dataset C), and tree-shaped (Dataset D) trajectories (Figure 2, Appendix A.2.1).

The underlying GRN for each of these datasets consists of 100 genes and 137 edges. For each of these

GRNs, SERGIO simulates spliced and unspliced counts (for RNA velocity) as well as total transcript counts

(for pseudotime). We also applied Velorama on three RNA velocity studies of mouse endocrinogenesis,

mouse dentate gyrus neurogenesis, and human hematopoiesis [29–31]. We used processed Scanpy [32]

objects for these datasets that were made available by scVelo and CellRank [14, 33].

Velorama accurately infers GRNs from expression dynamics. We first sought to evaluate Velorama

when only pseudotime data is available. Any benchmarking of Velorama requires this setting since existing

methods can not make use of the full RNA velocity transition matrices. We compared against a diverse set

of methods: GENIE3, GRNBoost2, Scribe, PIDC, SCODE, SINCERITIES, and SINGE [5–11].We chose

these methods because a) their underlying mathematical and statistical techniques vary widely (decision

trees and random forests, differential equations, information theory, and total-order Granger causality); and
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Figure 2: Ground-truth differentiation trajectories for the four synthetic datasets sourced from SERGIO. Note that the

differentiation landscapes get increasingly more complex.

b) these were the top-rated methods in a comprehensive single-cell GRN benchmarking study by Pratapa et

al. [34]. We benchmarked using Pratapa et al.’s BEELINE evaluation framework.

On the area under precision-recall curve (AUPRC) metric, Velorama outperforms all other methods

(Table 1), often by very substantial margins. For GRN inference, the AUPRC metric has typically been the

focus in previous work, as these datasets are heavily unbalanced (since most gene pairs do not have a reg-

ulatory interaction). On the area under receiver operating curve (AUROC) metric as well, Velorama offers

state-of-the-art performance, with it and GENIE3 being the two top-performing methods. GENIE3, origi-

nally designed for bulk RNA-seq, has often been reported to be one of the top-performing GRN methods.

However, its random-forest feature selection approach has sometimes been difficult to scale to scRNA-seq

datasets. As such, Velorama’s outperformance against GENIE3 on the AUPRC metric and competitiveness

on the AUROC metric is notable. The improvement of Velorama over SINGE and SINCERITIES, both

of which utilize total ordering-based Granger causal inference, suggests that our innovation of extending

Granger causality to the DAG plays a crucial role in Velorama. We note that Velorama’s relative AUPRC

outperformance is most substantial for the dataset with the most complex differentiation landscape (Dataset

D, Figure 2). This finding supports the motivating intuition behind our work: compared to total orderings,

partial orderings can more effectively capture a complex differentiation landscape.

Method

Dataset A Dataset B Dataset C Dataset D

AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC

SINGE 0.013 0.492 0.013 0.479 0.024 0.513 0.014 0.495

SINCERITIES 0.017 0.568 0.018 0.555 0.012 0.454 0.016 0.591

SCODE 0.019 0.539 0.019 0.599 0.013 0.508 0.018 0.564

PIDC 0.058 0.696 0.045 0.724 0.042 0.704 0.043 0.695

Scribe 0.026 0.607 0.014 0.509 0.022 0.575 0.016 0.454

GRNBoost2 0.052 0.719 0.046 0.729 0.048 0.807 0.054 0.669

GENIE3 0.107 0.799 0.104 0.846 0.110 0.873 0.129 0.857

Velorama 0.137 0.841 0.178 0.799 0.138 0.785 0.377 0.832

Table 1: Gene regulatory network inference accuracy on SERGIO datasets

Velorama capitalizes on RNA velocity data. We assessed how well Velorama could recover the ground-

truth GRN when using RNA velocity rather than pseudotime. The SERGIO datasets provide spliced and

unspliced transcript counts for the same ground-truth GRNs, which we processed with CellRank to obtain

the RNA velocity cell-to-cell transition matrices. Alongside the pseudotime comparison, we also performed

an ablation to study if Velorama could exploit fine-grained information from cell-transition probabilities.
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Accordingly, we tested two ways of specifying RNA velocity to Velorama. In one, the adjacency matrix A

makes use of the transition probabilities (i.e. the edges of the DAG are weighted). In the other setting, we

created a binary matrix A by using only the edges that correspond to the top 50% of each cell’s transition

probabilities.

