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Abstract

Barcode-based sequence census assays utilize custom or random oligonucloetide sequences
to label various biological features, such as cell-surface proteins or CRISPR perturbations.
These assays all rely on barcode quantification, a task that is complicated by barcode design
and technical noise. We introduce a modular approach to quantifying barcodes that achieves
speed and memory improvements over existing tools. We also introduce a set of quality control
metrics, and accompanying tool, for validating barcode designs.

Introduction

Single-cell RNA sequencing assays rely on unique sequences of nucleotides (“barcodes”) to
associate sequences from mRNA molecules with individual cells. This strategy has been
extended to quantify orthogonal biological or technical information in what is known as
“‘multimodal” genomics. For example, the 10x Genomics Feature Barcoding assay quantifies the
expression of cell-surface proteins using targeted antibody barcodes (“Feature Barcode
Overview -Software -Single Cell Gene Expression -Official 10x Genomics Support” n.d.). The
ClickTag (Gehring et al. 2020), Multiseq (McGinnis et al. 2019), and Cell Hashing (Stoeckius et
al. 2018) assays, on the other hand, use custom sample-specific barcodes to group cells
enabling multiplexing and reducing batch effects. Moreover, similar approaches have been used
for CRISPR screens (Dixit et al. 2016; Datlinger et al. 2017; Schraivogel et al. 2020), targeted
perturbation assays (Gehring et al. 2020; Srivatsan et al. 2020), and recently for spatial
genomics assays (Srivatsan et al. 2021).

The processing of data from these assays has required the development of custom tools,
resulting in a proliferation of application- and assay-specific software (Roelli et al. 2019; Milo S.
Johnson, Sandeep Venkataram, Sergey Kryazhimskiy 2022). We introduce a broadly applicable
framework, which we term “kITE” for kallisto Indexing and Tag Extraction, for uniformly
quantifying orthogonal barcode-based sequence census assays that has several advantages
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over assay-specific tools. First, by virtue of providing a single solution to seemingly distinct
problems, it serves as a unifying framework for biology x barcode assays and will simplify the
development and deployment of novel assays. Second, the software implementation we share
is portable, engineered to work across platforms, and is modular, allowing for easy adaptation
and customization. It makes use of the kallisto and bustools programs that have been previously
extensively validated and benchmarked for quantification of the biological sequences in barcode
x biology assays such as single-cell and bulk RNA sequencing (Bray et al. 2016; Melsted et al.
2021). Finally, our method is faster than existing tools, and we identify corner cases in
processing that have been missed in previous analyses. The examination of such cases led us
to develop a tool, called qcbce, for assessing the quality of barcode sets, and that should prove
to be a useful standalone package. It is applicable both during assay development, and during
assay quality control.
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Figure 1: kITE workflow. The mismatch map is generated from the feature barcode whitelist
and indexed with kallisto. Reads are pseudoaligned and error-collapsed with kallisto and
bustools to form a cells x features matrix.
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Figure 2: Comparison between kallisto bustools (kb) quantifications and Cell Ranger (cr)
quantifications for the 10x Feature Barcoding assay on 5,266 Peripheral blood mononuclear
cells dataset targeting 32 cell surface proteins. (a) Knee plot comparing cumulative UMI counts
per cell. (b) Pseudobulk comparison of cumulative UMI counts per feature barcode. (c)
Cumulative UMI counts per cell. (d) Pearson correlation of the same cell between the two
quantifications. (e) The /1 distance between a kallisto bustools cell and its Cell Ranger
equivalent (blue) and the same cell and its nearest kallisto bustools neighbor (red) across the
total UMI counts for that cell. (f) The /1 distance of a kallisto bustools cell (red) to its Cell Ranger
equivalent (y-axis) and to its nearest neighbor (x-axis) and the /1 distance of a Cell Ranger cell
(blue) to it's kallisto bustools equivalent (x-axis) and its nearest neighbor (y-axis). The marginal
distributions show that each kallisto bustools cell is closest to its corresponding Cell Ranger cell
and that each Cell Ranger cell is nearest to its corresponding kallisto bustools cell. (g) Pearson
correlation for all the cells between the kallisto bustools qualifications and in CITE-seq-Count or
Cell Ranger quantifications for each of the five datasets. (h) Runtime and (i) memory
improvements for each of the five datasets across the various read depths.

