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1 Open Research Statement: Tracking data on Aepyceros melampus, Beatragus hunteri, Bycanistes
2 bucinator, Cerdocyon thous, Eulemur rufifrons, Glyptemys insculpta, Gyps coprotheres, Madoqua
s guentheri, Ovis canadensis, Propithecus verreauxi, Sus scrofa, and Ursus arctos are publicly
« archived in the Dryad repository (Noonan et al. 2018; https://doi.org/10.5061/dryad.
s v5051j2), as are data from Procapra gutturosa (Fleming et al. 2014a; https://doi.org/10.
s 5061/dryad.45157). Data on Panthera onca were taken from (Morato et al. 2018). Additional
7 data are publicly archived in the Movebank repository under the following identifiers: Canis latrans,
s 8159699; Canis lupus, 8159399; Chrysocyon brachyurus, 18156143; Felis silvestris, 40386102;
s Gyps africanus, 2919708; Lepus europaeus, 25727477; Martes pennanti, 2964494; Panthera leo,
1 220229; Papio cynocephalus, 222027; Syncerus caffer, 1764627; Tapirus terrestris, 443607536;

w Torgos tracheliotus, 2919708; and Ursus americanus, 8170674.

- Abstract

13 Quantifying animal movements is necessary for answering a wide array of research questions in
1+ ecology and conservation biology. Consequently, ecologists have made considerable efforts to
15 identify the best way to estimate an animal’s home range, and many methods of estimating home
16 ranges have arisen over the past half century. Most of these methods fall into two distinct categories
17 of estimators that have only recently been described in statistical detail: those that measure range
s distributions (methods such as Kernel Density Estimation that quantify the long-run behavior of a
19 movement process that features restricted space use) and those that measure occurrence distributions
2 (methods such as Brownian Bridge Movement Models and the Correlated Random Walk Library
21 that quantify uncertainty in an animal movement path during a specific period of observation).
22 In this paper, we use theory, simulations, and empirical analysis to demonstrate the importance
2s  of applying these two classes of space use estimators appropriately and distinctly. Conflating
2« range and occurrence distributions can have serious consequences for ecological inference and

s conservation practice. For example, in most situations, home-range estimates quantified using
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26 occurrence estimators are too small, and this problem is exacerbated by ongoing improvements in
27 tracking technology that enable more frequent and more accurate data on animal movements. We
2s encourage researchers to use range estimators to estimate the area of home ranges and occurrence
2o estimators to answer other questions in movement ecology, such as when and where an animal

s crosses a linear feature, visits a location of interest, or interacts with other animals.

a1 Key-words: Brownian bridge movement model, home range, kernel density estimator (KDE),
= Kriging, movement ecology, movement model, space use, stochastic process models, utilization

s distribution

« Introduction

s Understanding how and why animals use the areas they inhabit is a core goal in the fields of ecology
s and conservation biology (Jeltsch et al., 2013, Nathan et al., 2008, Schick et al., 2008, Sutherland
a7 et al., 2013). The attributes of the areas where animals live shape their fitness, and knowledge
s of relationships between movement and fitness informs our understanding of how animals interact
s with each other and their environments, as well as our ability to implement effective conservation
« interventions (Allen & Singh, 2016). For these reasons, the importance of quantifying space use
s was recognized early in the development of ecology and led to the concepts of “home ranges”
« and “utilization distributions”. The conceptual definition of home ranges provided by Burt (1943)
s 1s still the most widely cited and targeted. Burt defined an animal’s home range as “...that area
« traversed by the individual in its normal activities of food gathering, mating, and caring for young.
s Occasional sallies outside the area, perhaps exploratory in nature, should not be considered as
s [a] part of the home range.” Two and a half decades after Burt offered this definition, Jennrich &
« Turner (1969) coined the term ‘utilization distribution’ as the probabilistic representation of a home
s range, providing a foundation for translating Burt’s conceptual idea into statistical estimators that
s can be applied to animal location data (Horne et al., 2020). Together, these ideas have served as

so the foundation of research on animal movement and resource use over the past half century.
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51 Movement and resource use, however, are multifaceted aspects of animal behavior. Conse-
s2 quently, the home range concept has broadened substantially over time and there now exists a very
s3 large literature describing different approaches to home range estimation (Fieberg & Borger, 2012,
s« Heit et al., 2021, Horne et al., 2020, Kie et al., 2010). Many of these approaches cluster around
ss  two distinct spatial probability distributions that arise from stochastic movement processes and
ss can be estimated from animal location data. Fleming et al. (2015, 2016) referred to these as the
s “‘range” and “occurrence” distributions, and others have begun to adopt this terminology (Horne
ss et al., 2020, Keith et al., 2019, Scharf et al., 2018, Schlégel et al., 2019, Signer & Fieberg, 2021).
s Specifically, the range distribution describes the long-run behavior of a movement process that
« features restricted space use and is consistent with Burt’s classical definition of the home range.
sr In contrast, occurrence distributions quantify uncertainty in the movement path of an individual
2 during a period of observation and are not directly related to Burt’s definition of the home range.
& Both of these distributions can serve as an estimation target for which specific statistical estimators
s« can be derived, but range estimators quantify fundamentally different phenomena than occurrence
s estimators: range distributions answer the question “How much space does an animal need over
s the long term?”, while occurrence distributions answer the question “Where did an animal travel
&» during a defined period of observation?”. Although these questions may appear similar, range and
s occurrence distributions have very different biological and mathematical interpretations.

