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Abstract— The overexpression of many proteins can often
have a detrimental impact on cellular growth. This expression-
growth coupling leads to positive feedback - any increase of
intracellular protein concentration reduces the growth rate of
cell size expansion that in turn enhances the concentration via
reduced dilution. We investigate how such feedback amplifies
intrinsic stochasticity in gene expression to drive a skewed
distribution of the protein concentration. Our results provide
an exact solution to this distribution by analytically solving the
Chapman-Kolmogorov equation, and we use it to quantify the
enhancement of noise/skewness as a function of expression-
growth coupling. This analysis has important implications for
the expression of stress factors, where high levels provide
protection from stress, but come at the cost of reduced cellular
proliferation. Finally, we connect these analytical results to
the case of an actively degraded gene product, where the
degradation machinery is working close to saturation.

I. INTRODUCTION

Single cell studies in the past decade have characterized

several mechanisms that drive stochasticity in intracellu-

lar gene product levels [1]–[7]. These random fluctuations

fundamentally affect various biological processes including

apoptosis [8], phenotype switching [9], cell lysis by viral

infections [10]–[12], and cell differentiation [13]–[17]. As in

engineering systems, cells employ feedback and feedforward

regulation to modulate stochasticity [18]–[29], attenuating

it when fluctuations are deleterious and amplifying it when

cell-to-cell heterogeneity is beneficial. The latter case is es-

pecially relevant for drug tolerance in microbial/cancer cells,

where high intercellular heterogeneity in specific protein

levels within an otherwise genetically-identical population

allows outlier cells to escape drug treatment [30]–[37].

An important source of expression stochasticity is vari-

ability in cellular growth rate [37], [38], and several stud-

ies have quantified the interplay between growth rate and

gene expression [39]–[44]. For example, the transcription

rate of some proteins can increase with growth rate [45].

Here, we will study another perspective on this connection:

overexpression of a protein can lead to growth inhibition,

as has been shown for several stress factors, enzymes [46],

[47], and in the design of synthetic genetic circuits where

expression places a significant burden on host cell resources
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[48]–[50]. The decay in the concentration of a stable protein

(i.e., no active degradation) is dominated by dilution from

cell growth. Expression-mediated growth inhibition creates

positive feedback - any random increase in concentration

reduces dilution, which in turn, acts to further increase in

concentration [51]–[53].

In this context, we systematically study this expression-

growth coupling via a stochastic model where proteins are

synthesized in stochastic bursts [2], [54]. In between succes-

sive bursts, the protein concentration is diluted continuously

as per the nonlinear differential equation.

ẋ = −γ(x)x, (1)

where the dilution rate, in convenient units,

γ(x) =
1

1 + x/xh
, (2)

decreases with increasing protein concentration x. Here xh

is a positive constant and we refer to 1/xh as the feedback

strength. The continuous decay in protein concentration

interspersed with discrete burst events constitutes a hybrid

system. This hybrid framework has previously provided rich

insights on how diverse processes impact the stochastic

dynamics of gene product levels [55]–[57]. The key result

presented here (Section II) is the exact derivation of the

steady-state protein concentration distribution by solving the

underlying Chapman-Kolmogorov equation. In the absence

of feedback (xh → ∞ or zero feedback strength), a constant

dilution rate leads to a Gamma-distributed protein level

[58], [59]. Section III shows, using the moment analysis

perspective, how the feedback in growth rate affects the

protein statistics for an arbitrary intrinsic noise.

An analogous problem arises in the context of an unstable

protein (i.e., a protein that is actively degraded), but where

the degradation machinery/enzymes operate close to satura-

tion. To study this problem, we formulate a similar stochastic

model, but here the protein level is modeled as an integer-

valued random process and degradation is a discrete event

that occurs at a probabilistic rate γ(x)x. In Section IV, taking

a moment analysis approach, we show how steady-state mo-

ments of protein population counts can be obtained exactly

despite the fact that the rates are rational functions of x. The

procedure used to obtain exact solutions of moments can

also be used for other stochastic dynamical systems, where

saturation effects are modeled through rational functions.
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Fig. 1. Illustration of feedback model coupling continuous gene
expression with dilution. A. Diagram of the stochastic hybrid
system that describes protein dynamics. Protein synthesis x ∈ R

+ is
a jump process, that increases by a random burst size b ∈ R

+ each
time a burst event occurs. Between consecutive burst events, the
protein dilutes following the differential equation inside the ellipse.
B. Random size protein burst events that occur as per a Poisson
rate. C. Protein concentration dynamics considering different half-
saturation concentrations xh D. Dynamics of the dilution rate as
given by (2) for the protein levels shown in C.

II. MODELING GROWTH-INHIBITION MEDIATED

FEEDBACK (CONTINUOUS PROTEIN LEVEL)

Consider a stable protein with concentration x(t) ∈ R
+ at

time t diluted as per (1)-(2). Protein synthesis events occur

randomly at a rate kx and each event creates a “jump” or

burst in the concentration

x → x+ b, b ∼ 1

ïbð exp
(

− b

ïbð

)

, (3)

where the burst size b is an i.i.d. random variable that

follows an exponential distribution with mean ïbð. Here and

throughout the paper we use ï ð to denote the expected value

of random variables and random processes. It is important to

point out that for the model to be physiologically relevant,

the parameters should satisfy

kxïbð < xh. (4)

To see this note that kxïbð is the average protein synthesis

rate, while the total dilution rate

γ(x)x =
x

1 + x/xh
< xh. (5)

Thus, kxïbð has to be less than the maximum net decay

rate xh, else the concentration will increase unboundedly

over time. The overall model schematic is shown in Fig. 1A.