Both RNA velocity settings of Velorama substantially improve upon the pseudotime version, even as

the latter itself offers state-of-the-art performance compared to existing benchmarks. Across the various

datasets, the RNA velocity-based AUPRC metrics consistently improve upon the pseudotime-based met-

rics by 1.75-3x (Table 2). To confirm this result was not a measurement artifact, we plotted the actual

ground-truth GRN matrix and the Velorama-inferred GRNs when using pseudotime or RNA velocity data

(Figures 3, A.2). RNA velocity-based GRNs indeed capture the ground-truth regulatory relationships with

higher fidelity. As expected, the relative AUPRC outperformance of RNA velocity over pseudotime is

weakest for dataset A (linear trajectory, Figure 2) and stronger for the more complex trajectories. Again,

this underscores the potential for using Velorama with RNA velocity data to unravel regulatory drivers of

complex differentiation landscapes.

Method

Dataset A Dataset B Dataset C Dataset D

AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC

Velorama (pseudotime) 0.137 0.841 0.178 0.799 0.138 0.785 0.377 0.832

Velorama (velocity, discrete) 0.281 0.842 0.495 0.876 0.325 0.856 0.591 0.858

Velorama (velocity, probabilistic) 0.274 0.866 0.552 0.876 0.419 0.870 0.656 0.863

Table 2: Velorama performance on SERGIO datasets: pseudotime versus RNA velocity

Figure 3: Ground-truth GRN for Dataset D (also see Figure 2) and the Velorama-inferred GRNs when using pseu-

dotime or RNA velocity data. The dataset covers 100 genes and here each panel is a 100x100 scatterplot showing

regulator–target interactions. As can be seen, using Velorama with RNA velocity cell-transition probabilities leads to

clearer inference than using pseudotime.

In addition, our ablation studies suggest that Velorama can exploit fine-grained cell transition probabil-

ities, with the probabilistic setting of A outperforming the binarized setting. Indeed, with the probabilistic

setting, Velorama’s outperformance over existing methods is very substantial: for dataset D, an AUPRC of

0.656 is achieved when using Velorama; in comparison, GENIE3 reports an AUPRC of 0.129, while other

methods have AUPRCs below 0.06 (Tables 1,2). Of course, the splicing dynamics encoded in SERGIO

are relatively simple and the RNA velocity version of Velorama could be benefiting from that. Nonethe-

less, synthetic data offers the advantage of known ground-truths and allows us to validate that Velorama can

effectively leverage RNA velocity-based cell transition probabilities. While the magnitude of performance

boost is unlikely to be this strong on actual scRNA-seq datasets, we offer evidence below that using RNA
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velocity helps in those cases too.

Velorama speed predictions cohere with underlying regulatory interaction dynamics. Velorama’s

ability to perform lag selection also enables it to predict the interaction speed for each regulator–target

gene pair. For a target gene j, we quantify the Velorama interaction speed between a regulator i and the

target by first scoring each of its associated lags l as the ℓ2-norm of the weights W
1,l
i ∈ Rd. We obtain

these scores for each ¼ that is associated with a GC matrix with between 1% and 95% non-zero values. We

then binarize these scores, setting these scores to 1 if they are non-zero and 0 otherwise. We average these

binarized scores across the retained ¼ values to yield a per-lag score C
(l)
ij for each regulator-target gene pair

(i, j). These values are normalized by applying a softmax transformation over the lags for each regulator-

target gene pair (i, j). The softmax normalization helps account for differences in overall regulator strengths

and highlights just the lag variations. Finally, we represent the interaction speed sij for a regulator i and

target gene j as the difference between the normalized scores for the shortest and longest lags:

sij = C̃
(1)
ij − C̃

(L)
ij , where C̃

(l)
ij = softmaxl

(

C
(l)
ij

)

We evaluated Velorama’s interaction speed predictions using the aforementioned SERGIO datasets.