69 In this paper, we argue that range and occurrence distributions can serve as focal points
» around which to organize concepts, models, statistical estimators, and research questions. We
7 use theoretical arguments, simulations, and empirical examples to demonstrate similarities and
72 differences between these distributions, as well as consequences that can arise from conflating
72 range and occurrence estimators. We then link these two distributions to the ecological questions

2+ each can answer, and to the estimators that arise from each distribution.
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~
o

Concepts and Definitions

7 By explicitly separating the discrete-time and often arbitrary sampling schedule from the underlying
77 continuous-time movement process, continuous-time movement models offer a number of advan-
7 tages over the more traditional approach of assuming a discrete-time movement process (Kareiva &
7o Shigesada, 1983, Langrock et al., 2012, Morales et al., 2004). These advantages include the ability
s to estimate scale-invariant parameters, the ability to model movement using irregularly sampled
&1 data, and freedom from the assumption of serial independence among data points (Fleming et al.,
sz 2014b, Gurarie et al., 2017, Johnson et al., 2008). Defining movement in this way provides a
ss framework that facilitates the derivation of rigorous statistical procedures for quantifying move-
s« ment (Blackwell, 1997, Dunn & Gipson, 1977, Fleming et al., 2015a, Hanks et al., 2015, Johnson
ss et al., 2008), including many non-random behaviors such as migration, territoriality, patrolling,
ss trap-lining, collective movement, and habitat- or condition-specific movement (e.g., Brennan et al.,
sz 2018, Moriarty et al., 2017, Papageorgiou & Farine, 2020, Péron et al., 2017, Sawyer et al., 2019).
ss In this framework, we may consider an animal’s trajectory collected from a telemetry movement
s track, r(r) = (x(z),y(z)), to be a realization from a continuous-time stochastic process that is
« observed at discrete times 71, t, 13, - - - ,1,. From this realization, we estimate quantities related to
o1 the animal’s movement patterns, conditional upon stochastic movement models that can be used to
e generate movement trajectories (Table 1). Movement models such as Brownian motion (Einstein,
s 1905, Horne et al., 2007) and the integrated Ornstein-Uhlenbeck (IOU) process (Gurarie et al.,
s 2017, Gurarie & Ovaskainen, 2011, Johnson et al., 2008) are endlessly diffusing processes and thus
»s donot have finite coverage areas in the long run. In contrast, models such as the Ornstein-Uhlenbeck
s (OU; Dunn & Gipson, 1977, Uhlenbeck & Ornstein, 1930) and Ornstein-Uhlenbeck Foraging pro-
o cesses (OUF; Fleming et al., 2014a, 2015b) feature finite coverage areas, even as ¢ approaches
¢ infinity. The OU and OUF processes can be thought of as range-resident versions of Brownian
s motion and IOU processes, respectively. Another key distinction among movement models arises
w0 from the types of autocorrelation they can accommodate. Brownian motion and OU movement

w1 produce autocorrelated positions but uncorrelated velocities, while IOU and OUF movement pro-
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Movement Model Position Autocorrelation Velocity Autocorrelation Range Residency

11D No No Yes
BM Yes No No
ou Yes No Yes
10U Yes Yes No
OUF Yes Yes Yes

Table 1: Summary of stochastic processes that can currently be used to model animal movement. These
processes can feature positional autocorrelation, velocity autocorrelation, and/or range residency. The inde-
pendent and identically distributed (IID) process can describe animal location data in which no autocorrelation
is present. Brownian motion (BM) occurs in the limit of the Ornstein-Uhlenbeck (OU) process, when its posi-
tional autocorrelation time scale approaches infinity, while the Integrated Ornstein-Uhlenbeck (IOU) process
occurs when the positional autocorrelation time scale of the Ornstein-Uhlenbeck Foraging (OUF) process ap-
proaches infinity. More detailed mathematical descriptions of these models can be found in Fleming et al.
2014a and Fleming et al. 2015b.

12 duce both autocorrelated positions and autocorrelated velocities. In contrast, the independent and

w3 1dentically distributed (IID) process, while having a finite coverage area, produces—as the name

w4 implies—completely uncorrelated data. With these movement models in mind, we can define two

s key families of distributions that capture many (but not all) conceptions of “space use” in the

16 ecological literature.

17 The Range Distribution

1s  Movement processes that feature finite coverage areas, including the IID, OU, and OUF processes,
o admit a marginal distribution p(r, ) at each time ¢, which is the probability density of a random
1o location r(z) being r at time ¢, without conditioning on any previous locations. In the most general
11 sense, a range distribution is a marginal distribution focused on a particular time frame or suite of
12 movement behaviors, by marginalizing over times or behaviors, to enable predictions of an animal’s
13 locations in future periods. In other words, a range distribution describes the probability of an
1« animal being in a location at a given time, taking into account all of the locations in a movement
ns track simultaneously. The range distribution is simplest to define for stationary processes, which

1e describe unchanging movement behaviors:

stationary

Prange (r) = p(r,t) = p(r), (D
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w7 for any time ¢. Non-stationary processes, which describe movement behaviors that change over
1 time (e.g., migrations, drifting home ranges), further require an appropriate time average to weight
1e the relevant marginal distributions (e.g., Fleming et al., 2018, S1). Because pigéznary(r) denotes
120 the relative frequencies of different locations, the range distribution provides a prediction of space
121 use, in that 95% of future locations will fall within its 95% coverage area, so long as the underlying
122 movement process does not change (a testable assumption; see Noonan et al. 2019).

