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Summary

Cell type-specific transcriptional differences between brain tissues from donors with Alzheimer’s
disease (AD) and unaffected controls have been well-documented, but few studies have rigorously
interrogated the regulatory mechanisms responsible for these alterations. We performed single
nucleus multiomics (snRNA-seq+snATAC-seq) on 105,332 nuclei isolated from cortical tissues from 7
AD and 8 unaffected donors to identify candidate cis-regulatory elements (CREs) involved in
AD-associated transcriptional changes. We detected 319,861 significant correlations, or links,
between gene expression and cell type-specific transposase accessible regions enriched for active
CREs. Among these, 40,831 were unique to AD tissues. Validation experiments confirmed the
activity of many regions, including several candidate regulators of APP expression. We identified
ZEB1 and MAFB as candidate transcription factors playing important roles in AD-specific gene
regulation in neurons and microglia, respectively. Microglial links were globally enriched for
heritability of AD risk and previously identified active regulatory regions.
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Introduction .
Identification of genetic contributors to Alzheimer’s disease has provided critical insights into 2
potential disease mechanisms. Rare, protein-altering variants in APP, PSEN1, or PSEN2 cause 3
early-onset, autosomal dominant AD !, and genome-wide association studies (GWAS) have identified
common variants for late-onset AD that increase disease risk to varying degrees 6. However, the 5
majority of GWAS variants are located in noncoding regions of the genome and many presumably 6
affect gene regulation. Linkage disequilibrium makes identification of the causal variant difficult, 7
particularly for putative regulatory regions where conservation and deleteriousness estimates may 8
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not be as informative. Associating common and rare regulatory variants with affected genes is also o

challenging”®. In addition, disease-associated variants often function only in specific cell types, 10
further complicating interpretation of their effects!®-!!. Thus, determining which genes are 1
contributing to disease requires assessments in specific cell types. 12

Recent advances in single cell technologies have allowed profiling of gene expression'?'® and 13
chromatin accessibility'?, either separately or in parallel from the same samples!?2°. While these 14
studies have examined the cell type—specific transcriptional and epigenetic differences between 15
tissues from brain donors with AD and unaffected controls, few have rigorously interrogated the 16
regulatory mechanisms responsible for these alterations'2!. Integrating single nucleus RNA-seq 17
(snRNA-seq) and single nucleus ATAC-seq (snATAC-seq) data allows identification of potential cis 15
regulatory elements (CREs) by correlating chromatin accessibility with nearby gene expression. 19
Here, we simultaneously measure both gene expression and chromatin accessibility in the same nuclei 2
to identify cell type—specific regulatory regions and their target genes in dorsolateral prefrontal 21
cortex (DLPFC) tissues from both AD and unaffected donors. In addition, we identify regulatory 2
mechanisms unique to nuclei from donors with AD. 2
Results 2
Cellular diversity within the human dorsolateral prefrontal cortex 2
(DLPFC) ,

We used the 10X Genomics Multiome technology to perform snATAC-seq and snRNA-seq on nuclei 2
isolated from human postmortem DLPFC tissues from seven individuals diagnosed with AD (mean 2
age 78; Braak stages 4-6) and eight sex-matched unaffected control donors (mean age 63) (Table S1;
Figure 1A). This assay allows direct mapping of both gene expression and chromatin accessibility

within the same nuclei without the need to computationally infer cell type identification during 31
cross-modality integration. After removing low quality nuclei and doublets (Methods), we retained a =
total of 105,332 nuclei with an average of 7,022 nuclei per donor (range of 1,410 - 11,723). We 33

detected a median of 2,659 genes and 11,647 ATAC fragments per cell. We performed normalization
and dimensionality reduction for snRNA-seq and snATAC-seq data using Seurat (v4)?? and Signac
(v1)23, respectively. We used weighted-nearest neighbor (WNN) analysis to determine a joint 36
representation of expression and accessibility and identified 36 distinct clusters composed of eight 37
major cell types and their associated subclusters (Figures 1B, S1A and S1B). Consistent with 38
previous scRNA-seq data sets!?13:15:19 we identified all expected cell types in the brain with similar 3

relative abundances across AD and control donors (Figures 1B, 1C, and S1C). Pericytes and 40
endothelial cell clusters contained <500 nuclei and were excluded from further analyses. Cluster s
annotations were supported by both gene expression and promoter accessibility of well-established a2
cell type marker genes (Figures 1D and 1E). There were strong correlations in global gene a3

expression across donors within each cell type and between excitatory/inhibitory neurons (Figure 4«
1F). The only cell type to display variable correlation values across donors was microglia, a cell type 4

known to be dysregulated in AD. In addition, we identified distinct subpopulations within each a6
major cell type with the exception of oligodendrocyte precursor cells (OPCs), pericytes, and a
endothelial cells (Figure S2). These subtype annotations were consistent with those from prior a8
works2224 and distributions were similar across AD and control donors, with the exception of pn
microglia subpopulations and two inhibitory neuron subtypes (Inh_1 and Inh_2; Figure S2). 50
Cell type-specific transcriptome changes in Alzheimer’s DLPFC 51

Within each cell type, we identified differentially expressed genes (DEGs) between AD and control s
tissues. A total of 911 DEGs were identified after considering sex and age as covariates (Figure 2A, s
Table S3). While significant sex-specific diferences in gene expression between AD and controls 54
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Figure 1. Cellular diversity of DLPFC from Alzheimer’s disease and unaffected donors
revealed by single cell multiomics.. A) Experimental design. B) UMAP visualization of
the weighted nearest neighbor (WNN) clustering of single nuclei colored by cell type and cluster
assignment. C) Total number of cells in each subcluster and the proportion of cells from each
individual (AD donors = red; unaffected donors = blue) in the subcluster. D) Row-normalized gene
expression of sScREAD cell type markers. E) Chromatin accessibility across cell types for cell type
marker genes (indicated below). F) Correlation of pseudo-bulked cell type-specific expression profiles
between individuals. Colors indicating cell type are consistent throughout the figure.

have been shown previously?4, due to our smaller sample size we did not detect such changes. While s
the majority of DEGs were cell-type specific, 141 were identified across multiple cell types (Figure s
2B). Of these DEGs, 62 were also identified in both Mathys et al.'? and Morabito et al.!? including s
PTPRG, which is upregulated in AD microglia across all three studies (Figures 2C and 2D). Most s
DEGs were upregulated in AD and were enriched for cell type-specific gene ontology terms including s

PDGFR beta signaling in microglia, apoptosis in astrocytes, and Notch and BDNF signaling in 60
oligodendrocytes (Figure 2E, Table S4). In contrast, most DEGs downregulated in AD were in 61
neurons and showed enrichment in regulation of tau activity (Figure 2E, Table S4). 6
Identification of candidate cis regulatory elements 6