SERGIO uses a stochastic differential equation (SDE) to simulate each target gene’s expression dynam-

ics, such that the production rate Pj for a target gene j is modeled as a function of its regulators’ expression

levels and the contribution of each regulator i ∈ Rj (see Appendix A.3 for details). The magnitude of a

regulator i’s contribution, denoted as |Kij |, thus serves as a proxy for the speed at which changes in the

expression of regulator i affect the expression of target gene j. For all four SERGIO datasets, we compared

the interaction speeds estimated from Velorama sij and the magnitude of the contributions |Kij | from the

SERGIO SDEs across the full set of regulator-target gene interactions in the ground-truth GRN. We found

that these two sets of values were correlated in each of the four SERGIO datasets (Table 3). This result sug-

gests that Velorama can help uncover novel insights into the relationship between specific gene regulators

and the timing of their effects on downstream targets.

Dataset A Dataset B Dataset C Dataset D

Pearson correlation Ä (p-value) 0.20 (0.02) 0.16 (0.06) 0.25 (0.003) 0.14 (0.10)

Table 3: Comparison of Velorama interaction speed predictions with SERGIO expression dynamics

Velorama identifies relevant gene regulatory interactions in real RNA velocity datasets. We applied

Velorama to analyze gene regulatory interactions for three scRNA-seq datasets. These datasets characterize

the expression dynamics for mouse endocrinogenesis [29], mouse dentate gyrus neurogenesis [30], and

human hematopoiesis [31] (Figure 4a). After performing standard pre-processing (Appendix A.2.2), we

applied Velorama, along with probabilistic RNA velocity, to infer regulator-target gene interactions for

each dataset. We separately also computed a diffusion pseudotime estimate for these datasets and applied

Velorama with pseudotime. For each dataset, we first identified the top 0.5% of all candidate regulator-target

gene interactions based on the same scoring scheme as above. The regulators and target genes implicated in

these interactions were significantly enriched for Gene Ontology (GO) terms corresponding to the specific

biological processes being profiled in each of these datasets (FDR < 0.05, [35],Figure 4b).

Moreover, when comparing this enrichment for interactions inferred when pseudotime instead of RNA

velocity was supplied to Velorama, the RNA velocity-based interactions yielded more significant enrichment
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for 7 of the 9 GO terms. This improvement in enrichment was more modest for the mouse endocrinogenesis

and is possibly a consequence of the less complex expression dynamics of this dataset. Both the mouse

neurogenesis and human hematopoesis datasets feature more cell types and differentiation branches than the

mouse endocrinogenesis dataset (Figure 4a), which pose challenges for pseudotime-based approaches that

collapse these complex dynamics onto a total ordering of cells. Notably, even with pseudotime, employing

Velorama’s DAG-based representation helps alleviate these issues, as evidenced by the significant enrich-

ment results for that case. Nonetheless, the RNA velocity-based DAG better handles these dynamics. Taken

together, these results provide evidence for both Velorama’s effectiveness in detecting relevant regulatory

relationships as well as the benefits of leveraging RNA velocity to do so.

Figure 4: Velorama applications for studying regulatory dynamics on scRNA-seq RNA velocity datasets. (a) Visu-

alizations of expression dynamics. Note that mouse endocrinogenesis has fewer branching/separated trajectories. (b)

Enrichment of dataset-specific biological pathways for transcriptional regulators identified by Velorama. Compared

to pseudotime-based inference, RNA velocity-based inference is more strongly enriched for regulators known to be

involved in relevant pathways. (c) Number of enriched differentiation GO terms for the fastest and slowest 10% of

TFs identified by Velorama. Differentiation and development-related TFs seem to act relatively slowly.

Velorama suggests development/differentiation regulators act more slowly than others. We also eval-

uated the interaction speeds for the top 0.5% of regulator-target gene interactions in each of the three

scRNA-seq datasets. We estimated regulator interaction speeds as previously described. For each of the

three scRNA-seq datasets, the bottom 10% of regulators by interaction speed were significantly enriched

for GO terms related to cellular differentiation (GO:0045595) and development (GO:0060284) (p < 0.05,
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hypergeometric test, Figure 4c). In comparison, the regulators with the highest 10% of interaction speeds

did not show enrichment for these terms. This pattern of enrichment for only the lower interaction speed

regulators was observed not just for each tissue but across all three tissues.