123 Range distributions therefore capture the long-run (asymptotic) area of the movement process.
12« They are generated by running a single realization of the movement process forward into the future
s while keeping movement behavior fixed. The coverage areas of the range distribution are not
126 estimates of what space the animal has used during the observation period, but predictions of
12z what space will eventually be used, given a sufficient amount of time for the movement process to
126 continue. All else being equal, an IID process will very quickly fill out the ranging area, whereas
120 highly autocorrelated processes such as OUF will take longer to fill out the ranging area. However,
130 the autocorrelation in the resulting data contains information about the long-run area of the process,
11 and thus the estimate of the range distribution that accounts for autocorrelation in the data may
122 contain a considerable amount of space that is not visited during a period of study. The range
133 distribution corresponds closely to Burt’s conceptual definition of home range because it captures
13« the area that the animal typically uses, not including exploratory forays. The range distribution is
135 thus the appropriate tool for answering the question of “How large is an animal’s home range?”.
136 When data are statistically independent, and thus consistent with the IID assumption, the range
137 distribution can be estimated by a variety of methods including Minimum Convex Polygons (MCPs),
13s conventional Kernel Density Estimation (KDE), and classical Mechanistic Home Range Analysis.
139 For the autocorrelated data provided by modern technologies such as GPS and ATLAS (Kays et al.,
10 2015, Nathan et al., 2022), the range distribution is most accurately estimated by Autocorrelated
11 Gaussian Density Estimation (Dunn & Gipson, 1977, Fleming et al., 2014b) if the home range is
12 Gaussian, or Autocorrelated Kernel Density Estimation (AKDE; Fleming er al., 2015a, Noonan

s et al., 2019) otherwise. In other words, the estimation target of all of these estimators is the range
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14 distribution, but each estimator differs in the assumptions made about the data that underlie it. A
15 given estimator must therefore be used only when the data are consistent with the movement model
1 that underlies that estimator’s assumptions (as is standard statistical practice).

147 For a range distribution to exhibit a finite coverage area, the stochastic process from which it is
1 derived must also feature finite coverage. Finite area manifests as an asymptote in the stochastic
19 processes’ semi-variance function as the time lag between observations of the process increases
150 (Fleming et al., 2014a). Some, but not all, stochastic movement models feature finite space (Table
st 1). These include the IID process, the OU process, and the OUF process. Importantly, as mentioned
152 earlier, widely used models such as Brownian and IOU motion in the continuous-time context, and
153 (correlated) random walks in discrete time, are endlessly diffusing processes and thus do not have
1« finite range areas (Fleming et al., 2016). This means that these models do not provide useful
155 estimates of home range areas.

156 Finally, we note that there is no dependence in the definition of the range distribution on the
157 particular sampling regime chosen by an investigator. The range distribution is a property of the
155 movement process that is independent of the sampling process. However, the estimators of the
19 range distribution are subject to a number of biases, some of which can be related to the sampling
10 process (Silva et al., 2022). First, a range estimate becomes more fully resolved in proportion
1 to its “effective sample size”, which is approximately how many times the focal animal crossed
12 its home range during the observation period. If the animal has not crossed its range during
s the observation period, it is not possible to estimate the range distribution. Second, different
1s4 estimators of the range distribution may exhibit either positive or negative biases that decrease
1es asymptotically as sampling duration increases. Third, estimators that assume IID data (e.g.,
s conventional KDE, MCP, Mechanistic Home Range Analysis) tend to underestimate the ranging
17 area when applied to autocorrelated tracking data by an extent that depends, all else equal, on the
s strength of autocorrelation in the sampled locations (Noonan et al., 2019). Again, this is not an
1o 1nherent property of range distributions per se, but, instead, results from using estimators for which

o acore assumption has been violated. As with any statistical procedure, violating a key assumption
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i+ of a home range estimator can produce biased results.

172 'The Occurrence Distribution

s Whereas range distributions are based on the marginal distributions p(r,¢) and can predict un-
w7 realized locations, occurrence distributions are based on the conditional distributions p(r, t|data)
s and are focused on interpolating movement tracks between known locations during an observation
76 period. In other words, an occurrence distribution describes the probability of an animal being in a
177 location at a given time, conditional upon its previous and subsequent locations. Such conditional
s distributions exist for all stochastic movement processes, even when those processes do not have
w79 finite coverage areas in the long run and do not describe range-resident movement behaviors (e.g.,
190 Brownian motion and IOU movement). The simplest occurrence distribution that we can construct
w1 involves uniformly averaging these conditional distributions over the observation period for times

12 sampled between #; and t,,:

I
Poccurrence(T) = l / dt p(r,t|data). (2)
n— t
&_..‘,._1_.._/

time-average

s This corresponds to the conditional distribution of a realized location r(¢) at a random time ¢ within
18« the observation window. However, missing observations are often skipped to avoid oversmoothing
185 (e.g., Bedrosian et al., 2018, Coe et al., 2015, Sawyer et al., 2009), and one could envision a more
18 rigorous weighting scheme that maintains a balance between detail and continuity. In the limit
17 of very coarse, uncorrelated data, and with some gap-skipping heuristic applied, the occurrence
183 distribution reduces to the empirical distribution of the data. This means that there must be
w9 autocorrelation between data points for an occurrence estimator to perform well (i.e., to narrow
1o down the area an animal may have traveled between known locations). Estimating an occurrence
191 distribution using data that is so coarse as to be IID, or nearly so, will provide little information on
192 the movement track of an animal.

