

1 **Fluorescence lifetime enables high-resolution analysis of neuromodulator dynamics across**
2 **time and animals**

3

4 Pingchuan Ma^{1,2}, Peter Chen^{1,3}, Elizabeth Tilden^{1,2}, Samarth Aggarwal¹, Anna Oldenborg¹, and
5 Yao Chen^{1,†}

6

7 1. Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110
8 2. Ph.D. Program in Neuroscience, Washington University in St. Louis
9 3. Master's Program in Biomedical Engineering, Washington University in St. Louis

10 [†]Correspondence: yaochen@wustl.edu

11 **ABSTRACT**

12 The dynamics of neuromodulators are essential for their functions. Optical sensors have
13 transformed the study of neuromodulators because they capture neuromodulator dynamics with
14 high spatial and temporal resolution. However, fluorescence intensity-based sensors are restricted
15 to measure acute changes within one animal over a short period because intensity varies with
16 sensor expression level and excitation light fluctuation. In contrast, fluorescence lifetime is
17 impervious to sensor expression level or excitation light power, allowing comparison between
18 individuals and across long periods. Here, we discover fluorescence lifetime response in multiple
19 intensity-based neuromodulator sensors. Using the acetylcholine sensor GRAB_{ACh3.0} to investigate
20 the power of lifetime measurement, we find that fluorescence lifetime correlates with animal
21 behavior states accurately despite varying excitation power or changes in sensor expression level
22 across weeks and animals. Thus, fluorescence lifetime of neuromodulator sensors enables
23 comparison of neuromodulator dynamics at high resolution between animals and for chronic time
24 scales.

25 **KEYWORDS**

26 Optical sensors, neuromodulator, fluorescence lifetime, acetylcholine, sleep, running, behavior
27 states, high-resolution dynamics, chronic, tonic

28 INTRODUCTION

29 Neuromodulators such as acetylcholine and dopamine can reconfigure neural circuits and
30 transform animal behaviors^{1–11}. They play important roles in normal physiology and their
31 dysregulation is implicated in neurological and psychiatric disorders^{12–19}. Despite decades of
32 research on neuromodulators, many questions remain. Notably, tonic and phasic firing of
33 neuromodulator-releasing neurons result in distinct changes in synaptic properties and behavior^{20–}
34 ²⁴, but we know very little about when tonic versus phasic changes of neuromodulators occur
35 during animal behavior. In addition, neuromodulators are released widely into many brain
36 regions²⁵, but it is unclear whether their release is differentially regulated in different regions.
37 Finally, most drugs for psychiatric disorders target neuromodulators or their receptors^{13,16,17,26–29},
38 but we cannot easily compare neuromodulator levels between control and disease models, between
39 pre-drug and post-drug periods, and we understand even less whether these drugs alter transient or
40 sustained levels of neuromodulators. Thus, to advance our understanding of the function of
41 neuromodulators in animal behavior, we need methods to capture both transient and sustained
42 neuromodulator changes, and to compare these changes between brain regions, between disease
43 models, and across chronic periods.

44 Current methods to analyze neuromodulators have provided important information on their
45 involvement in behavior but do not allow the dissection between transient and sustained
46 neuromodulator changes. Classical methods such as microdialysis and electrochemical methods
47 allow comparison of neuromodulator concentration over long periods of time and between
48 animals^{30–34}. However, these methods lack spatial resolution, temporal resolution, or chemical
49 specificity. Genetically encoded optical reporters of neuromodulators are now transforming the
50 field of neuromodulation due to their high spatial and temporal resolution^{35–39}. Most of these optical
51 sensors are derived from the membrane receptors for the specific neuromodulators, and they
52 increase in fluorescence intensity upon ligand binding. However, fluorescence intensity does not
53 only respond to changing neuromodulator concentrations, but also varies with excitation light
54 power and sensor expression level, which occur across long time periods, between brain regions,
55 and between animals (Fig. 8). As a result, intensity measurement cannot be used to compare
56 neuromodulator concentrations across these domains, or to quantitate changes in tonic levels of
57 neuromodulators (Fig. 8). Therefore, an ideal sensor would combine the benefits of classical
58 methods and fluorescence intensity-based sensors to allow high-resolution measurement of
59 neuromodulator concentrations across time and animals.

60 Fluorescence lifetime imaging microscopy (FLIM) measurement of optical sensors could fulfil the
61 requirement of such an ideal sensor. Fluorescence lifetime measures the time between excitation
62 and light emission of a fluorophore and is therefore independent of sensor expression levels or
63 fluctuation in excitation light power^{38,40–43}. FLIM has been frequently used to track the
64 conformational change of biosensors and has been used successfully to uncover spatiotemporal
65 dynamics of intracellular signals and voltage. Whereas most FLIM sensors involve dyes or are
66 based on Förster Resonance Energy Transfer^{41,44–51}, most neuromodulator sensors are single
67 fluorophore-based. Although a few single-fluorophore protein-based sensors show fluorescence
68 lifetime change^{52–54}, the majority of them do not, and it is hard to predict whether a given sensor

69 will show fluorescence lifetime change. Importantly, no genetically encoded neuromodulator
70 sensor has been reported to show a lifetime change. Furthermore, FLIM is rarely used to make
71 comparison across animals or chronic time periods *in vivo*. Thus, it is unclear whether any
72 intensity-based neuromodulator sensors can display a fluorescence lifetime change; nor is it known
73 whether FLIM is a viable technique to predict neuromodulator levels across excitation light powers,
74 different individual animals, and chronic time periods.

75 Here, we tested whether any existing neuromodulator sensors^{55–60} showed a fluorescence lifetime
76 change and discovered lifetime response in multiple sensors. We used the acetylcholine (ACh)
77 sensor GRAB_{ACh3.0} (GPCR-Activation-Based acetylcholine sensor 3.0)⁵⁶ to investigate the power
78 of lifetime measurement because it displayed the largest dynamic range. Like intensity, FLIM
79 measurement of GRAB_{ACh3.0} can detect transient ACh changes, is dose sensitive, and shows high
80 spatial and temporal resolution. In contrast to intensity, FLIM measurement correlates much better
81 with ACh-associated behavior states, despite laser power fluctuation or sensor expression change
82 across weeks or animals. Our results have broad implications beyond ACh sensors.
83 Methodologically, these results demonstrate the power of FLIM for neuromodulator measurement,
84 highlighting the importance to convert many existing fluorescence intensity-based neuromodulator
85 sensors into lifetime-based sensors. Biologically, FLIM measurement of neuromodulator sensors
86 enables us to simultaneously capture both transient and sustained changes of neuromodulators,
87 promising to disambiguate phasic and tonic contributions across animals, disease models, brain
88 regions, and over long periods of time.

89 RESULTS

90 Fluorescence Lifetime Responses of Neuromodulator Sensors

91 We tested whether any existing intensity-based neuromodulator sensors also showed a
92 fluorescence lifetime change (Fig. 1A). We expressed individual sensors in human embryonic
93 kidney (HEK) 293T cells and measured sensor fluorescence intensity and lifetime with two-photon
94 fluorescence lifetime imaging microscopy (2pFLIM). Surprisingly, in addition to fluorescence
95 intensity changes (Fig. 1B; GRAB_{ACh3.0}⁵⁶, n = 18, p < 0.0001; intensity-based ACh sensing
96 fluorescent reporter (iAChSnFR)⁵⁸, n = 11, p = 0.001; 5-HT sensor GRAB_{5-HT}⁵⁷, n = 29, p < 0.0001;
97 norepinephrine (NE) sensor GRAB_{NE}⁶⁰, n = 15, p < 0.0001; dopamine (DA) sensor GRAB_{DA2m}⁵⁹,
98 n = 19, p < 0.0001), multiple sensors showed a significant fluorescence lifetime change in response
99 to saturating concentrations of the corresponding neuromodulators (Fig. 1B; GRAB_{ACh3.0}, p <
100 0.0001; iAChSnFR, p = 0.001; GRAB_{5-HT}, p = 0.0004; GRAB_{NE}, p = 0.1514; GRAB_{DA2m}, p =
101 0.001). These results demonstrate that single fluorophore-based neuromodulator sensors can show
102 fluorescence lifetime responses.