Previous single cell studies have characterized altered gene expression in AD brain tissues and cell 64
types!2 141719 and we observed signals consistent with those studies. Additionally, we sought to 6
leverage single cell multiomics data to identify cell type— and disease-specific CREs and their target e
genes by correlating gene expression with chromatin accessibility. The cellranger-arc (v2.0) analysis &
pipeline produces these correlations as “feature linkages”. A feature linkage, or link, is defined as an s
ATAC peak with a significant correlation, across all nuclei in the data set, between its accessibility o
and the expression of a linked gene?® (Figure 3A). We restricted this correlation analysis to 70
consider only peaks within 500 kb of each transcription start site (TSS), as previous studies have n
found the majority of enhancers are within 50-100 kb of their target genes?®. We first took the union
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Figure 2. Cell type-specific transcriptome dysregulation in Alzheimer’s DLPFC.. A)
MAST log(FC) of all up- and down-regulated genes in AD for each cell type. B) Number of shared
DEGs between cell types in both directions (upper triangle: up-regulated in AD; lower triangle:
down-regulated in AD). C) Normalized expression of the top DEG in the indicated cell types
(log2(FC) >1). D) Overlap of DEGs with agreement on cell type and direction with Morabito et
al.'? and Mathys et al.!2. E) Heatmap showing the odds ratio of the top gene ontology terms for up
and down-regulated DEGs within each cell type (* indicates terms with an adjusted p-value <0.01).

of ATAC peaks identified in each cell type and only retained those present in >2% of cells in at least
one cell type for a total of 189,925 peaks. Using this peak set, feature linkages were then calculated
independently using gene expression data from either AD or control nuclei allowing classification of
linkages as AD-specific, control-specific, or common (Methods). Cell type specificity of each link was
determined by the cell type(s) in which the ATAC peak was identified. A total of 319,905 peak-gene =«
links were found involving 15,471 linked-genes and 126,213 linked-peaks with a minimum absolute 78
correlation value of 0.2 (Figure 3A, Table S5). The median distance between the linked peak and
the TSS of the linked gene was 201,506 bp and there was an inverse relationship between absolute 80

correlation value and distance to TSS (Figure S3A). 81

For most genes, we identified a similar number of links in both AD (median = 12) and control 8
samples (median = 13). However, we found 1,294 genes had only AD links and 1,596 had only 8
control links (Figure S3B). We observed no significant bias when comparing the number of links 8

identified in either AD or control for a given gene (Figure S3B). Most genes were linked to multiple &
peaks across all cell types with a median of 14 linked peaks per gene. However, 16% of genes were 8
linked with 40 or more peaks (Figure 3B) and these genes were significantly longer and more highly &
expressed than those with fewer links (Figure S3C). 88

ATAC peaks often did not interact with only one gene. Nearly 70% (126,213) of the ATAC peaks &
analyzed were linked to a gene with an average of two genes linked to each peak and a range of 1-21 o
linked genes (Figure 3B). Links ranged from being unique to one cell-type to shared across all. o1
Almost a third (30.24%) of the links were unique to a single cell type while 21% were common across o
all cell types (Figure 3C). We identified 40,831 AD-specific links and 74,028 control-specific links o
with the majority of links identified in both (205,046). To evaluate whether linked peaks associate o4
with regulatory regions, we evaluated their overlap with a curated set of candidate CREs identified o
by ENCODE?". We found that linked peaks were significantly enriched for proximal (OR = 1.24, p
= 2.4 x 1071%) and distal (OR = 1.06, p = 3.06 x 10™) enhancer-like sequences and the proportion of
overlap was similar across cell types (Figure 3D). As these annotations were not generated in our o
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particular cell types and tissue, we also intersected these linked peaks with regions of H3K27ac 9
previously identified within cell types isolated from prefrontal cortex tissues'!2®. We found that, on 100
average, 57.5% of linked peaks overlap a H3K27ac peak from the corresponding cell type and this 101
increases to 79% for cell type-specific linked peaks (Figure 3E). The majority (76.11%) of linked 10
peaks were positively correlated with gene expression, as is expected given the association between 103
open chromatin and transcriptional activation. 104

In order to associate DEGs with CREs, a link must be present for that gene. For DEGs identified 10
between AD and control nuclei, 95% had at least one linked peak. Of these DEGs, 69% had a cell 10
type-specific link in the same cell type where the gene was differentially expressed. One example is 107
KANSLI, a gene located in the MAPT locus that encodes a ubiquitously expressed member of a 108
histone acetyltransferase complex. Loss of function mutations in KANSLI result in 109
neurodevelopmental defects and intellectual disability?®. KANSLI was the only DEG identified in 1o
all cell types and was downregulated in AD (Figure 3F). Nine of the 37 KANSLI linked peaks are
found in both AD and control donors, and 14 are neuron-specific (Figure 3G). One of these linked w2

peaks found in the promoter overlaps an eQTL3? (1s2532404) associated with progressive 113
supranuclear palsy?! and was recently shown via CRISPRi to regulate KANSL1 expression in 114
iPSC-derived neurons?!. us
Identification of AD-specific peak-gene-TF trios. 116
To further investigate the regulatory roles of links, we identified peak-gene-TF trios in which: 1) 17

there was a correlation between the linked peak and linked gene; 2) the accessibility of a linked peak s
harboring a specific TF motif was correlated with the expression of that TF; and 3) the expression of 119
the TF was correlated with the expression of the linked gene (Figure 4A; Methods). This approach 120
is similar to a recently described method called TRIPOD?2. We performed these correlation analyses 1z
separately using either AD or control data sets to enable identification of TFs whose activities may 12
be associated with disease. We restricted these analyses to links with a correlation value >0.3 that 12
were within 100 kb of the linked gene’s TSS (115,107) and identified 60,120 peak-gene-TF trios 124
involving 17,149 unique peaks and 437 TFs (Table S6). Fewer than 20% of the peaks in these trios 12
are found in promoters, with the majority present in intronic regions (Figure 4B). Trio peaks were 1
enriched for ENCODE distal (OR=1.26, p=2.2 x 10716) and proximal (OR=1.12, p=>5.9 x 107°7) 127
enhancer-like sequences. There was a median of 37 trios per TF. The TF MEF2C was the most 128
common trio participant, appearing in nearly 5% of all trios. While MEF2C was expressed in most 12
cell types, expression of target genes in MEF2C trios were distinct between cell types (Figures 4C 1
and 4D) In microglia, target genes were enriched in pattern recognition receptor (PRR) signaling
and for synaptic transmission in neurons (Figure 4E, Table S7). PRRs consist of several receptor 12

families including Toll-like receptors that are critical for microglial activation®3. 133

Within this set of trios, there was a small subset that were specific to either AD or control groups 1
(n = 2,718). While many of these were specific to a single cell type, 55% were shared across two or 13
more (Figure S4). All cell type-specific trios overlapped H3K27ac peaks from their respective cell 13