193 The occurrence distribution quantifies where an animal may have traveled during the observation
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194 period given the observed data, and relies on an autocorrelated movement model to interpolate the
15 data. The occurrence distribution’s area is generated by considering all possible trajectories that
196 are consistent with the data, weighted by their probability density. As the movement path of an
17 animal becomes more finely and more accurately resolved, this area becomes smaller and smaller,
198 eventually limiting to zero, even though actual space used has not changed. The area of occurrence
199 estimates therefore does not directly measure space use—even during the observation period—
200 but is, instead, a reflection of our uncertainty regarding where an animal was located during an
200 observation period. In other words, if we have complete knowledge of the animal’s locations
22 during an observation period (i.e., infinite sampling rate and no location error), the occurrence
203 distribution collapses to the animal’s movement path and has zero area. The occurrence distribution
204 1S thus appropriate for answering questions such as “Where might an animal have traveled during
205 an observation period?” and “What landscape features might an animal have visited along its
206 movement path?”.

207 The occurrence distribution is not well-estimated by the range estimators outlined in the prior
28 Subsection, and proper occurrence estimators have not been around nearly as long as range
200 €stimators—occurrence estimators were introduced in the peer-reviewed ecology literature only
210 around 15 years ago (Horne et al., 2007). Currently, Brownian bridge movement models (BBMMs;
2 Horne et al., 2007, Kranstauber et al., 2012), the Correlated Random Walk Library (CRAWL; John-
212 son et al., 2008), and the generalized time-series Kriging framework (Fleming et al., 2016) all share
213 occurrence distributions as estimation targets. Note that the Kriging framework contains both the
212 BBMM and CRAWL as special cases—Kriging with a Brownian motion model is equivalent to the
25 BBMM, while Kriging with an IOU process is equivalent to the model used in CRAWL (Fleming
21e et al.,2016). The occurrence distribution exists for any autocorrelated movement process, whether
27 or not the focal process features finite coverage areas. This means that the Brownian motion, IOU,
21s OU, and OUF continuous-time processes all admit occurrence distributions. For an IID process,
219 the occurrence distribution is simply the empirical distribution with some heuristic to account for

220 gaps in the data.
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221 Transitioning from marginal distributions that are independent of specific events to conditional
2 distributions that are conditional upon preceding and subsequent events has a dramatic effect on
223 the meaning and operation of occurrence distributions. Range distributions and their constituent
22« marginal distributions are parameters of the movement process that exist independent from the sam-
225 pling process (though estimators of the range distribution may exhibit some sampling dependence).
226 In contrast, occurrence distributions are conditional upon the observed data and are thus explicitly
2z defined in terms of the sampling schedule. This means that a different sampling schedule applied to
228 the same movement process will correctly yield a different occurrence distribution: all else equal,
220 increasing the sampling rate will result in a narrower, more concentrated occurrence distribution.
20 This happens because more frequent sampling more fully resolves the animal’s true movement path,
s and thus uncertainty in the animal’s locations decreases concomitantly. It is important to realize
22 that this is not due to sampling-dependent bias of occurrence estimators: occurrence estimators in
23 the time-series Kriging family, including the BBMM, can be unbiased. Instead, the uncertainty
224 decreases because the estimation target itself (i.e., the occurrence distribution) is a function of the
25 sampling schedule. Figure 1 shows this process occurring for data from a fisher (Pekania pennanti)

26 tracked for 19 days in New York, USA, at a roughly 2-minute sampling interval.

2»  Relationships Between Range and Occurrence Distributions

28 As detailed above, the range and occurrence distributions are based on different biological and
230 statistical definitions, have different interpretations and statistical estimators, and respond differently
200 to variation in sampling schedules. We now consider two key limits defined by data amount and
2» quality that highlight the conditions under which range and occurrence distributions either converge

22 or diverge completely, and reiterate a conceptual difference between the two distributions.

23 Convergent Limit: Infinite Observation Period

2« Given an infinite observation period, the occurrence distribution will limit to a distribution close to

25 the range distribution, but with an amount of estimation error determined by location error and the
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Animal Locations
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Figure 1: Demonstration of sampling dependence of occurrence and range distributions using GPS location
data from a GPS-tracked fisher (Pekania pennanti) from New York, USA. The fisher was tracked for 19 days
at 2-minute intervals. The top row features individual locations along the fisher's movement track as the
movement track is progressively thinned from 720 locations per day to 2 locations per day. The second row
features 95% AKDE range estimates generated using the same GPS locations. While the contours of the
range estimate change as the data are more finely resolved, the area within those contours remains largely
stable. The third row features 95% Kriged occurrence estimates generated using the same data. In contrast
with range estimates, the area of occurrence estimates shrinks rapidly as the data are sampled more frequently
and the fisher's movement path is more accurately resolved.

26 sizes of gaps in the data. This happens because an animal visits more and more of its home range

2z over time. Decreasing location error and increasing the sampling rate will reduce this estimation

28 error, but increasing the sampling rate will also slow down convergence, because the occurrence

219 area limits to zero if the sampling rate is infinite while the observation period is finite.