103 We subsequently used the ACh sensor GRAB_{ACh3.0}⁵⁶ to investigate the power of lifetime
104 measurement because of the following reasons. First, ACh is one of the best-characterized
105 neuromodulators. It increases during defined behavior state transitions, such as from resting to
106 running^{56,61–63}, and from non-rapid eye movement (NREM) sleep to REM sleep^{56,64–69}, thus making
107 it feasible to test the power of the technology with known ground truth. Second, ACh is one of the
108 most important neuromodulators in the brain^{17,70}, playing critical roles in neuronal processes

109 including learning and memory⁷¹, attention⁷², and sleep⁷³. Third, GRAB_{ACh3.0} showed the largest
110 fluorescence lifetime change among all the neuromodulator sensors tested (Fig. 1B; median of
111 0.17 ns with interquartile range of 0.14-0.19 ns in response to 100 μ M ACh; n = 18; p < 0.0001).
112 The large dynamic range makes it easier to explore the power of lifetime measurement in vivo. In
113 the initial characterization of GRAB_{ACh3.0}, like intensity, lifetime of GRAB_{ACh3.0} increased in
114 response to saturating concentration of ACh (100 μ M) and this increase was blocked by the
115 addition of the muscarinic ACh receptor (mAChR) antagonist tiotropium (Tio, 5 μ M) (Fig. 1C-
116 1D, 1F; n = 18; adjusted p = 0.0007 for intensity and < 0.0001 for lifetime; ACh+Tio vs ACh).
117 Furthermore, a mutant sensor that does not bind ACh (GRAB_{ACh3.0mut}) did not show any intensity
118 or fluorescence lifetime change in response to ACh (Fig. S1; n = 5; p = 0.31 for intensity and 0.63
119 for lifetime). Importantly, the fluorescence lifetime histogram of GRAB_{ACh3.0} showed slower
120 decay with 100 μ M ACh than without ACh at baseline (Fig. 1E), indicating that ACh binding
121 increases fluorescence lifetime. Thus, both intensity and lifetime respond to ACh in cells
122 expressing GRAB_{ACh3.0}.

123 To test whether lifetime of GRAB_{ACh3.0} responds to graded ACh, we measured the dose response
124 curve of GRAB_{ACh3.0}. In response to different concentrations of ACh ranging from physiologically
125 relevant to saturating concentrations (1 nM to 100 μ M)⁷⁴⁻⁷⁶, fluorescence lifetime of GRAB_{ACh3.0}
126 in HEK cells showed a dose-dependent increase (Fig. 1G; n = 13). These results indicate that
127 lifetime measurement of GRAB_{ACh3.0} report graded ACh increase.

128 In principle, an increase in fluorescence lifetime of cells expressing GRAB_{ACh3.0} could be due to
129 true lifetime response to ACh by GRAB_{ACh3.0}, or due to an increase in intensity of GRAB_{ACh3.0}
130 relative to the autofluorescence of cells without any change of GRAB_{ACh3.0} lifetime. The latter
131 possibility exists because both the fluorescent sensor and autofluorescence contribute to
132 fluorescence measurement of cells, and the lifetime of GRAB_{ACh3.0} is longer than that of
133 autofluorescence (Fig. S2A). To test the null hypothesis that GRAB_{ACh3.0} showed no lifetime
134 change, we performed computational simulations to test how much cellular lifetime would increase
135 if GRAB_{ACh3.0} only increased in intensity and not lifetime. For the simulation, we constructed
136 photon populations of GRAB_{ACh3.0} sensor as double exponential decay (Fig. S2B). Subsequently,
137 we sampled from this population with low and high photon numbers corresponding to
138 measurements at 0 and 100 μ M ACh respectively (Fig. 2A). We additionally added
139 autofluorescence based on measurement in cells without sensor expression. Our simulation
140 showed that if the sensor itself did not show any fluorescence lifetime increase, an increase in
141 intensity only caused a small increase of overall lifetime (Fig. 2B; from 3.242 ± 0.012 ns to 3.247
142 ± 0.0065 ns; n = 500 simulations for both low and high photons). In contrast, the experimentally
143 measured lifetime increase in response to 100 μ M ACh was much larger (Fig. 2B; n = 3; mean
144 difference = 0.19 ns), more than 10 times of the standard deviation (0.014 ns) of the difference
145 between low and high photons from simulation. Therefore, the observed fluorescence lifetime
146 response in cells expressing GRAB_{ACh3.0} is not solely due to an increase in fluorescence intensity.
147 Rather, GRAB_{ACh3.0} sensor itself responds to ACh with authentic fluorescence lifetime increase.

148 **Fluorescence lifetime of ACh sensor detects transient ACh change in the brain**

149 To test whether fluorescence lifetime of GRAB_{ACh3.0} can report ACh levels in brain tissue, we
150 delivered the reporter via adeno-associated virus (AAV) injection to CA1 pyramidal neurons of
151 the mouse hippocampus (Fig. 3A). Bath application of ACh (1 μ M and 100 μ M) induced both
152 fluorescence lifetime (Fig. 3B-3C; n = 8; adjusted p = 0.023 for baseline vs 1 μ M, baseline vs 100
153 μ M, and 1 μ M vs 100 μ M) and intensity (Fig. S3A-S3B; n = 8; adjusted p = 0.023 for baseline vs
154 1 μ M, baseline vs 100 μ M, and 1 μ M vs 100 μ M) increase of GRAB_{ACh3.0}. These results indicate
155 that fluorescence lifetime of GRAB_{ACh3.0} is sensitive enough to report ACh increase in brain tissue.

156 For fluorescence lifetime measurement of GRAB_{ACh3.0} to be useful in biological applications, it
157 needs to be sensitive enough to detect transient ACh in the brain. To test this, we puffed ACh (200
158 μ M) onto the soma of CA1 pyramidal neurons (Fig. 3D) at temporal duration (3 seconds)
159 comparable to ACh release measured in behaving animals *in vivo*⁷⁷. Both fluorescence lifetime
160 (Fig. 3E; n = 6; p = 0.031) and intensity (Fig. S3C; n = 6; p = 0.031) of GRAB_{ACh3.0} increased in
161 response to ACh delivery, indicating that lifetime of GRAB_{ACh3.0} can report in brain tissue ACh
162 release that is temporally relevant and transient.

163 Together, these results show that like intensity, fluorescence lifetime of GRAB_{ACh3.0} can report
164 transient increase of ACh in the brain.

