

Clarifying space use concepts in ecology: range vs. occurrence distributions

Jesse M. Alston^{1,2}, Christen H. Fleming^{3,4}, Michael J. Noonan⁵, Marlee A. Tucker⁶, Inês Silva¹, Cody Folta⁴, Thomas S.B. Akre⁴, Abdullahi H. Ali⁷, Jerrold L. Belant⁸, Dean Beyer⁹, Niels Blaum¹⁰, Katrin Böhning-Gaese^{11,12}, Rogerio Cunha de Paula¹³, Jasja Dekker¹⁴, Jonathan Drescher-Lehman³, Nina Farwig¹⁵, Claudia Fichtel¹⁶, Christina Fischer¹⁷, Adam T. Ford⁵, René Janssen¹⁸, Florian Jeltsch¹⁰, Peter M. Kappeler¹⁶, Scott D. LaPoint^{19,20}, A. Catherine Markham²¹, E. Patricia Medici²², Ronaldo Gonçalves Morato¹³, Ran Nathan²³, Kirk A. Olson²⁴, Bruce D. Patterson²⁵, Tyler R. Petroelje⁹, Emiliano Esterci Ramalho²⁶, Sascha Rösner¹⁵, Luiz Gustavo Oliveira Santos²⁷, Dana G. Schabo¹⁵, Nuria Selva²⁸, Agnieszka Sergiel²⁸, Orr Spiegel²⁹, Wiebke Ullmann¹⁰, Filip Zieba³⁰, Tomasz Zwijacz-Kozica³⁰, George Wittemyer³¹, William F. Fagan⁴, Thomas Müller^{11,12}, and Justin M. Calabrese^{1,32*}

¹Center for Advanced Systems Understanding, Helmholtz-Zentrum Dresden-Rossendorf, Görlitz, Germany

²School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA

³Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, USA

⁴Department of Biology, University of Maryland, College Park, MD, USA

⁵Department of Biology, University of British Columbia Okanagan, Kelowna, BC, Canada

⁶Department of Environmental Science, Radboud University, Nijmegen, Netherlands

⁷Hirila Conservation Programme, Garissa, Kenya

⁸Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA

⁹Michigan Department of Natural Resources, Marquette, MI, USA

¹⁰Plant Ecology and Nature Conservation, University of Potsdam, Potsdam, Germany

¹¹Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt, Germany

¹²Department of Biological Sciences, Goethe University, Frankfurt, Germany

¹³National Research Center for Carnivores Conservation, Chico Mendes Institute for the Conservation of Biodiversity, Atibaia, SP, Brazil

¹⁴Dierecologie B.V., Arnhem, Netherlands

¹⁵Conservation Ecology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany

¹⁶Behavioral Ecology Sociobiology Unit, German Primate Center, Göttingen, Germany

¹⁷Faunistics and Wildlife Conservation, Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, Bernburg, Germany

¹⁸Bionet Natuuronderzoek, Valderstraat 39, 6171EL Stein, The Netherlands

¹⁹Black Rock Forest, Cornwall, NY, USA

²⁰Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA

²¹Department of Anthropology, Stony Brook University, Stony Brook, NY, USA

²²Lowland Tapir Conservation Initiative (LTCI), Instituto de Pesquisas Ecologicas (IPE) IUCN SSC Tapir Specialist Group (TSG), Campo Grande, MS, Brazil

²³Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel

²⁴Wildlife Conservation Society, Mongolia Program, Ulaanbaatar, Mongolia

²⁵Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA

²⁶Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, AM, Brazil

²⁷Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil

²⁸Institute of Nature Conservation Polish Academy of Sciences, Krakow, Poland

²⁹School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel

³⁰Tatra National Park, Zakopane, Poland

³¹Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO USA

³²Department of Ecological Modelling, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany

*Corresponding author: j.calabrese@hzdr.de

1 Open Research Statement: Tracking data on *Aepyceros melampus*, *Beatragus hunteri*, *Bycanistes*
2 *bucinator*, *Cerdocyon thous*, *Eulemur rufifrons*, *Glyptemys insculpta*, *Gyps coprotheres*, *Madoqua*
3 *guentheri*, *Ovis canadensis*, *Propithecus verreauxi*, *Sus scrofa*, and *Ursus arctos* are publicly
4 archived in the Dryad repository (Noonan et al. 2018; <https://doi.org/10.5061/dryad.v5051j2>), as are data from *Procapra gutturosa* (Fleming et al. 2014a; <https://doi.org/10.5061/dryad.45157>). Data on *Panthera onca* were taken from (Morato et al. 2018). Additional
5 data are publicly archived in the Movebank repository under the following identifiers: *Canis latrans*,
6 8159699; *Canis lupus*, 8159399; *Chrysocyon brachyurus*, 18156143; *Felis silvestris*, 40386102;
7 *Gyps africanus*, 2919708; *Lepus europaeus*, 25727477; *Martes pennanti*, 2964494; *Panthera leo*,
8 220229; *Papio cynocephalus*, 222027; *Syncerus caffer*, 1764627; *Tapirus terrestris*, 443607536;
9 *Torgos tracheliotus*, 2919708; and *Ursus americanus*, 8170674.

12 Abstract

13 Quantifying animal movements is necessary for answering a wide array of research questions in
14 ecology and conservation biology. Consequently, ecologists have made considerable efforts to
15 identify the best way to estimate an animal's home range, and many methods of estimating home
16 ranges have arisen over the past half century. Most of these methods fall into two distinct categories
17 of estimators that have only recently been described in statistical detail: those that measure range
18 distributions (methods such as Kernel Density Estimation that quantify the long-run behavior of a
19 movement process that features restricted space use) and those that measure occurrence distributions
20 (methods such as Brownian Bridge Movement Models and the Correlated Random Walk Library
21 that quantify uncertainty in an animal movement path during a specific period of observation).
22 In this paper, we use theory, simulations, and empirical analysis to demonstrate the importance
23 of applying these two classes of space use estimators appropriately and distinctly. Conflating
24 range and occurrence distributions can have serious consequences for ecological inference and
25 conservation practice. For example, in most situations, home-range estimates quantified using

26 occurrence estimators are too small, and this problem is exacerbated by ongoing improvements in
27 tracking technology that enable more frequent and more accurate data on animal movements. We
28 encourage researchers to use range estimators to estimate the area of home ranges and occurrence
29 estimators to answer other questions in movement ecology, such as when and where an animal
30 crosses a linear feature, visits a location of interest, or interacts with other animals.

31 **Key-words:** Brownian bridge movement model, home range, kernel density estimator (KDE),
32 Kriging, movement ecology, movement model, space use, stochastic process models, utilization
33 distribution

34 **Introduction**

35 Understanding how and why animals use the areas they inhabit is a core goal in the fields of ecology
36 and conservation biology (Jeltsch *et al.*, 2013, Nathan *et al.*, 2008, Schick *et al.*, 2008, Sutherland
37 *et al.*, 2013). The attributes of the areas where animals live shape their fitness, and knowledge
38 of relationships between movement and fitness informs our understanding of how animals interact
39 with each other and their environments, as well as our ability to implement effective conservation
40 interventions (Allen & Singh, 2016). For these reasons, the importance of quantifying space use
41 was recognized early in the development of ecology and led to the concepts of “home ranges”
42 and “utilization distributions”. The conceptual definition of home ranges provided by Burt (1943)
43 is still the most widely cited and targeted. Burt defined an animal’s home range as “...that area
44 traversed by the individual in its normal activities of food gathering, mating, and caring for young.
45 Occasional sallies outside the area, perhaps exploratory in nature, should not be considered as
46 [a] part of the home range.” Two and a half decades after Burt offered this definition, Jenrich &
47 Turner (1969) coined the term ‘utilization distribution’ as the probabilistic representation of a home
48 range, providing a foundation for translating Burt’s conceptual idea into statistical estimators that
49 can be applied to animal location data (Horne *et al.*, 2020). Together, these ideas have served as
50 the foundation of research on animal movement and resource use over the past half century.

51 Movement and resource use, however, are multifaceted aspects of animal behavior. Conse-
52 quently, the home range concept has broadened substantially over time and there now exists a very
53 large literature describing different approaches to home range estimation (Fieberg & Börger, 2012,
54 Heit *et al.*, 2021, Horne *et al.*, 2020, Kie *et al.*, 2010). Many of these approaches cluster around
55 two distinct spatial probability distributions that arise from stochastic movement processes and
56 can be estimated from animal location data. Fleming *et al.* (2015, 2016) referred to these as the
57 “range” and “occurrence” distributions, and others have begun to adopt this terminology (Horne
58 *et al.*, 2020, Keith *et al.*, 2019, Scharf *et al.*, 2018, Schlägel *et al.*, 2019, Signer & Fieberg, 2021).
59 Specifically, the range distribution describes the long-run behavior of a movement process that
60 features restricted space use and is consistent with Burt’s classical definition of the home range.
61 In contrast, occurrence distributions quantify uncertainty in the movement path of an individual
62 during a period of observation and are not directly related to Burt’s definition of the home range.
63 Both of these distributions can serve as an estimation target for which specific statistical estimators
64 can be derived, but range estimators quantify fundamentally different phenomena than occurrence
65 estimators: range distributions answer the question “How much space does an animal need over
66 the long term?”, while occurrence distributions answer the question “Where did an animal travel
67 during a defined period of observation?”. Although these questions may appear similar, range and
68 occurrence distributions have very different biological and mathematical interpretations.

69 In this paper, we argue that range and occurrence distributions can serve as focal points
70 around which to organize concepts, models, statistical estimators, and research questions. We
71 use theoretical arguments, simulations, and empirical examples to demonstrate similarities and
72 differences between these distributions, as well as consequences that can arise from conflating
73 range and occurrence estimators. We then link these two distributions to the ecological questions
74 each can answer, and to the estimators that arise from each distribution.