KITE design

Feature Barcoding assays use short barcodes and are susceptible to ambiguous or incorrect
assignment if errors are introduced during the experimental procedure. Inspired by the
CITE-seq-count approach, kITE begins by generating a list of all single-base mismatches of the
Feature Barcodes used in an experiment (Figure 1). The resulting ‘mismatched FASTA' file is
used as input for the “kallisto index™ program with k set appropriately (methods). Finally, the
kallisto | bustools pipeline is used to quantify the dataset using the ‘mismatch index’ generated
after running “kallisto index™ on the mismatched FASTA file. In this way, kallisto will effectively
scan the entire sequencing read for barcodes present in the mismatch index allowing for
barcode pseudoalignment despite variability in barcode position. Feature barcode “error
correction” occurs when barcode counts are summed across different mismatches of a given
barcode (Methods).
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Method comparison

To evaluate the accuracy and efficiency of kITE across a range of assays, we gathered data
from six different assays, and compared kITE quantifications to those produced with
assay-specific tools. We first quantified cell surface protein abundance for the 10x Genomics
5,266 Peripheral blood mononuclear cells dataset, which targeted 32 cell surface proteins. We
used kallisto bustools and a mismatch index to pseudoalign the target sequences (Methods:
Index, pseudoalignment, and counting) and found high concordance between our method
and Cell Ranger across varying read depths, with an average Pearson correlation of 0.99
(Figure 2a-f). kiTE was five times faster than Cell Ranger and required 3.5 times less RAM
(Methods: Speed and memory comparison).

Next, we tested how accurately we could quantify and demultiplex pooled samples tagged with
sample-specific barcodes. We processed data from 3,795 methanol-fixed mouse neural stem
cells from four multiplexed samples generated with the ClickTag assay (Supplementary figure
1), 9,551 primary patient-derived xenograft (PDX) samples from nine multiplexed samples
generated with the Multiseq assay (Supplementary Figure 2) and 10,807 PBMCs from eight
multiplexed samples generated with the Cell Hashing assay (Supplementary Figure 3). We
found high concordance with an average Pearson correlation of 0.99, for all three datasets,
between kITE and CITE-seq-Count (Roelli et al. 2019), a tool for counting antibody tags from a
CiteSeq or Cell Hashing experiments (Figure 2g). kITE was 48 times faster and required only a
quarter to a fifth of the RAM (Figure 2h,i). We observed slight discordance with two feature
barcodes, BC49 and BC74, when processing the PDX samples assayed with Multiseq. These
two Multiseq barcodes are short (8 bp in length), yet share long subsequences up to 7 bp in
length (Supplementary Figure 4a). The introduction of errors during sequencing can result in
possible incorrect barcode assignment and loss of barcodes (Methods: Barcode simulation).
We addressed this issue by trimming the excess sequence surrounding the 8 bp feature
barcode (Methods: Multiseq).

To demonstrate the flexibility of our approach we also processed 2,799 A549 lung carcinoma
cells expressing nuclease-dead Cas9-Krlppel-associated box (dCas9—-KRAB) assayed with
the 10x Genomics CRISPR screen kit, and transduced with 90 sgRNAs targeting 45 different
genes. We achieve high concordance against Cell Ranger with an average Pearson correlation
of 0.99 across all cells for nearly sgRNA’s, with two sgRNAs in the 10x CRISPR screen dataset,
EZR-1 and PPIB-2, differing substantially (Supplementary Figure 5). Both of these two
sgRNA’s share a subsequence of 16 bp with EZR-2 and PPIB-1 respectively. The latter two
sequences begin with GCG and GGA, both of which are a single hamming distance away from
the three bases that precede the target sgRNA in the protospacer sequence (Supplementary
Figure 4b). Therefore a single mutation two bases away from the start of the EZR-1 sgRNA
sequence could result in an ambigous read. To resolve this we trimmed the protospacer
sequence off of the reads (Methods: 10xCRISPR).
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We also processed 10,860 K562 cells expressing dCas9-KRAB from TAP-Seq transduced with
86 sgRNAs targeting 14 promoters or enhancers and 30 control sgRNAs to compare
assignment of sgRNAs to individual cells. We found 97.8% of all 10,860 barcodes are fully
concordant with TAP-Seq assignments, 0.53% of cells are partially concordant, and 1.6% of
cells are fully discordant. (Methods: TAP-Seq). The discrepancies are likely the result of
differences between mapping procedures producing differences in counts near the threshold (8
umi counts) resulting in differential cell assignment for cells with low UMI counts
(Supplementary Figure 6).
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Figure 3: Evaluation of barcode designs. (a) Potential library diversity for 4-letter DNA barcodes
of various lengths. (b) Number of ambiguous barcodes for varying subsequence length. (c) The
distribution of the number of homopolymer stretches of a given length. The different color bands
indicate a unique barcode and the size of the band indicates the number of homopolymers of
that length found in that barcode. (d) Distribution of pairwise hamming distances between
barcodes. The minimum pairwise Hamming distance is marked with a dashed line. (e)
Distribution of pairwise hamming distances between barcodes and their reverse complement.
The minimum pairwise Hamming distance is marked with a dashed line. (f) The per base
nucleotide content across all barcodes.