165 **Fluorescence lifetime of ACh sensor is independent of laser power**

166 Unlike intensity, fluorescence lifetime should be independent of laser power fluctuation. To
167 explore the extent of this advantage, we measured both fluorescence lifetime and intensity under
168 different laser excitation powers. As expected, fluorescence intensity of GRAB_{ACh3.0} increased
169 with increasing laser power (Fig. 4A-4B; n = 10; adjusted p = 0.0005 for baseline and < 0.0001
170 for ACh, low vs high laser power). Both laser power and the presence of ACh contributed
171 significantly to the variability of fluorescence intensity across cells (Fig 4C, p < 0.0001 for both
172 ACh and laser power). Only 49% of sensor intensity variance could be explained by ACh
173 concentrations (Fig. 4C). In contrast, fluorescence lifetime of the ACh sensor was stable across
174 different laser powers (Fig. 4A-4B; n = 10; adjusted p = 0.71 for baseline and 0.68 for ACh, low
175 vs high laser power). Only the presence or absence of ACh, and not laser power, significantly
176 contributed to the variation of fluorescence lifetime across cells (Fig 4C, p < 0.0001 for ACh, p =
177 0.18 for laser power). Notably, the majority (73%) of the variance of sensor lifetime could be
178 explained by ACh concentration, with minimal contributions from laser power (0.11%) or cell
179 identity (23%; Fig. 4C). Together, these results indicate that fluorescence lifetime is a more reliable
180 measurement of ACh concentration than fluorescence intensity under fluctuating laser powers.

181 **Fluorescence lifetime is consistent within a cell and between cells**

182 If absolute fluorescence lifetime were to be used to predict ACh concentrations, lifetime values
183 would need to be stable within a cell for a given ACh concentration, and consistent between cells.
184 To test the stability of lifetime within a cell, we repeatedly applied ACh (1 μ M). Like intensity,
185 fluorescence lifetime was consistent within a cell across repeated application of the same
186 concentration of ACh (Fig. S4A-S4B; n = 8; p > 0.99 for intensity and p = 0.95 for lifetime, 1st vs
187 2nd flow-in). Thus, lifetime is consistent for a given ACh concentration within a cell.

188 To test whether absolute fluorescence lifetime correlates well with ACh concentration between
189 cells, we measured both lifetime and intensity exposed to a specified ACh concentration that is
190 comparable to that reported *in vivo*⁷⁴⁻⁷⁶. As expected, fluorescence intensity varied greatly between
191 cells at a given ACh concentration (Fig. 5; 1 μ M: coefficient of variation (CV) = 53.23% at
192 baseline and 44.36% with ACh, n = 77 and 99; 10 μ M: CV = 59.06% at baseline and 52.51% with
193 ACh, n = 35 and 114), likely due to different sensor expression levels across cells. Although
194 fluorescence intensity increased in response to ACh (Fig. 5; p<0.0001 for baseline vs ACh, both 1
195 μ M and 10 μ M ACh), intensity alone correlated poorly with ACh concentration (Fig. 5; baseline
196 versus ACh, pseudo R^2 = 0.12 for 1 μ M ACh and 0.13 for 10 μ M ACh). In contrast, for
197 fluorescence lifetime, variation between cells was much smaller (Fig. 5; 1 μ M: CV = 0.91% at
198 baseline and 1.17% with ACh, n = 77 and 99; 10 μ M: CV = 0.63% at baseline and 0.75% with
199 ACh, n = 35 and 114). The signal-to-noise ratio was high. Absolute lifetime values correlated with
200 ACh concentration with high accuracy (Fig. 5; baseline versus ACh, pseudo R^2 = 0.77 for 1 μ M
201 ACh and 1 for 10 μ M ACh). The variation of lifetime across cells was not due to the presence of
202 varied amount of ACh at baseline (Fig. S5A; n = 13; p = 0.64 for baseline vs Tio), or varied amount
203 of cholinesterase activity (Fig. S5B; p = 0.67; CV = 1.12% without and 1.01% with cholinesterase
204 inhibitor (AChEi) Donepezil (5 μ M); n = 40 and 61 respectively). In fact, the variability was
205 comparable to the mutant sensor GRAB_{ACh3.0mut} that cannot bind ACh (Fig. S5C; p = 0.6041; CV
206 = 0.79% without and 0.92% with ACh; n = 42 and 53 respectively). These data suggest that lifetime
207 variability between cells is likely due to the flexibility of sensor conformation. Furthermore,
208 fluorescence lifetime, unlike fluorescence intensity, correlates with ACh concentration with high
209 accuracy despite different sensor expression levels across individual cells.

210 **Fluorescence lifetime correlates with ACh-associated running-resting states with high
211 accuracy across individual mice and varying laser powers**

212 Our goal is to compare ACh levels across imaging conditions, between mice, and chronic time
213 scales such as weeks or months at high temporal resolution. We thus tested whether lifetime can
214 measure both acute and sustained changes of neuromodulator concentrations *in vivo*, thus offering
215 advantages of both intensity-based measurement of optical sensors and microdialysis. To assess
216 lifetime measurement of acute changes, we tested whether lifetime of GRAB_{ACh3.0}, like intensity,
217 reports fast behavior state transitions correlated with ACh concentrations. To assess the potential
218 of lifetime measurement to capture sustained changes, we used known ACh-correlated behavior
219 states as ground truth, and asked whether lifetime measurement can accurately explain the
220 variation of these behavior states across different laser powers, different individual mice, and
221 different sensor expression levels across weeks.

222 Our proof-of-principle experiments involve fluorescence lifetime photometry (FLiP) to measure
223 lifetime and intensity simultaneously as mice transition between resting/running and different
224 stages of sleep/wake. FLiP measures the bulk fluorescence from a population of cells surrounding
225 the tip of the fiber implant, allowing for the measurement of neuromodulator dynamics in
226 genetically defined neurons in a brain region *in vivo*⁷⁸. The signal-to-noise ratio for the bulk signal
227 is thus even higher than methods with cellular resolution. In fact, the variance of the signal is
228 inversely proportional to the number of cells. Thus, if the bulk signal of ~1000 cells were analyzed,

229 the standard deviation of lifetime distribution would be $\frac{1}{\sqrt{1000}} \sim \frac{1}{32}$ of the standard deviation across
230 single cells (Fig. S6A), making FLiP a superb method to measure ACh level in vivo.

231 First, we tested whether fluorescence lifetime measurement of the ACh sensor increased as mice
232 transitioned from resting to running, since ACh is high during running than resting^{56,61-63}. AAV
233 virus carrying Cre-dependent GRAB_{ACh3.0} was delivered to hippocampal CA1 region of
234 Emx1^{lREScre} mice⁷⁹, labelling excitatory neurons and a subset of glia with the ACh sensor (Fig. 6A).
235 We recorded fluorescence lifetime, intensity, and running speed simultaneously as mice
236 voluntarily ran or rested on a treadmill (Fig. 6A). For acute changes with one laser power and
237 within one mouse, both intensity and lifetime of GRAB_{ACh3.0} showed an increase from resting to
238 running, indicating that both properties capture transient ACh changes effectively (Fig. 6B). The
239 increased intensity or lifetime from resting to running was not observed with the mutant sensor
240 GRAB_{ACh3.0mut} (Fig. S6B-S6D).

241 To test how well absolute values of lifetime or intensity correlates with ACh concentrations
242 without information of transient changes, we asked how accurately we can explain running versus
243 resting states across varying laser powers and across individual mice. These conditions mimic
244 realistic scenarios because fluctuating laser power can arise from an unstable laser source or
245 movement artifacts, and comparison across mice is essential when control versus disease models
246 are compared.