75 Concepts and Definitions

76 By explicitly separating the discrete-time and often arbitrary sampling schedule from the underlying
77 continuous-time movement process, continuous-time movement models offer a number of advan-
78 tages over the more traditional approach of assuming a discrete-time movement process (Kareiva &
79 Shigesada, 1983, Langrock *et al.*, 2012, Morales *et al.*, 2004). These advantages include the ability
80 to estimate scale-invariant parameters, the ability to model movement using irregularly sampled
81 data, and freedom from the assumption of serial independence among data points (Fleming *et al.*,
82 2014b, Gurarie *et al.*, 2017, Johnson *et al.*, 2008). Defining movement in this way provides a
83 framework that facilitates the derivation of rigorous statistical procedures for quantifying move-
84 ment (Blackwell, 1997, Dunn & Gipson, 1977, Fleming *et al.*, 2015a, Hanks *et al.*, 2015, Johnson
85 *et al.*, 2008), including many non-random behaviors such as migration, territoriality, patrolling,
86 trap-lining, collective movement, and habitat- or condition-specific movement (e.g., Brennan *et al.*,
87 2018, Moriarty *et al.*, 2017, Papageorgiou & Farine, 2020, Péron *et al.*, 2017, Sawyer *et al.*, 2019).
88 In this framework, we may consider an animal's trajectory collected from a telemetry movement
89 track, $\mathbf{r}(t) = (x(t), y(t))$, to be a realization from a continuous-time stochastic process that is
90 observed at discrete times $t_1, t_2, t_3, \dots, t_n$. From this realization, we estimate quantities related to
91 the animal's movement patterns, conditional upon stochastic movement models that can be used to
92 generate movement trajectories (Table 1). Movement models such as Brownian motion (Einstein,
93 1905, Horne *et al.*, 2007) and the integrated Ornstein-Uhlenbeck (IOU) process (Gurarie *et al.*,
94 2017, Gurarie & Ovaskainen, 2011, Johnson *et al.*, 2008) are endlessly diffusing processes and thus
95 do not have finite coverage areas in the long run. In contrast, models such as the Ornstein-Uhlenbeck
96 (OU; Dunn & Gipson, 1977, Uhlenbeck & Ornstein, 1930) and Ornstein-Uhlenbeck Foraging pro-
97 cesses (OUF; Fleming *et al.*, 2014a, 2015b) feature finite coverage areas, even as t approaches
98 infinity. The OU and OUF processes can be thought of as range-resident versions of Brownian
99 motion and IOU processes, respectively. Another key distinction among movement models arises
100 from the types of autocorrelation they can accommodate. Brownian motion and OU movement
101 produce autocorrelated positions but uncorrelated velocities, while IOU and OUF movement pro-

Movement Model	Position Autocorrelation	Velocity Autocorrelation	Range Residency
IID	No	No	Yes
BM	Yes	No	No
OU	Yes	No	Yes
IOU	Yes	Yes	No
OUF	Yes	Yes	Yes

Table 1: Summary of stochastic processes that can currently be used to model animal movement. These processes can feature positional autocorrelation, velocity autocorrelation, and/or range residency. The independent and identically distributed (IID) process can describe animal location data in which no autocorrelation is present. Brownian motion (BM) occurs in the limit of the Ornstein-Uhlenbeck (OU) process, when its positional autocorrelation time scale approaches infinity, while the Integrated Ornstein-Uhlenbeck (IOU) process occurs when the positional autocorrelation time scale of the Ornstein-Uhlenbeck Foraging (OUF) process approaches infinity. More detailed mathematical descriptions of these models can be found in Fleming et al. 2014a and Fleming et al. 2015b.

102 duce both autocorrelated positions and autocorrelated velocities. In contrast, the independent and
103 identically distributed (IID) process, while having a finite coverage area, produces—as the name
104 implies—completely uncorrelated data. With these movement models in mind, we can define two
105 key families of distributions that capture many (but not all) conceptions of “space use” in the
106 ecological literature.

107 The Range Distribution

108 Movement processes that feature finite coverage areas, including the IID, OU, and OUF processes,
109 admit a marginal distribution $p(\mathbf{r}, t)$ at each time t , which is the probability density of a random
110 location $\mathbf{r}(t)$ being \mathbf{r} at time t , without conditioning on any previous locations. In the most general
111 sense, a range distribution is a marginal distribution focused on a particular time frame or suite of
112 movement behaviors, by marginalizing over times or behaviors, to enable predictions of an animal’s
113 locations in future periods. In other words, a range distribution describes the probability of an
114 animal being in a location at a given time, taking into account all of the locations in a movement
115 track simultaneously. The range distribution is simplest to define for stationary processes, which
116 describe unchanging movement behaviors:

$$p_{\text{range}}^{\text{stationary}}(\mathbf{r}) = p(\mathbf{r}, t) = p(\mathbf{r}), \quad (1)$$

117 for any time t . Non-stationary processes, which describe movement behaviors that change over
118 time (e.g., migrations, drifting home ranges), further require an appropriate time average to weight
119 the relevant marginal distributions (e.g., Fleming *et al.*, 2018, S1). Because $p_{\text{range}}^{\text{stationary}}(\mathbf{r})$ denotes
120 the relative frequencies of different locations, the range distribution provides a prediction of *space*
121 *use*, in that 95% of future locations will fall within its 95% coverage area, so long as the underlying
122 movement process does not change (a testable assumption; see Noonan *et al.* 2019).

123 Range distributions therefore capture the long-run (asymptotic) area of the movement process.
124 They are generated by running a single realization of the movement process forward into the future
125 while keeping movement behavior fixed. The coverage areas of the range distribution are not
126 estimates of what space the animal has used during the observation period, but predictions of
127 what space will eventually be used, given a sufficient amount of time for the movement process to
128 continue. All else being equal, an IID process will very quickly fill out the ranging area, whereas
129 highly autocorrelated processes such as OUF will take longer to fill out the ranging area. However,
130 the autocorrelation in the resulting data contains information about the long-run area of the process,
131 and thus the *estimate* of the range distribution that accounts for autocorrelation in the data may
132 contain a considerable amount of space that is not visited during a period of study. The range
133 distribution corresponds closely to Burt's conceptual definition of home range because it captures
134 the area that the animal typically uses, not including exploratory forays. The range distribution is
135 thus the appropriate tool for answering the question of "How large is an animal's home range?".

136 When data are statistically independent, and thus consistent with the IID assumption, the range
137 distribution can be estimated by a variety of methods including Minimum Convex Polygons (MCPs),
138 conventional Kernel Density Estimation (KDE), and classical Mechanistic Home Range Analysis.
139 For the autocorrelated data provided by modern technologies such as GPS and ATLAS (Kays *et al.*,
140 2015, Nathan *et al.*, 2022), the range distribution is most accurately estimated by Autocorrelated
141 Gaussian Density Estimation (Dunn & Gipson, 1977, Fleming *et al.*, 2014b) if the home range is
142 Gaussian, or Autocorrelated Kernel Density Estimation (AKDE; Fleming *et al.*, 2015a, Noonan
143 *et al.*, 2019) otherwise. In other words, the estimation target of all of these estimators is the range

144 distribution, but each estimator differs in the assumptions made about the data that underlie it. A
145 given estimator must therefore be used only when the data are consistent with the movement model
146 that underlies that estimator's assumptions (as is standard statistical practice).

147 For a range distribution to exhibit a finite coverage area, the stochastic process from which it is
148 derived must also feature finite coverage. Finite area manifests as an asymptote in the stochastic
149 processes' semi-variance function as the time lag between observations of the process increases
150 (Fleming *et al.*, 2014a). Some, but not all, stochastic movement models feature finite space (Table
151 1). These include the IID process, the OU process, and the OUF process. Importantly, as mentioned
152 earlier, widely used models such as Brownian and IOU motion in the continuous-time context, and
153 (correlated) random walks in discrete time, are endlessly diffusing processes and thus do not have
154 finite range areas (Fleming *et al.*, 2016). This means that these models do not provide useful
155 estimates of home range areas.

156 Finally, we note that there is no dependence in the definition of the range distribution on the
157 particular sampling regime chosen by an investigator. The range distribution is a property of the
158 movement process that is independent of the sampling process. However, the *estimators* of the
159 range distribution are subject to a number of biases, some of which can be related to the sampling
160 process (Silva *et al.*, 2022). First, a range estimate becomes more fully resolved in proportion
161 to its "effective sample size", which is approximately how many times the focal animal crossed
162 its home range during the observation period. If the animal has not crossed its range during
163 the observation period, it is not possible to estimate the range distribution. Second, different
164 estimators of the range distribution may exhibit either positive or negative biases that decrease
165 asymptotically as sampling duration increases. Third, estimators that assume IID data (e.g.,
166 conventional KDE, MCP, Mechanistic Home Range Analysis) tend to underestimate the ranging
167 area when applied to autocorrelated tracking data by an extent that depends, all else equal, on the
168 strength of autocorrelation in the sampled locations (Noonan *et al.*, 2019). Again, this is not an
169 inherent property of range distributions *per se*, but, instead, results from using estimators for which
170 a core assumption has been violated. As with any statistical procedure, violating a key assumption

171 of a home range estimator can produce biased results.

172 **The Occurrence Distribution**

173 Whereas range distributions are based on the marginal distributions $p(\mathbf{r}, t)$ and can predict un-
174 realized locations, occurrence distributions are based on the conditional distributions $p(\mathbf{r}, t|\text{data})$
175 and are focused on interpolating movement tracks between known locations during an observation
176 period. In other words, an occurrence distribution describes the probability of an animal being in a
177 location at a given time, conditional upon its previous and subsequent locations. Such conditional
178 distributions exist for all stochastic movement processes, even when those processes do not have
179 finite coverage areas in the long run and do not describe range-resident movement behaviors (e.g.,
180 Brownian motion and IOU movement). The simplest occurrence distribution that we can construct
181 involves uniformly averaging these conditional distributions over the observation period for times
182 sampled between t_1 and t_n :

$$p_{\text{occurrence}}(\mathbf{r}) = \underbrace{\frac{1}{t_n - t_1} \int_{t_1}^{t_n} dt}_{\text{time-average}} p(\mathbf{r}, t|\text{data}). \quad (2)$$

183 This corresponds to the conditional distribution of a realized location $\mathbf{r}(t)$ at a random time t within
184 the observation window. However, missing observations are often skipped to avoid oversmoothing
185 (e.g., Bedrosian *et al.*, 2018, Coe *et al.*, 2015, Sawyer *et al.*, 2009), and one could envision a more
186 rigorous weighting scheme that maintains a balance between detail and continuity. In the limit
187 of very coarse, uncorrelated data, and with some gap-skipping heuristic applied, the occurrence
188 distribution reduces to the empirical distribution of the data. This means that *there must be*
189 *autocorrelation between data points* for an occurrence estimator to perform well (i.e., to narrow
190 down the area an animal may have traveled between known locations). Estimating an occurrence
191 distribution using data that is so coarse as to be IID, or nearly so, will provide little information on
192 the movement track of an animal.