types (Table S6). Within microglia trios, NR4A2 was identified most frequently in the 137
control-specific trios (Figure 4F). NR4A2 can function as both an activator and repressor and has 13
been shown to repress inflammatory responses in microglia through recruitment of the CoREST 139
complex3%35, Target genes in NR4A?2 trios are enriched in neutrophil degranulation (OR = 9.01, 140
g-value = 5.3 x 10°%) and include interleukin genes IL1A and IL1B, as well as TGFB1. Similarly, 141
MAFB was involved in 24% of the AD-specific trios (Figure 4F) where it was linked to the 142
microglial marker gene CX3CR1 and genes involved in microglial activation (TLR3, CD8/, 143
HAVCR2)3®. In healthy microglia, MAFB inhibits inflammatory responses®”, consistent with our 144
finding that target genes in AD-specific trios were enriched for negative regulation of myeloid 145
leukocyte mediated immunity (OR = 332, g-value = 0.0004). 146
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Figure 3. Identification of candidate CREs. A) Schematic of gene-peak association (top).
Heatmap of row-normalized accessibility and expression for the most correlated gene-peak link for
each gene (bottom). Columns are pseudo-bulked on cell type and disease status. B) Distributions of
the number of linked peaks per gene (left) and the number of linked genes per peak (right) for AD
(red) and control (blue) samples. C) Total number of links per cell type for AD and control. Cell
type of the link is assigned by the cell type in which the peak was called. D) ENCODE annotation of
linked peaks by cell type. E) Shared (across cell types) and cell type-specific linked peaks that overlap
H3K27ac of the corresponding cell type. F) Normalized expression of KANSLI from AD and control
samples in each cell type. Expression is significantly different in AD vs control for all cell types. G)
Linkage plot for all links to KANSLI. Top panels: coverage plot of pseudo-bulked accessibility in
excitatory neurons separated by status (red = AD; blue = control). Bottom panel: significant AD
and control peak-gene links. Arc height represents strength and direction of correlation. Arc color
indicates if the link was identified in both AD and control (“common”, gray) or control donors only
(blue). A linked peak overlapping a single SNP is highlighted in gray.
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Figure 4. Identification of AD-specific TF regulatory networks. A) Strategy for defining
peak-gene-TF trios. A linked peak containing a TF motif must be correlated with that TF and
the expression of that TF must be correlated with the linked gene for that peak to be considered
a trio. B) Genome annotations for location of linked peaks within trios. C) Heatmap of column-
normalized expression of genes within MEF2C trios by cell type. D) Normalized expression of
MEF2C by cell type. E) Top enriched gene ontology terms for genes within MEF2C trios from
excitatory and inhibitory neurons (green = “Neuron”) and microglia (purple = “Microglia”). F)
Heatmap of correlation values of AD and control-specific trios identified in microglia (left) and
excitatory/inhibitory neurons (right). G) Linkage plot for GABRAS5. Top panels: coverage plot of
pseudo-bulked accessibility in indicated cell types. Middle panel: coverage plot of ZEB1 ChIP-seq
signal from NeuN+ DLPFC tissue from two unaffected donors (1238 and 1242). Bottom panels:
significant peak-gene links; green indicates overlap with ZEB1 motif. Arc height represents strength
and direction of correlation. Track of ZEB1 motifs (green) and H3K27ac peaks from neurons (black;
Nott et al'l). Linked peak of interest is highlighted in gray. H) ZEB1 motif from JASPAR 2022
(top). Normalized expression of ZEB1 and GABRAS in excitatory/inhibitory neurons and microglia.

Within neuronal trios, we identified KLF10 and ZEB1 most frequently in control- and 147
AD-specific trios, respectively (Figure 4F). These two TFs were also the most frequently observed s
in excitatory neuron trios; there were no inhibitory-specific trios identified (Figure S4B). In 149
neurons, we identified ZEB1 in nearly 60% of all AD-specific trios with target genes involved in 150
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regulating ion channel signaling (ITPR1, CAMK2A, CACNB3, KCNH3, KCNQ5, and KCNT1). 151
ZEB1 was never found in control-specific trios. Given the frequency of ZEB1 participation in 152
neuronal AD-specific trios, we performed ZEB1 ChIP-seq in NeuN™ nuclei isolated from two control 15
donors (1238 and 1242). We found that 41% of neuronal ZEB1 trios are bound by ZEB1, and these 15
include 57 peaks within the AD-specific trios. The GABA A receptor a5 subunit, encoded by 155
GABRASJ, is one gene that we find likely to be regulated by ZEB1 in AD (Figure 4G). ab GABA, 156
receptors are associated with learning and memory, consistent with highest expression of GABRAS 157
in hippocampal neurons and association of reduced expression with neurodevelopmental disorders3®. s
In our data, ZEB1 is expressed in both neurons and microglia; however, GABRAS is primarily 150
expressed in excitatory neurons (Figure 4G, right). In excitatory neurons, we identified a linked 160
peak correlated with GABRAS expression that was marked with H3K27ac and contained a ZEB1 1

motif. ChIP-seq data from two of our unaffected donors confirmed ZEB1 binding at this site 162
providing additional evidence to suggest cis regulatory activity of this region for GABRAS. 163
Genetic variation at candidate CREs 164

We performed stratified linkage disequilibrium score (SLDSC) regression®® to determine if our links 1es
were significantly enriched for SNPs associated with complex brain-related traits (Figure 5A, 166
Table S8). Consistent with previous studies**:*!, our microglia links were significantly enriched for 1
heritability of AD across five different studies?; however, this was not true for those microglia links 1
identified only in control samples, suggesting that variants in AD-specific CREs could have a greater 160
contribution to AD risk. Specificity of microglia links for AD heritability is also supported by the 170

lack of significant enrichment of these feature links with risk variants from other brain-related 171
traits??46 or traits where other immune cells play important roles*”%°. In contrast, links identified i
in other cell types were enriched for heritability of brain-related traits including autism spectrum 173
disorder (ASD), bipolar disorder (BD) and schizophrenia (SZ) with AD-specific links largely 174
excluded from any significant enrichment in these traits. These findings are consistent with previous s
studies where candidate CREs identified in excitatory and inhibitory neurons were significantly 176
associated with neuropsychiatric traits''. As expected, we identified no significant enrichments with 17
immune diseases or with other phenotypic traits, such as body mass index (BMI)®? or height®!. 178
Validation of candidate CREs 179
We compared the >300,000 links to pre-existing, large-scale functional genomic datasets to determine 10
which candidate elements had previously shown evidence of regulatory activity. Three data types 181
were considered to provide orthogonal evidence of regulatory activity: 1) massively parallel reporter 1
assays (MPRAs)21:5254 2) eQTL studies®*®®, and 3) HiC®® datasets. We found significant 163
enrichments of links across each of these datasets despite several MPRAs being performed in cancer — 1s
cell lines (Figure 5B). The MPRA data provided evidence that linked peaks could stimulate 185

transcription, but are not capable of identifying the target gene. In contrast, HiC data from NeuNT 1
nuclei provided orthogonal validation of a linked peak’s target gene, but no evidence of promoting  1s7
transcriptional activity. However, we intersected the results from these analyses and found that 1,542  1ss
of the 60,473 links that displayed regulatory activity in one or more MPRAs also identified the same s
target gene as the HiC data. In addition, 617 linked peaks overlapped eQTLs and were linked to the 10
same gene providing both evidence of activity and confirming the target gene. Of the 67,541 links 1«
that overlapped at least one functional dataset, only 1,668 were also identified by Morabito et al.'?. 10
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Figure 5. Identification of AD-specific TF regulatory networks. A) sLDSC results using
16 GWAS traits as indicated with our linked peaks stratified by cell type and group (“All” = all
links, “Common” = links identified in both AD and control data, “AD” = links specific to AD,
“Control” = links specific to control). Heatmap indicates coefficient z-score from running sLSDC
with each set of links combined with the 97 baseline features. Feature-trait combinations with a
z-score significantly larger than 0 (one-sided z-test with alpha = 0.05, P-values corrected within each
trait using Holm’s method) are indicated with a numeric value reporting the enrichment score. B)
Bar plot showing enrichment (4 /- 95% CI) of feature linkages for previously nominated regulatory
regions: active MPRA elements (blue), eQTLs where target gene is same as linked gene (pink), and
HiC loops linking region to same target gene (green). C) Box plots showing statistically significant
(* indicates p <0.05, ANOVA with Fisher’s LSD) elements representing feature linkages tested in
luciferase assays. Luciferase elements are denoted by the linked gene for the nominated region. D)
Box plots showing comparison of rs12445022 to its corresponding reference element linked to JPHS (*
indicates p <0.05, ANOVA with Fisher’s LSD). E) Top: Normalized expression of APP in each cell
type. Middle panels: Coverage plot of accessibility in indicated cell types. Bottom panel: Significant
control (blue) and common (gray) gene-peak links to APP tested in luciferase assays. Arc height
represents strength and direction of correlation. Links that contained CREs that increased expression
of the luciferase reporter are highlighted in gray. F) Box plots showing all tested luciferase elements
representing APP-peak links. Elements highlighted in gray are located within the APP gene body (*
indicates p <0.05, ANOVA with Fisher’s LSD).
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For additional validation, we selected 51 neuronal links for testing in a luciferase reporter assay 103
(Table S9). We performed these assays in the neuroepithelial-derived human embryonic kidney 293 104
(HEK293 and 293FT) cell lines because of the similar chromatin accessibility landscape to that found 10
in brain tissues?'. These cell lines are also technically tractable as they are highly transfectable and 1o