Read trimming
Sequencing libraries often contain adapter or spurious sequences that flank the barcode and
the presence of these shared sequences can make mapping challenging. Sequencing reads are
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often trimmed, with tools such as trimmomatic (Bolger, Lohse, and Usadel 2014), to avoid
mapping non-informative regions that flank a barcode, a task that is crucial when barcodes
share subsequences at their ends. Trimming helps to avoid longer sequence clashes that
contain both the shared barcode subsequence and the shared non-barcode sequence. The
10xCRISPR assay, for example, contains two barcodes which share a 16bp subsequence (the
ends of which are one hamming distance from a subsequence of the protospacer sequence that
flask the barcode (Supplementary Figure 4). Similarly, the Multiseq assay produces
sequencing reads where the barcodes are flanked by poly-A stretches and two barcodes share
a 7bp subsequence that contains the end of the barcode.

Barcode design validation

Orthogonal barcode sequences designed for quantifying multimodal data, demultiplexing
samples, or performing large-scale perturbation experiments can clash if the sequences are not
sufficiently unique. To allow researchers to assess the extent of these issues in datasets they
are analyzing, or for assays they are developing, we developed a quality control tool, gcbc, and
a simulation framework to assess the quality of a set of barcodes that is complementary to the
simulation framework proposed in (Milo S. Johnson, Sandeep Venkataram, Sergey
Kryazhimskiy 2022). gcbc computes multiple metrics for barcode quality control:

diversity of unique barcodes (Figure 3a),

number of barcodes that share a subsequence of a given length (Figure 3b),
distribution of Hamming distances between pairwise barcodes (Figure 3c,d),
distribution of homopolymers of a given length (Figure 3e), and

per position and barcode nucleotide distribution (Figure 3f, Supplementary Figure 7).

abowbd=

With gcbc we are able to identify the 16 bp shared subsequence with EZR-2 and PPIB-1
sgRNAs in the 10xCRISPR that result in improper quantification. qcbc is also able to identify the
7bp shared subsequence between BC49 and BC74 in the Multiseq assay.

These metrics are important for understanding the impact that barcode error correction has on
rescuing sequencing reads. A large diversity of unique barcodes with shorter shared
subsequences and larger pairwise distances between barcodes make it easier to disambiguate
sequencing reads with pseudoalignment. Additionally, long homopolymer runs and low
nucleotide content diversity could contribute to sequencing errors (Sina Booeshaghi and
Pachter 2022; “What Is Nucleotide Diversity and Why Is It Important?” n.d.).

To evaluate the impact that base errors have on error correction, we developed a simulation
framework that reports the fraction of lost barcodes for a given error rate in the observed
sequences Supplementary Figure 8 (Methods: Barcode simulation). Short barcodes, such
as those in the Multiseq assay can yield insufficient barcode diversity that results in a greater
fraction of barcodes that cannot be unambiguously assigned Supplementary Figure 9.
Barcodes with small minimum-pairwise / edit distance Figure 3d,e and long shared
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subsequences Figure 3b such as those in the Mulitseq and 10xCRISPR assay can result in
more clashes (Methods: Barcode validation).

Discussion

We have demonstrated a broadly applicable approach to align, error-correct, group, and count
sequences from orthogonal barcodes to quantify multimodal data such as cell surface protein
abundance, to demultiplex samples, and to perform large-scale perturbation experiments. Our
approach is fast, memory efficient, and extensible: orthogonal barcode quantifications can be
obtained for numerous assays with variable sequence structure such the recently developed
spatial RNA-seq assays (Srivatsan et al. 2021) and massively parallel reporter assays (Gordon
et al. 2020). This allows future assay developers to avoid producing, validating, and maintaining
software implementing ad hoc solutions. Moreover, some current methods are slow, have high
memory requirements, and are specifically tailored for specific assays, which can result in batch
effects when performing integrative analysis. Methods such as C/TE-seq-Count offer
extensibility features for different barcode strategies, but are slow and memory-intensive. The
speed and efficiency of our approach enables reproducible single-cell analysis in the cloud with
tools such as Google Colab. We anticipate that our framework for quantifying orthogonal
barcoding assays will be useful as multimodal assays proliferate (Packer and Trapnell 2018),
and that our quality control tool will help assay developers avoid pitfalls in barcode design and
help practitioners quality control orthogonal barcode assays. Finally, while our approach is
currently engineered to correct mismatch errors, robustness to other types of sequencing errors
are possible via other methods that could readily be incorporated in our modular framework
(Zorita, Cuscd, and Filion 2015; Booeshaghi et al. 2020; Milo S. Johnson, Sandeep
Venkataram, Sergey Kryazhimskiy 2022).
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Methods