193 The occurrence distribution quantifies where an animal may have traveled during the observation

194 period given the observed data, and relies on an autocorrelated movement model to interpolate the
195 data. The occurrence distribution's area is generated by considering all possible trajectories that
196 are consistent with the data, weighted by their probability density. As the movement path of an
197 animal becomes more finely and more accurately resolved, this area becomes smaller and smaller,
198 eventually limiting to zero, even though actual space used has not changed. The area of occurrence
199 estimates therefore does not directly measure space use—even during the observation period—
200 but is, instead, a reflection of our uncertainty regarding where an animal was located during an
201 observation period. In other words, if we have complete knowledge of the animal's locations
202 during an observation period (i.e., infinite sampling rate and no location error), the occurrence distribution
203 collapses to the animal's movement path and has zero area. The occurrence distribution
204 is thus appropriate for answering questions such as “Where might an animal have traveled during
205 an observation period?” and “What landscape features might an animal have visited along its
206 movement path?”.
207

207 The occurrence distribution is not well-estimated by the range estimators outlined in the prior
208 subsection, and proper occurrence estimators have not been around nearly as long as range
209 estimators—occurrence estimators were introduced in the peer-reviewed ecology literature only
210 around 15 years ago (Horne *et al.*, 2007). Currently, Brownian bridge movement models (BBMMs;
211 Horne *et al.*, 2007, Kranstauber *et al.*, 2012), the Correlated Random Walk Library (CRAWL; John-
212 son *et al.*, 2008), and the generalized time-series Kriging framework (Fleming *et al.*, 2016) all share
213 occurrence distributions as estimation targets. Note that the Kriging framework contains both the
214 BBMM and CRAWL as special cases—Kriging with a Brownian motion model is equivalent to the
215 BBMM, while Kriging with an IOU process is equivalent to the model used in CRAWL (Fleming
216 *et al.*, 2016). The occurrence distribution exists for any autocorrelated movement process, whether
217 or not the focal process features finite coverage areas. This means that the Brownian motion, IOU,
218 OU, and OUF continuous-time processes all admit occurrence distributions. For an IID process,
219 the occurrence distribution is simply the empirical distribution with some heuristic to account for
220 gaps in the data.

221 Transitioning from marginal distributions that are independent of specific events to conditional
222 distributions that are conditional upon preceding and subsequent events has a dramatic effect on
223 the meaning and operation of occurrence distributions. Range distributions and their constituent
224 marginal distributions are parameters of the movement process that exist independent from the sam-
225 pling process (though *estimators* of the range distribution may exhibit some sampling dependence).
226 In contrast, occurrence distributions are conditional upon the observed data and are thus explicitly
227 defined in terms of the sampling schedule. This means that a different sampling schedule applied to
228 the same movement process will *correctly* yield a different occurrence distribution: all else equal,
229 increasing the sampling rate will result in a narrower, more concentrated occurrence distribution.
230 This happens because more frequent sampling more fully resolves the animal's true movement path,
231 and thus uncertainty in the animal's locations decreases concomitantly. It is important to realize
232 that this is not due to sampling-dependent bias of occurrence estimators: occurrence estimators in
233 the time-series Kriging family, including the BBMM, can be unbiased. Instead, the uncertainty
234 decreases because the estimation target itself (i.e., the occurrence distribution) is a function of the
235 sampling schedule. Figure 1 shows this process occurring for data from a fisher (*Pekania pennanti*)
236 tracked for 19 days in New York, USA, at a roughly 2-minute sampling interval.

237 Relationships Between Range and Occurrence Distributions

238 As detailed above, the range and occurrence distributions are based on different biological and
239 statistical definitions, have different interpretations and statistical estimators, and respond differently
240 to variation in sampling schedules. We now consider two key limits defined by data amount and
241 quality that highlight the conditions under which range and occurrence distributions either converge
242 or diverge completely, and reiterate a conceptual difference between the two distributions.

243 *Convergent Limit: Infinite Observation Period*

244 Given an infinite observation period, the occurrence distribution will limit to a distribution close to
245 the range distribution, but with an amount of estimation error determined by location error and the

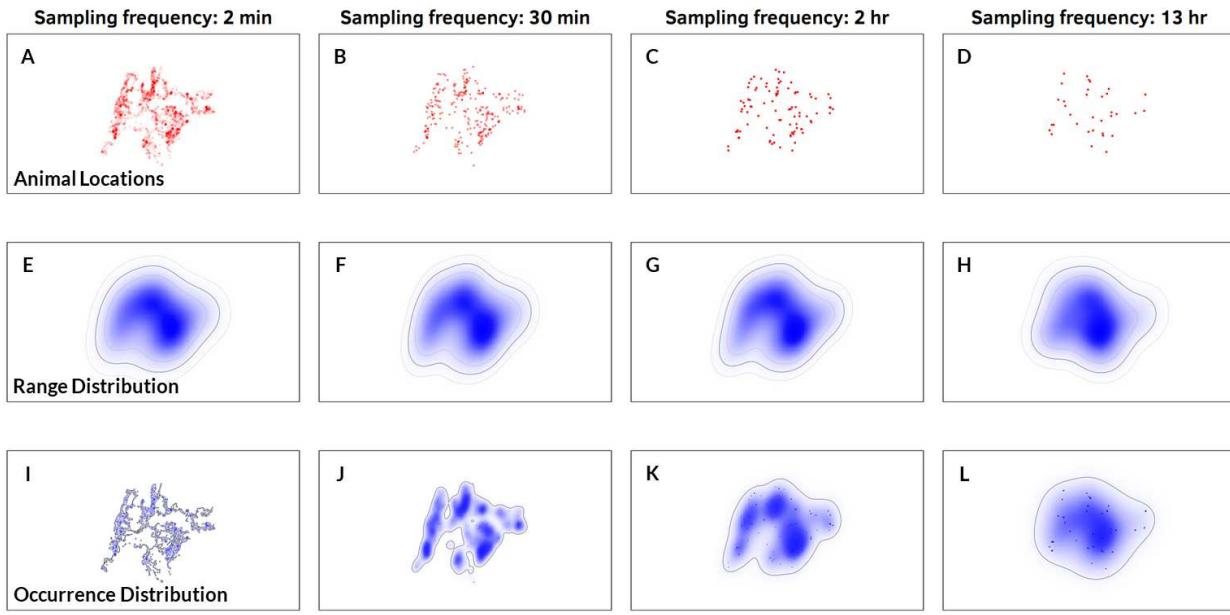


Figure 1: Demonstration of sampling dependence of occurrence and range distributions using GPS location data from a GPS-tracked fisher (*Pekania pennanti*) from New York, USA. The fisher was tracked for 19 days at 2-minute intervals. The top row features individual locations along the fisher's movement track as the movement track is progressively thinned from 720 locations per day to 2 locations per day. The second row features 95% AKDE range estimates generated using the same GPS locations. While the contours of the range estimate change as the data are more finely resolved, the area within those contours remains largely stable. The third row features 95% Kriged occurrence estimates generated using the same data. In contrast with range estimates, the area of occurrence estimates shrinks rapidly as the data are sampled more frequently and the fisher's movement path is more accurately resolved.

246 sizes of gaps in the data. This happens because an animal visits more and more of its home range
 247 over time. Decreasing location error and increasing the sampling rate will reduce this estimation
 248 error, but increasing the sampling rate will also slow down convergence, because the occurrence
 249 area limits to zero if the sampling rate is infinite while the observation period is finite.

250 *Divergent Limit: Infinite Sampling Rate*

251 For the occurrence distribution of any real movement process that is continuous in both location
 252 and velocity, holding the sampling duration constant while increasing the sampling rate with either
 253 no location error or uncorrelated location error yields the limit:

$$\lim_{dt \rightarrow 0} p(\mathbf{r}, t | \text{data}) = \delta(\mathbf{r} - \mathbf{r}(t)), \quad (3)$$

254 where $\delta(\mathbf{r})$ is the Dirac delta function—a singular distribution with probability mass concentrated
255 at \mathbf{r} . This limit is easiest to see in the case of a Brownian bridge, where the width of the bridge is
256 at most proportional to dt . In any case, the occurrence distribution collapses toward the movement
257 path even in the presence of (uncorrelated) location error as sampling becomes finer and finer,
258 eventually collapsing to zero area. The range distribution is unaffected by this limit and its
259 area remains the same, though estimators of the range distribution may exhibit varying sampling
260 dependence. Increasing the rate of sampling results in increasingly strong autocorrelation in the
261 data, so asymptotically consistent range estimators that do not account for this autocorrelation
262 perform worse as sampling rate increases. Such estimators are increasingly negatively biased by
263 increasing autocorrelation strength and will also limit to zero area. However, range estimators that
264 properly model autocorrelation will be unaffected by this limit, and their area estimates will remain
265 consistent.

266 *Interpolation vs. Extrapolation*

267 Another way of distinguishing between range and occurrence distributions is in terms of the
268 statistical operations to which they conform. Given a sample of tracking data of finite duration, the
269 range distribution represents an *extrapolation* of the long-run behavior of the movement process,
270 as inferred from the data, and quantifies the variance of the movement process. In contrast, the
271 occurrence distribution *interpolates* within the observation period, conditional on the data and an
272 autocorrelated movement model, and quantifies uncertainty in the interpolation. This is why the
273 general framework for occurrence estimation is based on Kriging, which is a statistically optimal
274 method of model-based interpolation (Fleming *et al.*, 2016).

275 To illustrate this more concretely, consider cross-validation of home range estimators. If an
276 estimator accurately quantifies an individual's home range (*sensu* Burt, 1943), an unbiased 95%
277 home range area estimate generated over some observation period T_1 should contain, on average,
278 95% of that animal's locations over a subsequent observation period T_2 , provided the animal's
279 movement behavior does not meaningfully change between the training (T_1) and test (T_2) sets, and

280 provided that T_1 and T_2 begin far enough apart to be uncorrelated. If a 95% home range area estimate
281 were to consistently include more than 95% of the subsequent locations, then estimates would be
282 positively biased; if estimates consistently include fewer than 95% of the subsequent locations,
283 then estimates would be negatively biased. Similarly, a 50% home range estimate generated
284 over T_1 should contain 50% of an animal's locations, on average, over T_2 . In other words, the
285 relevant test set for a range estimator is an animal's movements *in the future*, extrapolated from past
286 location data. This can be achieved via half-sample cross-validation (e.g., Noonan *et al.*, 2019).
287 Cross-validation of occurrence estimators should operate differently. If an estimator captures an
288 occurrence distribution accurately, an unbiased 95% area estimate generated over T_1 should contain
289 95% of that animal's locations within T_1 . In other words, the relevant test set for an occurrence
290 estimator are holdout data from within the initial observation period (and not a subsequent period).

