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Open Research Statement: Tracking data on Aepyceros melampus, Beatragus hunteri, Bycanistes1

bucinator, Cerdocyon thous, Eulemur rufifrons, Glyptemys insculpta, Gyps coprotheres, Madoqua2

guentheri, Ovis canadensis, Propithecus verreauxi, Sus scrofa, and Ursus arctos are publicly3

archived in the Dryad repository (Noonan et al. 2018; https://doi.org/10.5061/dryad.4

v5051j2), as are data from Procapra gutturosa (Fleming et al. 2014a; https://doi.org/10.5

5061/dryad.45157). Data on Panthera onca were taken from (Morato et al. 2018). Additional6

data are publicly archived in the Movebank repository under the following identifiers: Canis latrans,7

8159699; Canis lupus, 8159399; Chrysocyon brachyurus, 18156143; Felis silvestris, 40386102;8

Gyps africanus, 2919708; Lepus europaeus, 25727477; Martes pennanti, 2964494; Panthera leo,9

220229; Papio cynocephalus, 222027; Syncerus caffer, 1764627; Tapirus terrestris, 443607536;10

Torgos tracheliotus, 2919708; and Ursus americanus, 8170674.11

Abstract12

Quantifying animal movements is necessary for answering a wide array of research questions in13

ecology and conservation biology. Consequently, ecologists have made considerable efforts to14

identify the best way to estimate an animal’s home range, and many methods of estimating home15

ranges have arisen over the past half century. Most of these methods fall into two distinct categories16

of estimators that have only recently been described in statistical detail: those that measure range17

distributions (methods such as Kernel Density Estimation that quantify the long-run behavior of a18

movement process that features restricted space use) and those that measure occurrence distributions19

(methods such as Brownian Bridge Movement Models and the Correlated Random Walk Library20

that quantify uncertainty in an animal movement path during a specific period of observation).21

In this paper, we use theory, simulations, and empirical analysis to demonstrate the importance22

of applying these two classes of space use estimators appropriately and distinctly. Conflating23

range and occurrence distributions can have serious consequences for ecological inference and24

conservation practice. For example, in most situations, home-range estimates quantified using25
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occurrence estimators are too small, and this problem is exacerbated by ongoing improvements in26

tracking technology that enable more frequent and more accurate data on animal movements. We27

encourage researchers to use range estimators to estimate the area of home ranges and occurrence28

estimators to answer other questions in movement ecology, such as when and where an animal29

crosses a linear feature, visits a location of interest, or interacts with other animals.30

Key-words: Brownian bridge movement model, home range, kernel density estimator (KDE),31

Kriging, movement ecology, movement model, space use, stochastic process models, utilization32

distribution33

Introduction34

Understanding how and why animals use the areas they inhabit is a core goal in the fields of ecology35

and conservation biology (Jeltsch et al., 2013, Nathan et al., 2008, Schick et al., 2008, Sutherland36

et al., 2013). The attributes of the areas where animals live shape their fitness, and knowledge37

of relationships between movement and fitness informs our understanding of how animals interact38

with each other and their environments, as well as our ability to implement effective conservation39

interventions (Allen & Singh, 2016). For these reasons, the importance of quantifying space use40

was recognized early in the development of ecology and led to the concepts of “home ranges”41

and “utilization distributions”. The conceptual definition of home ranges provided by Burt (1943)42

is still the most widely cited and targeted. Burt defined an animal’s home range as “...that area43

traversed by the individual in its normal activities of food gathering, mating, and caring for young.44

Occasional sallies outside the area, perhaps exploratory in nature, should not be considered as45

[a] part of the home range.” Two and a half decades after Burt offered this definition, Jennrich &46

Turner (1969) coined the term ‘utilization distribution’ as the probabilistic representation of a home47

range, providing a foundation for translating Burt’s conceptual idea into statistical estimators that48

can be applied to animal location data (Horne et al., 2020). Together, these ideas have served as49

the foundation of research on animal movement and resource use over the past half century.50

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.29.509951doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.509951
http://creativecommons.org/licenses/by/4.0/


Alston et al. Clarifying space use concepts 5

Movement and resource use, however, are multifaceted aspects of animal behavior. Conse-51

quently, the home range concept has broadened substantially over time and there now exists a very52

large literature describing different approaches to home range estimation (Fieberg & Börger, 2012,53

Heit et al., 2021, Horne et al., 2020, Kie et al., 2010). Many of these approaches cluster around54

two distinct spatial probability distributions that arise from stochastic movement processes and55

can be estimated from animal location data. Fleming et al. (2015, 2016) referred to these as the56

“range” and “occurrence” distributions, and others have begun to adopt this terminology (Horne57

et al., 2020, Keith et al., 2019, Scharf et al., 2018, Schlägel et al., 2019, Signer & Fieberg, 2021).58

Specifically, the range distribution describes the long-run behavior of a movement process that59

features restricted space use and is consistent with Burt’s classical definition of the home range.60

In contrast, occurrence distributions quantify uncertainty in the movement path of an individual61

during a period of observation and are not directly related to Burt’s definition of the home range.62

Both of these distributions can serve as an estimation target for which specific statistical estimators63

can be derived, but range estimators quantify fundamentally different phenomena than occurrence64

estimators: range distributions answer the question “How much space does an animal need over65

the long term?”, while occurrence distributions answer the question “Where did an animal travel66

during a defined period of observation?”. Although these questions may appear similar, range and67

occurrence distributions have very different biological and mathematical interpretations.68