All code, parameter options, and data can be found in the paper’s GitHub repository:
https://github.com/pachterlab/BMGP_2020. kite is implemented in kb_python and can be found
here: https://github.com/pachterlab/kb_python. The gcbc barcode validator can be found:

https://github.com/pachterlab/qgcbc.

Mismatch index, pseudoalignment, and counting

To quantify against a known set of target sequences we first build an alignment index containing
all Hamming distance = 1 variants of each target. Restricting the alignment index to Hamming
distance = 1 variants allows for recovering more reads while keeping the index size small
Supplementary Figure 10. The hamming-1 index for the Clicktag assay is 72.8 KB and the
hamming-0 index is 2.1 KB. Targeted sequencing reads are then pseudoaligned to the custom
index using kallisto to generate a Barcode, UMI, Set (BUS) file(Melsted, Ntranos, and Pachter
2019). UMI counts are then aggregated per cell and quantified per feature barcode using
bustools to generate a target count matrix.

Speed and memory comparison

Preprocessing steps were benchmarked with GNU time -v option, and the elapsed (wall clock)
time and maximum resident set size (kbytes) were used to perform the time and memory
comparisons. All code was benchmarked on Ubuntu 18.04.5 LTS (GNU/Linux
4.15.0-136-generic x86_64) with Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz processors.

10x Feature Barcode

FASTAQ files for 5,266 Peripheral blood mononuclear cells dataset targeting 32 cell surface
proteins were downloaded from
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_protein
v3. A mismatch index was created using the Feature Reference file and kb ref with the kite
workflow. The reads were pseudoaligned and a feature count matrix was made using kb count
with the kite:10xFB technology option. Cell Ranger, the Feature Reference, and
refdata-gex-GRCh38-2020-A was used to process the FASTQ files into a feature count matrix.

All preprocessing steps are runnable via a Google Colab notebook :

https://github.com/pachterlab/BMGP_2020/blob/main/analysis/notebooks/10xFB/10xFB_preproc
ess.ipynb. All matrix comparisons are runnable via a Google Colab notebook:
https://github.com/pachterlab/BMGP_2020/blob/main/analysis/notebooks/10xFB/10xFB_preproc
ess.ipynb

ClickTag

FASTQ files for 3,795 methanol-fixed mouse neural stem cells from four multiplexed samples
were downloaded from
https://caltech.box.com/shared/static/zqaom7yuul7ujetqyhnd4lvi8vhzqsyg.gz. A mismatch index
was created using the list of targeted barcodes file and kb ref with the kite workflow. The list of
barcodes can be found here:
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https://github.com/pachterlab/BMGP_2020/tree/main/references/clicktag. The reads were
pseudoaligned and a feature count matrix was obtained using kb count with the kite technology

option. CITE-seqg-Count and the targeted barcodes were used to process the FASTQ files into a
feature count matrix.

All preprocessing steps are runnable via a Google Colab notebook:

https://github.com/pachterlab/BMGP_2020/blob/main/analysis/notebooks/clicktag/clicktag_prepr
ocess.ipynb. All matrix comparisons are runnable via a Google Colab notebook:
https://github.com/sbooeshaghi/BMGP_2020/blob/main/analysis/notebooks/clicktag/clicktag_pre
process.ipynb

We generated a kallisto index with no mismatches by running kb ref with the --no-mismatches
option and compared the resultant count matrix generated with kb count to the count matrix
generated with mismatches.

Multiseq

FASTQ files for 9,551 primary patient-derived xenograft (PDX) samples from nine multiplexed
samples were downloaded from
https://caltech.box.com/shared/static/0scoe38xvcoxfd62xnm848pimh2zriip.gz. A mismatch
index was created using the list of targeted barcodes file and kb ref with the kite workflow. The
list of barcodes can be found here:
https://github.com/pachterlab/BMGP_2020/tree/main/references/multiseq. The reads were
pseudoaligned and a feature count matrix was obtained using kb count with the kite technology
option. CITE-seq-Count and the targeted barcodes were used to process the FASTQ files into a
feature count matrix.