247 Across varying laser powers, intensity showed large variation within the same resting or running
248 state, whereas fluorescence lifetime remained remarkably stable (Fig. 6C). Similarly, with one
249 laser power across different mice, intensity varied greatly within the same behavior state, likely
250 due to different sensor expression level across mice. In contrast, lifetime remained stable within
251 each running and resting state (Fig. 6D). When data from different imaging conditions and mice
252 were combined, fluorescence intensity was not statistically different between running and resting
253 (Fig. 6E; n = 226 resting epochs and 322 running epochs from 6 mice, p = 0.37), indicating that
254 the absolute values of intensity could not be used to distinguish ACh levels between mice and
255 between imaging conditions. Remarkably, despite these differing conditions, lifetime showed
256 significant increase from resting to running (Fig 6E; p < 0.0001). These results indicate that in
257 contrast to intensity, lifetime is stable across imaging power and across mice, and can distinguish
258 ACh-associated behavior states across these conditions.

259 To quantitate the power of fluorescence lifetime, we performed two statistical tests. First, we asked
260 how much of the variance of lifetime and intensity could be explained by running versus resting
261 states, laser power, and animal identity. For fluorescence intensity, most of the variance was
262 explained by animal identity (64%), followed by laser power fluctuation (26%), with minimal
263 variance explained by behavior state (1.3%) (Fig. 6F, calculated from adjusted incremental R² of
264 stepwise generalized linear model (stepwise-GLM)). In contrast, most of the variance in lifetime
265 was explained by behavior state (66%), with small contributions from laser power (22%) and
266 animal identity (1.9%) (Fig. 6F, adjusted incremental R² of stepwise-GLM). Secondly, we
267 performed logistical regression to ask how much we could explain running versus resting state
268 solely based on lifetime or intensity. Lifetime showed much better explanatory power than

269 intensity (Fig. 6G; pseudo $R^2 = 0.72$ for lifetime and 0.03 for intensity). These results indicate that
270 fluorescence lifetime, but not intensity, correlates with neuromodulator-associated behavior states
271 despite fluctuating laser powers and expression level changes across animals.

272 Together, although both intensity and lifetime of GRAB_{ACh3.0} capture acute neuromodulator
273 changes effectively, lifetime excels when experiments call for comparison of neuromodulator
274 levels across fluctuating laser powers and across animals.

275 **Fluorescence lifetime correlates with ACh-associated sleep-wake states more accurately than**
276 **intensity across chronic time scales**

277 In vivo, the expression levels of a fluorescent sensor vary both across animals and across chronic
278 time scales. We thus investigated whether fluorescence lifetime can accurately track ACh levels
279 over many weeks, even as sensor expression levels change. We used sleep-wake cycles of mice as
280 our proof-of-principle experiment because hippocampal ACh is higher during active wake (AW)
281 and REM sleep, and low during quiet wake (QW) and NREM sleep^{56,64-69}. To evaluate the power
282 of lifetime and intensity in explaining ACh-associated sleep and wake stages, we measured
283 lifetime and intensity of the ACh sensor with FLiP in freely behaving mice, while simultaneously
284 performing electroencephalogram (EEG), electromyography (EMG), and video recordings to
285 determine sleep-wake stages (Fig. 7A).

286 We first asked whether lifetime, like intensity, reports acute changes of ACh as mice transition
287 between different sleep-wake stages. For a given mouse recorded within a single day, both
288 fluorescence lifetime and intensity of GRAB_{ACh3.0} increased from QW to AW, and from NREM
289 to REM sleep (Fig. 7B-7C; n = 42, 42, 26, 6 epochs for AW, QW, NREM, and REM respectively;
290 adjusted p < 0.0001 for AW vs QW and NREM vs REM of both intensity and lifetime). These
291 results indicate that fluorescence lifetime, like intensity⁵⁶, can detect acute ACh changes across
292 sleep/wake stages.

293 Controlling for the specificity of the response, we performed the same experiment with the mutant
294 ACh sensor GRAB_{ACh3.0mut} that does not bind to ACh (Fig. S7). Unexpectedly, GRAB_{ACh3.0mut}
295 showed an acute decrease in fluorescence intensity as mice transitioned from NREM to REM sleep
296 (Fig S7A-S7B; n = 42, 22, 50, 14 epochs for AW, QW, NREM, and REM respectively; adjusted
297 p = 0.25 for AW vs QW and 0.0002 for NREM vs REM). Fluorescence lifetime did not show
298 significant change between AW and QW, or between NREM and REM (Fig. S7B; adjusted p =
299 0.46 for AW vs QW and 0.51 for NREM vs REM). Because mutant ACh sensor responds to other
300 environmental factors and not ACh, these data emphasize the importance of mutant sensor controls
301 in the use of neuromodulator sensors.

302 To test the consistency of fluorescence lifetime as sensor expression level varies across long
303 periods of time, after viral delivery of GRAB_{ACh3.0}, we measured lifetime and intensity at three
304 different time points that were weeks apart. As expected, fluorescence intensity showed drastic
305 changes over time (Fig. 7D-7E). When results were pooled across sensor expression time, intensity
306 values were not significantly different between different behavior states (Fig. 7E; n = 169, 152, 48,
307 18 total epochs for AW, QW, NREM, and REM respectively; p = 0.77 for AW vs QW, and 0.61
308 for NREM vs REM). In contrast, fluorescence lifetime remained stable for a given behavioral state,

309 even as sensor expression changed over time (Fig. 7D-7E). Lifetime values were significantly
310 different between behavior states despite sensor expression variation (Fig. 7E; $p = 0.0007$ for AW
311 vs QW, and < 0.0001 for NREM vs REM). Therefore, these results indicate that fluorescence
312 lifetime, unlike intensity, is stable as sensor expression changes over weeks, and is strongly
313 correlated with ACh-associated behavior states.

314 To ask whether lifetime correlates with ACh-associated NREM/REM states despite varying sensor
315 expression levels across chronic time scales and across mice, we combined results from different
316 sensor expression time and mice. Lifetime, unlike intensity, was still significantly different
317 between NREM and REM sleep states (Fig. 7F; $n = 444$ NREM epochs and 183 REM epochs from
318 6 mice; $p = 0.72$ for intensity and 0.0006 for lifetime).

319 To quantitate the contributions to variation of lifetime and intensity by different factors, we
320 calculated adjusted incremental R^2 from stepwise-GLM. The variation of fluorescence intensity
321 was largely explained by animal identity (66%), followed by sensor expression time (16%), with
322 minimal contribution from behavior states (1.0%) (Fig. 7G). In contrast, lifetime variation was
323 largely explained by NREM versus REM states (46%), with much less contribution from animal
324 identity (23%) and sensor expression time (7.8%; Fig. 7G).

325 Conversely, we tested the extent to which lifetime or intensity could distinguish ACh-associated
326 sleep stages. Lifetime showed much higher explanatory power for NREM versus REM states than
327 intensity, despite changing expression level and across different animals (Fig. 7H; pseudo $R^2 =$
328 0.003 for intensity and 0.45 for lifetime). Therefore, fluorescence lifetime is a better correlate of
329 behavior state than intensity, when data from multiple animals and across weeks need to be
330 considered.

331 Taken together, these results indicate that *in vivo*, fluorescence lifetime, like intensity, captures
332 acute changes in neuromodulator levels within one animal. Importantly, fluorescence lifetime, and
333 not intensity, correlates with neuromodulator levels and has much greater explanatory power than
334 intensity when experiments call for comparison between animals and across long periods of time.