291 Simulated Examples

292 The two limits described above are crucial for understanding the differences between occurrence and
293 range distributions. We now demonstrate the importance of these limits with both simulated and real
294 data. For the simulated data, we can specifically model processes where both types of distributions
295 exist: processes that are (1) autocorrelated (so that the occurrence distribution can interpolate the
296 data) and (2) range-resident (so that the range distribution exists). Simulation also allows us to
297 set the true size of the home range (range distribution). We can then manipulate the sampling
298 schedule of the simulated processes to explore the effects of sampling rate and sampling duration
299 on the sizes of range and occurrence estimates. To do this, we simulated movement paths from
300 an OUF process while varying the sampling rate and sampling duration systematically to illustrate
301 differences between estimates provided by range and occurrence estimators. For each data set, we
302 estimated the range distribution via Autocorrelated Gaussian Density Estimation conditioned on
303 a fitted OUF model with daily autocorrelation timescales. Similarly, we estimated the occurrence
304 distribution for each data set by Kriging with an OUF model with daily autocorrelation timescales.

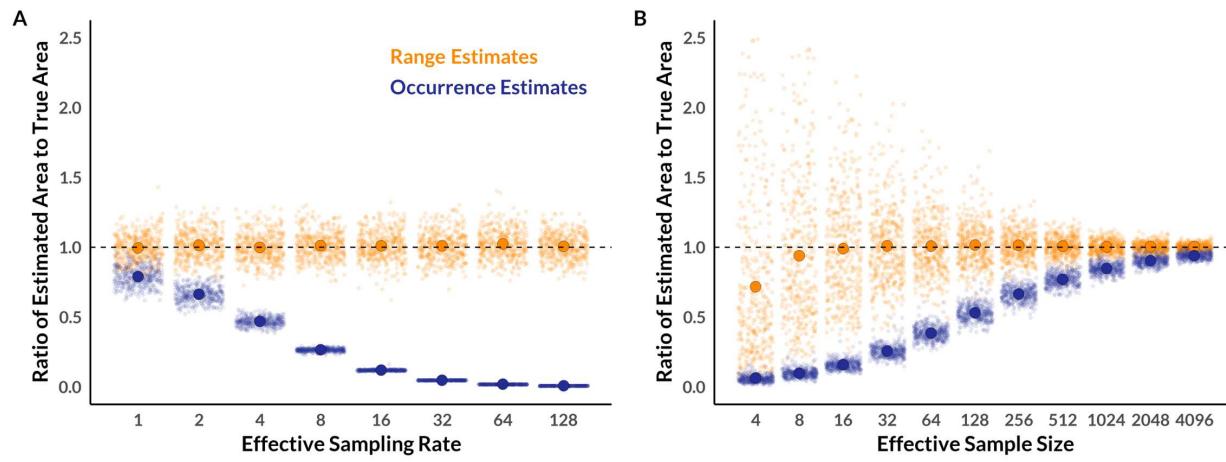


Figure 2: Bias in estimates of home range size provided by range (orange) and occurrence (indigo) distribution estimates with different sampling rates (i.e., GPS fixes per range crossing; Panel A) and effective sample sizes (i.e., number of range crossings in a data set; Panel B). A point at 1 indicates that home range size was estimated correctly for a simulated movement track with a known home range size. Small points represent a single simulation result (jittered on the x-axis to ease visualization), while larger points represent the mean simulation result among 400 replicates. Divergence of range estimates from the line at 1 at small durations of sampling arise from known patterns of bias that can be improved by bootstrapping (Fleming et al., 2019), while bootstrapping does little to change the size of occurrence estimates.

305 The assumptions of these estimation approaches exactly match the process that generated the data,
306 so the statistical estimators are correctly specified for both the range and occurrence distributions
307 in these simulated examples.

308 Figure 2A shows the area of the occurrence estimate decreasing as the sampling rate increases
309 from one observation per day to 128 observations per day. Note that the 95% occurrence area
310 starts substantially less than the range area, because the sampling duration is finite (256 days, in
311 this case), and then rapidly collapses to zero as the sampling rate increases. Ongoing technological
312 advances that facilitate ever finer and more accurate location sampling are driving movement studies
313 closer to the limit where estimates produced by occurrence estimators collapse to zero area. It is
314 therefore inevitable that the differences between range and occurrence distributions will become
315 more obvious in the future, even though these distributions have been frequently conflated in the
316 past.

317 Figure 2B shows the area of the occurrence estimate increasing as the sampling duration
318 increases from 4 days to 4,096 days. Again, the 95% occurrence area is still substantially less

319 than the range area even when the effective sample size (i.e., the number of range crossings) is
320 $> 4,000$, and rapidly collapses to zero as the duration of the observation period decreases. This
321 is a major real-world problem because it can take weeks or months on average for an animal to
322 cross its range (depending on species), and the lifespan of tracking devices (or even animals) is
323 unlikely to enable an effective sample size of anywhere near 4,000 (i.e., 11 years with daily range
324 crossings). This demonstrates that while occurrence distributions tend toward range distributions as
325 the sampling duration increases, using an occurrence estimator to quantify the size of home ranges
326 will yield a substantial underestimate unless very large amounts of data are collected—amounts
327 that are likely logistically and/or biologically impossible. Although technological advances are
328 increasing the battery lifespan of animal tracking devices, and thus the potential duration of animal
329 tracking studies, the duration of tracking data for an individual animal is often limited in practice by
330 mortality or equipment failure. Occurrence estimators will therefore tend to provide home-range
331 estimates that are substantially smaller than the true home range size in most real-world situations.

332 Empirical Examples

333 Using empirical data, we now show how profoundly range and occurrence estimates can diverge
334 in real-world data sets. As outlined above, this happens when the data are sampled frequently
335 enough that the occurrence distribution collapses toward the movement path and for long enough
336 that estimating the range distribution is possible. Such data sets are already common and their
337 availability will only increase as tracking technology improves (Gupte *et al.*, 2022, Kays *et al.*, 2015,
338 Nathan *et al.*, 2022). Using a data set of 369 individual animals across 27 species (Noonan *et al.*,
339 2019), we estimated both the range and occurrence distributions for each animal. We estimated
340 the range distribution via Autocorrelated Kernel Density Estimation (AKDE) conditioned on a
341 fitted movement model according to the workflow described in Silva *et al.* (2022). In short, we
342 used variogram analysis (Fleming *et al.*, 2014a) to ensure animals were range-resident, fit and
343 selected an autocorrelated movement model that best described the animal's movements using

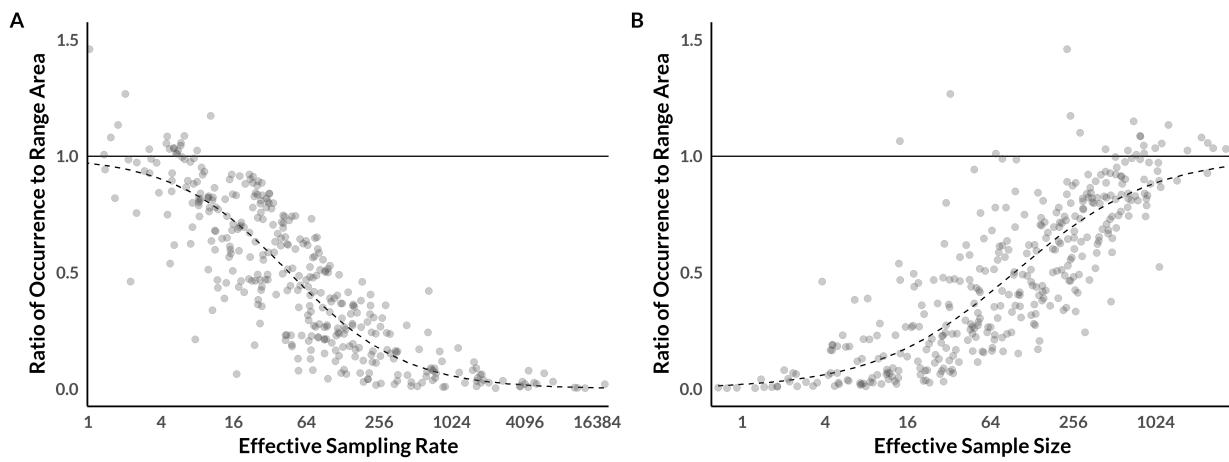


Figure 3: The ratio of the size of the occurrence estimate to the size of the range estimate for a data set containing 369 individuals across 27 species, as a function of the effective sampling rate (i.e., GPS fixes per range crossing; Panel A) and effective sample size (i.e., number of range crossings in a data set; Panel B). Points represent individual animals, while dashed lines represent regressions demonstrating the overall trend. Solid horizontal lines indicate a ratio of 1:1, where range and occurrence estimates are the same size. Distance below the solid line indicates the extent to which occurrence estimators are negatively biased in their estimates of home range size.

344 perturbative Hybrid Residual Maximum Likelihood (phREML; Fleming *et al.*, 2019) and Akaike's
345 Information Criterion corrected for small sample sizes (AICc), and estimated weighted AKDE
346 utilization distributions for each animal (Fleming *et al.*, 2018) using the `ctmm` R package (v0.6.2;
347 Calabrese *et al.*, 2016) in the R statistical software environment (v3.6.2; R Core Team, 2020). We
348 estimated the occurrence distribution for each animal based on Kriging (Fleming *et al.*, 2016) with
349 the same movement model used for the corresponding AKDE estimate. Figure 3 shows that the
350 occurrence estimate is smaller than the range estimate for the vast majority of individuals in the
351 data set (and usually much smaller). This occurs because the effective sample size is rarely large
352 enough in real-world data to approach the theoretical limit where the occurrence distribution would
353 converge with the range distribution.

354 This shrinkage of occurrence estimates is accompanied by a decreased ability of the occurrence
355 distribution to correctly specify the areas of home ranges. To illustrate this, we performed half-
356 sample cross-validation on the same animal location data set. We subset data from each individual
357 animal into halves, used the first half of the data to generate range (AKDE) and occurrence (Kriging)
358 estimates, and then used the second half to assess the percentage of future animal locations that

were within the range and occurrence estimates. All data fit the assumptions of range-resident animals with movement processes that remained consistent between the two halves. We then fit regression lines (linear for AKDE estimates, logistic for Kriging estimates) for the influence of effective sampling rate (roughly the number of GPS locations per range crossing) and effective sample size on the percentage of locations in the test set that fell within estimates generated using the training set.

As these results show (Fig. 4), the areas of home ranges derived from occurrence distributions do not merely fit the data more tightly—they inaccurately represent the true area of home ranges. Estimates of home ranges produced by occurrence estimators are nearly always too small, and this negative bias is exacerbated at high sampling rates and low effective sample sizes. This is not merely a hypothetical problem, nor is it only an issue that will arise in the future as technology continues to improve. Instead, it is pervasive in the animal movement data that wildlife biologists currently collect and analyze (Noonan *et al.*, 2020, 2019).