0 Divergent Limit: Infinite Sampling Rate

251 For the occurrence distribution of any real movement process that is continuous in both location
22 and velocity, holding the sampling duration constant while increasing the sampling rate with either

253 N0 location error or uncorrelated location error yields the limit:

dltimop(r, t|data) = 6(r-r(1)), 3)
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s« Where 6(r) is the Dirac delta function—a singular distribution with probability mass concentrated
s at r. This limit is easiest to see in the case of a Brownian bridge, where the width of the bridge is
26 at most proportional to dt. In any case, the occurrence distribution collapses toward the movement
27 path even in the presence of (uncorrelated) location error as sampling becomes finer and finer,
s eventually collapsing to zero area. The range distribution is unaffected by this limit and its
259 area remains the same, though estimators of the range distribution may exhibit varying sampling
20 dependence. Increasing the rate of sampling results in increasingly strong autocorrelation in the
21 data, so asymptotically consistent range estimators that do not account for this autocorrelation
22 perform worse as sampling rate increases. Such estimators are increasingly negatively biased by
263 1ncreasing autocorrelation strength and will also limit to zero area. However, range estimators that
24 properly model autocorrelation will be unaffected by this limit, and their area estimates will remain

265 consistent.

26 Interpolation vs. Extrapolation

27 Another way of distinguishing between range and occurrence distributions is in terms of the
268 statistical operations to which they conform. Given a sample of tracking data of finite duration, the
20 range distribution represents an extrapolation of the long-run behavior of the movement process,
2o as inferred from the data, and quantifies the variance of the movement process. In contrast, the
2r1occurrence distribution interpolates within the observation period, conditional on the data and an
222 autocorrelated movement model, and quantifies uncertainty in the interpolation. This is why the
s general framework for occurrence estimation is based on Kriging, which is a statistically optimal
2z« method of model-based interpolation (Fleming et al., 2016).

275 To illustrate this more concretely, consider cross-validation of home range estimators. If an
27 estimator accurately quantifies an individual’s home range (sensu Burt, 1943), an unbiased 95%
27 home range area estimate generated over some observation period 77 should contain, on average,
zs 95% of that animal’s locations over a subsequent observation period 7>, provided the animal’s

2zzo  movement behavior does not meaningfully change between the training (77) and test (75) sets, and
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2s0 provided that 77 and 73 begin far enough apart to be uncorrelated. If a 95% home range area estimate
2s1  were to consistently include more than 95% of the subsequent locations, then estimates would be
22 positively biased; if estimates consistently include fewer than 95% of the subsequent locations,
23 then estimates would be negatively biased. Similarly, a 50% home range estimate generated
2.« over T1 should contain 50% of an animal’s locations, on average, over 7. In other words, the
25 relevant test set for a range estimator is an animal’s movements in the future, extrapolated from past
25 location data. This can be achieved via half-sample cross-validation (e.g., Noonan et al., 2019).
2e7  Cross-validation of occurrence estimators should operate differently. If an estimator captures an
28 occurrence distribution accurately, an unbiased 95% area estimate generated over 77 should contain
280 95% of that animal’s locations within 7. In other words, the relevant test set for an occurrence

20 estimator are holdout data from within the initial observation period (and not a subsequent period).

= Simulated Examples

22 The two limits described above are crucial for understanding the differences between occurrence and
23 range distributions. We now demonstrate the importance of these limits with both simulated and real
204 data. For the simulated data, we can specifically model processes where both types of distributions
205 €Xist: processes that are (1) autocorrelated (so that the occurrence distribution can interpolate the
26 data) and (2) range-resident (so that the range distribution exists). Simulation also allows us to
27 set the true size of the home range (range distribution). We can then manipulate the sampling
2s  schedule of the simulated processes to explore the effects of sampling rate and sampling duration
209 on the sizes of range and occurrence estimates. To do this, we simulated movement paths from
a0 an OUF process while varying the sampling rate and sampling duration systematically to illustrate
s differences between estimates provided by range and occurrence estimators. For each data set, we
w2 estimated the range distribution via Autocorrelated Gaussian Density Estimation conditioned on
w3 a fitted OUF model with daily autocorrelation timescales. Similarly, we estimated the occurrence

a4 distribution for each data set by Kriging with an OUF model with daily autocorrelation timescales.
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Figure 2: Bias in estimates of home range size provided by range (orange) and occurrence (indigo) distribution
estimates with different sampling rates (i.e., GPS fixes per range crossing; Panel A) and effective sample
sizes (i.e., number of range crossings in a data set; Panel B). A point at 1 indicates that home range size was
estimated correctly for a simulated movement track with a known home range size. Small points represent
a single simulation result (jittered on the x-axis to ease visualization), while larger points represent the mean
simulation result among 400 replicates. Divergence of range estimates from the line at 1 at small durations
of sampling arise from known patterns of bias that can be improved by bootstrapping (Fleming et al., 2019),
while bootstrapping does little to change the size of occurrence estimates.

ws The assumptions of these estimation approaches exactly match the process that generated the data,
w6 SO the statistical estimators are correctly specified for both the range and occurrence distributions
w7 1n these simulated examples.

208 Figure 2A shows the area of the occurrence estimate decreasing as the sampling rate increases
w9 from one observation per day to 128 observations per day. Note that the 95% occurrence area
a0 starts substantially less than the range area, because the sampling duration is finite (256 days, in
s this case), and then rapidly collapses to zero as the sampling rate increases. Ongoing technological
sz advances that facilitate ever finer and more accurate location sampling are driving movement studies
a1z closer to the limit where estimates produced by occurrence estimators collapse to zero area. It is
s1e  therefore inevitable that the differences between range and occurrence distributions will become
a5 more obvious in the future, even though these distributions have been frequently conflated in the
ste  past.