allow for efficient screening of regions of interest. We did not select any AD-specific links for 197
validation, as we are using cell lines from a presumably unaffected individual. Thirteen of these 51 10
links contained SNPs associated with a brain-related trait (e.g. AD, epilepsy, neurodegeneration, 199
etc.) and we tested both alleles of these SNPs (Table S10). Twelve of the elements increased 200

activity of the luciferase reporter including regions linked to SNCA (a-synuclein) and APP (amyloid 2n
precursor protein) (Figures 5C—5F). Three of these active elements were involved in peak-gene-TF 2
trios (CCSER1-MEF2C, JPH3-RARB, and ADAMTS1-SOX10). ChIP-seq analysis of NeuN™ 203
nuclei confirmed that MEF2C is bound at the peak linked to CCSER1, a gene associated with 204
autism®” (data not shown). Only one of the 15 variants tested abolished activity, rs12445022, a G/A 2
substitution in a peak linked to JPH3 (p = 0.0003 by ANOVA with Fisher’s LSD) (Figure 5D). s
JPHS3 encodes junctophilin-3, important for regulating neuronal excitability®®. This JPHS linked 2o
peak was highly correlated (r = 0.64) with JPHS3 expression in both AD and control samples in all s
cell types except microglia. The linked peak is located 45,503 bp upstream of the JPH3 TSS and 200
was also linked to ZCCHC14-DT, although with a much lower correlation (r = 0.36). Repeat 210
expansions in JPHS have been associated with a Huntington’s disease-like phenotype®?:6°. 211

Due to its importance in AD pathogenesis, we focus our validation efforts particulalry on the APP o
locus (Figure 5E) where we tested 15 elements and identified three that increased expression in the 2
luciferase reporter assay (Figure 5F). APP is expressed across all cell types (Figure 5E, top panel) 2
consistent with the high promoter accessibility observed (Figure 5E, middle panels). We also found 2

one element with a negative correlation with APP expression that significantly reduced reporter 216
activity; however, this assay was not designed to detect repressor activity and further experiments 27
are required to assign a repressive function to this element. 218
Discussion 29
Single cell multiomics has allowed for the generation of a rich source of disease— and cell 220
type-specific candidate CREs enriched in variants associated with AD. Our study provides tangible 2z
advances by employing snRNA-seq and snATAC-seq in the same cells. Others have generated 2
snRNA-seq and snATAC-seq separately and integrated them to identify CREs in AD!'?; however, 23
profiling gene expression and chromatin accessibility simultaneously in the same nuclei allows for 24

greater confidence in the correlations linking potential CREs to target genes. As such, we identified 2
five times as many new candidate CREs (319,905 links vs 56,552 gene-linked cCRES) than previously 2

reported!®. To our knowledge, only one other study of another human neurodegenerative disease, 27
Parkinson’s, used the 10X Genomics Multiomics (ATAC+Gene Expression) technology®! and 228
identified a similarly large number of peak-gene linkages. Our approach is unique in that we 229
identified peak-gene correlations independently in control and AD data sets allowing us to identify 23
40,831 peak-gene links specific to AD. 231

Our study provides two main advances in our understanding of altered gene regulation in AD. 23
First, by leveraging the AD— and control-specific links identified here we constructed peak-gene-TF 23
trios to determine which TFs were particularly involved in regulating AD-specific transcriptional 234

programs. MAFB and ZEB1 were found to be enriched in AD-specific trios in microglia and neurons, 23
respectively. MAFB has been implicated in exercise-associated responses in the peripheral immune 23
system in AD®2. Centrally, MAFB has been implicated in regulation of the receptor VISTA in 237
microglia, which is up-regulated in AD63. In this study, we identify a previously unknown role for 2
ZEBI1 in AD-specific transcriptional regulation. Previously, ZEB1 was shown to play a critical role 23
in epithelial-mesenchymal transition in neural crest migration and glioblastoma%#% and further 240
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investigation is necessary to reveal its role in AD. Secondly, we demonstrated enhancer-like activity 2a

for 12 candidate CREs linked to neurodegeneration-associated genes APP, SNCA, PHF2/, 242
ADAMI11, and ADAMTSI. This study lays the groundwork for additional functional validation in = 24
future studies to confirm these genes as targets of these CREs. 244

One limitation of this study is that snATAC-seq data can contain spurious signals, as well as bias s

from transcribed genes. This limitation underscores the importance of evaluation via orthogonal 26
methods, which we have provided using both published and newly generated data. A second 247
limitation is that our sample size is small. This can be addressed in future studies by increasing 248

sample size; however, the shared signals we observed with larger AD snRNA-seq studies emphasizes 29
the representative nature of our sample set, and that our total number of cells per biological sample 250
is adequate. Finally, as with any study from postmortem tissue, we are measuring by definition the 2
material that remains in a neurodegenerative disease, which can confound interpretation. For this 25

reason, we chose to evaluate DLPFC, which is preserved later into the disease course of AD than 253
tissues affected earlier such as entorhinal cortex and hippocampus. 254
In summary, our study provides important new insights into the contribution of CREs to AD 255

including the roles of TFs ZEB1 and MAFB in neurons and microglia. These findings could provide  2s6
additional insights for interpreting SNPs associated with AD risk should they disrupt binding motifs 2

for these TFs. Further, these TFs could be therapeutic targets for manipulating aberrant gene 258
regulation in AD. Our study lays the groundwork for future research to expand on the candidate— 25
and literature-based validation approaches taken here. High throughput CRISPRi screens are 260
well-suited to test the necessity and sufficiency of regulatory elements for linked gene expression. 261
Future validation efforts will greatly contribute to advancing our understanding of the effects of 262
non-coding variation on risk for AD. 263
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Methods -