Fig. 1C. shows stochastic trajectories of x. Fig. 1D. presents

dilution rates γ(x) for different values xh under the same

burst events (Fig. 1B).

A. Derivation of the steady-state distribution

Let p(x, t) denote the probability density function (PDF)

of protein concentration x at time t. Based on the model for-

mulation in Fig. 1, the time evolution of p(x, t) is described

by the Chapman-Kolmogorov equation [58], [60],

∂p(x, t)

∂t
=

∂

∂x
[γ(x)xp(x, t)]− kxp(x, t)

+ kx

∫ x

0

1

ïbðe
−(x−x′)/ïbðp(x′, t) dx′.

(6)

The steady-state protein PDF is given by (See Appendix A

for detail),

p(x) =
ïbð

α2Γ(kx)

(x

α

)kx−1

e−x/α

(

1 +
x

xh

)

,

1

α
:=

1

ïbð −
kx
xh

> 0.

(7)

In the absence of feedback (i.e, xh → ∞ that corresponds to

a constant dilution rate γ(x) = 1), p(x) reduces to a Gamma

distribution

p(x) =
1

ïbðkxΓ(kx)
xkx−1e−x/ïbð, (8)

as has been previously derived and also found consistent with

experimentally observed distributions [58], [59].

Multiplying (7) by x, x2 or x3 correspondingly and

integration it on the interval [0,∞) give the first three orders

steady state moment,

ïxð = kxα(1 + ïbð/xh),

ïx2ð = kxα
2(kx + 1)(1 + 2ïbð/xh),

ïx3ð = kxα
3(kx + 1)(kx + 2)(1 + 3ïbð/xh).

(9)

Fig. 2 presents typical stochastic trajectories of protein

concentration as well as a comparison of PDF between the

simulated (histogram) and analytical (solid lines) results.

Analytical results for constant dilution rate (Fig. 2A) and

concentration-dependent feedback dilution rate (Fig. 2B)

show good match with stochastic simulation results. Fig. 3

presents a comparison of PDFs between different feedback

strengths (1/xh). As we increase the feedback strength, the

tendency of skew in the distribution is enhanced.

III. MOMENT ANALYSIS METHOD FOR CONTINUOUS

PROTEIN LEVEL

In the above section, we derived the protein concentration

PDF for the case where the protein bursts b follow an

exponential distribution. In the general case, we measure the

moments of b with no particular assumption of its distribu-

tion. We next show how a moment dynamics approach can

be employed to derive the steady-state statistical moments of

x(t) without assumptions about the PDF of b.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.03.510723doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510723
http://creativecommons.org/licenses/by-nd/4.0/


Constant Dilution Rate (Open Loop)

Concentration-dependent Dilution Rate (Feedback)

Fig. 2. Protein trajectories (left) and steady-state distributions
(right). A. Constant dilution rate. B. Concentration-dependent
dilution rate. The PDF drawn with solid line corresponds to the
analytical expression, while the histogram is the result of stochastic
simulations. (Parameters: ïbð = 10, xh = 100, kx is calculated such

as ïxð = 100 in both cases).
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Fig. 3. Comparison of steady-state distributions. The protein
concentration probability distribution function (7) is plotted with
different feedback strengths (1/xh). Other parameters taken as
ïbð = 5, kx is calculated so as to fix the steady-state mean level

ïxð = 100).

A. Constant dilution rate

To introduce the moment analysis method, let us consider

that the burst size follows any arbitrary PDF ν(b). If during

each burst, x evolves as (1), the time derivative of the

expected value of any arbitrary function ϕ(x) satisfies [61]

dïϕ(x)ð
dt

= ïkx
∫ ∞

0

ν(b) [ϕ(x+ b)− ϕ(x)] dbð

+

〈

−γ(x)x
dϕ(x)

dx

〉

.

(10)

Considering γ(x) = 1 for the no-feedback case and setting

ϕ(x) = x, x2, and x3 in (10) yields the following system

of differential equations

dïxð
dt

= kxïbð − ïxð, (11a)

dïx2ð
dt

= kxïb2ð+ 2kxïbðïxð − 2ïx2ð, (11b)

dïx3ð
dt

= kxïb3ð+ 3kxïb2ðïxð+ 3kxïbðïx2ð − 3ïx3ð,
(11c)

where ïbnð =
∫

bnν(b)db.
Setting the left-hand-side of (11) to zero we obtain the

steady-state moments ïxð, ïx2ð, and ïx3ð as

ïxð = kxïbð, ïx2ð = kx
2
(ïb2ð+ 2kxïbð2),

ïx3ð = kx
6
(2ïb3ð+ 9kxïbðïb2ð+ 6kx

2ïbð3),
(12)

respectively. Using these uncentered moments one can quan-

tify the noise in protein concentration via the steady-state

Fano factor (variance divided by mean)

FFx :=
ïx2ð − ïxð2

ïxð2
=

ïb2ð
2ïbð , (13)

and the skewness

Skewx :=
ï(x− ïxð)3ð

(ïx2ð − ïxð2) 3

2

=
2
√
2kxïb3ð

3(kxïb2ð)
3

2

. (14)

When b is exponentially distributed, FFx and Skewx reduce

to

FFx = ïbð, Skewx =
2√
kx

. (15)