317 Figure 2B shows the area of the occurrence estimate increasing as the sampling duration

sis  increases from 4 days to 4,096 days. Again, the 95% occurrence area is still substantially less
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a9 than the range area even when the effective sample size (i.e., the number of range crossings) is
20 > 4,000, and rapidly collapses to zero as the duration of the observation period decreases. This
221 1S a major real-world problem because it can take weeks or months on average for an animal to
22 cross its range (depending on species), and the lifespan of tracking devices (or even animals) is
23 unlikely to enable an effective sample size of anywhere near 4,000 (i.e., 11 years with daily range
24 crossings). This demonstrates that while occurrence distributions tend toward range distributions as
ws the sampling duration increases, using an occurrence estimator to quantify the size of home ranges
w6 Will yield a substantial underestimate unless very large amounts of data are collected—amounts
w27 that are likely logistically and/or biologically impossible. Although technological advances are
ws increasing the battery lifespan of animal tracking devices, and thus the potential duration of animal
w9 tracking studies, the duration of tracking data for an individual animal is often limited in practice by
a0 mortality or equipment failure. Occurrence estimators will therefore tend to provide home-range

s estimates that are substantially smaller than the true home range size in most real-world situations.

= Empirical Examples

w3 Using empirical data, we now show how profoundly range and occurrence estimates can diverge
ss 1n real-world data sets. As outlined above, this happens when the data are sampled frequently
ws enough that the occurrence distribution collapses toward the movement path and for long enough
ws that estimating the range distribution is possible. Such data sets are already common and their
s availability will only increase as tracking technology improves (Gupte et al., 2022, Kays et al., 2015,
ws  Nathan et al., 2022). Using a data set of 369 individual animals across 27 species (Noonan et al.,
so  2019), we estimated both the range and occurrence distributions for each animal. We estimated
a0 the range distribution via Autocorrelated Kernel Density Estimation (AKDE) conditioned on a
s fitted movement model according to the workflow described in Silva et al. (2022). In short, we
a2 used variogram analysis (Fleming ef al., 2014a) to ensure animals were range-resident, fit and

a3 selected an autocorrelated movement model that best described the animal’s movements using
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Figure 3: The ratio of the size of the occurrence estimate to the size of the range estimate for a data set
containing 369 individuals across 27 species, as a function of the effective sampling rate (i.e., GPS fixes
per range crossing; Panel A) and effective sample size (i.e., number of range crossings in a data set; Panel
B). Points represent individual animals, while dashed lines represent regressions demonstrating the overall
trend. Solid horizontal lines indicate a ratio of 1:1, where range and occurrence estimates are the same size.
Distance below the solid line indicates the extent to which occurrence estimators are negatively biased in their
estimates of home range size.

s perturbative Hybrid Residual Maximum Likelihood (phREML; Fleming et al., 2019) and Akaike’s
us Information Criterion corrected for small sample sizes (AICc), and estimated weighted AKDE
ss  utilization distributions for each animal (Fleming ef al., 2018) using the ctmm R package (v0.6.2;
a7 Calabrese et al., 2016) in the R statistical software environment (v3.6.2; R Core Team, 2020). We
us estimated the occurrence distribution for each animal based on Kriging (Fleming et al., 2016) with
a9 the same movement model used for the corresponding AKDE estimate. Figure 3 shows that the
0 occurrence estimate is smaller than the range estimate for the vast majority of individuals in the
ssn  data set (and usually much smaller). This occurs because the effective sample size is rarely large
2 enough in real-world data to approach the theoretical limit where the occurrence distribution would
3 converge with the range distribution.

354 This shrinkage of occurrence estimates is accompanied by a decreased ability of the occurrence
s distribution to correctly specify the areas of home ranges. To illustrate this, we performed half-
s sample cross-validation on the same animal location data set. We subset data from each individual
57 animal into halves, used the first half of the data to generate range (AKDE) and occurrence (Kriging)

s estimates, and then used the second half to assess the percentage of future animal locations that
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s were within the range and occurrence estimates. All data fit the assumptions of range-resident
0 animals with movement processes that remained consistent between the two halves. We then fit
s regression lines (linear for AKDE estimates, logistic for Kriging estimates) for the influence of
w2 effective sampling rate (roughly the number of GPS locations per range crossing) and effective
3 sample size on the percentage of locations in the test set that fell within estimates generated using
w4 the training set.

365 As these results show (Fig. 4), the areas of home ranges derived from occurrence distributions
s do not merely fit the data more tightly—they inaccurately represent the true area of home ranges.
7 Estimates of home ranges produced by occurrence estimators are nearly always too small, and this
s negative bias is exacerbated at high sampling rates and low effective sample sizes. This is not
o merely a hypothetical problem, nor is it only an issue that will arise in the future as technology
s0 continues to improve. Instead, it is pervasive in the animal movement data that wildlife biologists

sn currently collect and analyze (Noonan et al., 2020, 2019).

- DIscussion

a3 Ecologists often conflate occurrence estimators with range estimators, a much older and more
w4 familiar class of statistical tools. The first widely used occurrence estimators (Horne et al., 2007,
as Johnson et al., 2008) were landmark advances in movement ecology and enabled more statistically
we  rigorous analyses of many research questions related to animal movement. Nevertheless, although
sz they have been widely used in movement ecology, the extent of their novelty and unique properties
s have still largely gone unrecognized. As we have demonstrated, these two classes of estimators
so have radically different properties, and should therefore be used for different purposes (Table 2).
0 Ecologists and conservation biologists should use range estimators to estimate the area of home
s ranges, and occurrence estimators to answer other questions, such as: Where might an animal have
2 crossed a linear feature (Find’o er al., 2018, Hooker et al., 2020, Zeller et al., 2018)? How likely is