All preprocessing steps are runnable via a Google Colab notebook:
https://github.com/pachterlab/BMGP_2020/blob/main/analysis/notebooks/multiseg/multiseq_pre
process.ipynb. All matrix comparisons are runnable via a Google Colab notebook:
https://github.com/sbooeshaghi/BMGP_2020/blob/main/analysis/notebooks/multiseg/multiseq.ip
ynb

The FASTQ reads were trimmed using seqtk trimfq with the -e option set to the length of the
read minus the 8 such that only the 8 bp barcode was retained.

Cell Hashing

FASTQ files for 10,807 PBMCs from eight multiplexed samples were downloaded from
https://caltech.box.com/shared/static/0scoe38xvcoxfd62xnm848pimh2zriip.gz. A mismatch index
was created using the list of targeted barcodes file and kb ref with the kite workflow. The list of
barcodes can be found here:

https://github.com/pachterlab/BMGP_2020/tree/main/references/multiseq. The reads were
pseudoaligned and a feature count matrix was obtained using kb count with the kite technology
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option. CITE-seqg-Count and the targeted barcodes were used to process the FASTQ files into a
feature count matrix.

All preprocessing steps are runnable via a Google Colab notebook:

https://github.com/pachterlab/BMGP_2020/blob/main/analysis/notebooks/cellhash/cellhash_pre
process.ipynb. All matrix comparisons are runnable via a Google Colab notebook:

https://github.com/pachterlab/BMGP_2020/blob/main/analysis/notebooks/cellhash/cellhash.ipyn
b

10x CRISPR
FASTAQ files for 2,799 A549 lung carcinoma cells expressing nuclease-dead
Cas9—Krippel-associated box (dCas9-KRAB) from 10x Genomics CRISPR screen transduced
with 90 sgRNAs targeting 45 different genes were downloaded from
https://support.10xgenomics.com/single-cell-gene-expression/datasets/4.0.0/SC3_v3_NextGem
DI_CRISPR_10K. A mismatch index was created using the Feature Reference file and kb ref
with the kite workflow. The reads were pseudoaligned and a feature count matrix was obtained
using kb count with the kite:10xFB technology option. Cell Ranger, the Feature Reference, and
refdata-gex-GRCh38-2020-A was used to process the FASTQ files into a feature count matrix.

All preprocessing steps are runnable via a Google Colab notebook:

https://github.com/pachterlab/BMGP_2020/blob/main/analysis/notebooks/10xCRISPR/10xCRIS
PR_preprocess.ipynb. All matrix comparisons are runnable via a Google Colab notebook:
https://github.com/pachterlab/BMGP_2020/blob/main/analysis/notebooks/10xCRISPR/10xCRIS
PR.ipynb

The FASTQ reads were trimmed using seqtk trimfq with the -e option set to the length of the
read minus the 19 plus overhang such that only the 19 bp barcode plus the set overhang was
retained.

TAP-Seq
FASTQ files for 10,860 K562 cells expressing dCas9-KRAB from TAP-Seq transduced with 86
sgRNAs targeting 14 promoters or enhancers and 30 control sgRNAs were downloaded from

https://www.ncbi.nlm.nih.gov/sra/?term=SRR9916613. A mismatch index was created using the

list of targeted barcodes file and kb ref with the kite workflow. The list of barcodes can be found
here: https://qithub.com/pachterlab/BMGP_2020/tree/main/references/tapseq. The reads were
pseudoaligned and a feature count matrix was obtained using kb count with the standard
technology option. Perturbation status for each cell was downloaded from

https://www.ncbi.nlm.nih.gov/geo/query/acc.cqi?acc=GSM4012688 using ffqg GSM4012688
(Galvez-Merchan et al. 2022).

All preprocessing steps are runnable via a Google Colab notebook:

https://github.com/pachterlab/BMGP_2020/blob/main/analysis/notebooks/tapseq/tapseq_prepro
cess.ipynb. All matrix comparisons are runnable via a Google Colab notebook:
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https://github.com/pachterlab/BMGP_2020/blob/main/analysis/notebooks/tapseq/tapseq.ipynb

Barcode validation

For a given list of barcodes we report the maximum number of barcodes that could be made for
the given barcode length, the number of barcodes that share a subsequence of length k, and
the pairwise hamming distance between all pairs of barcodes. A Google Colab notebook
reproducing the results of this simulation can be found here:

https://github.com/pachterlab/BMGP_2020/blob/main/analysis/notebooks/barcode_validator.ipyn
b