In this paper, we argue that range and occurrence distributions can serve as focal points69

around which to organize concepts, models, statistical estimators, and research questions. We70

use theoretical arguments, simulations, and empirical examples to demonstrate similarities and71

differences between these distributions, as well as consequences that can arise from conflating72

range and occurrence estimators. We then link these two distributions to the ecological questions73

each can answer, and to the estimators that arise from each distribution.74
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Concepts and Definitions75

By explicitly separating the discrete-time and often arbitrary sampling schedule from the underlying76

continuous-time movement process, continuous-time movement models offer a number of advan-77

tages over the more traditional approach of assuming a discrete-time movement process (Kareiva &78

Shigesada, 1983, Langrock et al., 2012, Morales et al., 2004). These advantages include the ability79

to estimate scale-invariant parameters, the ability to model movement using irregularly sampled80

data, and freedom from the assumption of serial independence among data points (Fleming et al.,81

2014b, Gurarie et al., 2017, Johnson et al., 2008). Defining movement in this way provides a82

framework that facilitates the derivation of rigorous statistical procedures for quantifying move-83

ment (Blackwell, 1997, Dunn & Gipson, 1977, Fleming et al., 2015a, Hanks et al., 2015, Johnson84

et al., 2008), including many non-random behaviors such as migration, territoriality, patrolling,85

trap-lining, collective movement, and habitat- or condition-specific movement (e.g., Brennan et al.,86

2018, Moriarty et al., 2017, Papageorgiou & Farine, 2020, Péron et al., 2017, Sawyer et al., 2019).87

In this framework, we may consider an animal’s trajectory collected from a telemetry movement88

track, r(C) = (G(C), H(C)), to be a realization from a continuous-time stochastic process that is89

observed at discrete times C1, C2, C3, · · · , C=. From this realization, we estimate quantities related to90

the animal’s movement patterns, conditional upon stochastic movement models that can be used to91

generate movement trajectories (Table 1). Movement models such as Brownian motion (Einstein,92

1905, Horne et al., 2007) and the integrated Ornstein-Uhlenbeck (IOU) process (Gurarie et al.,93

2017, Gurarie & Ovaskainen, 2011, Johnson et al., 2008) are endlessly diffusing processes and thus94

do not have finite coverage areas in the long run. In contrast, models such as the Ornstein-Uhlenbeck95

(OU; Dunn & Gipson, 1977, Uhlenbeck & Ornstein, 1930) and Ornstein-Uhlenbeck Foraging pro-96

cesses (OUF; Fleming et al., 2014a, 2015b) feature finite coverage areas, even as C approaches97

infinity. The OU and OUF processes can be thought of as range-resident versions of Brownian98

motion and IOU processes, respectively. Another key distinction among movement models arises99

from the types of autocorrelation they can accommodate. Brownian motion and OU movement100

produce autocorrelated positions but uncorrelated velocities, while IOU and OUF movement pro-101
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Movement Model Position Autocorrelation Velocity Autocorrelation Range Residency
IID No No Yes
BM Yes No No
OU Yes No Yes
IOU Yes Yes No
OUF Yes Yes Yes

Table 1: Summary of stochastic processes that can currently be used to model animal movement. These

processes can feature positional autocorrelation, velocity autocorrelation, and/or range residency. The inde-

pendent and identically distributed (IID) process can describe animal location data in which no autocorrelation

is present. Brownian motion (BM) occurs in the limit of the Ornstein-Uhlenbeck (OU) process, when its posi-

tional autocorrelation time scale approaches infinity, while the Integrated Ornstein-Uhlenbeck (IOU) process

occurs when the positional autocorrelation time scale of the Ornstein-Uhlenbeck Foraging (OUF) process ap-

proaches infinity. More detailed mathematical descriptions of these models can be found in Fleming et al.

2014a and Fleming et al. 2015b.

duce both autocorrelated positions and autocorrelated velocities. In contrast, the independent and102

identically distributed (IID) process, while having a finite coverage area, produces—as the name103

implies—completely uncorrelated data. With these movement models in mind, we can define two104

key families of distributions that capture many (but not all) conceptions of “space use” in the105

ecological literature.106

The Range Distribution107

Movement processes that feature finite coverage areas, including the IID, OU, and OUF processes,108

admit a marginal distribution ?(r, C) at each time C, which is the probability density of a random109

location r(C) being r at time C, without conditioning on any previous locations. In the most general110

sense, a range distribution is a marginal distribution focused on a particular time frame or suite of111

movement behaviors, by marginalizing over times or behaviors, to enable predictions of an animal’s112

locations in future periods. In other words, a range distribution describes the probability of an113

animal being in a location at a given time, taking into account all of the locations in a movement114

track simultaneously. The range distribution is simplest to define for stationary processes, which115

describe unchanging movement behaviors:116

?
stationary
range (r) = ?(r, C) = ?(r) , (1)
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for any time C. Non-stationary processes, which describe movement behaviors that change over117

time (e.g., migrations, drifting home ranges), further require an appropriate time average to weight118

the relevant marginal distributions (e.g., Fleming et al., 2018, S1). Because ?
stationary
range (r) denotes119

the relative frequencies of different locations, the range distribution provides a prediction of space120

use, in that 95% of future locations will fall within its 95% coverage area, so long as the underlying121

movement process does not change (a testable assumption; see Noonan et al. 2019).122