372 Discussion

Ecologists often conflate occurrence estimators with range estimators, a much older and more familiar class of statistical tools. The first widely used occurrence estimators (Horne *et al.*, 2007, Johnson *et al.*, 2008) were landmark advances in movement ecology and enabled more statistically rigorous analyses of many research questions related to animal movement. Nevertheless, although they have been widely used in movement ecology, the extent of their novelty and unique properties have still largely gone unrecognized. As we have demonstrated, these two classes of estimators have radically different properties, and should therefore be used for different purposes (Table 2). Ecologists and conservation biologists should use range estimators to estimate the area of home ranges, and occurrence estimators to answer other questions, such as: Where might an animal have crossed a linear feature (Find'o *et al.*, 2018, Hooker *et al.*, 2020, Zeller *et al.*, 2018)? How likely is it that an animal visited a location of interest (Noonan *et al.*, 2018, Pagès *et al.*, 2019, Sasmal *et al.*,

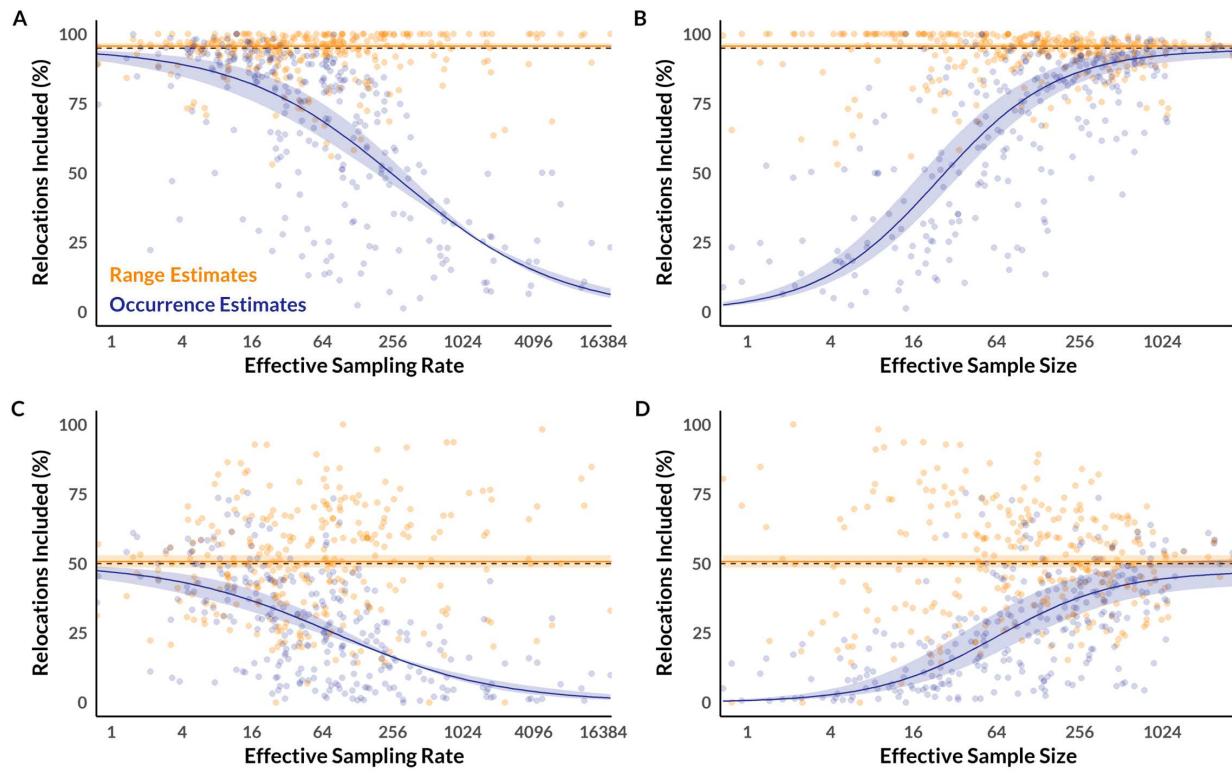


Figure 4: Half-sample cross-validation of range and occurrence estimates. Points represent the percentage of locations from the second half of the data (test set) included in home ranges estimated from the first half of the data (training set). Orange points represent range (AKDE) estimates, while indigo points represent occurrence (Kriging) estimates. The dashed line represents the target 95% (top row) or 50% (bottom row) quantile, while the solid line represents a regression model fit to the cross-validation results with shading to indicate the 95% confidence interval. The left column demonstrates the influence of effective sampling rate on cross-validation results, while the right column demonstrates the influence of effective sample size on cross-validation results. On average, range estimates contain roughly the correct percentage of relocations, and this remains true across all effective sampling rates and effective sample sizes. Occurrence estimates, however, tend to contain too few relocations, and this problem is exacerbated at high effective sampling rates and low effective sample sizes.

384 2019)? When and where could two individual animals have interacted (Schlägel *et al.*, 2019)?
385 Which areas of a landscape contain high-priority resources (e.g., migratory corridors or stopover
386 sites; Sawyer *et al.*, 2009, 2019)?

387 Estimation of animal home ranges is foremost among our concerns on the conflation of range
388 and occurrence estimators—occurrence estimators substantially underestimate the area of home
389 ranges under a broad array of real-world conditions (Figs. 3,4). In recent years, there has been a
390 slow but steady drift in preference among wildlife biologists towards estimators that fit more tightly

	Range Distribution	Occurrence Distribution
Distribution Type	Marginal	Conditional
Finite Coverage Area	Arises only when the stochastic movement process being modeled has a finite coverage area	Arises when the sampling rate is finite, regardless if the stochastic movement process being modeled has a finite coverage area
Statistical Operation	Extrapolation (Over what area is an animal likely to range in the future?)	Interpolation (At which locations might an animal have occurred in the past?)
Sampling Dependence	No (If its statistical assumptions are met, a range estimator will estimate a stable area even as a movement track is sampled more frequently)	Yes (If its statistical assumptions are met, an occurrence estimator will estimate a smaller area as a movement track is sampled more frequently)
Appropriate Questions	How large is an animal's home range? What area is available to an animal in studies of third-order habitat selection?	Where might an animal have crossed a linear feature? When and where could two individual animals have interacted? In which areas of a landscape did an animal visit high-priority resources (e.g., migratory corridors or stopover sites)?

Table 2: Summary of the primary distinctions between range and occurrence distributions.

391 to animal location data (Fig. 5; Crane *et al.*, 2021, Laver & Kelly, 2008, Walter *et al.*, 2015). We
392 believe that this preference has largely been driven by aesthetic considerations and the intuitive
393 notion that areas within home range estimates where an animal does not travel during a study
394 are not actually “used” (Cumming & Cornélis, 2012, Getz *et al.*, 2007, Kie, 2013, Walter *et al.*,
395 2015). This preference can be observed in the transition over time from home range estimates using
396 Minimum Convex Polygons to Local Convex Hull (LoCoH; Getz *et al.*, 2007, Getz & Wilmers,
397 2004) to Time Local Convex Hull (T-LoCoH Lyons *et al.*, 2013) methods, an emphasis on KDE
398 bandwidth optimizers that fit tightly to location data (Cohen *et al.*, 2018, Downs & Horner, 2008,
399 Kie, 2013), and most recently, rapid growth in use of BBMMs to estimate home ranges (Fig. 5).
400 Cross-validation frameworks that seek to backtest estimator performance (e.g., Getz & Wilmers,
401 2004, Kie, 2013, Silva *et al.*, 2020, Walter *et al.*, 2015), which are appropriate for occurrence
402 estimators but not range estimators, have also provided a false impression that smaller home range

403 estimates perform better. While understandable, seeking home range estimates that fit tightly to an
404 animal's past locations adheres neither to Burt's original definition, nor the mathematical properties
405 underlying the range distribution. Specifically, Burt's definition aims to capture the amount of space
406 an animal will need to survive and reproduce in the long run, not simply the level of uncertainty in
407 an animal's movement path during an observation period limited by study design, technology, or
408 animal mortality.

409 The most common occurrence estimator used to estimate home ranges is the BBMM (Horne
410 *et al.*, 2007), which has even been championed as a “third generation home range estimator” due
411 to its ability to account for some autocorrelation in tracking data (Walter *et al.*, 2015). Figure 5
412 shows the cumulative number of peer-reviewed journal articles since the BBMM was introduced
413 to ecologists in 2007 that either label it a home range estimator, or use it to estimate animal home
414 range areas. However, Fleming *et al.* (2016) formally proved that the BBMM is an estimator of the
415 occurrence distribution (rather than the range distribution) that arises as a special case of the more
416 general time-series Kriging family of occurrence estimators. Specifically, Kriging a movement
417 track conditional on a Brownian motion movement model is equivalent to the BBMM. Beyond
418 being an occurrence estimator, and thus only suited to the task of home range estimation in the

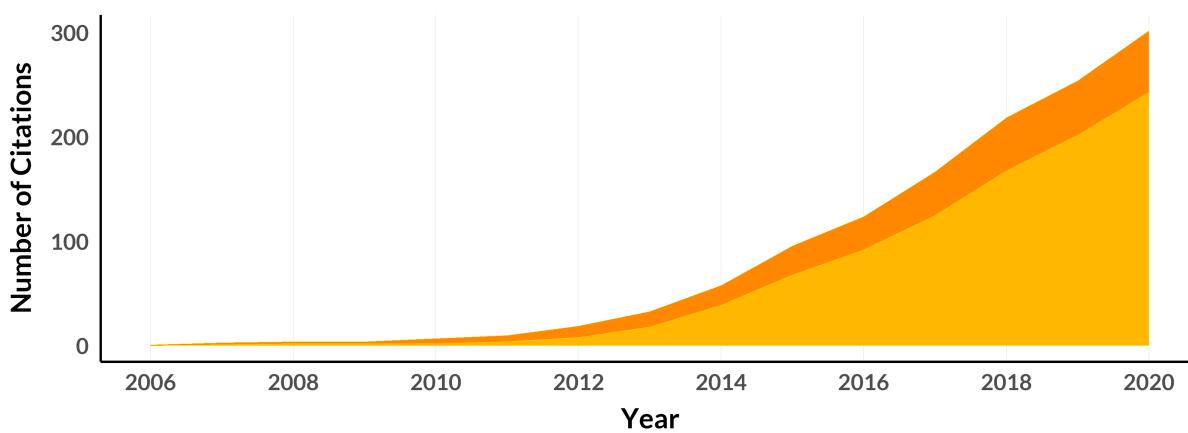


Figure 5: Number of peer-reviewed journal articles from 2006 to 2020 that either used BBMMs to estimate the size of animal home ranges (light orange) or labeled BBMMs as a home range estimator (dark orange). Although BBMMs are occurrence estimators and therefore poorly suited for estimating the size of home ranges, use of BBMMs to estimate the size of home ranges is growing rapidly.