se3 1t that an animal visited a location of interest (Noonan et al., 2018, Pages et al., 2019, Sasmal et al.,
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Figure 4: Half-sample cross-validation of range and occurrence estimates. Points represent the percentage
of locations from the second half of the data (test set) included in home ranges estimated from the first half
of the data (training set). Orange points represent range (AKDE) estimates, while indigo points represent
occurrence (Kriging) estimates. The dashed line represents the target 95% (top row) or 50% (bottom row)
quantile, while the solid line represents a regression model fit to the cross-validation results with shading to
indicate the 95% confidence interval. The left column demonstrates the influence of effective sampling rate on
cross-validation results, while the right column demonstrates the influence of effective sample size on cross-
validation results. On average, range estimates contain roughly the correct percentage of relocations, and this
remains true across all effective sampling rates and effective sample sizes. Occurrence estimates, however,
tend to contain too few relocations, and this problem is exacerbated at high effective sampling rates and low
effective sample sizes.

ssa 2019)? When and where could two individual animals have interacted (Schlégel et al., 2019)?
s Which areas of a landscape contain high-priority resources (e.g., migratory corridors or stopover
s sites; Sawyer et al., 2009, 2019)?

387 Estimation of animal home ranges is foremost among our concerns on the conflation of range
s and occurrence estimators—occurrence estimators substantially underestimate the area of home

9 ranges under a broad array of real-world conditions (Figs. 3.4). In recent years, there has been a

w0 slow but steady drift in preference among wildlife biologists towards estimators that fit more tightly
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Range Distribution

Occurrence Distribution

Distribution Type
Finite Coverage Area

Statistical Operation

Sampling Dependence

Appropriate Questions

Marginal

Arises only when the stochastic
movement process being modeled
has a finite coverage area

Extrapolation (Over what area is
an animal likely to range in the
future?)

No (If its statistical assumptions
are met, arange estimator will esti-
mate a stable area even as a move-
ment track is sampled more fre-
quently)

How large is an animal’s home
range? What area is available to
an animal in studies of third-order
habitat selection?

Conditional

Arises when the sampling rate is
finite, regardless if the stochastic
movement process being modeled
has a finite coverage area
Interpolation (At which locations
might an animal have occurred in
the past?)

Yes (If its statistical assumptions
are met, an occurrence estimator
will estimate a smaller area as a
movement track is sampled more
frequently)

Where might an animal have
crossed a linear feature? When
and where could two individual
animals have interacted? In which
areas of a landscape did an animal
visit high-priority resources (e.g.,
migratory corridors or stopover
sites)?

Table 2: Summary of the primary distinctions between range and occurrence distributions.

to animal location data (Fig. 5; Crane et al., 2021, Laver & Kelly, 2008, Walter et al., 2015). We
believe that this preference has largely been driven by aesthetic considerations and the intuitive
notion that areas within home range estimates where an animal does not travel during a study
are not actually “used” (Cumming & Cornélis, 2012, Getz et al., 2007, Kie, 2013, Walter et al.,
2015). This preference can be observed in the transition over time from home range estimates using
Minimum Convex Polygons to Local Convex Hull (LoCoH; Getz et al., 2007, Getz & Wilmers,
2004) to Time Local Convex Hull (T-LoCoH Lyons et al., 2013) methods, an emphasis on KDE
bandwidth optimizers that fit tightly to location data (Cohen et al., 2018, Downs & Horner, 2008,
Kie, 2013), and most recently, rapid growth in use of BBMMs to estimate home ranges (Fig. 5).
Cross-validation frameworks that seek to backtest estimator performance (e.g., Getz & Wilmers,
2004, Kie, 2013, Silva et al., 2020, Walter et al., 2015), which are appropriate for occurrence

estimators but not range estimators, have also provided a false impression that smaller home range


https://doi.org/10.1101/2022.09.29.509951
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.29.509951; this version posted September 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Alston et al. Clarifying space use concepts 22

w3 estimates perform better. While understandable, seeking home range estimates that fit tightly to an
w4 animal’s past locations adheres neither to Burt’s original definition, nor the mathematical properties
«s underlying the range distribution. Specifically, Burt’s definition aims to capture the amount of space
w6 an animal will need to survive and reproduce in the long run, not simply the level of uncertainty in
w7 an animal’s movement path during an observation period limited by study design, technology, or
w8 animal mortality.

409 The most common occurrence estimator used to estimate home ranges is the BBMM (Horne
a0 et al., 2007), which has even been championed as a “third generation home range estimator” due
s to its ability to account for some autocorrelation in tracking data (Walter et al., 2015). Figure 5
sz shows the cumulative number of peer-reviewed journal articles since the BBMM was introduced
s3  to ecologists in 2007 that either label it a home range estimator, or use it to estimate animal home
s4 range areas. However, Fleming et al. (2016) formally proved that the BBMM is an estimator of the
w5 occurrence distribution (rather than the range distribution) that arises as a special case of the more
se general time-series Kriging family of occurrence estimators. Specifically, Kriging a movement
s7 track conditional on a Brownian motion movement model is equivalent to the BBMM. Beyond

ss being an occurrence estimator, and thus only suited to the task of home range estimation in the