Range distributions therefore capture the long-run (asymptotic) area of the movement process.123

They are generated by running a single realization of the movement process forward into the future124

while keeping movement behavior fixed. The coverage areas of the range distribution are not125

estimates of what space the animal has used during the observation period, but predictions of126

what space will eventually be used, given a sufficient amount of time for the movement process to127

continue. All else being equal, an IID process will very quickly fill out the ranging area, whereas128

highly autocorrelated processes such as OUF will take longer to fill out the ranging area. However,129

the autocorrelation in the resulting data contains information about the long-run area of the process,130

and thus the estimate of the range distribution that accounts for autocorrelation in the data may131

contain a considerable amount of space that is not visited during a period of study. The range132

distribution corresponds closely to Burt’s conceptual definition of home range because it captures133

the area that the animal typically uses, not including exploratory forays. The range distribution is134

thus the appropriate tool for answering the question of “How large is an animal’s home range?”.135

When data are statistically independent, and thus consistent with the IID assumption, the range136

distribution can be estimated by a variety of methods including Minimum Convex Polygons (MCPs),137

conventional Kernel Density Estimation (KDE), and classical Mechanistic Home Range Analysis.138

For the autocorrelated data provided by modern technologies such as GPS and ATLAS (Kays et al.,139

2015, Nathan et al., 2022), the range distribution is most accurately estimated by Autocorrelated140

Gaussian Density Estimation (Dunn & Gipson, 1977, Fleming et al., 2014b) if the home range is141

Gaussian, or Autocorrelated Kernel Density Estimation (AKDE; Fleming et al., 2015a, Noonan142

et al., 2019) otherwise. In other words, the estimation target of all of these estimators is the range143
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distribution, but each estimator differs in the assumptions made about the data that underlie it. A144

given estimator must therefore be used only when the data are consistent with the movement model145

that underlies that estimator’s assumptions (as is standard statistical practice).146

For a range distribution to exhibit a finite coverage area, the stochastic process from which it is147

derived must also feature finite coverage. Finite area manifests as an asymptote in the stochastic148

processes’ semi-variance function as the time lag between observations of the process increases149

(Fleming et al., 2014a). Some, but not all, stochastic movement models feature finite space (Table150

1). These include the IID process, the OU process, and the OUF process. Importantly, as mentioned151

earlier, widely used models such as Brownian and IOU motion in the continuous-time context, and152

(correlated) random walks in discrete time, are endlessly diffusing processes and thus do not have153

finite range areas (Fleming et al., 2016). This means that these models do not provide useful154

estimates of home range areas.155

Finally, we note that there is no dependence in the definition of the range distribution on the156

particular sampling regime chosen by an investigator. The range distribution is a property of the157

movement process that is independent of the sampling process. However, the estimators of the158

range distribution are subject to a number of biases, some of which can be related to the sampling159

process (Silva et al., 2022). First, a range estimate becomes more fully resolved in proportion160

to its “effective sample size”, which is approximately how many times the focal animal crossed161

its home range during the observation period. If the animal has not crossed its range during162

the observation period, it is not possible to estimate the range distribution. Second, different163

estimators of the range distribution may exhibit either positive or negative biases that decrease164

asymptotically as sampling duration increases. Third, estimators that assume IID data (e.g.,165

conventional KDE, MCP, Mechanistic Home Range Analysis) tend to underestimate the ranging166

area when applied to autocorrelated tracking data by an extent that depends, all else equal, on the167

strength of autocorrelation in the sampled locations (Noonan et al., 2019). Again, this is not an168

inherent property of range distributions per se, but, instead, results from using estimators for which169

a core assumption has been violated. As with any statistical procedure, violating a key assumption170
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of a home range estimator can produce biased results.171

The Occurrence Distribution172

Whereas range distributions are based on the marginal distributions ?(r, C) and can predict un-173

realized locations, occurrence distributions are based on the conditional distributions ?(r, C |data)174

and are focused on interpolating movement tracks between known locations during an observation175

period. In other words, an occurrence distribution describes the probability of an animal being in a176

location at a given time, conditional upon its previous and subsequent locations. Such conditional177

distributions exist for all stochastic movement processes, even when those processes do not have178

finite coverage areas in the long run and do not describe range-resident movement behaviors (e.g.,179

Brownian motion and IOU movement). The simplest occurrence distribution that we can construct180

involves uniformly averaging these conditional distributions over the observation period for times181

sampled between C1 and C=:182

?occurrence(r) =
1

C=−C1

∫ C=

C1

3C

︸         ︷︷         ︸

time-average

?(r, C |data) . (2)

This corresponds to the conditional distribution of a realized location r(C) at a random time C within183

the observation window. However, missing observations are often skipped to avoid oversmoothing184