335 DISCUSSION

336 In summary, we discovered fluorescence lifetime responses for multiple neuromodulator sensors.
337 Fluorescence intensity enables measurement of acute changes of neuromodulator levels at high
338 temporal resolution. However, due to its sensitivity to laser power fluctuation and sensor
339 expression levels, it is not suitable for making comparisons across days and across animals.
340 Fluorescence lifetime measurement can overcome these limitations. Like fluorescence intensity,
341 we found that fluorescence lifetime can detect transient neuromodulator changes and is dose
342 sensitive. In contrast to fluorescence intensity, fluorescence lifetime is consistent and shows little
343 variability with varying laser powers, with repeated measurements within a cell, and with different
344 sensor expression levels between cells. *In vivo*, fluorescence lifetime, unlike intensity, still
345 correlates with neuromodulator levels even as sensor expression level changes across days and
346 across animals. Thus, fluorescence lifetime measurement of neuromodulator sensors opens doors
347 to study neuromodulator dynamics at high spatial and temporal resolution across animals, brain
348 regions, and chronic time scale (Fig. 8).

349 **Advantages of using fluorescence lifetime to measure neuromodulator concentrations**

350 When should we use lifetime over intensity measurement? Based on our results (Fig. 6 and 7),
351 both lifetime and intensity can report acute neuromodulator changes. Fluorescence lifetime excels
352 over intensity because lifetime measurement is independent of sensor expression^{38,40-43}. Due to this
353 property, we demonstrate four major advantages of lifetime measurement in our proof-of-principle
354 experiments. First, it is a robust correlate of neuromodulator concentration despite changing sensor
355 expression levels across individual animals (Fig. 6 and 7). Second, lifetime is stable despite
356 fluctuating excitation light power (Fig. 4 and 6). Third, lifetime correlates with neuromodulator
357 concentration with high accuracy despite large variation of sensor expression levels over chronic
358 time scale of weeks (Fig. 7). Finally, as demonstrated in our mutant sensor data, fluorescence
359 lifetime is not as sensitive as intensity to neuromodulator-independent change associated with
360 NREM to REM transitions (Fig. S7). This REM-associated intensity decrease calls for careful
361 interpretation of data to distinguish neuromodulator change from brain state-associated change in
362 intensity measurement such as hemodynamic change. In summary, fluorescence lifetime excels
363 over intensity when one needs to compare changes across individual animals, across fluctuating
364 excitation light power, and across chronic time scale.

365 **Opportunities for new biology**

366 The discovery and demonstration of the power of fluorescence lifetime-based sensors provide new
367 opportunities for biological discovery (Fig. 8). As demonstrated in our proof-of-principle
368 experiments with sleep-wake stages and running-resting states (Fig. 6 and 7), lifetime value is a
369 much better correlate of neuromodulator concentration than intensity, enabling comparison of
370 neuromodulator levels at high temporal resolution across changing light levels, between individual
371 animals, and at different time points that are weeks or months apart. In addition, because lifetime
372 is robust over varying sensor expression levels, it enables investigation of how neuromodulator
373 levels differ between brain regions, between young and old animals during aging, and between
374 control and disease models of neurological and psychiatric disorders. Furthermore, a fundamental
375 yet unanswered question in neuromodulator research is whether phasic/transient or tonic/sustained
376 change of neuromodulator release is the predominant driver between control and disease
377 conditions, and in response to therapeutic drug treatment. Lifetime offers the opportunity to
378 disambiguate transient and sustained change, a feat that neither fluorescence intensity
379 measurement nor microdialysis can accomplish alone. Thus, lifetime measurement of
380 neuromodulators holds exciting potential for studying normal physiology, disease processes, and
381 drug effects.

382 **Opportunities for new sensor design**

383 Current neuromodulator sensors have not been optimized for lifetime measurement because they
384 have generally been selected for low intensity during baseline conditions, making lifetime
385 measurement challenging. To optimize for lifetime response, sensors need to be screened for 1)
386 increased brightness to make measurement of fluorescence lifetime reliable, 2) larger dynamic
387 range between different neuromodulator concentrations, and 3) minimal variation in lifetime
388 readout with the same neuromodulator concentration between cells and between animals. Despite

389 the lack of optimization for fluorescence lifetime measurement, lifetime of GRAB_{ACh3.0} shows
390 high signal-to-noise ratio and clear separation of behavior states in vivo (Figs. 6 and 7). Thus, our
391 discovery of lifetime change by single fluorophore-based GPCR sensors provides the foundation
392 and inspiration for developing more lifetime-based neuromodulator sensors. Given the
393 demonstrated power of fluorescence lifetime for comparison across animals, between disease
394 models, and across chronic time periods, all sensor developers should look at fluorescence lifetime,
395 in addition to intensity, as a criterion for sensor screening and optimization in the future.

396 **AUTHOR CONTRIBUTIONS**

397 Conceptualization: P.M. and Y.C.; Methodology: P.M., P.C., E.T. and Y.C.; Formal Analysis:
398 P.M., P.C., S.A., and A.O.; Investigation: P.M., A.O., and Y.C.; Writing: P.M. and Y.C.;
399 Visualization: P.M., A.O. and Y.C.; Supervision: Y.C.; Funding Acquisition: Y.C.

400 **ACKNOWLEDGEMENTS**

401 We thank Yulong Li and lab for sharing plasmids of neuromodulator sensors and for discussions.
402 We thank Sophie Ma for validation of sleep scoring results. We thank Adam Kepecs, Meaghan
403 Creed, and the labs of Yao Chen, Tim Holy, and Daniel Kerschensteiner for helpful feedback on
404 the project. We thank Martha Bagnall, Yanchao (Miko) Dai, Kerry Grens, Yulong Li, Aditi
405 Maduskar, and Thomas Papouin for critical comments on the manuscript. Schematic illustrations
406 from Figure 1A, 3A, 6A, 7A, and S6B were created with BioRender. Funding for this work was
407 supported by the U.S. National Institute of Neurological Disorders and Stroke (R01 NS119821,
408 to Y.C.), the Whitehall Foundation (2019-08-64, to Y.C.), a gift from the Howard Hughes
409 Medical Institute (to Y.C.), and the McDonnell International Scholars Academy of Washington
410 University in St. Louis (to P.M.).

411 **DECLARATION OF INTERESTS**

412 The authors declare no competing interests.

413

414 **FIGURE LEGENDS**

415 **Figure 1. The ACh sensor GRAB_{ACh3.0} shows fluorescence lifetime response.**

416 (A) Schematic illustrating the question under investigation: neuromodulator sensors show
417 fluorescence intensity increase, but it is unclear whether they show any fluorescence lifetime
418 change.

419 (B) Summaries of fluorescence intensity and lifetime changes of different neuromodulator sensors
420 in response to saturating concentrations of the corresponding neuromodulators in HEK 293T cells.
421 Wilcoxon test, **p < 0.01, vs baseline change. Data are represented as median with interquartile
422 range.

423 (C-D) Representative heatmaps (C) and traces (D) showing fluorescence intensity (upper panels)
424 or fluorescence lifetime (lower panels) of GRAB_{ACh3.0} in response to saturating concentration of
425 ACh (100 μ M) with the cholinesterase inhibitor (AChEi) Donepezil (5 μ M), mAChR antagonist
426 Tiotropium (Tio, 5 μ M), or ACh+Tio+Don in HEK 293T cells. The traces in D are from the cell
427 denoted by a triangle in C.

428 (E) Histogram of fluorescence lifetime of GRAB_{ACh3.0} sensor under baseline and with 100 μ M
429 ACh.