The gcbc tool for barcode validation can be found here: https://github.com/pachterlab/gcbc

Barcode simulation

We assumed a per-base error rate that is constant for every base in a barcode and simulated
barcode mutants from a set of given barcodes. Then, for multiple error rates, we estimated the
number of barcode mutants that are a given hamming distance from the correct barcode that
became ambiguous after introducing sequencing errors. A Google Colab notebook reproducing
the results of this simulation can be found here:

https://github.com/pachterlab/BMGP_2020/blob/main/analysis/notebooks/barcode_sim.ipynb

Software versions

Anndata 0.6.22.post1
bustools 0.41.0

Cell Ranger 6.0.1
CITE-seq-Count 1.4.4

awk (GNU awk) 4.1.4
rep (GNU grep) 3.1

kallisto 0.48.0
kb_python 0.26.3
Matplotlib 3.0.3
Numpy 1.18.1
Pandas 0.25.3
Scipy 1.4.1

sed (GNU sed) 4.4
seqtk 1.2-r94
sklearn 0.22.1

tar (GNU tar) 1.29


https://github.com/pachterlab/BMGP_2020/blob/main/analysis/notebooks/tapseq/tapseq.ipynb
https://github.com/pachterlab/BMGP_2020/blob/main/analysis/notebooks/barcode_validator.ipynb
https://github.com/pachterlab/BMGP_2020/blob/main/analysis/notebooks/barcode_validator.ipynb
https://github.com/pachterlab/qcbc
https://github.com/pachterlab/BMGP_2020/blob/main/analysis/notebooks/barcode_sim.ipynb
https://github.com/theislab/anndata
https://github.com/BUStools/bustools/
https://github.com/10XGenomics/cellranger
https://github.com/Hoohm/CITE-seq-Count
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/grep/manual/grep.html
https://github.com/pachterlab/kallisto
https://github.com/pachterlab/kb_python
https://github.com/matplotlib/matplotlib
https://github.com/numpy/numpy
https://github.com/pandas-dev/pandas
https://github.com/scipy/scipy
https://www.gnu.org/software/sed/
https://github.com/lh3/seqtk
https://github.com/scikit-learn/scikit-learn
https://www.gnu.org/software/tar/
https://doi.org/10.1101/2022.10.09.511501
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.09.511501; this version posted October 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

References

Bolger, Anthony M., Marc Lohse, and Bjoern Usadel. 2014. “Trimmomatic: A Flexible Trimmer
for lllumina Sequence Data.” Bioinformatics 30 (15): 2114-20.

Booeshaghi, A. Sina, Nathan B. Lubock, Aaron R. Cooper, Scott W. Simpkins, Joshua S.
Bloom, Jase Gehring, Laura Luebbert, Sri Kosuri, and Lior Pachter. 2020. “Reliable and
Accurate Diagnostics from Highly Multiplexed Sequencing Assays.” Scientific Reports 10
(1): 21759.

Bray, Nicolas L., Harold Pimentel, Pall Melsted, and Lior Pachter. 2016. “Near-Optimal
Probabilistic RNA-Seq Quantification.” Nature Biotechnology 34 (5): 525-27.

Datlinger, Paul, André F. Rendeiro, Christian Schmidl, Thomas Krausgruber, Peter Traxler,
Johanna Klughammer, Linda C. Schuster, Amelie Kuchler, Donat Alpar, and Christoph
Bock. 2017. “Pooled CRISPR Screening with Single-Cell Transcriptome Readout.” Nature
Methods 14 (3): 297-301.

Dixit, Atray, Oren Parnas, Biyu Li, Jenny Chen, Charles P. Fulco, Livnat Jerby-Arnon, Nemanja
D. Marjanovic, et al. 2016. “Perturb-Seq: Dissecting Molecular Circuits with Scalable
Single-Cell RNA Profiling of Pooled Genetic Screens.” Cell 167 (7): 1853—66.e17.

“Feature Barcode Overview -Software -Single Cell Gene Expression -Official 10x Genomics
Support.” n.d. Accessed September 9, 2022.
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/featu
re-bc.

Galvez-Merchan, Angel, Kyung Hoi (joseph) Min, Lior Pachter, and A. Sina Booeshaghi. 2022.
“Metadata Retrieval from Sequence Databases with Ffq.” bioRxiv.
https://doi.org/10.1101/2022.05.18.492548.

Gehring, Jase, Jong Hwee Park, Sisi Chen, Matthew Thomson, and Lior Pachter. 2020. “Highly
Multiplexed Single-Cell RNA-Seq by DNA Oligonucleotide Tagging of Cellular Proteins.”
Nature Biotechnology 38 (1): 35-38.