Resource availability o
Further information and requests for resources and reagents should be directed to and will be 273
fulfilled by the lead contact Lindsay Rizzardi (LRizzardi|at]hudsonalpha.org). 274
Experimental model and subject details 75
Cell cultures 276
HEK293 cells were obtained from ATCC (CRL-1573) and grown in DMEM (high glucose, 277
L-glutamine, no sodium pyruvate) (ThermoFisher), supplemented with 10% fetal bovine serum 278
(FBS). 293FT cells were obtained from ThermoFisher Scientific (R70007) and maintained in DMEM 21
(high glucose, L-Glutamine, 100 mg/L Sodium Pyruvate) supplemented with 10% FBS, 1% 280
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Glutamax, 1% non-essential amino acids (NEAA), and 500 mg/mL Geneticin (G418 Sulfate, 281
ThermoFisher). All cells were cultured at 37°C with 5% CO2. 282
Human brain tissues 263
Postmortem human brain biospecimens were obtained from the NIH Neurobiobank at the University — 2s
of Miami and the Human Brain and Spinal Fluid Resource Center (HBSFRC) and from 285
collaborators from the Pritzker Neuropsychiatric Disorders Research Consortium in the Department s
of Psychiatry and Human Behavior, University of California Irvine (UCI) as noted in Table S1. 287
Flash-frozen tissues were obtained from the dorsolateral prefrontal cortex (BA9/46) of 9 donors 288

diagnosed with Alzheimer’s (Braak stages 4-6) and 9 unaffected controls. Demographic information s
for each donor is presented in Table S1. No statistical methods were used to pre-determine sample 20
sizes, but our sample sizes are similar to those reported in previous publications'®'?. Data collection 2u
and analyses were not performed blind to tissue of origin. We did not pre-select samples based on 2

APOE genotype, but genotype information was generated for each sample through TagMan 203
genotyping assays (see APOE Genotyping). 204
Method details 205
Nuclei Isolation from human brain tissues for single nucleus multiomics 206

Approximately 50-100 mg of frozen tissue per sample was homogenized in 4 mL of nuclei extraction 20
buffer [0.32 M sucrose, 10 mM Tris - pH 7.4, 5 mM CaCly, 3 mM Mg(Ac)2, 1 mM DTT, 0.1 mM 208
EDTA, 0.1% Triton X-100, 0.2U/uL Protector RNAse inhibitor (Sigma cat. 3335399001)] by 299
douncing 30 times in a 40 mL dounce homogenizer. Filter through 70 pm filter and spin at 500xg, 5 300
min at 4°C in a swinging bucket centrifuge. Resuspend nuclei in 500 pL nuclei extraction buffer and — sm
layer over 750 pL sucrose solution (1.8 M sucrose, 10 mM Tris pH 7.4, 3 mM Mg(Ac)z, 1 mM DTT) s
in a 1.5 mL tube. The samples were then centrifuged at >16,000xg for 30 min at 4°C. After 303
centrifugation, the supernatant was removed by aspiration and the nuclear pellet was resuspended in 30
125 uL PBS with 1% BSA and centrifuged 5 min at 500 x g at 4°C in a swinging bucket centrifuge. 30
Permeabilization was performed according to 10X Genomics protocol CG000375 Rev B: nuclei were 306
resuspended in 100 uL lysis buffer (10 mM Tris-pH 7.4,10 mM NaCl, 3 mM MgCls, 1% BSA, 0.01% s
Tween-20, 0.01% NP-40, 0.001% digitonin, 1 mM DTT, 1 U/uL Protector RNase inhibitor) and 308
incubated 2 min on ice. Nuclei were washed once and resuspended in 30 pL of 1X nuclei buffer with 30
1 mM DTT and 0.5 U/uL of Protector RNAse inhibitor. Nuclei quality and concentrations were 310
determined using the Countess II FL (ThermoFisher). s11

Single nucleus multiomics 312

Transposition, nuclei isolation, barcoding, and library preparation were performed according to the a3
10X Genomics Chromium Next GEM Single Cell Multiome protocol CG000338 Rev E with the 314
following alterations. The initial set of eight samples were processed as above (noted as “batch 17 in  as
Table S1) and each sample was loaded across two lanes of the Chromium Next GEM Chip J. Nuclei s
were loaded according to manufacturer’s recommendations to target recovery of 10,000 nuclei per 317
lane. The second batch of ten samples were processed as above, but two samples were pooled per lane s
of the Chromium Next GEM Chip J (each pool is indicated by sub-batch in Table S1). Each pool o
consisted of a male and female donor to facilitate assignment of each single cell back to the donor 32
based on genotype and chrY gene expression (see Sample Demultiplexing). For these samples, we 321
pooled 20,000 nuclei from each sample and the entire pool was processed according to the multiome 32
protocol. Libraries were sequenced by HudsonAlpha Discovery using Illumina NovaSeq S4 flowcells. 32
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Sample demultiplexing 324
For lanes where a male and female sample were pooled together, reads were assigned to samples by 32
genotyping cells. Variants were called from the cellranger output bam file for each cell using 326
cellsnp-lite6. High-confidence SNPs from the 1000 Genome Project were used as a reference panel 7
to call variants. Cell genotypes were then split by individual using virecoSNP with the number of 328

donors set to two 7. Cells were labeled as donor_0, donor_1, unassigned, or doublet. Unassigned and s
doublet cells were removed. Donor ID was assigned to the sample by observing the number of UMIs 33

for genes on chrY. The donor ID with the higher mean counts was assigned to the male sample aa1
(Table S].l). 332
Joint snRNA-seq and snATAC-seq workflow 33
Low-quality cells were filtered on gene expression data (nFeatures > 200, nFeatures < 10,000, and 33
mitochondrial percent < 5) and chromatin accessibility data (nucleosome signal < 2 and TSS 335
enrichment > 2). PMI-associated genes®® were removed from the RNA counts matrix. Peaks that s
were present in less than 10 cells were removed from the ATAC matrix. RNA counts were 3
normalized with SCTransform with mitochondrial percent per cell regressed out. Principal 338

component analysis (PCA) was performed on RNA, and UMAP was run on the first 30 principal 339
components (PCs). The optimum number of PCs was determined to be 30 PCs using an elbow plot. 0

The ATAC counts were normalized with term-frequency inverse-document-frequency (TFIDF). 341
Dimension reduction was performed with singular value decomposition (SVD) of the normalized 342
ATAC matrix. The ATAC UMAP was created using the 2°¢ through the 50'" LSI components. 343

Doublet density was computed using computeDoubletDensity from scDblFinder where doublet score 34
is the ratio of densities of simulated doublets to the density in the data. Cells with a doublet score > s
3.5 were removed. Normalization and dimension reduction were performed again on the filtered set 34
with the same parameters. Predicted cell types were determined for each cell using Seurat 47
SCT-normalized reference mapping. Gene expression data was mapped to SCT-normalized DLPFC 14
data!? and annotated with the cell types of the reference map. Cells with a predicted cell type score s

< 0.95 were removed from the data. Batch effects were corrected in RNA (theta=1) and ATAC 350
(theta=2) with Harmony (v1.0.0)%° by removing the effect of sample. 351
WNN analysis of snRNA-seq and snATAC-seq 352
The weighted nearest neighbor (wnn) graph was determined with Seurat’s FindMultiModalNeighbors 3
to represent a weighted combination of both modalities. The first 30 dimensions of the 354
Harmony-corrected RNA reduction and the 2°¢ through the 50" dimensions from the 3ss
Harmony-corrected ATAC reduction were used to create the graph. The WNN UMAP was created 35
using the wknn (k=20) (Figure S5). 357
Differential expression 358
Differentially expressed genes (DEGs) were determined for AD versus control for each cell type. 350
Within each cell type, the gene expression data was log-normalized with a scale factor of 1 x 10°. 360
Pericytes and Endothelial cells were not included in the analysis because of small cell counts. 361
Differential expression was assessed using MAST for genes present in at least 25% of either AD or e
control cells. Age and sex were included as covariates in the MAST model. Genes with a 363