430 (F) Summaries of intensity and fluorescence lifetime changes of GRAB_{ACh3.0} sensor in HEK 293T
431 cells. Note these data are the same as those displayed for GRAB_{ACh3.0} in Fig. 1B. Friedman one-
432 way ANOVA test with Dunn's multiple comparison, **p < 0.01 vs baseline, ##p < 0.01 vs ACh.

433 (G) Summaries of the dose-dependent intensity and fluorescence lifetime change of GRAB_{ACh3.0}
434 sensor in response to different concentrations of ACh in the presence of 5 μ M AChEi Donepezil.
435 Data are represented as mean with standard error of the mean (SEM).

436 See also Figure S1.

437

438 **Figure 2. Simulation reveals authentic fluorescence lifetime response of GRAB_{ACh3.0}.**

439 (A) Schematic illustrating the process of simulation. Fluorescence lifetime histogram of the sensor
440 is modeled as a double exponential decay, convolved with measured pulse response function (PRF),
441 and sampled with different number of photons. Subsequently, afterpulse and autofluorescence
442 (sampled from measured distribution) are added. Empirical fluorescence lifetime was then
443 calculated from the simulated distribution.

444 (B) Fluorescence lifetime distribution of cells expressing GRAB_{ACh3.0} based on experimental data
445 (n = 3) and based on simulation (n = 500 simulations under each condition). Experimental data
446 were collected in the absence or presence of ACh (100 μ M). Simulation assumed only intensity
447 change, and no lifetime change of the fluorescence sensor, and simulated with low or high photon
448 counts corresponding to baseline and ACh conditions respectively. Data are represented as mean
449 with standard deviation.

450 See also Figure S2.

451

452 **Figure 3. Fluorescence lifetime of GRAB_{ACh3.0} responds to transient ACh in brain tissue.**

453 **(A)** Illustration of expression of GRAB_{ACh3.0} in CA1 cells of hippocampus by AAVs. AAVs
454 carrying Cre recombinase driven by the neuronal specific CamKII promoter and Cre-dependent
455 GRAB_{ACh3.0} were delivered to CA1 region in the hippocampus of wild-type mice.

456 **(B-C)** Example trace and summaries (B), as well as heatmaps (C) showing fluorescence lifetime
457 of hippocampal CA1 pyramidal neurons expressing GRAB_{ACh3.0} in response to ACh (1 μ M and
458 100 μ M, with 5 μ M AChEi Donepezil). Wilcoxon test with Bonferroni correction, $^*p < 0.05$ vs
459 baseline, $^{\#}p < 0.05$ vs 1 μ M.

460 **(D)** Gradient contrast image showing puffing of ACh onto a CA1 pyramidal neuron with a glass
461 pipette connected to a Picospritzer.

462 **(E)** Example trace and summaries showing fluorescence lifetime of GRAB_{ACh3.0} in CA1 pyramidal
463 neurons in response to a 3-second puff of ACh (200 μ M). Wilcoxon test, $^*p < 0.05$ vs baseline.

464 Data in B and E are represented as median with interquartile range.

465 See also Figure S3.

466

467 **Figure 4. Fluorescence lifetime is stable across different excitation light powers.**

468 **(A)** Representative traces of intensity (left) and fluorescence lifetime (right) of HEK 293T cells
469 expressing GRAB_{ACh3.0} in response to ACh (100 μ M, with 5 μ M AChEi Donepezil), imaged at
470 different laser powers.

471 **(B)** Summaries of intensity and fluorescence lifetime of cells expressing GRAB_{ACh3.0} under
472 different laser powers, and in the absence and presence of ACh. Two-way ANOVA with Šídák's
473 multiple comparison, $^{**}p < 0.01$, n.s. not significant, low vs high laser power. Data are represented
474 as median with interquartile range.

475 **(C)** Two-way ANOVA analysis showing the contribution to the total variance of the measurements
476 due to ACh concentration, laser power, or cell identities. $^{**}p < 0.01$, n.s. not significant.

477 See also Figure S4.

478

479 **Figure 5. Fluorescence lifetime shows much less variability across cells and correlates better**
480 **with ACh concentration than intensity.**

481 **(A-B)** Left: Distribution of intensity and fluorescence lifetime measurements of GRAB_{ACh3.0} in
482 HEK 293T cells, at baseline and with different concentrations of ACh (1 μ M and 10 μ M, with 5
483 μ M AChEi Donepezil). Mann-Whitney test, $^{**}p < 0.01$ vs baseline. Data are represented as median

484 with interquartile range. Right: Pseudo R^2 values between intensity/lifetime and ACh
485 concentrations based on logistic regression, showing lifetime measurement has much greater
486 explanatory power than intensity for ACh concentration.

487 See also Figure S5.

488

489 **Figure 6. Fluorescence lifetime of GRAB_{ACh3.0} correlates with running vs resting states**
490 **accurately despite varying laser powers and varying sensor expression levels across mice in**
491 **vivo.**

492 **(A)** Schematic showing the experimental setup. AAV carrying Cre-dependent GRAB_{ACh3.0} was
493 delivered to CA1 cells in the hippocampus of Emx1^{lREScre} mice. FLiP was performed as head-fixed
494 mice ran or rested on a treadmill.

495 **(B)** Example traces showing intensity (top, blue) or fluorescence lifetime (bottom, blue)
496 measurements from FLiP, and running speed (red) of GRAB_{ACh3.0}-expressing mice on a treadmill.

497 **(C)** Distribution of intensity and fluorescence lifetime of GRAB_{ACh3.0} in resting or running states
498 from the same mouse but under different laser powers.

499 **(D)** Distribution of intensity and fluorescence lifetime of GRAB_{ACh3.0} in resting or running states
500 under the same laser power but from different mice.

501 **(E)** Distribution of intensity and fluorescence lifetime of GRAB_{ACh3.0} in running or resting states,
502 pooled from all mice across different laser powers (12 recordings from 6 mice under 3 different
503 laser powers). Nested t test, **p < 0.01; n.s. not significant.

504 **(F)** Results from stepwise-GLM analysis showing the contribution to the total variation of intensity
505 or fluorescence lifetime of GRAB_{ACh3.0} from behavior states, laser power, and animal identities.
506 Contribution is calculated from adjusted incremental R^2 .

507 **(G)** Results from logistic regression analysis showing the power of explaining running or resting
508 states with either intensity or fluorescence lifetime of GRAB_{ACh3.0}, regardless of imaging laser
509 powers or animal identities.

510 Data are represented as median with interquartile range.

511 See also Figure S6.

512

513 **Figure 7. Fluorescence lifetime of GRAB_{ACh3.0} correlates with sleep-wake stages accurately**
514 **despite variation in sensor expression levels across weeks and across animals.**

515 **(A)** Schematic showing the experimental setup. AAV carrying Cre-dependent GRAB_{ACh3.0} was
516 delivered to CA1 cells in the hippocampus of Emx1^{lREScre} mice. FLiP, EEG, EMG, and video
517 recordings were performed across sleep-wake cycles over 9 hours (9 pm to 6 am) in freely moving
518 mice.

519 **(B)** Example of spectrogram of EEG recording, EMG trace, the corresponding scored sleep-wake
520 states, along with intensity and fluorescence lifetime traces from a mouse within 1 hour. Note
521 increases in GRAB_{ACh3.0} intensity and lifetime during REM and active wake.

522 **(C)** Distribution of intensity and fluorescence lifetime of GRAB_{ACh3.0} in different sleep-wake states
523 from a 9-hour FLiP recording of one mouse. Kruskal-Wallis test with Dunn's multiple comparison,
524 **p < 0.01.