B. Concentration-dependent dilution rate

Now, let us consider the scenario where the dilution rate

γ(x) depends on x as in (2). Using (10), we obtain the

equations describing the moment dynamics

dïxð
dt

= kxïbð −
〈

x

1 + x/xh

〉

, (16a)

dïx2ð
dt

= kxïb2ð+ 2kxïbðïxð − 2

〈

x2

1 + x/xh

〉

, (16b)

dïx3ð
dt

= kxïb3ð+ 3kxïb2ðïxð+ 3kxïbðïx2ð

− 3

〈

x3

1 + x/xh

〉

. (16c)

Given the nonlinearity arising via the rational decay rate,

(16a) by itself cannot be solved to obtain a formula for

ïxð. However, it turns out that this mean is obtained by

simultaneously solving (16a)-(16b). To see this, we note from

(16a)
〈

1

1 + x/xh

〉

= 1− kxïbð
xh

, (17)

where the ï ð symbol denotes the expected value at steady-

state. Using the fact that

x2

1 + x/xh
= xh

2

(

1

1 + x/xh
− 1 +

x

xh

)

, (18)
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Fig. 4. Amplification in protein noise and skewness by the
coupling of expression level to cellular growth. A. Protein noise
plotted via the steady-state Fano factor FFx against the mean
burst size ïbð. B. Protein noise FFx vs. the feedback strength
(1/xh). C. Protein Skewness vs the mean burst size. D. skewness in
protein concentration vs feedback strength (1/xh). All throughout
this figure we assume an exponential distribution for b. (Parameters:

ïxð = 100, xh = 100 in A and C, and ïbð = 5 in B and D.)

we obtain from (16b) at steady-state

〈

1

1 + x/xh

〉

= 1− ïxð
xh

+
1

2xh
2
(kxïb2ð+2kxïbðïxð). (19)

By setting (17) equal to (19), one can solve for the steady-

state mean level

ïxð = kxα

(

1 +
ïb2ð

2ïbðxh

)

,
1

α
:=

1

ïbð −
kx
xh

. (20)

As expected, in the limit xh → ∞, α → ïbð this mean

converges to the no-feedback case (12).

Using a similar approach one can use the first three

moment equations (16) to obtain ïx2ð. To see this, by writing

x3

1 + x/xh
= xh

3

(

1− 1

1 + x/xh
+

x2

xh
2
− x

xh

)

, (21)

we obtain from (16c),

〈

1

1 + x/xh

〉

= 1− ïxð
xh

+
ïx2ð
xh

2
− kx

3xh
3
(ïb3ð+ 3ïb2ðïxð

+ 3ïbðïx2ð). (22)

And setting (19) equal to (22) results in

ïx2ð = α

3xhïbð
[kx(ïb3ð+ 3ïb2ðïxð) + 3xh

2(ïxð − kxïbð)].
(23)

Following along this direction, to derive the third order

steady-state moment one requires the fourth order moment

dynamics,

dïx4ð
dt

= kxïb4ð+ 4kxïb3ðïxð+ 6kxïb2ðïx2ð

+ 4kxïbðïx3ð −
〈

4x4

1 + x/xh

〉

.

(24)

By performing a fraction decomposition of the last term in

(24) and expressing it in terms of ï 1
1+x/xh

ð, and substituting

its steady-state value from (22) back in (24) leads to

ïx3ð = α

4xhïbð
[kx(ïb4ð+ 4ïb3ðïxð+ 4xh

3ïbð

+ 6ïb2ðïx2ð)− 4xh
2(xhïxð − ïx2ð)].

(25)

These steady-state moments can be used to obtain the Fano

factor and skewness,

FFx =
3kxïb2ð2 + 6xh

2ïb2ð+ 4ïb3ð(xh − kxïbð)
6(xh − kxïbð)(ïb2ð+ 2xhïbð)

,

Skewx =
kx

12V arx
3

2 (xh − kxïbð)3
[3kx

2ïb2ð3

+ 6kxxh
2ïb2ð2 + 6kxïb2ðïb3ð(xh − kxïbð)

+ (kxïbð − xh)(3kxïbðïb4ð − xh(3ïb4ð
+ 4xhïb3ð))],

(26)

respectively, where V arx is the variance of steady-state

protein concentration,

V arx =
kx[3kxïb2ð2 + 6xh

2ïb2ð+ 4ïb3ð(xh − kxïbð)]
12(xh − kxïbð)2

.

(27)

For the case where the burst size follows an exponential

distribution,

FFx =
α(xh

2 + 2xhïbð − kxïbð2)
xh(ïbð+ xh)

,

Skewx =
2kx[1 +

ïbð
xh

3 (kx
2ïbð2 − 3kxxhïbð+ 3xh

2)]

(kx + kxïbð(2xh − kxïbð)/xh
2)

3

2

.

(28)

In the limit of no feedback (xh → ∞, α → ïbð), (28)

converges to (15).To analyze the results, in Fig. 4A, we

present how the noise in protein level changes with burst

size ïbð. For this plot, we tune kx while keeping ïxð = 100
and xh = 100. In the absence of feedback, FFx = ïbð. In

the presence of feedback, the noise in protein concentration

increases with burst size ïbð. Fig. 4B shows how the noise in

protein is amplified by increasing feedback strength (1/xh).
A similar analysis is made with skewness in Fig. 4C and D.

IV. MOMENTS ANALYSIS FOR SATURATION IN

DEGRADATION MACHINERY (DISCRETE PROTEIN LEVEL)

In this section, we explore an alternative scenario where

the protein is actively degraded by an enzyme that is present

in limiting amounts, resulting in a degradation rate given by

(1). To capture the stochastic dynamics we now consider an

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.03.510723doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510723
http://creativecommons.org/licenses/by-nd/4.0/


Fig. 5. Diagram of the stochastic system that describes protein
synthesis and active degradation. Feedback arising from degra-
dation rate γ(x) decreases with increasing protein level. Protein
synthesis x ∈ N is modeled as a jump process which increases
by a random burst size b ∈ N each time a burst event occurs.
Degradation events occur with rate γ(x)x and reduce x by one.

analogous integer-valued random process x(t) with two key

differences (Fig.5):

1) Upon a burst event, x(t) increases by b where the

burst size now follows an arbitrary integer-valued

distribution P(b). A standard distribution often used

for burst size in literature is a geometric distribution

[62].