Bonferroni-adjusted p-value < 0.01 and an absolute log2 fold change > 0.25 were determined to be 35
significant. DEGs between cell types were determined using MAST with age and sex as covariates e
for genes present in at least 25% of cells. Genes with a Bonferroni adjusted p-value < 0.01 and an e
absolute log2 fold change > 0.5 were determined to be significant. 367
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Annotation of cell subpopulations 368
Cell type subclusters were identified using weighted snRNA and snATAC modalities. Expression 360
data were normalized with SCTransform, and chromatin accessibility data were normalized with 370
TFIDF within each cell type. Normalized values were used to construct a multimodal weighted )

nearest neighbor graph (k=20). Clusters were identified using wknn and the SLM algorithm. The
resolution (0.3, 0.2, 0.3, 0.3, 0.45) was adjusted for each cell type (Astro, Inh, Exc, Olig, Mic). Any s
cluster with < 100 cells was excluded from DEG analysis. Within each cell type, cluster DEGs were 37

determined for each subcluster versus all other subclusters. DEGs were defined as those with a 375
Bonferroni adjusted p-value <0.01 using MAST with age and sex as covariates. Only genes that 376
were detected in at least 25% of cells in a subcluster were considered. 377

Neuronal subclusters were further annotated with Azimuth ?2 Human motor cortex ! clusters to s
identify known neuronal subpopulations. For each neuronal subcluster, a subtype was assigned by 37
the enrichment for up-regulated subcluster DEGs in Azimuth gene sets. Enrichment was performed s
using enrichR7%7* and the Azimuth Cell Types 2021 gene sets. The top subtype annotation was 381

assigned to a subcluster if the adjusted p-value was < 0.01. 382

AD-specific subclusters and subtypes were determined by observing overrepresentation of cells 383
isolated from AD individuals. Statistically significant overrepresentation was evaluated with a 384
Fisher’s exact test and adjusted p-values. 385
Gene set enrichment 356
The R package enrichR™> ™ was used for all gene set enrichment analyses. Sets of DEGs and 387
peak-linked genes were used as input to look for enrichment in GO Biological Process 2021, GO 388
Molecular Function 2021, GO Cellular Component 2021, and KEGG 2021 databases. Terms with an s
adjusted p-value < 0.05 were considered to be enriched. 300
Feature linkage analysis 301

ATAC peaks were called independently for each cell type using MACS2 and Signac CallPeaks and s
the union of these peaks was used in subsequent analyses retaining the cell type annotations. The 30
peaks were then annotated with ChIPseeker”™ and TzDb.Hsapiens. UCSC.hg38.knownGene where 304
promoters were considered to be 1 kb upstream and 100 bp downstream of the TSS. Only ATAC 305

peaks that were present in at least 2% of cells in at least one cell type were included in linkage 306
analyses. AD and control linkages were identified separately via the cellranger-arc (v2.0) reanalyze 3o
function using the filtered cell type ATAC peaks and either AD or control expression and 398
accessibility data as input. The maximum interaction distance was restricted to 500 kb. Peak-peak 30
links are produced by the cellranger-arc pipeline by default, but were not used for downstream 400
analyses. Feature linkages with an absolute correlation score > 0.2 and linked to a gene with < 200 4
UMIs were removed. 102
Gene-Peak-TF trios w03

Trios were called for a filtered set of feature linkages by removing links further than 100 kb and links 404
with an absolute score < 0.2. Motifs were then called in each linked-peak using Signac AddMotifs  aos
and the JASPAR 2022 " CORE PFM. Peaks with > 100 motifs were additionally filtered from the e

link set. TF expression, linked-gene expression, and linked-peak accessibility matrices for trio 407
correlation were derived from the average counts within metacells. Metacells were determined using 40
WNN clusters for all AD cells and all control cells separately. TF-peak scores are the Pearson 400

correlation between peak accessibility and the expression of the TF whose motif was called in the 410
peak. TF-gene scores are the Pearson correlation between a gene and the TF whose motif was called

14/29


https://doi.org/10.1101/2022.10.04.510636
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.04.510636; this version posted October 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

in the linked-peak. Significant associations were defined as those with a p-value < 0.001. Significant a1

trios were then defined as those with a significant positive TF-peak correlation and a significant a13
TF-gene correlation. 414
Partitioned heritability analysis a5
To evaluate whether feature links are enriched with common genetic variants that have been a16

associated with AD or other traits by GWAS, we performed stratified linkage disequilibrium (LD) a7
score regression (sLDSC v1.0.1)3%77. sLDSC estimates the proportion of genome-wide SNP-based a1
heritability that can be attributed to SNPs within a given genomic feature by a regression model 419
that combines GWAS summary statistics with estimates of LD from an ancestry-matched reference 4
panel. Summary statistics for AD were downloaded from?©. To estimate SNP heritability from AD
GWAS summary statistics, we excluded the APOF and MHC/HLA genomic regions. Additional a2
GWAS summary statistics were downloaded for brain-related*?46:7® and other traits*”->!. Each cell  as
type feature link was tested individually along with the full baseline model (baseline-LD model v2.2.) s
that included 97 categories capturing a broad set of genomic annotations. Links to GWAS summary s
statistics are available in Table S8. Additional files needed for the sSLDSC analysis were downloaded 4

from https://alkesgroup.broadinstitute.org/LDSCORE/ following instructions at a7
https://github.com/bulik /ldsc/wiki. 428
APOE genotyping 029
To determine APOEFE status, TagMan genotyping assays (cat#: 4371353) were used to genotype 430

SNPs rs429358 and rs7412 (cat: 4351379, C___3084793_20 and C___904973_10, respectively) following
the manufacturer’s instructions. Genotyping calls were made using QuantStudio software (v1.3) for
all individuals in this study. APOE status is reported in Table S1. 433

Comparisons to external data sources -

Cell type-specific H3K27ac peak calls were obtained from'! and converted to hg38 coordinates using s
the liftOver function from the R package rtracklayer. GABA and GLU neuronal sub-type H3K27ac 43

fastqs from Kozlenkov et al. 2® were downloaded from Synapse (syn12033252) and processed as 37
individual replicates using the AQUAS Transcription Factor and Histone ChIP-Seq processing 438
pipeline™. (https://github.com/kundajelab/chipseq_pipeline). Peaks were called using the IDR. 439
naive overlapping method with a threshold of 0.05 and the optimal peak sets were used. For each 440
cell type, only peaks identified in at least 3 individuals were retained for downstream analyses. a1
ATAC-seq peaks from non-neuronal cell types were intersected with H3K27ac data from the a2
corresponding cell type obtained from Nott et al.''. Excitatory and inhibitory neuron ATAC-seq 443
peaks were intersected with H3K27ac peaks identified from GLU (NeuN™/SOX67) or GABA 444

(NeuNT /SOX6™) neuronal nuclei?® and from neuronal (NeuN™) nuclei'!. MPRA data was obtained s
from?!:52-%4 eQTL data was obtained from>*:°, and neuronal HiC loop calls were obtained from?®. s