This observation aligns with known mechanisms of gene regulatory control during differentiation. Reg-

ulators of these processes often participate in a number of epigenetic and/or cofactor recruitment steps prior

to influencing their target [36,37]. As a result, these intermediary regulatory activities may manifest in a lag

between changes in regulators’ expression levels and those of their targets, hence leading to lower observed

interaction speeds for such regulators. Notably, we did not observe a similar phenomenon for housekeeping

transcription factors. Identifying the regulatory range and duration of transcription factors is a major open

problem and this preliminary investigation suggests a promising direction of future work: RNA velocity as-

says, analyzed with Velorama, could systematically measure regulatory speed in a variety of tissues, leading

to a deeper understanding of gene regulatory control.

4 Discussion

scRNA-seq datasets capture rich information about gene regulatory dynamics, parts of which are neglected

by current techniques due to their inability to operate on partial (nonlinear) orderings of cells. This is par-

ticularly a problem for RNA velocity data, since many existing methods require a pseudotime estimate.

An alternative approach is described in Scribe [9] where RNA velocity is considered, in essence, as two

time-points of scRNA-seq data: one corresponding to spliced counts (regulators) and the other to unspliced

counts (targets). However, this makes the heavily-questioned assumption [13] that splice rates across genes

are equal, is not designed to identify interactions spanning multiple cell states, and is unable to take ad-

vantage of cell transition estimates offered by methods like scVelo and CellRank [14, 33]. Velorama takes

a conceptually different approach by modeling the differentiation dynamics suggested by RNA velocity as

a DAG. Velorama is also compatible with pseudotime if RNA velocity is unavailable. While our previous

work introduced DAG-based representations of cellular dynamics [15], Velorama is the first to integrate per-

cell transition probabilities from RNA velocity for GRN inference. Furthermore, Velorama is also the first

method to leverage these DAG-based dynamics to evaluate multiple candidate regulators simultaneously

along with their combinatorial effects.

Velorama’s effectiveness on the GRN inference task opens the door to several directions for future work.

Firstly, while Velorama has demonstrated notable performance using only scRNA-seq data, integrating this

data with other data modalities, like chromatin accessibility and/or TF binding data, may contribute to further

performance gains [38]. In addition, Velorama’s ability to consider numerous regulators simultaneously

allows for further investigation into the mechanisms underlying important co-regulatory relationships that

underpin coordinated gene expression control [39, 40]. Lastly, we have demonstrated the effectiveness

of using Velorama with either pseudotime or RNA velocity, but opportunities exist to integrate these two

approaches. By ensembling cell-cell similarity predictions from these two approaches, we can potentially

harness the unique features captured by both to more faithfully represent the underlying cellular dynamics

used by Velorama for GRN inference.

Velorama unlocks crucial information from RNA velocity that otherwise would be lost with other tech-

niques. As efforts to model gene expression dynamics from RNA velocity continue to grow and improve,

Velorama’s distinctive ability to flexibly leverage RNA velocity for causal GRN inference positions it to be

an invaluable tool for uncovering novel mechanistic insights into differentiation and disease.
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A Appendix

A.1 Regularization Schemes

The group regularization penalizes all weights within W
1 symmetrically (Figure A.1c):

R(W1) =
G
∑

i=1

∥

∥W
1
i

∥

∥

F

The lag-selection regularization aids in automatic lag detection by merging weights from the same lag

together (Figure A.1d):

R(W1) =

G
∑

i=1

(

∥

∥W
1
i

∥

∥

F
+

L
∑

l=1

∥

∥

∥
W

1,l
i

∥

∥

∥

2

)