2) The degradation is modeled as a probabilistic event that

occurs with rate xγ(x), and protein numbers decrease

by one when the event occurs.

For this discrete system, the time evolution of moments

can be obtained using the generator [63]

dïϕ(x)ð
dt

= ï
∞
∑

j=1

kxP(b = j) [ϕ(x+ j)− ϕ(x)]ð

+ ïγ(x)x[ϕ(x− 1)− ϕ(x)]ð .
(29)

A. Constant degradation rate

The moment dynamics for the no-feedback case (γ(x) =
1) are

dïxð
dt

= kxïbð − ïxð
dïx2ð
dt

= kxïb2ð+ 2kxïbðïxð+ ïxð − 2ïx2ð
dïx3ð
dt

= kxïb3ð+ 3kxïb2ðïxð+ 3kxïbðïx2ð
− ïxð+ 3ïx2ð − 3ïx3ð

(30)

which yields the following steady-state moments, Fano fac-

tor, and skewness,

ïxð = kxïbð, ïx2ð = kx
2
(ïbð+ ïb2ð+ 2kxïb2ð),

ïx3ð = kx
6
[ïbð+ 3ïb2ð+ 9kxïbð(ïbð+ ïb2ð)

+ 6kx
2ïbð3 + 2ïb3ð],

FFx =
ïbð+ ïb2ð

2ïbð

Skewx =

√
2kx(ïbð+ 3ïb2ð+ 2ïb3ð)
3(kx(ïbð+ ïb2ð)) 3

2

.

(31)

When the burst size is geometric-distributed, P(b) = (1 −
f)bf with f = 1/(1 + ïbð) we get the Fano factor and

skewness
FFx = 1 + ïbð,

Skewx =
1 + 2ïbð

√

kxïbð(1 + ïbð)
.

(32)

and a straightforward comparison confirms a higher FFx in

the discrete formulation compared to its continuous counter-

part in (15). See the dashed line in Fig. 6A.

B. Protein feedback in degradation rate

For feedback degradation, γ(x) = 1/(1 + x/xh), we can

obtain steady-state moments by performing a similar method

in (17)-(23) (See Appendix B for detail). The Fano factor and

the skewness become,

FFx =
V arx(2xh − 2kxïbð)

kx(ïbð+ ïb2ð+ 2xhïbð)
,

Skewx =
kx

12(kxïbð − xh
3)V arx

3

2

[−3kx
2(ïb2ð3

+ ïbð2ïb4ð − 2ïbðïb2ðïb3ð)− 3kxxh(ïbð2

+ 2ïbð(ïb2ð − ïb3ð − ïb4ð) + ïb2ð(3ïb2ð
+ 2ïb3ð))− xh

2(3ïb2ð+ 4kxïbð2

+ 6kxïb2ð(ïbð+ ïb2ð) + 6ïb3ð+ 3ïb4ð
− 4kxïbðïb3ð)− 2xh

3(ïbð
+ 3ïb2ð+ 2ïb3ð)].

(33)

where,

V arx =
kx

12(xh − kxïbð)2
[kx(ïbð2 + 3ïb2ð

− 4ïbðïb3ð) + 2xh(ïbð+ 3ïb2ð+ 2ïb3ð)
+ 6xh

2(ïbð+ ïb2ð)].

(34)

For the case where b follows a geometric distribution,

FFx = 1 + ïbð+ ïbð(1 + ïbð)
1 + ïbð+ xh

+
kxïbð(1 + ïbð)
xh − kxïbð

,

Skewx =
kxïbð(1 + ïbð)

4(xh − kxïbð)V arx
3

2

[kx
2ïbð3(1

+ 5ïbð)− 2kxxhïbð(3ïbð − 1)(3ïbð+ 2)

+ xh
2(4 + ïbð(4kx + 21ïbð+ 21))

+ 4xh
3(2ïbð+ 1)],

(35)

where,

V arx =
kxïbð(1 + ïbð)
(xh − kxïbð)2

(−kxïbð2

+ 2xhïbð+ xh(1 + xh)).

(36)

In the limit of absence of feedback (xh → ∞, γ(x) → 1),

FFx and Skewx in (35) become (32).

Fig. 6 presents, in a similar way as Fig. 4, the Fano factor

and skewness for continuous dilution (solid line) and discrete

degradation (dashed line). In Fig. 6A and B, the noise in

protein level (Fano factor) is plotted against the burst size

(ïbð) and feedback strength (1/xh), respectively. Both cases

have qualitatively similar trends, but the discrete case has
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Fig. 6. Amplification in protein noise and skewness due to
saturation in degradation machinery A. Protein noise FFx vs
mean burst size ïbð with the same mean protein level. B. Protein
noise FFx as the feedback strength (1/xh) increases. C. Skewness
of the protein concentration vs mean burst size ïbð. D. Skewness
vs feedback strength (1/xh). We assume geometric distribution
for b. Statistics for discrete protein (dashed lines) are compared
to the statistics considering continuous protein levels (continuous
lines). Results with the open loop protein synthesis (blue) are also
compared to the result considering feedback (red). (Parameters:

xh = 100 in A and C, ïbð = 5 in B and D, ïxð = 100, and

kx is calculated such as ïxð = 100 in both cases)

a larger Fano factor regardless of the presence of feedback.