(e.g., Bedrosian et al., 2018, Coe et al., 2015, Sawyer et al., 2009), and one could envision a more185

rigorous weighting scheme that maintains a balance between detail and continuity. In the limit186

of very coarse, uncorrelated data, and with some gap-skipping heuristic applied, the occurrence187

distribution reduces to the empirical distribution of the data. This means that there must be188

autocorrelation between data points for an occurrence estimator to perform well (i.e., to narrow189

down the area an animal may have traveled between known locations). Estimating an occurrence190

distribution using data that is so coarse as to be IID, or nearly so, will provide little information on191

the movement track of an animal.192

The occurrence distribution quantifies where an animal may have traveled during the observation193
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period given the observed data, and relies on an autocorrelated movement model to interpolate the194

data. The occurrence distribution’s area is generated by considering all possible trajectories that195

are consistent with the data, weighted by their probability density. As the movement path of an196

animal becomes more finely and more accurately resolved, this area becomes smaller and smaller,197

eventually limiting to zero, even though actual space used has not changed. The area of occurrence198

estimates therefore does not directly measure space use—even during the observation period—199

but is, instead, a reflection of our uncertainty regarding where an animal was located during an200

observation period. In other words, if we have complete knowledge of the animal’s locations201

during an observation period (i.e., infinite sampling rate and no location error), the occurrence202

distribution collapses to the animal’s movement path and has zero area. The occurrence distribution203

is thus appropriate for answering questions such as “Where might an animal have traveled during204

an observation period?” and “What landscape features might an animal have visited along its205

movement path?”.206

The occurrence distribution is not well-estimated by the range estimators outlined in the prior207

subsection, and proper occurrence estimators have not been around nearly as long as range208

estimators—occurrence estimators were introduced in the peer-reviewed ecology literature only209

around 15 years ago (Horne et al., 2007). Currently, Brownian bridge movement models (BBMMs;210

Horne et al., 2007, Kranstauber et al., 2012), the Correlated Random Walk Library (CRAWL; John-211

son et al., 2008), and the generalized time-series Kriging framework (Fleming et al., 2016) all share212

occurrence distributions as estimation targets. Note that the Kriging framework contains both the213

BBMM and CRAWL as special cases—Kriging with a Brownian motion model is equivalent to the214

BBMM, while Kriging with an IOU process is equivalent to the model used in CRAWL (Fleming215

et al., 2016). The occurrence distribution exists for any autocorrelated movement process, whether216

or not the focal process features finite coverage areas. This means that the Brownian motion, IOU,217

OU, and OUF continuous-time processes all admit occurrence distributions. For an IID process,218

the occurrence distribution is simply the empirical distribution with some heuristic to account for219

gaps in the data.220
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Transitioning from marginal distributions that are independent of specific events to conditional221

distributions that are conditional upon preceding and subsequent events has a dramatic effect on222

the meaning and operation of occurrence distributions. Range distributions and their constituent223

marginal distributions are parameters of the movement process that exist independent from the sam-224

pling process (though estimators of the range distribution may exhibit some sampling dependence).225

In contrast, occurrence distributions are conditional upon the observed data and are thus explicitly226

defined in terms of the sampling schedule. This means that a different sampling schedule applied to227

the same movement process will correctly yield a different occurrence distribution: all else equal,228

increasing the sampling rate will result in a narrower, more concentrated occurrence distribution.229

This happens because more frequent sampling more fully resolves the animal’s true movement path,230

and thus uncertainty in the animal’s locations decreases concomitantly. It is important to realize231

that this is not due to sampling-dependent bias of occurrence estimators: occurrence estimators in232

the time-series Kriging family, including the BBMM, can be unbiased. Instead, the uncertainty233

decreases because the estimation target itself (i.e., the occurrence distribution) is a function of the234

sampling schedule. Figure 1 shows this process occurring for data from a fisher (Pekania pennanti)235

tracked for 19 days in New York, USA, at a roughly 2-minute sampling interval.236

Relationships Between Range and Occurrence Distributions237

As detailed above, the range and occurrence distributions are based on different biological and238

statistical definitions, have different interpretations and statistical estimators, and respond differently239

to variation in sampling schedules. We now consider two key limits defined by data amount and240

quality that highlight the conditions under which range and occurrence distributions either converge241

or diverge completely, and reiterate a conceptual difference between the two distributions.242

Convergent Limit: Infinite Observation Period243

Given an infinite observation period, the occurrence distribution will limit to a distribution close to244

the range distribution, but with an amount of estimation error determined by location error and the245
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Figure 1: Demonstration of sampling dependence of occurrence and range distributions using GPS location

data from a GPS-tracked fisher (Pekania pennanti) from New York, USA. The fisher was tracked for 19 days

at 2-minute intervals. The top row features individual locations along the fisher’s movement track as the

movement track is progressively thinned from 720 locations per day to 2 locations per day. The second row

features 95% AKDE range estimates generated using the same GPS locations. While the contours of the

range estimate change as the data are more finely resolved, the area within those contours remains largely

stable. The third row features 95% Kriged occurrence estimates generated using the same data. In contrast

with range estimates, the area of occurrence estimates shrinks rapidly as the data are sampled more frequently

and the fisher’s movement path is more accurately resolved.

sizes of gaps in the data. This happens because an animal visits more and more of its home range246

over time. Decreasing location error and increasing the sampling rate will reduce this estimation247

error, but increasing the sampling rate will also slow down convergence, because the occurrence248

area limits to zero if the sampling rate is infinite while the observation period is finite.249