Figure A.1: Velorama architecture: N = 8, G = 3, L = 3, d = 4 and K = 3. (a) Velorama predicts a node’s features

based on ancestors in the DAG. (b) Predictions are made by passing aggregated information from each lag through a

feed-forward neural network. (c) If the weights associated with variable i in fj (highlighted in black for i = 1) are all

equal to 0, then variable i does not Granger-cause variable j. (d) The lag-selection and hierarchical penalties further

penalize groups of weights associated with particular lags.
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A.2 Datasets and pre-processing

A.2.1 SERGIO

We applied Velorama to four benchmark synthetic datasets obtained from the SERGIO GitHub repository

(Table A.1). Prior to running Velorama, we normalized the expression values of each gene to have a mean of

0 and a standard deviation of 1. To evaluate Velorama, we compared the inferred causal graph to the ground-

truth set of regulator–target pairs used to simulate the expression matrix. All 100 genes were indicated as

candidate regulators and targets.

Differentiation Source

Dataset A Linear https://github.com/PayamDiba/SERGIO/tree/master/data_sets/De-noised_100G_3T_300cPerT_dynamics_9_DS4

Dataset B Bifurcation https://github.com/PayamDiba/SERGIO/tree/master/data_sets/De-noised_100G_4T_300cPerT_dynamics_10_DS5

Dataset C Trifurcation https://github.com/PayamDiba/SERGIO/tree/master/data_sets/De-noised_100G_6T_300cPerT_dynamics_7_DS6

Dataset D Tree-shaped https://github.com/PayamDiba/SERGIO/tree/master/data_sets/De-noised_100G_7T_300cPerT_dynamics_11_DS7

Table A.1: SERGIO dataset download links

A.2.2 RNA velocity datasets of human and mouse tissue differentiation

We analyzed three scRNA-seq datasets profiling mouse endocrinogenesis [29], mouse dentate gyrus neuro-

genesis [30], and human hematopoiesis [31]. We performed the same pre-processing procedure for each of

these datasets. We first normalized the number of counts per cell such that each cell has a total count equal

to the pre-normalization median number of counts per cell. We then applied a log(1 + X) transformation

on the normalized counts X and identified the top 2000 most highly variable genes. The transformed ex-

pression values for each gene were then normalized to have a mean of 0 and a standard deviation of 1. We

removed all genes that were represented in fewer than 1% of cells in each dataset and retained the union

of the remaining highly variable genes and genes that were annotated as transcription factors according to

AnimalTFDB [41]. When applying Velorama, transcription factors were selected as the set of candidate reg-

ulators, and candidate target genes were defined to be the set of highly variable genes excluding transcription

factors.

A.3 SERGIO model parameters and regulatory interaction speeds

We sought to evaluate Velorama’s ability to predict interaction speeds between regulators and their targets

by evaluating these predictions for various synthetic datasets simulated using SERGIO. Specifically, we

compared these interaction speed predictions with the parameters in the SERGIO stochastic differential

equation (SDE) models that determine these speeds in the models’ simulation procedure. In SERGIO, the

production rate for a target gene j is modeled as follows.

Pj =
∑

i∈Rj

Kij

x
nij

i

h
nij

ij + x
nij

j

+ bj

Here, xi represents the expression level of regulator gene i and Rj denotes the set of regulators for target

gene j. Kij mediates the contribution of a regulator i to the production rate of target gene j and, thus, its

magnitude serves as a proxy for the speed at which changes in expression for regulator i affect the expression

for target gene j. nij , hij , and bj are constants representing the Hill coefficient, the half-response regulator

concentration, and the basal production rate. By default, nij = 2 and hij is set to the average of the
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regulators’ expression among the cell types to be simulated. In our experiments, we use the SDE model

parameters that accompany the selected benchmark datasets.

A.4 Velorama-inferred GRNs for SERGIO datasets

We plotted the ground-truth GRN as well as the Velorama-inferred GRNs using pseudotime and RNA ve-

locity for datasets A, B and C (Figure A.2). Including RNA velocity greatly improves the prediction of the

GRN.

Figure A.2: Ground-truth GRN for Datasets A (top), B (middle) and C (bottom) compared to the Velorama-inferred

GRNs when using pseudotime or RNA velocity data.
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