525 **(D)** Representative traces of intensity and fluorescence lifetime of GRAB_{ACh3.0} during NREM at
526 two time points after virus injection. Note that fluorescence lifetime measurement was stable over
527 time whereas intensity showed a large increase over time.

528 **(E)** Summaries of intensity and fluorescence lifetime of GRAB_{ACh3.0} in different sleep-wake stages
529 in one mouse across sensor expression time. Nested t test, **p < 0.01, n.s. not significant.

530 **(F)** Distribution of intensity and fluorescence lifetime of GRAB_{ACh3.0} across NREM and REM
531 sleep states, pooled from all mice across different sensor expression time (18 recordings from 6
532 mice at 3 different sensor expression time). Nested t test, **p < 0.01; n.s. not significant.

533 **(G)** Results from stepwise-GLM analysis showing the contribution to the total variation of
534 intensity or fluorescence lifetime of GRAB_{ACh3.0} from behavior states (NREM vs REM), sensor
535 expression time, or animal identities. Contribution is calculated from adjusted incremental R².

536 **(H)** Results from logistic regression analysis showing the power of explaining NREM vs REM
537 states with either intensity or fluorescence lifetime of GRAB_{ACh3.0}, regardless of sensor expression
538 time or animal identities.

539 Data are represented as median with interquartile range.

540 See also Figure S7.

541

542 **Figure 8. Comparison of intensity and lifetime measurement of fluorescent neuromodulator
543 sensors.**

544 Fluorescence lifetime reflects conformation change of the sensor, whereas intensity is also
545 influenced by sensor expression level, excitation light power, and other artifacts such as bleaching
546 and movement. As a result, although fluorescence intensity excels in having cell type specificity,
547 high spatial resolution, and high temporal resolution to detect transient/phasic changes of
548 neuromodulators, it cannot be used to compare sustained/tonic changes of neuromodulators,
549 compare neuromodulator levels across animals or chronic time scale. Fluorescence lifetime, in
550 contrast, excels in all these categories.

551

552

553 **KEY RESOURCES TABLE**

REGENT or RESOURCE	SOURCE	IDENTIFIER
Virus strains		
AAV9-hSyn-DIO-GRAB _{ACh3.0}	Vigene Biosciences ⁵⁶	DNA based on Addgene #121923
AAV9-hSyn-GRAB _{ACh3.0mut}	Vigene Biosciences ⁵⁶	N/A
AAV5-CamKII-Cre	Addgene	Addgene #105558-AAV5
Chemicals, Peptides, and Recombinant Proteins		
Acetylcholine chloride	Sigma	A2661
Tiotropium bromide	Tocris	5902
Donepezil hydrochloride	Tocris	4385
Dopamine hydrochloride	Sigma	H8502
Serotonin hydrochloride	Tocris	3547
Norepinephrine bitartrate monohydrate	Sigma	A9512
Experimental Models: Cell Lines		
Human: HEK293T cells	ATCC	CRL-3216
Experimental Models: Organisms/Strains		
Mouse: C57BL/6J	Jackson Laboratory	RRID:IMSR_JAX:000664
Mouse: B6.129S2-Emx1 ^{tm1(cre)Kvj} /J ⁷⁹	Jackson Laboratory	RRID:IMSR_JAX:005628
Recombinant DNA		
pdisplay-CMV-GRAB _{ACh3.0}	Yulong Li ⁵⁶	N/A
pdisplay-GRAB _{ACh3.0mut}	Yulong Li ⁵⁶	N/A
pAAV-CAG-iAChSnFR	Loren Looger ⁵⁸	Addgene #137955
pdisplay-CMV-GRAB _{5HT}	Yulong Li	N/A
pdisplay-CMV-GRAB _{NE}	Yulong Li	N/A
pdisplay-GRAB _{DA2m}	Yulong Li ⁵⁹	N/A
Software and Algorithms		
MATLAB	MathWorks	RRID: SCR_001622
Bonsai	Bonsai-rx.org	RRID:SCR_017218
ScanImage		https://github.com/bernardosabatinilab/SabalabSoftware_Nov2009
GraphPad Prism 9	GraphPad Software	RRID:SCR_002798

554

555

556

557

558 **STAR METHODS**

559 **RESOURCE AVAILABILITY**

560 **Lead Contact**

561 Further information and requests for resources and reagents should be directed to and will be
562 fulfilled by the lead contact, Yao Chen (yaochen@wustl.edu).

563 **Material Availability**

564 This study did not generate new unique reagents.

565 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

566 **Human Embryonic Kidney (HEK) 293T Cells**

567 HEK 293T cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) with 10% Fetal
568 Bovine Serum (FBS) (Millipore Sigma), GlutaMAX (Invitrogen), and penicillin /streptavidin (50
569 U/m, Corning) at 37°C in 5% CO₂. All cells were female. The cell line has not been authenticated.
570 They were plated on coverslips in 24-well plates and transfected with plasmids (0.4-0.8 µg/well)
571 using lipofectamine 2000 (Invitrogen). Two days after transfection, the cells were imaged with
572 perfusion of artificial cerebrospinal fluid (ACSF, concentrations in mM: 127 NaCl, 25 Na₂CO₃,
573 1.25 NaH₂PO₄·H₂O, 2.5 KCl, 1 MgCl₂, 2 CaCl₂, and 25 glucose).

574 **Animals**

575 All procedures for rodent husbandry and surgery were performed following protocols approved by
576 the Washington University Institutional Animal Care and Use Committee and in accordance with
577 National Institutes of Health guidelines. For acute brain slices, adult wild-type C57BL/6J mice
578 (Jax 000664) were used with injections of virus expressing Cre recombinase and Cre-dependent
579 sensors. For behavioral studies, adult Emx1^{IRESCre} (Jax 005628) or wild-type mice were injected
580 with virus and implanted with fiber-optic cannula, EEG/EMG implants, and headplates.

581 **METHODS DETAILS**

582 **DNA Plasmids**

583 The constructs pdisplay-CMV-GRAB_{ACh3.0}⁵⁶, pdisplay-CMV-GRAB_{5HT}, pdisplay-CMV-GRAB_{NE},
584 pdisplay-GRAB_{ACh3.0mut}⁵⁶, and pdisplay-GRAB_{DA2m}⁵⁹ were gifts from Dr. Yulong Li's laboratory.
585 pAAV-CAG-iAChSnFR (Addgene #137955) was from Dr. Loren Looger's laboratory⁵⁸.

586 **Virus Production and Stereotaxic Injections**

587 AAV9-hSyn-DIO-GRAB_{ACh3.0}⁵⁶ (DNA corresponding to Addgene #121923) and AAV9-hSyn-
588 GRAB_{ACh3.0mut}⁵⁶ viruses were packaged at Vigene Biosciences. AAV5-CamKII-Cre was from
589 James M. Wilson and packaged at Addgene (Addgene #105558-AAV5). For stereotaxic injection,
590 dorsal hippocampus CA1 was targeted with coordinates of posterior 1.78 mm and lateral 1.58 mm
591 relative to Bregma, and 1.36 mm from the pia. All injections were made at a rate of 100 nL/min
592 through a UMP3 micro-syringe pump (World Precision Instruments) via glass pipette. For acute
593 brain slice imaging, bilateral injections of 500 nL of AAV9-hSyn-DIO-GRAB_{ACh3.0} (3.1 x 10¹²
594 GC/mL) and AAV5-CamKII-Cre (3 x 10¹² GC/mL) were made in wild-type mice. For FLiP
595 experiments, 500 nL of AAV9-hSyn-DIO-GRAB_{ACh3.0} (3.9 x 10¹² GC/mL) were injected into left

596 hemispheres of $\text{Emx1}^{\text{IRES}Cre}$ mice. For control experiments, 500 nL of AAV9-hSyn-GRAB_{ACh3.0mut}
597 (3.1 x 10¹² GC/mL) were injected into the left hemispheres of wild-type mice. Following virus
598 injection, fiber-optic cannula, EEG/EMG implants, and headplates were placed.