Divergent Limit: Infinite Sampling Rate250

For the occurrence distribution of any real movement process that is continuous in both location251

and velocity, holding the sampling duration constant while increasing the sampling rate with either252

no location error or uncorrelated location error yields the limit:253

lim
3C→0

?(r, C |data) = X(r−r(C)) , (3)
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where X(r) is the Dirac delta function—a singular distribution with probability mass concentrated254

at r. This limit is easiest to see in the case of a Brownian bridge, where the width of the bridge is255

at most proportional to 3C. In any case, the occurrence distribution collapses toward the movement256

path even in the presence of (uncorrelated) location error as sampling becomes finer and finer,257

eventually collapsing to zero area. The range distribution is unaffected by this limit and its258

area remains the same, though estimators of the range distribution may exhibit varying sampling259

dependence. Increasing the rate of sampling results in increasingly strong autocorrelation in the260

data, so asymptotically consistent range estimators that do not account for this autocorrelation261

perform worse as sampling rate increases. Such estimators are increasingly negatively biased by262

increasing autocorrelation strength and will also limit to zero area. However, range estimators that263

properly model autocorrelation will be unaffected by this limit, and their area estimates will remain264

consistent.265

Interpolation vs. Extrapolation266

Another way of distinguishing between range and occurrence distributions is in terms of the267

statistical operations to which they conform. Given a sample of tracking data of finite duration, the268

range distribution represents an extrapolation of the long-run behavior of the movement process,269

as inferred from the data, and quantifies the variance of the movement process. In contrast, the270

occurrence distribution interpolates within the observation period, conditional on the data and an271

autocorrelated movement model, and quantifies uncertainty in the interpolation. This is why the272

general framework for occurrence estimation is based on Kriging, which is a statistically optimal273

method of model-based interpolation (Fleming et al., 2016).274

To illustrate this more concretely, consider cross-validation of home range estimators. If an275

estimator accurately quantifies an individual’s home range (sensu Burt, 1943), an unbiased 95%276

home range area estimate generated over some observation period )1 should contain, on average,277

95% of that animal’s locations over a subsequent observation period )2, provided the animal’s278

movement behavior does not meaningfully change between the training ()1) and test ()2) sets, and279
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provided that)1 and)2 begin far enough apart to be uncorrelated. If a 95% home range area estimate280

were to consistently include more than 95% of the subsequent locations, then estimates would be281

positively biased; if estimates consistently include fewer than 95% of the subsequent locations,282

then estimates would be negatively biased. Similarly, a 50% home range estimate generated283

over )1 should contain 50% of an animal’s locations, on average, over )2. In other words, the284

relevant test set for a range estimator is an animal’s movements in the future, extrapolated from past285

location data. This can be achieved via half-sample cross-validation (e.g., Noonan et al., 2019).286

Cross-validation of occurrence estimators should operate differently. If an estimator captures an287

occurrence distribution accurately, an unbiased 95% area estimate generated over )1 should contain288

95% of that animal’s locations within )1. In other words, the relevant test set for an occurrence289

estimator are holdout data from within the initial observation period (and not a subsequent period).290

Simulated Examples291

The two limits described above are crucial for understanding the differences between occurrence and292

range distributions. We now demonstrate the importance of these limits with both simulated and real293

data. For the simulated data, we can specifically model processes where both types of distributions294

exist: processes that are (1) autocorrelated (so that the occurrence distribution can interpolate the295

data) and (2) range-resident (so that the range distribution exists). Simulation also allows us to296

set the true size of the home range (range distribution). We can then manipulate the sampling297

schedule of the simulated processes to explore the effects of sampling rate and sampling duration298

on the sizes of range and occurrence estimates. To do this, we simulated movement paths from299

an OUF process while varying the sampling rate and sampling duration systematically to illustrate300

differences between estimates provided by range and occurrence estimators. For each data set, we301

estimated the range distribution via Autocorrelated Gaussian Density Estimation conditioned on302

a fitted OUF model with daily autocorrelation timescales. Similarly, we estimated the occurrence303

distribution for each data set by Kriging with an OUF model with daily autocorrelation timescales.304
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Figure 2: Bias in estimates of home range size provided by range (orange) and occurrence (indigo) distribution

estimates with different sampling rates (i.e., GPS fixes per range crossing; Panel A) and effective sample

sizes (i.e., number of range crossings in a data set; Panel B). A point at 1 indicates that home range size was

estimated correctly for a simulated movement track with a known home range size. Small points represent

a single simulation result (jittered on the x-axis to ease visualization), while larger points represent the mean

simulation result among 400 replicates. Divergence of range estimates from the line at 1 at small durations

of sampling arise from known patterns of bias that can be improved by bootstrapping (Fleming et al., 2019),

while bootstrapping does little to change the size of occurrence estimates.

The assumptions of these estimation approaches exactly match the process that generated the data,305

so the statistical estimators are correctly specified for both the range and occurrence distributions306

in these simulated examples.307

Figure 2A shows the area of the occurrence estimate decreasing as the sampling rate increases308

from one observation per day to 128 observations per day. Note that the 95% occurrence area309

starts substantially less than the range area, because the sampling duration is finite (256 days, in310

this case), and then rapidly collapses to zero as the sampling rate increases. Ongoing technological311

advances that facilitate ever finer and more accurate location sampling are driving movement studies312

closer to the limit where estimates produced by occurrence estimators collapse to zero area. It is313

therefore inevitable that the differences between range and occurrence distributions will become314

more obvious in the future, even though these distributions have been frequently conflated in the315

past.316

Figure 2B shows the area of the occurrence estimate increasing as the sampling duration317

increases from 4 days to 4,096 days. Again, the 95% occurrence area is still substantially less318
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than the range area even when the effective sample size (i.e., the number of range crossings) is319