419 (unrealistic) infinite data limit, the BBMM is also based on an endlessly diffusing Brownian motion
420 process, which does not have a finite range area. Note that this is not a critique of the validity of
421 the BBMM as an analytical tool *per se*. Other occurrence estimators, such as a time-series Kriging
422 estimate based on an OUF process, are also inappropriate for estimating the area of home ranges (as
423 demonstrated in Figs. 1-3), and BBMMs are the best tool currently available for quantifying where
424 an animal might have been during an observation period if the Brownian motion model accurately
425 characterizes the animal's movement process. Furthermore, when BBMMs were developed, the
426 issue of underestimation of home ranges as outlined above was not as apparent, because animal
427 location data were coarser than they are today. However, as animal tracking technology improves
428 and the resolution of data sets increases, the discrepancy between the area that BBMMs estimate
429 and a proper estimate of the range distribution will continue to widen and repeated studies of the
430 same species with improved technology will lead to progressively smaller estimates of home ranges
431 if these estimates are generated using occurrence estimators like BBMMs.

432 Using occurrence estimators to quantify home ranges can therefore have pernicious conse-
433 quences for area-based conservation strategies and for ecological inference. For example, many
434 protected areas (e.g., the Attwater Prairie Chicken National Wildlife Refuge, Kirtland's Warbler
435 Wildlife Management Area, and the National Key Deer Refuge in the USA, the Arawale National
436 Reserve in Kenya, and the Blackbuck Conservation Area in Nepal) are designed to protect a focal
437 species. For these protected areas, understanding how much space is required to maintain popu-
438 lations that are viable over the long term is vital for ensuring their effectiveness (Brashares *et al.*,
439 2001, Pe'er *et al.*, 2014). When protected areas are too small relative to their focal species' area re-
440 quirements, the probability of population declines or extirpation increases significantly (Brashares
441 *et al.*, 2001, Gaston *et al.*, 2008). Undersized protected areas also force a greater proportion of
442 individuals into human-wildlife conflict at protected area boundaries (van Eeden *et al.*, 2018) as
443 relatively more animals must forage outside of protected areas (Farhadinia *et al.*, 2018). It is thus
444 critical that policy actions be well-informed on area requirements of target species. To ensure that
445 protected areas are adequately sized, estimates of the area required for an individual of a given

446 species to persist and reproduce are often quantified via home range analysis (Martins *et al.*, 2013,
447 Rechetelo *et al.*, 2016, Tédonzong *et al.*, 2018). Because occurrence estimators underestimate the
448 area requirements of GPS-tracked animals (often dramatically so), using occurrence estimators
449 to estimate area requirements can result in protected areas that do not accomplish their intended
450 purpose.

451 Conflating range and occurrence estimators to quantify space use is also dangerous in its impli-
452 cations for basic inference in ecology. For example, the distinction between range and occurrence
453 distributions is particularly salient for studies of resource use and selection by animals. Resource
454 selection is generally studied using resource selection functions—which compare environmental
455 covariates at the locations where animals were present (i.e., “used” locations) to covariates at lo-
456 cations taken from an area assumed to be available for selection (i.e., “available” locations; Manly
457 *et al.* 2007)—or resource utilization functions, which compare intensity of use among an animal’s
458 used locations (Marzluff *et al.*, 2004, Millspaugh *et al.*, 2006). Range distributions are an appro-
459 priate tool for quantifying *availability* for resource *selection* functions, because they characterize
460 the area an animal is likely to travel over the long term. In contrast, occurrence distributions are
461 appropriate for quantifying resource *use* in resource *utilization* functions, because they characterize
462 an animal’s likely presence on the landscape during a study period. In practice, ecologists typ-
463 ically (and correctly) use range estimators to sample availability in resource selection functions,
464 but often use range estimators rather than occurrence estimators to quantify habitat use in resource
465 utilization functions (e.g., Berry *et al.*, 2019, Johnston *et al.*, 2020, Koizumi & Derocher, 2019,
466 Prince *et al.*, 2016, Winder *et al.*, 2017). This may be because the initial papers on resource uti-
467 lization functions (Marzluff *et al.*, 2004, Millspaugh *et al.*, 2006) used range estimators to generate
468 utilization distributions (understandable because range estimators were the only tools available
469 at the time—occurrence estimators had not been popularized yet). Nevertheless, an increasing
470 number of occurrence estimators have become available over the past two decades (Fleming *et al.*,
471 2016, Horne *et al.*, 2007, Johnson *et al.*, 2008), and we encourage ecologists to use these occur-
472 rence estimators—rather than range estimators—to quantify resource use in resource utilization

473 functions.

474 Tracking data can and should be a resource for informing our understanding of animal ecology.
475 Although we are now better positioned than ever to use tracking data to estimate different aspects of
476 space use by animals, capturing maximal value from tracking data requires ecologists to understand
477 and use the most rigorous statistical tools and definitions currently available. In this paper, we have
478 highlighted the distinction between range and occurrence distributions, delineated the conditions
479 under which they will behave similarly and differently, mapped ecological questions and statistical
480 estimators to each distribution, and demonstrated the negative consequences of continuing to
481 conflate these two distributions. Both range and occurrence estimators are readily available today
482 in free and open source software (Calabrese *et al.*, 2016, Calenge, 2006, Johnson *et al.*, 2008,
483 Nielson *et al.*, 2013, Signer *et al.*, 2019), and we encourage readers to explore the important
484 distinction between range and occurrence estimators themselves (Appendix S1).

485 Acknowledgements

486 We thank S. Alberts, J. Altmann, P. Antunes, J. Goheen, M. Kauffman, A. Paviolo, and M. Xavier
487 da Silva for contributing data for our empirical analyses. J. Calabrese, C. Fleming, and B. Fagan
488 were supported by NSF IIBR 1915347. M. Noonan was supported by an NSERC Discovery Grant
489 RGPIN-2021-02758. F. Jeltsch, N. Blaum and W. Ullmann were supported by the German Research
490 Foundation (DFG) in the framework of the BioMove Research Training Group (DFG-GRK 2118/1).
491 This work was partly funded by the Center for Advanced Systems Understanding (CASUS) which
492 is financed by Germany's Federal Ministry of Education and Research (BMBF) and by the Saxon
493 Ministry for Science, Culture and Tourism (SMWK) with tax funds on the basis of the budget
494 approved by the Saxon State Parliament.

495 Author Contributions

496 JC conceived the idea; JA, JC, CF, MN, and IS conducted the analyses; and JA and JC led the
497 writing of the manuscript. All authors contributed critically to drafts of the manuscript and gave
498 final approval for publication.

499 References

- 500 Allen, A.M. & Singh, N.J. (2016) Linking movement ecology with wildlife management and
501 conservation. *Frontiers in Ecology and Evolution* **3**, 155.
- 502 Bedrosian, B.E., Domenech, R., Shreeding, A., Hayes, M.M., Booms, T.L. & Barger, C.R. (2018)
503 Migration corridors of adult Golden Eagles originating in northwestern North America. *PLOS
504 ONE* **13**, e0205204.
- 505 Berry, L.E., L'Hotellier, F.A., Carter, A., Kemp, L., Kavanagh, R.P. & Roshier, D.A. (2019) Patterns
506 of habitat use by three threatened mammals 10 years after reintroduction into a fenced reserve
507 free of introduced predators. *Biological Conservation* **230**, 1–9.
- 508 Blackwell, P.G. (1997) Random diffusion models for animal movement. *Ecological Modelling* **100**,
509 87–102.
- 510 Brashares, J.S., Arcese, P. & Sam, M.K. (2001) Human demography and reserve size predict
511 wildlife extinction in West Africa. *Proceedings of the Royal Society B: Biological Sciences* **268**,
512 2473–2478.
- 513 Brennan, A., Hanks, E.M., Merkle, J.A., Cole, E.K., Dewey, S.R., Courtemanch, A.B. & Cross,
514 P.C. (2018) Examining speed versus selection in connectivity models using elk migration as an
515 example. *Landscape Ecology* **33**, 955–968.
- 516 Burt, W.H. (1943) Territoriality and home range concepts as applied to mammals. *Journal of
517 Mammalogy* **24**, 346–352.

- 518 Calabrese, J.M., Fleming, C.H. & Gurarie, E. (2016) ctmm: an r package for analyzing animal
519 relocation data as a continuous-time stochastic process. *Methods in Ecology and Evolution* **7**,
520 1124–1132.
- 521 Calenge, C. (2006) The package “adehabitat” for the R software: a tool for the analysis of space
522 and habitat use by animals. *Ecological Modelling* **197**, 516–519.
- 523 Coe, P.K., Nielson, R.M., Jackson, D.H., Cupples, J.B., Seidel, N.E., Johnson, B.K., Gregory, S.C.,
524 Bjornstrom, G.A., Larkins, A.N. & Speten, D.A. (2015) Identifying migration corridors of mule
525 deer threatened by highway development. *Wildlife Society Bulletin* **39**, 256–267.
- 526 Cohen, B.S., Prebyl, T.J., Collier, B.A. & Chamberlain, M.J. (2018) Home range estimator method
527 and GPS sampling schedule affect habitat selection inferences for wild turkeys. *Wildlife Society
528 Bulletin* **42**, 150–159.
- 529 Crane, M., Silva, I., Marshall, B.M. & Strine, C.T. (2021) Lots of movement, little progress: a
530 review of reptile home range literature. *PeerJ* **9**, e11742.
- 531 Cumming, G.S. & Cornélis, D. (2012) Quantitative comparison and selection of home range metrics
532 for telemetry data. *Diversity and Distributions* **18**, 1057–1065.
- 533 Downs, J.A. & Horner, M.W. (2008) Effects of point pattern shape on home-range estimates. *The
534 Journal of Wildlife Management* **72**, 1813–1818.
- 535 Dunn, J.E. & Gipson, P.S. (1977) Analysis of radio telemetry data in studies of home range.
536 *Biometrics* **33**, 85–101.
- 537 Einstein, A. (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewe-
538 gung von in ruhenden Flüssigkeiten suspendierten Teilchen. *Annalen der Physik* **4**.
- 539 Farhadinia, M.S., Johnson, P.J., Macdonald, D.W. & Hunter, L.T.B. (2018) Anchoring and adjusting
540 amidst humans: ranging behavior of Persian leopards along the Iran-Turkmenistan borderland.
541 *PLOS ONE* **13**, e0196602.