Fig. 6C and D show the comparison of skewness. In the

absence of feedback, the skewness of both cases has similar

values. However, in the presence of feedback, the skewness

of the discrete case is larger than that of the continuous case.

V. CONCLUSION

In this contribution, we have systematically explored how

the expression-growth coupling implements a positive feed-

back in gene expression (Fig. 1). We studied the impact

of this feedback on the amplification of noise at the level

of a given protein. Our exact derivation of the steady-

state protein level distribution (Fig. 2) quantifies both the

enhancement of noise and the skewness as a function of the

feedback strength (Fig. 4). Having this analytically predicted

distribution is useful for inferring parameters by fitting it

to data on single-cell stress factor levels that are known

to inhibit cellular proliferation [49], [50]. Our results show

that such forms of feedback could lead to a larger fraction

of outlier cells with high expression levels (Fig. 3). This

stochastically primed outlier cell subpopulation has lower

fitness in terms of proliferation, but can survive detrimental

changes in extracellular environments.

In the context of cancer, the survival of a rare subpopula-

tion of stochastically prime drug-tolerant cells in response

to targeted therapy often drives the development of drug

resistance [64]. We further extended these results with a

discrete-state formulation of protein synthesis where the

degradation rate is inversely related to its expression level.

This work paves the way for several directions of future in-

vestigations. For example, given a certain frequency of drug

treatment regimes that favor survival of outlier cells, is there

an optimal feedback strength that maximizes the populations

long-term fitness in fluctuating environments? The analysis

here is based on following a single cell over time and this

naturally leads to exploring the protein distribution in an

expanding cell population using a combination of simulations

and population balance equations [65]–[67].

APPENDIX

A. Derivation of steady-state distribution

Let p(x, t) denote the probability density function of pro-

tein concentration at time t. Based on the model formulation

in Fig. 1, the time evolution of p(x, t) is described by the

Chapman-Kolmogorov equation,

∂p(x, t)

∂t
=

∂

∂x
[γ(x)xp(x, t)]− kxp(x, t)

+ kx

∫ x

0

1

ïbðe
−(x−x′)/ïbðp(x′, t) dx′

(37)

[58], [60]. In order to find the stationary distribution, we

rewrite it in the form of a partial integro-differential equation,

∂p(x, t)

∂t
+

∂J

∂x
= 0,

J = −γ(x)xp(x, t) + kx

∫ x

0

e−(x−x′)/ïbðp(x′)dx′.
(38)

At steady state, ∂p/∂t = 0, this yields the Volterra integral

equation[60],

x

1 + x/xh
p(x) = kx

∫ x

0

e−(x−x′)/ïbðp(x′)dx′. (39)

We present the method of solving (39) to obtain the steady-

state protein concentration distribution based on the Laplace

transform. In case we want to use Laplace transform ap-

proach to solve equation (39), we perform a rearrangement

in the following way,

xp(x) = kx

∫ x

0

(

1 +
x− x′

xh
+

x′

xh

)

e−(x−x′)/ïbðp(x′)dx′,

(40)

after which the right side of equation becomes the sum

of three distinct convolutions. Define an image P (s) as a

function of a Laplace variable s,

P (s) =

∫ ∞

0

p(x)e−sxdx. (41)

Applying the Laplace transform to (40), we find
(

1

kx
− 1/xh

s+ 1
ïbð

)

P ′(s) = −
(

1

s+ 1
ïbð

+
1/xh

(s+ 1
ïbð )

2

)

P (s),

(42)
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which becomes a separable differential equation

P ′(s)

P (s)
=

1

s+ 1/ïbð −
kx1

s+ 1/ïbð − kx/xh
. (43)

The general solution of (43) is given by

P (s) = C
s+ 1/ïbð

(s+ 1/ïbð − kx/xh)kx+1
, (44)

where C is an arbitrary constant. Note that the right hand

side is a power function of the Laplace variable s, which is

shifted by value

1

α
:=

1

ïbð −
kx
xh

. (45)

In order to return to the original function p(x), we take

inverse Laplace transform applied to the general solution by

using the following relation,

L−1

{

(

s+
1

α

)−λ
}

=
e−x/αxλ−1

Γ(λ)
. (46)

We obtain the general solution of (44),

p(x) = Ce−x/αxkx−1 1 + x/xh

Γ(kx)
. (47)

We set C so that the integral of the right side is equal to one

(i.e., p(x) is probability density function on the non-negative

domain), the steady state probability density function of

protein concentration is given by,

p(x) =
ïbð

α2Γ(kx)

(x

α

)kx−1

e−x/α

(

1 +
x

xh

)

, α > 0.

(48)

B. Moment analysis of feedback active degradation

For feedback degradation γ(x) = x/(1+ x/xh), The first

three order moment can be obtained by setting ϕ(x) = x, x2,
and x3 in (29), respectively,

dïxð
dt

= kxïbð −
〈

x

1 + x/xh

〉

dïx2ð
dt

= kxïb2ð+ 2kxïbðïxð+
〈

x

1 + x/xh

〉

− 2

〈

x2

1 + x/xh

〉

dïx3ð
dt

= kxïb3ð+ 3kxïb2ðïxð+ 3kxïbðïx2ð

−
〈

x

1 + x/xh

〉

+ 3

〈

x2

1 + x/xh

〉

− 3

〈

x3

1 + x/xh

〉

.