Gordon, M. Grace, Fumitaka Inoue, Beth Martin, Max Schubach, Vikram Agarwal, Sean
Whalen, Shiyun Feng, et al. 2020. “lentiMPRA and MPRAflow for High-Throughput
Functional Characterization of Gene Regulatory Elements.” Nature Protocols 15 (8):
2387-2412.

McGinnis, Christopher S., David M. Patterson, Juliane Winkler, Daniel N. Conrad, Marco Y.
Hein, Vasudha Srivastava, Jennifer L. Hu, et al. 2019. “MULTI-Seq: Sample Multiplexing for
Single-Cell RNA Sequencing Using Lipid-Tagged Indices.” Nature Methods 16 (7). 619-26.

Melsted, Pall, A. Sina Booeshaghi, Lauren Liu, Fan Gao, Lambda Lu, Kyung Hoi Joseph Min,
Eduardo da Veiga Beltrame, Kristjan Eldjarn Hjérleifsson, Jase Gehring, and Lior Pachter.
2021. “Modular, Efficient and Constant-Memory Single-Cell RNA-Seq Preprocessing.”
Nature Biotechnology, April. https://doi.org/10.1038/s41587-021-00870-2.

Melsted, Pall, Vasilis Ntranos, and Lior Pachter. 2019. “The Barcode, UMI, Set Format and
BUStools.” Bioinformatics 35 (21): 4472—73.

Milo S. Johnson, Sandeep Venkataram, Sergey Kryazhimskiy. 2022. “Best Practices in
Designing, Sequencing and Identifying Random DNA Barcodes.” EcoEvoRxiv Preprints.
September 28, 2022. https://ecoevorxiv.org/t58xwy/.

Packer, Jonathan, and Cole Trapnell. 2018. “Single-Cell Multi-Omics: An Engine for New
Quantitative Models of Gene Regulation.” Trends in Genetics: TIG 34 (9): 653—65.

Roelli, Patrick, bbimber, Bill Flynn, santiagorevale, and Gege Gui. 2019.
Hoohm/CITE-Seq-Count: 1.4.2. https://doi.org/10.5281/zenodo.2590196.


http://paperpile.com/b/sPMtxD/F3bD
http://paperpile.com/b/sPMtxD/F3bD
http://paperpile.com/b/sPMtxD/4bDX
http://paperpile.com/b/sPMtxD/4bDX
http://paperpile.com/b/sPMtxD/4bDX
http://paperpile.com/b/sPMtxD/4bDX
http://paperpile.com/b/sPMtxD/nnMW
http://paperpile.com/b/sPMtxD/nnMW
http://paperpile.com/b/sPMtxD/ob1N
http://paperpile.com/b/sPMtxD/ob1N
http://paperpile.com/b/sPMtxD/ob1N
http://paperpile.com/b/sPMtxD/ob1N
http://paperpile.com/b/sPMtxD/kZhe
http://paperpile.com/b/sPMtxD/kZhe
http://paperpile.com/b/sPMtxD/kZhe
http://paperpile.com/b/sPMtxD/vZph
http://paperpile.com/b/sPMtxD/vZph
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/feature-bc
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/feature-bc
http://paperpile.com/b/sPMtxD/vZph
http://paperpile.com/b/sPMtxD/hyDM
http://paperpile.com/b/sPMtxD/hyDM
http://paperpile.com/b/sPMtxD/hyDM
http://dx.doi.org/10.1101/2022.05.18.492548
http://paperpile.com/b/sPMtxD/hyDM
http://paperpile.com/b/sPMtxD/lknq
http://paperpile.com/b/sPMtxD/lknq
http://paperpile.com/b/sPMtxD/lknq
http://paperpile.com/b/sPMtxD/tiZw
http://paperpile.com/b/sPMtxD/tiZw
http://paperpile.com/b/sPMtxD/tiZw
http://paperpile.com/b/sPMtxD/tiZw
http://paperpile.com/b/sPMtxD/NhgE
http://paperpile.com/b/sPMtxD/NhgE
http://paperpile.com/b/sPMtxD/NhgE
http://paperpile.com/b/sPMtxD/1ePa
http://paperpile.com/b/sPMtxD/1ePa
http://paperpile.com/b/sPMtxD/1ePa
http://paperpile.com/b/sPMtxD/1ePa
http://dx.doi.org/10.1038/s41587-021-00870-2
http://paperpile.com/b/sPMtxD/1ePa
http://paperpile.com/b/sPMtxD/ghWa
http://paperpile.com/b/sPMtxD/ghWa
http://paperpile.com/b/sPMtxD/MV5l
http://paperpile.com/b/sPMtxD/MV5l
http://paperpile.com/b/sPMtxD/MV5l
https://ecoevorxiv.org/t58xw/
http://paperpile.com/b/sPMtxD/MV5l
http://paperpile.com/b/sPMtxD/T751
http://paperpile.com/b/sPMtxD/T751
http://paperpile.com/b/sPMtxD/hxmz
http://paperpile.com/b/sPMtxD/hxmz
http://dx.doi.org/10.5281/zenodo.2590196
http://paperpile.com/b/sPMtxD/hxmz
https://doi.org/10.1101/2022.10.09.511501
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.09.511501; this version posted October 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Schraivogel, Daniel, Andreas R. Gschwind, Jennifer H. Milbank, Daniel R. Leonce, Petra Jakob,
Lukas Mathur, Jan O. Korbel, Christoph A. Merten, Lars Velten, and Lars M. Steinmetz.
2020. “Targeted Perturb-Seq Enables Genome-Scale Genetic Screens in Single Cells.”
Nature Methods 17 (6): 629-35.