> 4,000, and rapidly collapses to zero as the duration of the observation period decreases. This320

is a major real-world problem because it can take weeks or months on average for an animal to321

cross its range (depending on species), and the lifespan of tracking devices (or even animals) is322

unlikely to enable an effective sample size of anywhere near 4,000 (i.e., 11 years with daily range323

crossings). This demonstrates that while occurrence distributions tend toward range distributions as324

the sampling duration increases, using an occurrence estimator to quantify the size of home ranges325

will yield a substantial underestimate unless very large amounts of data are collected—amounts326

that are likely logistically and/or biologically impossible. Although technological advances are327

increasing the battery lifespan of animal tracking devices, and thus the potential duration of animal328

tracking studies, the duration of tracking data for an individual animal is often limited in practice by329

mortality or equipment failure. Occurrence estimators will therefore tend to provide home-range330

estimates that are substantially smaller than the true home range size in most real-world situations.331

Empirical Examples332

Using empirical data, we now show how profoundly range and occurrence estimates can diverge333

in real-world data sets. As outlined above, this happens when the data are sampled frequently334

enough that the occurrence distribution collapses toward the movement path and for long enough335

that estimating the range distribution is possible. Such data sets are already common and their336

availability will only increase as tracking technology improves (Gupte et al., 2022, Kays et al., 2015,337

Nathan et al., 2022). Using a data set of 369 individual animals across 27 species (Noonan et al.,338

2019), we estimated both the range and occurrence distributions for each animal. We estimated339

the range distribution via Autocorrelated Kernel Density Estimation (AKDE) conditioned on a340

fitted movement model according to the workflow described in Silva et al. (2022). In short, we341

used variogram analysis (Fleming et al., 2014a) to ensure animals were range-resident, fit and342

selected an autocorrelated movement model that best described the animal’s movements using343
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Figure 3: The ratio of the size of the occurrence estimate to the size of the range estimate for a data set

containing 369 individuals across 27 species, as a function of the effective sampling rate (i.e., GPS fixes

per range crossing; Panel A) and effective sample size (i.e., number of range crossings in a data set; Panel

B). Points represent individual animals, while dashed lines represent regressions demonstrating the overall

trend. Solid horizontal lines indicate a ratio of 1:1, where range and occurrence estimates are the same size.

Distance below the solid line indicates the extent to which occurrence estimators are negatively biased in their

estimates of home range size.

perturbative Hybrid Residual Maximum Likelihood (phREML; Fleming et al., 2019) and Akaike’s344

Information Criterion corrected for small sample sizes (AICc), and estimated weighted AKDE345

utilization distributions for each animal (Fleming et al., 2018) using the ctmm R package (v0.6.2;346

Calabrese et al., 2016) in the R statistical software environment (v3.6.2; R Core Team, 2020). We347

estimated the occurrence distribution for each animal based on Kriging (Fleming et al., 2016) with348

the same movement model used for the corresponding AKDE estimate. Figure 3 shows that the349

occurrence estimate is smaller than the range estimate for the vast majority of individuals in the350

data set (and usually much smaller). This occurs because the effective sample size is rarely large351

enough in real-world data to approach the theoretical limit where the occurrence distribution would352

converge with the range distribution.353

This shrinkage of occurrence estimates is accompanied by a decreased ability of the occurrence354

distribution to correctly specify the areas of home ranges. To illustrate this, we performed half-355

sample cross-validation on the same animal location data set. We subset data from each individual356

animal into halves, used the first half of the data to generate range (AKDE) and occurrence (Kriging)357

estimates, and then used the second half to assess the percentage of future animal locations that358
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were within the range and occurrence estimates. All data fit the assumptions of range-resident359

animals with movement processes that remained consistent between the two halves. We then fit360

regression lines (linear for AKDE estimates, logistic for Kriging estimates) for the influence of361

effective sampling rate (roughly the number of GPS locations per range crossing) and effective362

sample size on the percentage of locations in the test set that fell within estimates generated using363

the training set.364

As these results show (Fig. 4), the areas of home ranges derived from occurrence distributions365

do not merely fit the data more tightly—they inaccurately represent the true area of home ranges.366

Estimates of home ranges produced by occurrence estimators are nearly always too small, and this367

negative bias is exacerbated at high sampling rates and low effective sample sizes. This is not368

merely a hypothetical problem, nor is it only an issue that will arise in the future as technology369

continues to improve. Instead, it is pervasive in the animal movement data that wildlife biologists370

currently collect and analyze (Noonan et al., 2020, 2019).371

Discussion372

Ecologists often conflate occurrence estimators with range estimators, a much older and more373

familiar class of statistical tools. The first widely used occurrence estimators (Horne et al., 2007,374

Johnson et al., 2008) were landmark advances in movement ecology and enabled more statistically375

rigorous analyses of many research questions related to animal movement. Nevertheless, although376

they have been widely used in movement ecology, the extent of their novelty and unique properties377

have still largely gone unrecognized. As we have demonstrated, these two classes of estimators378

have radically different properties, and should therefore be used for different purposes (Table 2).379