(49)

By performing similar approach in (17)-(23), we can obtain

the steady-state moment,

ïxð = kx(ïbð+ ïb2ð+ 2xhïbð)
2xh − 2kxïbð

ïx2ð = kx
6(xh − kxïbð)

[ïbð+ 3ïb2ð+ 2ïb3ð

+ 6ïxð(ïbð+ ïb2ð)] + xh
2(ïxð − kxïbð)
xh − kxïbð

ïx3ð = 1

4xh − 4kxïbð
[4xh

2(ïx2ð − xhïxð)

+ kxïb2ð(6ïx2ð+ 6ïxð+ 1) + kx(ïb4ð
+ 2(ïb3ð+ 2ïb3ðïxð+ ïbðïxð+ 2xh

3ïbð
+ 3ïbðïx2ð))]

(50)

The Fano factor and the skewness become,

FFx =
V arx(2xh − 2kxïbð)

kx(ïbð+ ïb2ð+ 2xhïbð)
,

Skewx =
kx

12(kxïbð − xh
3)V arx

3

2

[−3kx
2(ïb2ð3

+ ïbð2ïb4ð − 2ïbðïb2ðïb3ð)− 3kxxh(ïbð2

+ 2ïbð(ïb2ð − ïb3ð − ïb4ð) + ïb2ð(3ïb2ð
+ 2ïb3ð))− xh

2(3ïb2ð+ 4kxïbð2

+ 6kxïb2ð(ïbð+ ïb2ð) + 6ïb3ð+ 3ïb4ð
− 4kxïbðïb3ð)− 2xh

3(ïbð
+ 3ïb2ð+ 2ïb3ð)].

(51)

where,

V arx =
kx

12(xh − kxïbð)2
[kx(ïbð2 + 3ïb2ð

− 4ïbðïb3ð) + 2xh(ïbð+ 3ïb2ð+ 2ïb3ð)
+ 6xh

2(ïbð+ ïb2ð)].

(52)
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[6] B. Schwanhäusser, D. Busse, N. Li, G. Dittmar, J. Schuchhardt,
J. Wolf, W. Chen, and M. Selbach, “Global quantification of mam-
malian gene expression control,” Nature, vol. 473, no. 7347, pp. 337–
342, 2011.

[7] J. Paulsson, “Models of stochastic gene expression,” Physics of life

reviews, vol. 2, no. 2, pp. 157–175, 2005.

[8] J. Roux, M. Hafner, S. Bandara, J. J. Sims, H. Hudson, D. Chai, and
P. K. Sorger, “Fractional killing arises from cell-to-cell variability in
overcoming a caspase activity threshold,” Molecular systems biology,
vol. 11, no. 5, p. 803, 2015.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.03.510723doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510723
http://creativecommons.org/licenses/by-nd/4.0/


[9] E. M. Ozbudak, M. Thattai, H. N. Lim, B. I. Shraiman, and
A. Van Oudenaarden, “Multistability in the lactose utilization network
of escherichia coli,” Nature, vol. 427, no. 6976, pp. 737–740, 2004.

[10] K. Rijal, A. Prasad, A. Singh, and D. Das, “Exact distribution of
threshold crossing times for protein concentrations: Implication for
biological timekeeping,” Physical Review Letters, vol. 128, no. 4, p.
048101, 2022.

[11] K. R. Ghusinga, J. J. Dennehy, and A. Singh, “First-passage time
approach to controlling noise in the timing of intracellular events,”
Proceedings of the National Academy of Sciences, vol. 114, pp. 693–
698, 2017.

[12] S. Kannoly, T. Gao, S. Dey, N. Wang, A. Singh, and J. J. Dennehy,
“Optimum threshold minimizes noise in timing of intracellular events,”
Iscience, vol. 23, p. 101186, 2020.

[13] M. A. Coomer, L. Ham, and M. P. Stumpf, “Noise distorts the
epigenetic landscape and shapes cell-fate decisions,” Cell Systems,
vol. 13, no. 1, pp. 83–102, 2022.

[14] T. M. A. Neildez-Nguyen, A. Parisot, C. Vignal, P. Rameau, D. Stock-
holm, J. Picot, V. Allo, C. Le Bec, C. Laplace, and A. Paldi,
“Epigenetic gene expression noise and phenotypic diversification of
clonal cell populations,” Differentiation, vol. 76, pp. 33–40, 2008.

[15] T. M. Norman, N. D. Lord, J. Paulsson, and R. Losick, “Stochastic
switching of cell fate in microbes,” Annual Review of Microbiology,
vol. 69, pp. 381–403, 2015.

[16] A. Singh, “Stochastic analysis of genetic feedback circuit controlling
HIV cell-fate decision,” Proc. of the 51st IEEE Conf. on Decision and

Control, Maui, Hawaii, pp. 4918–4923, 2012.

[17] T. Akanuma, C. Chen, T. Sato, R. M. Merks, and T. N. Sato, “Memory
of cell shape biases stochastic fate decision-making despite mitotic
rounding,” Nature communications, vol. 7, p. 11963, 2016.

[18] L. S. Weinberger, J. Burnett, J. Toettcher, A. Arkin, and D. Schaffer,
“Stochastic gene expression in a lentiviral positive-feedback loop:
HIV-1 Tat fluctuations drive phenotypic diversity,” Cell, vol. 122, pp.
169–182, 2005.

[19] S. Hooshangi and R. Weiss, “The effect of negative feedback on noise
propagation in transcriptional gene networks,” Chaos: An Interdisci-

plinary Journal of Nonlinear Science, vol. 16, 2006.