Plasmids a7
The pNL1.1.CMV [Nluc/CMV] and pGL4.23 [luc2/minP] vectors were obtained from Promega. o
Luciferase elements were generated by selecting 467 bp of the nominated region using hg38 449
coordinates. Both the forward and reverse complement sequences were ordered as gBlocks from 450
Integrated DNA Technologies (IDT). Gibson assembly was performed by cloning elements into the s
pGL4.23 [luc2/minP] vector digested with EcoRV. Element insertion was confirmed by Sanger 452
sequencing (MCLAB). Each element was individually prepped 3 times for a total of 6 individual 453
plasmid preparations per nominated region. 454
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Transfection 455

HEK293 and 293FT cells were plated at 70,000 cells/cm? in a 24-well format. Before plating 293FT s
cells, culture plates were pre-coated with poly-L-ornithine solution (Millipore Sigma). The next day, s

cells were transfected with 1 pg of plasmid DNA using Lipofectamine LTX with Plus Reagent as8
(ThermoFisher) following the manufacturer’s recommendations. Per transfection, 900 ng of luciferase 45
element and 100 ng of pNL1.1.CMV [Nluc/CMV] were used. A transfection reaction of 900 ng 460

pGL4.23 [luc2/minP] and 100 ng pNL1.1.CMV [Nluc/CMV] was used as a baseline control. Both
vectors were also transfected as background controls (100 ng) with pmaxGFP (900 ng, Lonza). Cell 2

lysates were harvested by freezing at -80°C 48 hours post-transfection. 463
Luciferase assays 464
Luciferase assays were performed using the Nano-Glo Dual-Luciferase Reporter Assay System 265
(Promega) following the manufacturer’s protocol. Cell lysis was performed on the 24 well plate and 4
aliquoted across 4 wells of a white 96-well plate for 4 technical replicates per biological replicate. 467
Assays were completed in quadruplicate. Firefly luminescence was first normalized across the a8
average plate luminescence and then normalized to the average control luminescence. For each 469
biological replicate, the median fold luminescence value was determined for the four technical 470
replicates. Four biological replicates were compared to the pGL4.23 [luc2/minP]/ pNL1.1.CMV an
[Nluc/CMV] control using an ordinary one-way ANOVA with Fisher’s LSD. a2
Chromatin preparation for sorted nuclei a3
Buffers required: Nuclei Extraction Buffer (NEB): 0.32 M Sucrose, 5 mM CaCly, 3 mM Mg(Ac)a, 0.1
mM EDTA, 10 mM Tris-HCI, 0.1 mM PMSF, 0.1% Triton X-100, 1 mM DTT. Before use, add a75
Roche cOmplete protease inhibitor cocktail according to manufacturer recommendation (Sigma 476

11697498001). Sucrose Cushion Buffer (SCB): 1.6 M Sucrose, 3 mM Mg(Ac)z, 10 mM Tris-HCI, 1 4
mM DTT. Interphase Buffer: 0.8 M Sucrose, 3 mM Mg(Ac)2, 10 mM Tris-HCl. Blocking buffer: 1x s
PBS, 1% BSA, 1 mM EDTA. Pellet buffer: add up to 200 uL 1 M CaCl; to 10 mL SCB. RIPA: 1x 4

PBS, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS. 480

Methods for extracting and sorting nuclei from postmortem brain are similar to previously 481
published methods®®. Here, approximately 500 mg of tissue was placed into a chilled 40 mL Dounce s
homogenizer containing 5 mL of NEB on ice and allowed to partially thaw to ease douncing (2-3 483

minutes). Extract nuclei by douncing with “tight” pestle 30-40 times until the tissue is homogenized. 4ss
Transfer to 15 mL conical tube on ice, wash glassware with 5 mLL NEB and add to 15 mL tube. Fix s
chromatin by adding 625 uL of 16% formaldehyde (methanol free, Thermo 28906) to a final 486
concentration of 1% and rotate end-over-end at room temperature for 10 minutes. Halt fixation by s
adding 500 pL of 2.5 M Glycine and incubate another 5 minutes rotating at room temperature then s

place homogenate back on ice. During fixation, prepare sucrose gradient in two ultracentrifuge 489
buckets (Beckman Coulter cat:344058) by layering 5 mL of Interphase buffer atop 10 mL of SCB in 4
each. Carefully layer nuclei homogenate atop sucrose gradient, balance with NEB, then a01
ultracentrifuge at 24,000 rpm for 2 h using SW28 swinging bucket rotor (Beckman Coulter). Upon
completion, inspect tubes for a visible pellet of nuclei at the bottom of tube. Remove debris at 493

interphase first by using a 25 mL graduated pipette, then continue removing the remaining sucrose a0
gradient being careful not to disturb the nuclei pellet. Carefully resuspend the pellet in 1 mL cold 40
PBS and transfer to a 15 mL lo-bind tube containing 2 mL PBS on ice. (Optional: if pellet appears s
to contain large debris then pass through 70 pm filter). Wash ultracentrifuge tubes with 1 mL cold o
PBS and combine in 15 mL tube to a final volume of 10 mL, inverting to mix. Centrifuge the nuclei s
at 1,000xg for 10 minutes at 4°C to remove residual sucrose. Label nuclei by resuspending pellet in 5 00
mL blocking buffer with NeuN-488 antibody (Millipore, cat: MAB377X) and OLIG2 antibody 500
(Abcam, cat: ab109186) at 1:5,000 each. Incubate nuclei in staining buffer with rotation for at least 1 so
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hour at 4°C. Spin nuclei 500xg for 5 minutes to pellet, remove supernatant, then resuspend in 5 mL s
blocking buffer with goat-anti-rabbit-647 (Thermo, cat: A-21245) at 1:5,000 and DAPT at 1:100,000.  sos
Incubate for at least 1 hour at 4°C with rotation. Remove stain by centrifuging 500xg 5 minutes at  sos
4°C and resuspending in 3 mL cold PBS. Hold on ice and proceed immediately to sorting. 505

Nuclei were sorted using Sony MA900 with a 70 pm nozzle and pressure not exceeding pressure  sos
setting of 7. Gates were set to capture those populations that were positive for 488 signal (NeuN™T), sor
positive for 647 signal (OLIG™), or negative for both (NeuN~;OLIG"). Each population was collected  sos
into 5 mL tubes held at 4°C and pooled into 15 mL lo-bind tubes on ice. Purity of selected samples  soo
were typically >95% based on reanalysis of sorted samples. To concentrate nuclei for downstream s
analysis, add approximately 2 mL of pellet buffer per 10 mL of sorted nuclei and rotated at 4°C for su
15 minutes. Centrifuge 500x® for 10 minutes at 4°C, after which a pellet should be visible. Remove s
supernatant and carefully resuspend pelleted nuclei in at least 3 mL cold PBS. Centrifuge 500xg for s
5 minutes at 4°C. 514

To generate chromatin for ChIP-seq, resuspend pellet in cold RIPA plus protease inhibitor (Roche, s
Sigma 11836153001) at approximately 3 million nuclei per 250 L. Transfer 250 uL of each sample s
to the Bioruptor (Diagenode, cat: C30010016) tubes and sonicate tissue using a Bioruptor Pico (8  sw
cycles; 30 seconds on/ 30 seconds off). Pool the sonicated chromatin into a 1.5 mL DNA lo-bind 518
conical tube and centrifuge 12,000xg for 5 minutes at 4°C to remove any insoluble debris. Collect s
supernatant into a separate tube, add RIPA to final volume equivalent to 500,000 nuclei per 100 uL, s
then dispense working aliquots into 1.5mL tubes held on dry ice. Store at -80°C. 521