- 542 Fieberg, J. & Börger, L. (2012) Could you please phrase “home range” as a question? *Journal of*
543 *Mammalogy* **93**, 890–902.
- 544 Find’o, S., Skuban, M., Kajba, M., Chalmers, J. & Kalaš, M. (2018) Identifying attributes associated
545 with brown bear (*Ursus arctos*) road-crossing and roadkill sites. *Canadian Journal of Zoology*
546 **97**, 156–164.
- 547 Fleming, C.H., Calabrese, J.M., Mueller, T., Olson, K.A., Leimgruber, P. & Fagan, W.F. (2014a)
548 From fine-scale foraging to home ranges: a semivariance approach to identifying movement
549 modes across spatiotemporal scales. *American Naturalist* **183**, E154–E167.
- 550 Fleming, C.H., Calabrese, J.M., Mueller, T., Olson, K.A., Leimgruber, P. & Fagan, W.F. (2014b)
551 Non-Markovian maximum likelihood estimation of autocorrelated movement processes. *Methods*
552 *in Ecology and Evolution* **5**, 462–472.
- 553 Fleming, C.H., Fagan, W.F., Mueller, T., Olson, K.A., Leimgruber, P. & Calabrese, J.M. (2015a)
554 Rigorous home range estimation with movement data: a new autocorrelated kernel density
555 estimator. *Ecology* **96**, 1182–1188.
- 556 Fleming, C.H., Fagan, W.F., Mueller, T., Olson, K.A., Leimgruber, P. & Calabrese, J.M. (2016)
557 Estimating where and how animals travel: an optimal framework for path reconstruction from
558 autocorrelated tracking data. *Ecology* **97**, 576–582.
- 559 Fleming, C.H., Noonan, M.J., Medici, E.P. & Calabrese, J.M. (2019) Overcoming the challenge of
560 small effective sample sizes in home-range estimation. *Methods in Ecology and Evolution* **10**,
561 1679–1689.
- 562 Fleming, C.H., Sheldon, D., Fagan, W.F., Leimgruber, P., Mueller, T., Nandintsetseg, D., Noonan,
563 M.J., Olson, K.A., Setyawan, E., Sianipar, A. & Calabrese, J.M. (2018) Correcting for missing
564 and irregular data in home-range estimation. *Ecological Applications* **28**, 1003–1010.

- 565 Fleming, C.H., Subaşı, Y. & Calabrese, J.M. (2015b) Maximum-entropy description of animal
566 movement. *Physical Review E* **91**, 032107.
- 567 Gaston, K.J., Jackson, S.F., Cantú-Salazar, L. & Cruz-Piñón, G. (2008) The ecological performance
568 of protected areas. *Annual Review of Ecology, Evolution, and Systematics* **39**, 93–113.
- 569 Getz, W.M., Fortmann-Roe, S., Cross, P.C., Lyons, A.J., Ryan, S.J. & Wilmers, C.C. (2007) LoCoH:
570 nonparameteric kernel methods for constructing home ranges and utilization distributions. *PLOS
571 ONE* **2**, e207.
- 572 Getz, W.M. & Wilmers, C.C. (2004) A local nearest-neighbor convex-hull construction of home
573 ranges and utilization distributions. *Ecography* **27**, 489–505.
- 574 Gupte, P.R., Beardsworth, C.E., Spiegel, O., Lourie, E., Toledo, S., Nathan, R. & Bijleveld, A.I.
575 (2022) A guide to pre-processing high-throughput animal tracking data. *Journal of Animal Ecol-
576 ogy* **91**, 287–307, _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/1365-2656.13610>.
- 577 Gurarie, E., Fleming, C.H., Fagan, W.F., Laidre, K.L., Hernández-Pliego, J. & Ovaskainen, O.
578 (2017) Correlated velocity models as a fundamental unit of animal movement: synthesis and
579 applications. *Movement Ecology* **5**, 13.
- 580 Gurarie, E. & Ovaskainen, O. (2011) Characteristic spatial and temporal scales unify models of
581 animal movement. *American Naturalist* **178**, 113–123.
- 582 Hanks, E.M., Hooten, M.B. & Alldredge, M.W. (2015) Continuous-time discrete-space models for
583 animal movement. *The Annals of Applied Statistics* **9**, 145–165.
- 584 Heit, D.R., Ortiz-Caló, W. & Montgomery, R.A. (2021) Landscape complexity persists as a critical
585 source of bias in terrestrial animal home range estimation. *Ecology* **102**, e03427.
- 586 Hooker, M., Jared, D., Warren, R., Miller, K. & Chamberlain, M. (2020) Characterizing American
587 black bear (*Ursus americanus*) highway crossing locations in central Georgia. *J. Southeast.
588 Assoc. Fish Wildl. Agencies* **7**, 227–237.

- 589 Horne, J.S., Fieberg, J., Börger, L., Rachlow, J.L., Calabrese, J.M. & Fleming, C.H. (2020) Animal
590 home ranges: concepts, uses, and estimation. *Population Ecology in Practice*, pp. 315–332,
591 Wiley-Blackwell.
- 592 Horne, J.S., Garton, E.O., Krone, S.M. & Lewis, J.S. (2007) Analyzing animal movements using
593 Brownian bridges. *Ecology* **88**, 2354–2363.
- 594 Jeltsch, F., Bonte, D., Pe'er, G., Reineking, B., Leimgruber, P., Balkenhol, N., Schröder, B.,
595 Buchmann, C.M., Mueller, T., Blaum, N., Zurell, D., Böhning-Gaese, K., Wiegand, T., Eccard,
596 J.A., Hofer, H., Reeg, J., Eggers, U. & Bauer, S. (2013) Integrating movement ecology with
597 biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics.
598 *Movement Ecology* **1**, 6.
- 599 Jennrich, R.I. & Turner, F.B. (1969) Measurement of non-circular home range. *Journal of Theoret-
600 ical Biology* **22**, 227–237.
- 601 Johnson, D.S., London, J.M., Lea, M.A. & Durban, J.W. (2008) Continuous-time correlated random
602 walk model for animal telemetry data. *Ecology* **89**, 1208–1215.
- 603 Johnston, A.N., Haegen, W.M.V. & West, S.D. (2020) Differential resource use between native and
604 introduced gray squirrels. *Journal of Wildlife Management* **84**, 726–738.
- 605 Kareiva, P.M. & Shigesada, N. (1983) Analyzing insect movement as a correlated random walk.
606 *Oecologia* **56**, 234–238.
- 607 Kays, R., Crofoot, M.C., Jetz, W. & Wikelski, M. (2015) Terrestrial animal tracking as an eye on
608 life and planet. *Science* **348**.
- 609 Keith, J.M., Spring, D. & Kompas, T. (2019) Delimiting a species' geographic range using posterior
610 sampling and computational geometry. *Scientific Reports* **9**, 8938.
- 611 Kie, J.G. (2013) A rule-based ad hoc method for selecting a bandwidth in kernel home-range
612 analyses. *Animal Biotelemetry* **1**, 13.

- 613 Kie, J.G., Matthiopoulos, J., Fieberg, J., Powell, R.A., Cagnacci, F., Mitchell, M.S., Gaillard, J.M.
614 & Moorcroft, P.R. (2010) The home-range concept: are traditional estimators still relevant with
615 modern telemetry technology? *Philosophical Transactions of the Royal Society B: Biological
616 Sciences* **365**, 2221–2231.
- 617 Koizumi, C.L. & Derocher, A.E. (2019) Predation risk and space use of a declining Dall sheep
618 (*Ovis dalli dalli*) population. *PLOS ONE* **14**, e0215519.
- 619 Kranstauber, B., Kays, R., LaPoint, S.D., Wikelski, M. & Safi, K. (2012) A dynamic Brownian
620 bridge movement model to estimate utilization distributions for heterogeneous animal movement.
621 *Journal of Animal Ecology* **81**, 738–746.
- 622 Langrock, R., King, R., Matthiopoulos, J., Thomas, L., Fortin, D. & Morales, J.M. (2012) Flexible
623 and practical modeling of animal telemetry data: hidden Markov models and extensions. *Ecology*
624 **93**, 2336–2342.
- 625 Laver, P.N. & Kelly, M.J. (2008) A critical review of home range studies. *The Journal of Wildlife
626 Management* **72**, 290–298.
- 627 Lyons, A.J., Turner, W.C. & Getz, W.M. (2013) Home range plus: a space-time characterization of
628 movement over real landscapes. *Movement Ecology* **1**, 2.
- 629 Manly, B., McDonald, L., Thomas, D., McDonald, T. & Erickson, W. (2007) *Resource selection
630 by animals: statistical design and analysis for field studies*. Springer Science & Business Media.
- 631 Martins, C.C.A., Andriolo, A., Engel, M.H., Kinias, P.G. & Saito, C.H. (2013) Identifying priority
632 areas for humpback whale conservation at Eastern Brazilian Coast. *Ocean & Coastal Manage-
633 ment* **75**, 63–71.
- 634 Marzluff, J.M., Millspaugh, J.J., Hurvitz, P. & Handcock, M.S. (2004) Relating resources to a
635 probabilistic measure of space use: forest fragments and Steller's jays. *Ecology* **85**, 1411–1427.

- 636 Millspaugh, J.J., Nielson, R.M., McDonald, L., Marzluff, J.M., Gitzen, R.A., Rittenhouse, C.D.,
637 Hubbard, M.W. & Sheriff, S.L. (2006) Analysis of resource selection using utilization distribu-
638 tions. *Journal of Wildlife Management* **70**, 384–395.
- 639 Morales, J.M., Haydon, D.T., Frair, J., Holsinger, K.E. & Fryxell, J.M. (2004) Extracting more
640 out of relocation data: building movement models as mixtures of random walks. *Ecology* **85**,
641 2436–2445.
- 642 Moriarty, K.M., Linnell, M.A., Chasco, B.E., Epps, C.W. & Zielinski, W.J. (2017) Using high-
643 resolution short-term location data to describe territoriality in Pacific martens. *Journal of Mam-
644 malogy* **98**, 679–689.
- 645 Nathan, R., Getz, W.M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D. & Smouse, P.E. (2008)
646 A movement ecology paradigm for unifying organismal movement research. *Proceedings of the
647 National Academy of Sciences* **105**, 19052–19059.
- 648 Nathan, R., Monk, C.T., Arlinghaus, R., Adam, T., Alós, J., Assaf, M., Baktoft, H., Beardsworth,
649 C.E., Bertram, M.G., Bijleveld, A.I., Brodin, T., Brooks, J.L., Campos-Candela, A., Cooke, S.J.,
650 Gjelland, K., Gupte, P.R., Harel, R., Hellström, G., Jeltsch, F., Killen, S.S., Klefoth, T., Langrock,
651 R., Lennox, R.J., Lourie, E., Madden, J.R., Orchan, Y., Pauwels, I.S., Říha, M., Roeleke, M.,
652 Schlägel, U.E., Shohami, D., Signer, J., Toledo, S., Vilk, O., Westrelin, S., Whiteside, M.A. &
653 Jarić, I. (2022) Big-data approaches lead to an increased understanding of the ecology of animal
654 movement. *Science* **375**, eabg1780, publisher: American Association for the Advancement of
655 Science.
- 656 Nielson, R.M., Sawyer, H. & McDonald, T.L. (2013) BBMM: Brownian bridge movement model.
- 657 Noonan, M.J., Fleming, C.H., Tucker, M.A., Kays, R., Harrison, A.L., Crofoot, M.C., Abrahms, B.,
658 Alberts, S.C., Ali, A.H., Altmann, J., Antunes, P.C., Attias, N., Belant, J.L., Beyer, D.E., Bidner,
659 L.R., Blaum, N., Boone, R.B., Caillaud, D., Paula, R.C.d., Torre, J.A.d.l., Dekker, J., DePerno,
660 C.S., Farhadinia, M., Fennessy, J., Fichtel, C., Fischer, C., Ford, A., Goheen, J.R., Havmøller,