[20] Y. Dublanche, K. Michalodimitrakis, N. Kummerer, M. Foglierini, and
L. Serrano, “Noise in transcription negative feedback loops: simulation
and experimental analysis,” Molecular Systems Biology, vol. 2, p. 41,
2006.

[21] N. Kumar, T. Platini, and R. V. Kulkarni, “Exact Distributions for
Stochastic Gene Expression Models with Bursting and Feedback,”
Physical Review Letters, vol. 113, p. 268105, 2014.

[22] A. Singh and J. P. Hespanha, “Optimal feedback strength for noise
suppression in autoregulatory gene networks,” Biophysical Journal,
vol. 96, pp. 4013–4023, 2009.

[23] A. Singh, “Negative feedback through mRNA provides the best control
of gene-expression noise,” IEEE Transactions on Nanobioscience,
vol. 10, pp. 194–200, 2011.

[24] Y. Tao, X. Zheng, and Y. Sun, “Effect of feedback regulation on
stochastic gene expression,” Journal of Theoretical Biology, vol. 247,
pp. 827–836, 2007.

[25] M. Voliotis and C. G. Bowsher, “The magnitude and colour of noise
in genetic negative feedback systems,” Nucleic Acids Research, 2012.

[26] T. Kang, T. Quarton, C. M. Nowak, K. Ehrhardt, A. Singh, Y. Li,
and L. Bleris, “Robust filtering and noise suppression in intragenic
mirna-mediated host regulation,” iScience, vol. 23, no. 10, p. 101595,
2020.

[27] P. Bokes, A. Borri, P. Palumbo, and A. Singh, “Mixture distributions
in a stochastic gene expression model with delayed feedback: a wkb
approximation approach,” Journal of Mathematical Biology, vol. 81,
pp. 343–367, 2020.

[28] C. Tan, P. Marguet, and L. You, “Emergent bistability by a growth-
modulating positive feedback circuit,” Nature chemical biology, vol. 5,
no. 11, pp. 842–848, 2009.

[29] A. Borri, P. Palumbo, and A. Singh, “Noise propagation in metabolic
pathways: the role of growth-mediated feedback,” in 2020 59th IEEE

Conference on Decision and Control (CDC). IEEE, 2020, pp. 4610–
4615.

[30] S. M. Shaffer, M. C. Dunagin, S. R. Torborg, E. A. Torre, B. Emert,
C. Krepler, M. Beqiri, K. Sproesser, P. A. Brafford, M. Xiao, E. Eggan,
I. N. Anastopoulos, C. A. Vargas-Garcia, A. Singh, K. L. Nathanson,
M. Herlyn, and A. Raj, “Rare cell variability and drug-induced

reprogramming as a mode of cancer drug resistance,” Nature, vol.
546, pp. 431–435, 2017.

[31] S. M. Shaffer, B. L. Emert, R. A. R. Hueros, C. Cote, G. Harmange,
D. L. Schaff, A. E. Sizemore, R. Gupte, E. Torre, A. Singh et al.,
“Memory sequencing reveals heritable single-cell gene expression
programs associated with distinct cellular behaviors,” Cell, vol. 182,
pp. 947–959, 2020.

[32] I. E. Meouche, Y. Siu, and M. J. Dunlop, “Stochastic expression of a
multiple antibiotic resistance activator confers transient resistance in
single cells,” Scientific Reports, vol. 6, p. 19538, 2016.

[33] C. A. Chang, J. Jen, S. Jiang, A. Sayad, A. S. Mer, K. R. Brown,
A. M. Nixon, A. Dhabaria, K. H. Tang, D. Venet et al., “Ontogeny
and vulnerabilities of drug-tolerant persisters in her2+ breast cancer,”
Cancer discovery, 2021.

[34] J. J. Lee, S.-K. Lee, N. Song, T. O. Nathan, B. M. Swarts, S.-
Y. Eum, S. Ehrt, S.-N. Cho, and H. Eoh, “Transient drug-tolerance
and permanent drug-resistance rely on the trehalose-catalytic shift in
mycobacterium tuberculosis,” Nature communications, vol. 10, pp. 1–
12, 2019.

[35] E. A. Libby, S. Reuveni, and J. Dworkin, “Multisite phosphorylation
drives phenotypic variation in (p) ppgpp synthetase-dependent antibi-
otic tolerance,” Nature communications, vol. 10, pp. 1–10, 2019.

[36] I. Levin-Reisman, I. Ronin, O. Gefen, I. Braniss, N. Shoresh, and N. Q.
Balaban, “Antibiotic tolerance facilitates the evolution of resistance,”
Science, vol. 355, pp. 826–830, 2017.

[37] D. J. Kiviet, P. Nghe, N. Walker, S. Boulineau, V. Sunderlikova, and
S. J. Tans, “Stochasticity of metabolism and growth at the single-cell
level,” Nature, vol. 514, no. 7522, pp. 376–379, 2014.

[38] P. Thomas, G. Terradot, V. Danos, and A. Y. Weiße, “Sources,
propagation and consequences of stochasticity in cellular growth,”
Nature communications, vol. 9, no. 1, pp. 1–11, 2018.

[39] M. Scott, C. W. Gunderson, E. M. Mateescu, Z. Zhang, and T. Hwa,
“Interdependence of cell growth and gene expression: origins and
consequences,” Science, vol. 330, no. 6007, pp. 1099–1102, 2010.

[40] M. Kafri, E. Metzl-Raz, G. Jona, and N. Barkai, “The cost of protein
production,” Cell reports, vol. 14, no. 1, pp. 22–31, 2016.