ChIP-seq protocol 522

ChIP-seq for ZEB1 was performed using chromatin from NeuN™ sorted DLPFC nuclei from two 523
control donors serving as biological replicates. ChIP-seq for MEF2C was performed on bulk DLPFC s
tissues from two control donors serving as biological replicates. Protocols for ChIP-seq are similar to s
those for frozen tissue previously described by our lab 8182 and consistent with techniques 526
recommended by the ENCODE Consortium (www.encodeproject.org/documents). Briefly, 60 uL 527
Dynabeads (ThermoFisher, cat: 11203D) were washed with cold 1x PBS + 5 mg/mL BSA then 528
combined with 8 pL antibody targeting ZEB1 (Bethyl, cat: A301-921A) or MEF2C (proteintech, cat: s
18290-1-AP) in a final volume of 200 pL and held at 4°C overnight with rotation. Tubes of aliquoted s
chromatin are thawed on ice and bead/antibody complex is washed with PBS + 5 mg/mL BSA 531
solution. Beads are ultimately resuspended in 100 uL RIPA and brought to 200 pL with 100 pL 532

chromatin aliquot. Incubate bead/antibody with chromatin using rotation for one hour at room 533
temperature then move to 4°C for another hour. After incubation, bead complexes were washed five s
times with a LiCl wash buffer (100 mM Tris at pH 7.5, 500 mM LiCl, 1% NP-40, 1% sodium 535

deoxycholate) and wash with 1 mL of cold TE (10 mM Tris-HC1 at pH 7.5, 0.1 mM Nay;EDTA). 536
Chromatin was eluted from beads by incubating with intermittent shaking for 1 hour at 65°C in IP s
elution buffer (1% SDS, 0.1 M NaHCO3), followed by incubating overnight at 65°C to reverse 538
formaldehyde cross-links. DNA was purified using DNeasy Blood and Tissue kit (Qiagen 69506) and s
eluted in a final volume of 50 uL. EB. Recovered DNA was quantified using Qubit dsDNA HS Assay s
kit (Thermo Q32854). For input controls, one aliquot of each tissue was brought to 200 uL with 541
RIPA and reverse-crosslinked overnight at 65°C. The following morning, samples were incubated an s
additional 30 minutes with 20 uL Proteinase K and 4 L RNase A (Qiagen 19101) and subsequently s
eluted for DNA using DNeasy Blood and Tissue kit. The entirety of the remaining IP DNA (and 544
approximately 250 ng Input control) were used to generate sequencing libraries. Libraries were 545
prepared by blunting and ligating ChIP DNA fragments to sequencing adapters for amplification 546
with barcoded primers (30 sec at 98°C; [10 sec at 98°C, 30 sec at 65°C, 30 sec at 72°C] x 15 cycles; s
5 min at 72°C). Libraries were quantified with Qubit dsDNA HS Assay kit and visualized with 548
Standard Sensitivity NGS Fragment Analysis Kit (Advanced Analytical DNF-473) and Fragment 549

17/29


https://doi.org/10.1101/2022.10.04.510636
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.04.510636; this version posted October 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Analyzer 5200 (Agilent). Libraries were sequenced using Illumina NovaSeq flowcell with 100 bp 550
single-end runs. 551
ChIP-seq analysis 552

Prior to analysis, reads were processed to remove optical duplicates with clumpify (BBMap v38.20;  ss3
https:/ /sourceforge.net/projects/bbmap/) [dedupe=t optical=t dupedist=2500] and remove adapter ss
reads with Cutadapt (v1.16)%% [-a AGATCGGAAGAGC -m 40]. Input reads were capped at 40 555
million using Seqtk (v1.2; https://github.com/lh3/seqtk). Individual experiments were constructed sss
following ENCODE guidelines (https://www.encodeproject.org/about/experiment-guidelines/) and s

analyzed with the chip-seq-pipeline2 processing pipeline 558
(https://github.com/ENCODE-DCC/chip-seq-pipeline2). All software within the package was run  sso
using the default settings or those recommended by the authors for transcription factors. Final 560
peaks were called using the IDR naive overlapping method with a threshold of 0.05. 561
Data and code availability 52
The raw and processed data generated will be made available through NCBI GEO under series 563
accession number GSE214637 upon publication. All supplementary tables are available upon request. s
All the code generated during this study is available at aanderson54/scMultiomics_ AD 565
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Figure S1. Integrating snRNA-seq and snATAC-seq data. A) UMAP visualization of cells
represented by only snRNA-seq data, only snATAC-seq data, and joint WNN. Cells are colored
by cell type and cluster assignment. B) WNN UMAP colored by the percent weight given to the
snATAC-seq data for each cell when creating the WNN graph. C) The proportion of cells assigned
to a cell type from each individual. P-values from t-test are indicated above box plots.
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Figure S2. Identification of cell type subclusters. A) UMAP visualization of 5 microglia
subclusters.B) Heatmap of row-normalized expression for the top DEGs for each microglia subcluster.
C) The proportion of cells assigned to each subcluster from each individual (* indicates subclusters
with a t-test p-value < 0.05; ** p-value < 0.01). D) UMAP visualization of 5 astrocyte subclusters.
E) Heatmap of row-normalized expression for the top 10 DEGs for each astrocyte subcluster. F)
UMAP visualization of the 4 oligodendrocyte subclusters. G) Heatmap of row-normalized expression
for the top 10 DEGs for each oligodendrocyte subcluster. H) UMAP visualization of the 10 excitatory
neuron subclusters. I) Heatmap of row-normalized expression for Azimuth Glutamatergic subtype
markers. J) UMAP visualization of the 8 inhibitory subclusters. K) Heatmap of row-normalized
expression for Azimuth GABAergic subtype markers. L) The proportion of cells assigned to each
inhibitory subcluster from each individual (* indicated t-test p-value < 0.05).
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Figure S3. Feature linkage description. A) Characteristics of genes by number of links. Left
panel: distribution of gene length by the number of links to the gene. Middle panel: distribution of
UMIs by the number of links to the gene. Right panel: average absolute correlation score by the
number of links to the gene. B) Distribution of the distance to linked-gene TSS by binned absolute
correlation.
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Figure S4. AD and control-specific peak-gene-TF trios. A) Heatmap of correlation values of
AD and control specific trios identified in links shared across cell types, B) excitatory neurons, C)
oligodendrocytes, and D) astrocytes.

28,/29


https://doi.org/10.1101/2022.10.04.510636
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.04.510636; this version posted October 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A)

>

-

oW
L & |
A on @

=

4

,ﬁ"’J

~ ' ~ &
2 Disease State Braak Stage
UMAP1 ® AD @eCtrl e0eodeb @b

g
s gv;‘# s
. 4 L
- 1 4 .“
RIN Age
| . L
10 1520 25 56789 50 60 70 80 90

Figure S5. Donor characteristics across cell types. WNN UMAP colored by A) disease status,
B) Braak Stage, C) sex, D) postmortem interval (PMI), E) RNA integrity number (RIN), and F)
Age.
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