300

200

100

Number of Citations

2006 2008 2010 2012 2014 2016 2018 2020
Year

Figure 5: Number of peer-reviewed journal articles from 2006 to 2020 that either used BBMMs to estimate
the size of animal home ranges (light orange) or labeled BBMMs as a home range estimator (dark orange).
Although BBMM s are occurrence estimators and therefore poorly suited for estimating the size of home ranges,
use of BBMMs to estimate the size of home ranges is growing rapidly.
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s9  (unrealistic) infinite data limit, the BBMM is also based on an endlessly diffusing Brownian motion
w20 process, which does not have a finite range area. Note that this is not a critique of the validity of
2 the BBMM as an analytical tool per se. Other occurrence estimators, such as a time-series Kriging
w2 estimate based on an OUF process, are also inappropriate for estimating the area of home ranges (as
w23 demonstrated in Figs. 1-3), and BBMMs are the best tool currently available for quantifying where
«2¢ an animal might have been during an observation period if the Brownian motion model accurately
25 characterizes the animal’s movement process. Furthermore, when BBMMs were developed, the
w26 1ssue of underestimation of home ranges as outlined above was not as apparent, because animal
«7 location data were coarser than they are today. However, as animal tracking technology improves
«s and the resolution of data sets increases, the discrepancy between the area that BBMMs estimate
29 and a proper estimate of the range distribution will continue to widen and repeated studies of the
w0 same species with improved technology will lead to progressively smaller estimates of home ranges
w  1f these estimates are generated using occurrence estimators like BBMMs.

432 Using occurrence estimators to quantify home ranges can therefore have pernicious conse-
w3 quences for area-based conservation strategies and for ecological inference. For example, many
w4 protected areas (e.g., the Attwater Prairie Chicken National Wildlife Refuge, Kirtland’s Warbler
w5 Wildlife Management Area, and the National Key Deer Refuge in the USA, the Arawale National
ws  Reserve in Kenya, and the Blackbuck Conservation Area in Nepal) are designed to protect a focal
s species. For these protected areas, understanding how much space is required to maintain popu-
ss lations that are viable over the long term is vital for ensuring their effectiveness (Brashares et al.,
w2001, Pe’er et al., 2014). When protected areas are too small relative to their focal species’ area re-
w0 quirements, the probability of population declines or extirpation increases significantly (Brashares
a et al., 2001, Gaston et al., 2008). Undersized protected areas also force a greater proportion of
sz individuals into human-wildlife conflict at protected area boundaries (van Eeden et al., 2018) as
w3 relatively more animals must forage outside of protected areas (Farhadinia ef al., 2018). It is thus
ws critical that policy actions be well-informed on area requirements of target species. To ensure that

ws protected areas are adequately sized, estimates of the area required for an individual of a given
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us  species to persist and reproduce are often quantified via home range analysis (Martins et al., 2013,
w7 Rechetelo et al., 2016, Tédonzong et al., 2018). Because occurrence estimators underestimate the
ws area requirements of GPS-tracked animals (often dramatically so), using occurrence estimators
w9 to estimate area requirements can result in protected areas that do not accomplish their intended
40 purpose.

451 Conflating range and occurrence estimators to quantify space use is also dangerous in its impli-
2 cations for basic inference in ecology. For example, the distinction between range and occurrence
3 distributions is particularly salient for studies of resource use and selection by animals. Resource
4 selection is generally studied using resource selection functions—which compare environmental
ss covariates at the locations where animals were present (i.e., “used” locations) to covariates at lo-
s6  cations taken from an area assumed to be available for selection (i.e., “available” locations; Manly
ss7 et al. 2007)—or resource utilization functions, which compare intensity of use among an animal’s
s used locations (Marzluff ez al., 2004, Millspaugh et al., 2006). Range distributions are an appro-
9 priate tool for quantifying availability for resource selection functions, because they characterize
w0 the area an animal is likely to travel over the long term. In contrast, occurrence distributions are
w1 appropriate for quantifying resource use in resource utilization functions, because they characterize
w2 an animal’s likely presence on the landscape during a study period. In practice, ecologists typ-
w3 1cally (and correctly) use range estimators to sample availability in resource selection functions,
w4 but often use range estimators rather than occurrence estimators to quantify habitat use in resource
s utilization functions (e.g., Berry et al., 2019, Johnston et al., 2020, Koizumi & Derocher, 2019,
w6 Prince et al., 2016, Winder et al., 2017). This may be because the initial papers on resource uti-
7 lization functions (Marzluff er al., 2004, Millspaugh et al., 2006) used range estimators to generate
ws utilization distributions (understandable because range estimators were the only tools available
w9 at the time—occurrence estimators had not been popularized yet). Nevertheless, an increasing
w0 number of occurrence estimators have become available over the past two decades (Fleming et al.,
an 2016, Horne et al., 2007, Johnson et al., 2008), and we encourage ecologists to use these occur-

w2 rence estimators—rather than range estimators—to quantify resource use in resource utilization
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a3 functions.

a7 Tracking data can and should be a resource for informing our understanding of animal ecology.
w5 Although we are now better positioned than ever to use tracking data to estimate different aspects of
w6 space use by animals, capturing maximal value from tracking data requires ecologists to understand
«7 and use the most rigorous statistical tools and definitions currently available. In this paper, we have
«s highlighted the distinction between range and occurrence distributions, delineated the conditions
w9 under which they will behave similarly and differently, mapped ecological questions and statistical
0 estimators to each distribution, and demonstrated the negative consequences of continuing to
s conflate these two distributions. Both range and occurrence estimators are readily available today
s2 1n free and open source software (Calabrese et al., 2016, Calenge, 2006, Johnson et al., 2008,
w3 Nielson et al., 2013, Signer et al., 2019), and we encourage readers to explore the important

ss4 distinction between range and occurrence estimators themselves (Appendix S1).
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