[41] L. H. Krah and R. Hermsen, “The effect of natural selection on the
propagation of protein expression noise to bacterial growth,” PLoS

computational biology, vol. 17, no. 7, p. e1009208, 2021.

[42] S. Dey and A. Singh, “Stochastic analysis of feedback control
by molecular sequestration,” in 2019 American Control Conference

(ACC). IEEE, 2019, pp. 4466–4471.

[43] J. Feng, D. A. Kessler, E. Ben-Jacob, and H. Levine, “Growth feedback
as a basis for persister bistability,” Proceedings of the National

Academy of Sciences, vol. 111, pp. 544–549, 2014.

[44] S. Klumpp and T. Hwa, “Bacterial growth: global effects on gene
expression, growth feedback and proteome partition,” Current Opinion

in Biotechnology, vol. 28, pp. 96–102, 2014.

[45] M. P. Swaffer, J. Kim, D. Chandler-Brown, M. Langhinrichs, G. K.
Marinov, W. J. Greenleaf, A. Kundaje, K. M. Schmoller, and J. M.
Skotheim, “Transcriptional and chromatin-based partitioning mecha-
nisms uncouple protein scaling from cell size,” Molecular Cell, vol. 81,
no. 23, pp. 4861–4875, 2021.

[46] E. Dekel and U. Alon, “Optimality and evolutionary tuning of the
expression level of a protein,” Nature, vol. 436, no. 7050, pp. 588–
592, 2005.

[47] D. Molenaar, R. Van Berlo, D. De Ridder, and B. Teusink, “Shifts in
growth strategies reflect tradeoffs in cellular economics,” Molecular

systems biology, vol. 5, no. 1, p. 323, 2009.

[48] S. Vadia and P. A. Levin, “Growth rate and cell size: a re-examination
of the growth law,” Current opinion in microbiology, vol. 24, pp. 96–
103, 2015.

[49] O. Patange, C. Schwall, M. Jones, C. Villava, D. A. Griffith,
A. Phillips, and J. C. Locke, “Escherichia coli can survive stress by
noisy growth modulation,” Nature communications, vol. 9, no. 1, pp.
1–11, 2018.

[50] G. Harmange, R. A. R. Hueros, D. L. Schaff, B. L. Emert, M. M.
Saint-Antoine, S. Nellore, M. E. Fane, G. M. Alicea, A. T. Weeraratna,
A. Singh et al., “Disrupting cellular memory to overcome drug
resistance,” bioRxiv, 2022.

[51] J. R. Melendez-Alvarez and X.-J. Tian, “Emergence of qualitative
states in synthetic circuits driven by ultrasensitive growth feedback,”
PLOS Computational Biology, vol. 18, no. 9, p. e1010518, 2022.

[52] H. Y. Kueh, A. Champhekar, S. L. Nutt, M. B. Elowitz, and E. V.
Rothenberg, “Positive feedback between pu. 1 and the cell cycle

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.03.510723doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510723
http://creativecommons.org/licenses/by-nd/4.0/


controls myeloid differentiation,” Science, vol. 341, no. 6146, pp. 670–
673, 2013.

[53] C. Jia, P. Xie, M. Chen, and M. Q. Zhang, “Stochastic fluctuations can
reveal the feedback signs of gene regulatory networks at the single-
molecule level,” Scientific reports, vol. 7, no. 1, pp. 1–9, 2017.

[54] V. Shahrezaei and P. S. Swain, “Analytical distributions for stochastic
gene expression,” Proceedings of the National Academy of Sciences,
vol. 105, no. 45, pp. 17 256–17 261, 2008.

[55] P. Bokes and A. Singh, “Gene expression noise is affected differ-
entially by feedback in burst frequency and burst size,” Journal of

mathematical biology, vol. 74, no. 6, pp. 1483–1509, 2017.
[56] A. Singh and J. P. Hespanha, “Stochastic hybrid systems for studying

biochemical processes,” Philosophical Transactions of the Royal So-

ciety A: Mathematical, Physical and Engineering Sciences, vol. 368,
no. 1930, pp. 4995–5011, 2010.

[57] M. Soltani and A. Singh, “Moment analysis of linear time-varying
dynamical systems with renewal transitions,” SIAM Journal on Control

and Optimization, vol. 57, pp. 2660–2685, 2019.
[58] N. Friedman, L. Cai, and X. Xie, “Linking stochastic dynamics to

population distribution: an analytical framework of gene expression,”
Physical Review Letters, vol. 97, p. 168302, 2006.

[59] L. Cai and N. F. X. S. Xie, “Stochastic protein expression in individual
cells at the single molecule level,” Nature, vol. 440, pp. 358–362, 2006.

[60] P. Bokes and A. Singh, “Controlling noisy expression through auto

regulation of burst frequency and protein stability,” in International

Workshop on Hybrid Systems Biology. Springer, 2019, pp. 80–97.

[61] J. P. Hespanha and A. Singh, “Stochastic models for chemically react-
ing systems using polynomial stochastic hybrid systems,” International

Journal of Robust and Nonlinear Control, vol. 15, pp. 669–689, 2005.

[62] J. M. Pedraza and J. Paulsson, “Effects of molecular memory and
bursting on fluctuations in gene expression,” Science, vol. 319, no.
5861, pp. 339–343, 2008.

[63] A. Singh and J. P. Hespanha, “Approximate moment dynamics for
chemically reacting systems,” IEEE Transactions on Automatic Con-

trol, vol. 56, no. 2, pp. 414–418, 2010.

[64] I. F. Tannock, “Tumor physiology and drug resistance,” Cancer and

Metastasis Reviews, vol. 20, no. 1, pp. 123–132, 2001.
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