Sina Booeshaghi, A., and Lior Pachter. 2022. “Pseudoalignment Facilitates Assignment of
Error-Prone Ultima Genomics Reads.” bioRxiv. https://doi.org/10.1101/2022.06.04.494845.

Srivatsan, Sanjay R., José L. McFaline-Figueroa, Vijay Ramani, Lauren Saunders, Junyue Cao,
Jonathan Packer, Hannah A. Pliner, et al. 2020. “Massively Multiplex Chemical
Transcriptomics at Single-Cell Resolution.” Science 367 (6473): 45-51.

Srivatsan, Sanjay R., Mary C. Regier, Eliza Barkan, Jennifer M. Franks, Jonathan S. Packer,
Parker Grosjean, Madeleine Duran, et al. 2021. “Embryo-Scale, Single-Cell Spatial
Transcriptomics.” Science 373 (6550): 111-17.

Stoeckius, Marlon, Shiwei Zheng, Brian Houck-Loomis, Stephanie Hao, Bertrand Z. Yeung,
William M. Mauck 3rd, Peter Smibert, and Rahul Satija. 2018. “Cell Hashing with Barcoded
Antibodies Enables Multiplexing and Doublet Detection for Single Cell Genomics.” Genome
Biology 19 (1): 224.

“‘What Is Nucleotide Diversity and Why Is It Important?” n.d. Accessed September 30, 2022.
https://support.illumina.com/bulletins/2016/07/what-is-nucleotide-diversity-and-why-is-it-imp
ortant.html.

Zorita, Eduard, Pol Cusco, and Guillaume J. Filion. 2015. “Starcode: Sequence Clustering
Based on All-Pairs Search.” Bioinformatics 31 (12): 1913-19.


http://paperpile.com/b/sPMtxD/z7Ze
http://paperpile.com/b/sPMtxD/z7Ze
http://paperpile.com/b/sPMtxD/z7Ze
http://paperpile.com/b/sPMtxD/z7Ze
http://paperpile.com/b/sPMtxD/8UQd
http://paperpile.com/b/sPMtxD/8UQd
http://dx.doi.org/10.1101/2022.06.04.494845
http://paperpile.com/b/sPMtxD/8UQd
http://paperpile.com/b/sPMtxD/CF4U
http://paperpile.com/b/sPMtxD/CF4U
http://paperpile.com/b/sPMtxD/CF4U
http://paperpile.com/b/sPMtxD/2G0d
http://paperpile.com/b/sPMtxD/2G0d
http://paperpile.com/b/sPMtxD/2G0d
http://paperpile.com/b/sPMtxD/7TvD
http://paperpile.com/b/sPMtxD/7TvD
http://paperpile.com/b/sPMtxD/7TvD
http://paperpile.com/b/sPMtxD/7TvD
http://paperpile.com/b/sPMtxD/hSKL
https://support.illumina.com/bulletins/2016/07/what-is-nucleotide-diversity-and-why-is-it-important.html
https://support.illumina.com/bulletins/2016/07/what-is-nucleotide-diversity-and-why-is-it-important.html
http://paperpile.com/b/sPMtxD/hSKL
http://paperpile.com/b/sPMtxD/rnaO
http://paperpile.com/b/sPMtxD/rnaO
https://doi.org/10.1101/2022.10.09.511501
http://creativecommons.org/licenses/by/4.0/