- 661 R.W., Hirsch, B.T., Hurtado, C., Isbell, L.A., Janssen, R., Jeltsch, F., Kaczensky, P., Kaneko,
662 Y., Kappeler, P., Katna, A., Kauffman, M., Koch, F., Kulkarni, A., LaPoint, S., Leimgruber, P.,
663 Macdonald, D.W., Markham, A.C., McMahon, L., Mertes, K., Moorman, C.E., Morato, R.G.,
664 Moßbrucker, A.M., Mourão, G., O'Connor, D., Oliveira-Santos, L.G.R., Pastorini, J., Patterson,
665 B.D., Rachlow, J., Ranglack, D.H., Reid, N., Scantlebury, D.M., Scott, D.M., Selva, N., Sergiel,
666 A., Songer, M., Songsasen, N., Stabach, J.A., Stacy-Dawes, J., Swingen, M.B., Thompson, J.J.,
667 Ullmann, W., Vanak, A.T., Thaker, M., Wilson, J.W., Yamazaki, K., Yarnell, R.W., Zieba, F.,
668 Zwijacz-Kozica, T., Fagan, W.F., Mueller, T. & Calabrese, J.M. (2020) Effects of body size on
669 estimation of mammalian area requirements. *Conservation Biology* **34**, 1017–1028.
- 670 Noonan, M.J., Newman, C., Markham, A., Bilham, K., Buesching, C.D. & Macdonald, D.W.
671 (2018) In situ behavioral plasticity as compensation for weather variability: implications for
672 future climate change. *Climatic Change* **149**, 457–471.
- 673 Noonan, M.J., Tucker, M.A., Fleming, C.H., Akre, T.S., Alberts, S.C., Ali, A.H., Altmann, J.,
674 Antunes, P.C., Belant, J.L., Beyer, D., Blaum, N., Böhning-Gaese, K., Cullen, L., Paula, R.C.d.,
675 Dekker, J., Drescher-Lehman, J., Farwig, N., Fichtel, C., Fischer, C., Ford, A.T., Goheen, J.R.,
676 Janssen, R., Jeltsch, F., Kauffman, M., Kappeler, P.M., Koch, F., LaPoint, S., Markham, A.C.,
677 Medici, E.P., Morato, R.G., Nathan, R., Oliveira-Santos, L.G.R., Olson, K.A., Patterson, B.D.,
678 Paviolo, A., Ramalho, E.E., Rösner, S., Schabo, D.G., Selva, N., Sergiel, A., Silva, M.X.d.,
679 Spiegel, O., Thompson, P., Ullmann, W., Zięba, F., Zwijacz-Kozica, T., Fagan, W.F., Mueller, T.
680 & Calabrese, J.M. (2019) A comprehensive analysis of autocorrelation and bias in home range
681 estimation. *Ecological Monographs* **89**, e01344.
- 682 Pagès, J.F., Jenkins, S.R., Bouma, T.J., Sharps, E. & Skov, M.W. (2019) Opposing indirect effects
683 of domestic herbivores on saltmarsh erosion. *Ecosystems* **22**, 1055–1068.
- 684 Papageorgiou, D. & Farine, D.R. (2020) Group size and composition influence collective movement
685 in a highly social terrestrial bird. *eLife* **9**, e59902.

- 686 Pe'er, G., Tsianou, M.A., Franz, K.W., Matsinos, Y.G., Mazaris, A.D., Storch, D., Kopsova, L.,
687 Verboom, J., Baguette, M., Stevens, V.M. & Henle, K. (2014) Toward better application of
688 minimum area requirements in conservation planning. *Biological Conservation* **170**, 92–102.
- 689 Prince, A., Chitwood, M.C., Lashley, M.A., DePerno, C.S. & Moorman, C.E. (2016) Resource
690 selection by southeastern fox squirrels in a fire-maintained forest system. *Journal of Mammalogy*
691 **97**, 631–638.
- 692 Pérón, G., Fleming, C.H., Paula, R.C.d., Mitchell, N., Strohbach, M., Leimgruber, P. & Calabrese,
693 J.M. (2017) Periodic continuous-time movement models uncover behavioral changes of wild
694 canids along anthropization gradients. *Ecological Monographs* **87**, 442–456.
- 695 R Core Team, . (2020) R: a language and environment for statistical computing.
- 696 Rechetelo, J., Grice, A., Reside, A.E., Hardesty, B.D. & Moloney, J. (2016) Movement patterns,
697 home range size and habitat selection of an endangered resource tracking species, the black-
698 throated finch (*Poephila cincta cincta*). *PLOS ONE* **11**, e0167254.
- 699 Sasmal, I., Gould, N.P., Schuler, K.L., Chang, Y.F., Thachil, A., Strules, J., Olfenbuttel, C., Datta,
700 S. & DePerno, C.S. (2019) Leptospirosis in urban and suburban American black bears (*Ursus*
701 *americanus*) in western North Carolina, USA. *Journal of Wildlife Diseases* **55**, 74–83.
- 702 Sawyer, H., Kauffman, M.J., Nielson, R.M. & Horne, J.S. (2009) Identifying and prioritizing
703 ungulate migration routes for landscape-level conservation. *Ecological Applications* **19**, 2016–
704 2025.
- 705 Sawyer, H., Merkle, J.A., Middleton, A.D., Dwinnell, S.P.H. & Monteith, K.L. (2019) Migratory
706 plasticity is not ubiquitous among large herbivores. *Journal of Animal Ecology* **88**, 450–460.
- 707 Scharf, A.K., Belant, J.L., Beyer, D.E., Wikelski, M. & Safi, K. (2018) Habitat suitability does not
708 capture the essence of animal-defined corridors. *Movement Ecology* **6**, 18.

- 709 Schick, R.S., Loarie, S.R., Colchero, F., Best, B.D., Boustany, A., Conde, D.A., Halpin, P.N.,
710 Joppa, L.N., McClellan, C.M. & Clark, J.S. (2008) Understanding movement data and movement
711 processes: current and emerging directions. *Ecology Letters* **11**, 1338–1350.
- 712 Schlägel, U.E., Signer, J., Herde, A., Eden, S., Jeltsch, F., Eccard, J.A. & Dammhahn, M. (2019)
713 Estimating interactions between individuals from concurrent animal movements. *Methods in
714 Ecology and Evolution* **10**, 1234–1245.
- 715 Signer, J., Fieberg, J. & Avgar, T. (2019) Animal movement tools (amt): R package for managing
716 tracking data and conducting habitat selection analyses. *Ecology and Evolution* **9**, 880–890.
- 717 Signer, J. & Fieberg, J.R. (2021) A fresh look at an old concept: home-range estimation in a tidy
718 world. *PeerJ* **9**, e11031.
- 719 Silva, I., Crane, M., Marshall, B.M. & Strine, C.T. (2020) Reptiles on the wrong track? Moving
720 beyond traditional estimators with dynamic Brownian Bridge Movement Models. *Movement
721 Ecology* **8**, 43.
- 722 Silva, I., Fleming, C.H., Noonan, M.J., Alston, J., Folta, C., Fagan, W.F. & Calabrese, J.M. (2022)
723 Autocorrelation-informed home range estimation: a review and practical guide. *Methods in
724 Ecology and Evolution* **13**, 534–544.
- 725 Sutherland, W.J., Freckleton, R.P., Godfray, H.C.J., Beissinger, S.R., Benton, T., Cameron, D.D.,
726 Carmel, Y., Coomes, D.A., Coulson, T., Emmerson, M.C., Hails, R.S., Hays, G.C., Hodgson,
727 D.J., Hutchings, M.J., Johnson, D., Jones, J.P.G., Keeling, M.J., Kokko, H., Kunin, W.E., Lambin,
728 X., Lewis, O.T., Malhi, Y., Mieszkowska, N., Milner-Gulland, E.J., Norris, K., Phillimore, A.B.,
729 Purves, D.W., Reid, J.M., Reuman, D.C., Thompson, K., Travis, J.M.J., Turnbull, L.A., Wardle,
730 D.A. & Wiegand, T. (2013) Identification of 100 fundamental ecological questions. *Journal of
731 Ecology* **101**, 58–67.
- 732 Tédonzong, L.R.D., Willie, J., Keuko, A.M.P., Kuenbou, J.K., Njotah, G., Tchamba, M.N., Tagg,

- 733 N. & Lens, L. (2018) Using abundance and habitat variables to identify high conservation value
734 areas for threatened mammals. *Biodiversity and Conservation* **27**, 1115–1137.
- 735 Uhlenbeck, G.E. & Ornstein, L.S. (1930) On the theory of the Brownian motion. *Physical Review*
736 **36**, 823–841.
- 737 van Eeden, L.M., Crowther, M.S., Dickman, C.R., Macdonald, D.W., Ripple, W.J., Ritchie, E.G. &
738 Newsome, T.M. (2018) Managing conflict between large carnivores and livestock. *Conservation*
739 *Biology* **32**, 26–34.
- 740 Walter, W.D., Onorato, D.P. & Fischer, J.W. (2015) Is there a single best estimator? Selection of
741 home range estimators using area-under-the-curve. *Movement Ecology* **3**, 10.
- 742 Winder, V.L., McNew, L.B., Pitman, J.C. & Sandercock, B.K. (2017) Space use of female greater
743 prairie-chickens in response to fire and grazing interactions. *Rangeland Ecology & Management*
744 **70**, 165–174.
- 745 Zeller, K.A., Wattles, D.W. & DeStefano, S. (2018) Incorporating road crossing data into vehicle
746 collision risk models for moose (*Alces americanus*) in Massachusetts, USA. *Environmental*
747 *Management* **62**, 518–528.