Ecologists and conservation biologists should use range estimators to estimate the area of home380

ranges, and occurrence estimators to answer other questions, such as: Where might an animal have381

crossed a linear feature (Find’o et al., 2018, Hooker et al., 2020, Zeller et al., 2018)? How likely is382

it that an animal visited a location of interest (Noonan et al., 2018, Pagès et al., 2019, Sasmal et al.,383
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Figure 4: Half-sample cross-validation of range and occurrence estimates. Points represent the percentage

of locations from the second half of the data (test set) included in home ranges estimated from the first half

of the data (training set). Orange points represent range (AKDE) estimates, while indigo points represent

occurrence (Kriging) estimates. The dashed line represents the target 95% (top row) or 50% (bottom row)

quantile, while the solid line represents a regression model fit to the cross-validation results with shading to

indicate the 95% confidence interval. The left column demonstrates the influence of effective sampling rate on

cross-validation results, while the right column demonstrates the influence of effective sample size on cross-

validation results. On average, range estimates contain roughly the correct percentage of relocations, and this

remains true across all effective sampling rates and effective sample sizes. Occurrence estimates, however,

tend to contain too few relocations, and this problem is exacerbated at high effective sampling rates and low

effective sample sizes.

2019)? When and where could two individual animals have interacted (Schlägel et al., 2019)?384

Which areas of a landscape contain high-priority resources (e.g., migratory corridors or stopover385

sites; Sawyer et al., 2009, 2019)?386

Estimation of animal home ranges is foremost among our concerns on the conflation of range387

and occurrence estimators—occurrence estimators substantially underestimate the area of home388

ranges under a broad array of real-world conditions (Figs. 3,4). In recent years, there has been a389

slow but steady drift in preference among wildlife biologists towards estimators that fit more tightly390
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Range Distribution Occurrence Distribution
Distribution Type Marginal Conditional
Finite Coverage Area Arises only when the stochastic

movement process being modeled
has a finite coverage area

Arises when the sampling rate is
finite, regardless if the stochastic
movement process being modeled
has a finite coverage area

Statistical Operation Extrapolation (Over what area is
an animal likely to range in the
future?)

Interpolation (At which locations
might an animal have occurred in
the past?)

Sampling Dependence No (If its statistical assumptions
are met, a range estimator will esti-
mate a stable area even as a move-
ment track is sampled more fre-
quently)

Yes (If its statistical assumptions
are met, an occurrence estimator
will estimate a smaller area as a
movement track is sampled more
frequently)

Appropriate Questions How large is an animal’s home
range? What area is available to
an animal in studies of third-order
habitat selection?

Where might an animal have
crossed a linear feature? When
and where could two individual
animals have interacted? In which
areas of a landscape did an animal
visit high-priority resources (e.g.,
migratory corridors or stopover
sites)?

Table 2: Summary of the primary distinctions between range and occurrence distributions.

to animal location data (Fig. 5; Crane et al., 2021, Laver & Kelly, 2008, Walter et al., 2015). We391

believe that this preference has largely been driven by aesthetic considerations and the intuitive392

notion that areas within home range estimates where an animal does not travel during a study393

are not actually “used” (Cumming & Cornélis, 2012, Getz et al., 2007, Kie, 2013, Walter et al.,394

2015). This preference can be observed in the transition over time from home range estimates using395

Minimum Convex Polygons to Local Convex Hull (LoCoH; Getz et al., 2007, Getz & Wilmers,396

2004) to Time Local Convex Hull (T-LoCoH Lyons et al., 2013) methods, an emphasis on KDE397

bandwidth optimizers that fit tightly to location data (Cohen et al., 2018, Downs & Horner, 2008,398

Kie, 2013), and most recently, rapid growth in use of BBMMs to estimate home ranges (Fig. 5).399

Cross-validation frameworks that seek to backtest estimator performance (e.g., Getz & Wilmers,400

2004, Kie, 2013, Silva et al., 2020, Walter et al., 2015), which are appropriate for occurrence401

estimators but not range estimators, have also provided a false impression that smaller home range402
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estimates perform better. While understandable, seeking home range estimates that fit tightly to an403

animal’s past locations adheres neither to Burt’s original definition, nor the mathematical properties404

underlying the range distribution. Specifically, Burt’s definition aims to capture the amount of space405

an animal will need to survive and reproduce in the long run, not simply the level of uncertainty in406

an animal’s movement path during an observation period limited by study design, technology, or407

animal mortality.408

The most common occurrence estimator used to estimate home ranges is the BBMM (Horne409

et al., 2007), which has even been championed as a “third generation home range estimator” due410

to its ability to account for some autocorrelation in tracking data (Walter et al., 2015). Figure 5411

shows the cumulative number of peer-reviewed journal articles since the BBMM was introduced412

to ecologists in 2007 that either label it a home range estimator, or use it to estimate animal home413

range areas. However, Fleming et al. (2016) formally proved that the BBMM is an estimator of the414

occurrence distribution (rather than the range distribution) that arises as a special case of the more415

general time-series Kriging family of occurrence estimators. Specifically, Kriging a movement416

track conditional on a Brownian motion movement model is equivalent to the BBMM. Beyond417

being an occurrence estimator, and thus only suited to the task of home range estimation in the418

Figure 5: Number of peer-reviewed journal articles from 2006 to 2020 that either used BBMMs to estimate

the size of animal home ranges (light orange) or labeled BBMMs as a home range estimator (dark orange).

Although BBMMs are occurrence estimators and therefore poorly suited for estimating the size of home ranges,

use of BBMMs to estimate the size of home ranges is growing rapidly.
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(unrealistic) infinite data limit, the BBMM is also based on an endlessly diffusing Brownian motion419

process, which does not have a finite range area. Note that this is not a critique of the validity of420

the BBMM as an analytical tool per se. Other occurrence estimators, such as a time-series Kriging421

estimate based on an OUF process, are also inappropriate for estimating the area of home ranges (as422

demonstrated in Figs. 1-3), and BBMMs are the best tool currently available for quantifying where423

an animal might have been during an observation period if the Brownian motion model accurately424

characterizes the animal’s movement process. Furthermore, when BBMMs were developed, the425

issue of underestimation of home ranges as outlined above was not as apparent, because animal426

location data were coarser than they are today. However, as animal tracking technology improves427

and the resolution of data sets increases, the discrepancy between the area that BBMMs estimate428

and a proper estimate of the range distribution will continue to widen and repeated studies of the429

same species with improved technology will lead to progressively smaller estimates of home ranges430

if these estimates are generated using occurrence estimators like BBMMs.431

Using occurrence estimators to quantify home ranges can therefore have pernicious conse-432

quences for area-based conservation strategies and for ecological inference. For example, many433

protected areas (e.g., the Attwater Prairie Chicken National Wildlife Refuge, Kirtland’s Warbler434

Wildlife Management Area, and the National Key Deer Refuge in the USA, the Arawale National435

Reserve in Kenya, and the Blackbuck Conservation Area in Nepal) are designed to protect a focal436

species. For these protected areas, understanding how much space is required to maintain popu-437

lations that are viable over the long term is vital for ensuring their effectiveness (Brashares et al.,438

2001, Pe’er et al., 2014). When protected areas are too small relative to their focal species’ area re-439

quirements, the probability of population declines or extirpation increases significantly (Brashares440

et al., 2001, Gaston et al., 2008). Undersized protected areas also force a greater proportion of441

individuals into human-wildlife conflict at protected area boundaries (van Eeden et al., 2018) as442

relatively more animals must forage outside of protected areas (Farhadinia et al., 2018). It is thus443

critical that policy actions be well-informed on area requirements of target species. To ensure that444

protected areas are adequately sized, estimates of the area required for an individual of a given445
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species to persist and reproduce are often quantified via home range analysis (Martins et al., 2013,446

Rechetelo et al., 2016, Tédonzong et al., 2018). Because occurrence estimators underestimate the447

area requirements of GPS-tracked animals (often dramatically so), using occurrence estimators448

to estimate area requirements can result in protected areas that do not accomplish their intended449

purpose.450

Conflating range and occurrence estimators to quantify space use is also dangerous in its impli-451

cations for basic inference in ecology. For example, the distinction between range and occurrence452

distributions is particularly salient for studies of resource use and selection by animals. Resource453

selection is generally studied using resource selection functions—which compare environmental454

covariates at the locations where animals were present (i.e., “used” locations) to covariates at lo-455

cations taken from an area assumed to be available for selection (i.e., “available” locations; Manly456

et al. 2007)—or resource utilization functions, which compare intensity of use among an animal’s457

used locations (Marzluff et al., 2004, Millspaugh et al., 2006). Range distributions are an appro-458

priate tool for quantifying availability for resource selection functions, because they characterize459

the area an animal is likely to travel over the long term. In contrast, occurrence distributions are460

appropriate for quantifying resource use in resource utilization functions, because they characterize461

an animal’s likely presence on the landscape during a study period. In practice, ecologists typ-462

ically (and correctly) use range estimators to sample availability in resource selection functions,463

but often use range estimators rather than occurrence estimators to quantify habitat use in resource464

utilization functions (e.g., Berry et al., 2019, Johnston et al., 2020, Koizumi & Derocher, 2019,465

Prince et al., 2016, Winder et al., 2017). This may be because the initial papers on resource uti-466

lization functions (Marzluff et al., 2004, Millspaugh et al., 2006) used range estimators to generate467

utilization distributions (understandable because range estimators were the only tools available468

at the time—occurrence estimators had not been popularized yet). Nevertheless, an increasing469

number of occurrence estimators have become available over the past two decades (Fleming et al.,470

2016, Horne et al., 2007, Johnson et al., 2008), and we encourage ecologists to use these occur-471

rence estimators—rather than range estimators—to quantify resource use in resource utilization472
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functions.473

Tracking data can and should be a resource for informing our understanding of animal ecology.474

Although we are now better positioned than ever to use tracking data to estimate different aspects of475

space use by animals, capturing maximal value from tracking data requires ecologists to understand476

and use the most rigorous statistical tools and definitions currently available. In this paper, we have477

highlighted the distinction between range and occurrence distributions, delineated the conditions478

under which they will behave similarly and differently, mapped ecological questions and statistical479

estimators to each distribution, and demonstrated the negative consequences of continuing to480

conflate these two distributions. Both range and occurrence estimators are readily available today481

in free and open source software (Calabrese et al., 2016, Calenge, 2006, Johnson et al., 2008,482

Nielson et al., 2013, Signer et al., 2019), and we encourage readers to explore the important483

distinction between range and occurrence estimators themselves (Appendix S1).484
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