599 **Implantation of Optic Cannula, EEG/EMG Implants, and Headplate**

600 After stereotaxic injection and withdrawal of the glass pipette, a fiber-optic cannula (Doric Lenses,
601 MFC_200/245-0.37_2.5mm_MF1.25_FLT) was inserted into the same injection site, at 0.05 mm
602 above the viral injection site. The fiber was stabilized to the skull with glue. To implant the EEG
603 and EMG implants, four stainless steel screws were inserted into the skull, with two above the
604 cerebellum, one above the right hippocampus, and one above the right frontal cortex. The screws
605 were wired to an EEG/EMG head-mount (Pinnacle, 8402). Two EMG electrodes from the head-
606 mount were inserted into the neck muscle of the mice. A headplate was placed directly onto the
607 skull. All the implants were secured to the skull with dental cement. An additional layer of dental
608 cement with black paint was applied for light-proofing. All experiments were carried out at least
609 2 weeks after the surgery.

610 **Acute Brain Slice Preparation**

611 Mice were anesthetized with isoflurane followed by intracardial perfusion with cold N-methyl-d-
612 glucamine (NMDG)-based cutting solution (concentrations in mM: 92 NMDG, 2.5 KCl, 1.25
613 NaH₂PO₄, 30 NaHCO₃, 20 HEPES, 25 glucose, 10 MgSO₄, 0.5 CaCl₂, 5 sodium ascorbate, 2
614 thiourea, and 3 sodium pyruvate)⁸⁰. Their brains were rapidly dissected out. 300 μm -thick coronal
615 sections were obtained with a vibratome (Leica Instruments, VT1200S) in cold NMDG-based
616 cutting solution. After sectioning, slices were transferred to NMDG-based solution and incubated
617 at 34°C for 12 minutes, and then kept in HEPES-based holding solution (concentrations in mM: 92
618 NaCl, 2.5 KCl, 1.25 NaH₂PO₄, 30 NaHCO₃, 20 HEPES, 2 thiourea, 5 sodium ascorbate, 3 sodium
619 pyruvate, 2 CaCl₂, 2 MgSO₄, and 25 glucose) at room temperature with 5% CO₂ and 95% O₂.
620 Slices were then transferred to a microscope chamber and ACSF was perfused at a flow rate of 2-
621 4 mL/min for imaging.

622 **Two-Photon Fluorescence Lifetime Imaging (2pFLIM) and Image Analysis**

623 Two photon imaging was achieved by a custom-built microscope with a mode-locked laser source
624 (Spectra-Physics, Insight X3 operating at 80 MHz). Photons were collected with fast
625 photomultiplier tubes (PMTs, Hamamatsu, H10770PB-40). A 60X objective (Olympus, NA 1.1)
626 was used. Image acquisition was performed with the custom-written software ScanImage in
627 MATLAB 2012b⁸¹.

628 FLIM was performed as described previously^{48,49}. For all the GFP-based neuromodulator sensors,
629 920 nm was used as the excitation wavelength. Emission light was collected through a dichroic
630 mirror (FF580-FDi01-25X36, Semrock) and a band-pass filter (FF03-525/50-25, Semrock).
631 128x128 pixel images were collected by frame scan at 4 Hz. The FLIM board SPC-150 (Becker
632 and Hickl GmbH) was used, and time-domain single photon counting was performed in 256 time
633 channels. For FLIM data analysis, only healthy cells (judged by gradient contrast images) with
634 membrane expression pattern were selected. Cells with round shape, sensor expression aggregates,
635 or cell-filling expression patterns were excluded. The membrane of individual cells was selected
636 as region of interest (ROI). To minimize the effect of movement artifact on intensity measurement,

637 pixels with photon counts below 5 was omitted and then the top 66% brightest pixels were selected
638 as effective pixels. Photons from effective pixels of a given ROI were pooled. The average photon
639 count per pixel was used for intensity measurement. The average lifetime of all the photons in this
640 ROI was calculated as follows:

641
$$\tau = \frac{\sum(F(t) * t)}{\sum F(t)}$$

642 in which $F(t)$ is the photon count from the fluorescence lifetime histogram at time bin t , and t is
643 the lifetime measurement corresponding to the time bin. We performed the calculation from 0.0489
644 ns to 11.5 ns in the lifetime histogram. Due to change of cable length in FLIM or FLiP set-up, the
645 empirical lifetime across different experiments showed different absolute values. The cable length
646 was kept consistent within one set of experiments.

647 Change of fluorescence lifetime at baseline was quantitated as lifetime measurement averaged over
648 the first 5 data points of baseline subtracted from lifetime measurement averaged over the last 5
649 data points of baseline. Change of lifetime due to treatment was calculated as the average lifetime
650 of the last 5 data points of baseline subtracted from that of the last 5 data points of treatment period.
651 Cells with unstable baseline (coefficient of variation for baseline lifetime larger than 0.8%) were
652 excluded. Similar calculations were performed for intensity change, with change of intensity
653 divided by the average intensity of the first 5 data points of baseline as $\Delta F/F_0$.

654 For puffing experiments, maximum of either lifetime or intensity during baseline or puffing period
655 was used to calculate the response. For dose-dependent response experiments, the response of each
656 concentration of ACh treatment was expressed as the percentage of the peak responses.

657 **Fluorescence Lifetime Photometry (FLiP) and Analysis**

658 A FLiP setup was custom built and used similar to that previously described⁷⁸. In brief, a pulsed
659 473nm laser (Becker and Hickl, BDS-473-SM-FBE operating at 50 MHz) was used as the
660 excitation light source. An optical fiber patch cord (Doric Lenses, MFP_200/220/900-
661 0.37_1.5m_FCM-MF1.25_LAF) was used to direct the excitation laser beam to the optical fiber
662 implanted in the mouse brain. A dichroic mirror (Thorlabs, DMLP505R) and band-pass filter
663 (Semrock, FF01-525/39-25) were used to select the green emission light from the blue excitation
664 light. Emission light was detected with a fast photomultiplier tube (PMT, Hamamatsu, H10770PA-
665 40), and a time-correlated single-photon counting (TCSPC SPC-150, Becker and Hickl GmbH)
666 board was used to measure fluorescence lifetime binned into 256 time channels. The data were
667 collected by customized software in MATLAB 2012b at 1 Hz. Excitation light power was adjusted
668 with a neutral density filter, so the photon arrival rate was between 1×10^5 /s and 8×10^5 /s. The
669 lower limit was chosen for accurate estimation of lifetime, and the upper limit chosen based on the
670 dead time of the TCSPC driver board. The typical excitation power needed to generate the
671 appropriate rate of photons for TCSPC was 0.01–0.18 μ W (measured at the output end of the patch
672 cord). Location of viral injection and fiber implants examined by histology after experiments. Only
673 mice with tip of the fiber above hippocampus CA1 were used in the behavior analysis. For data
674 analysis, we calculated average lifetime from 2.148 ns to 18.555 ns in the lifetime histogram.

675 **Running and Resting Recording and Analysis**

676 Mice with optic fiber implant and headplate were head-fixed on a treadmill and recorded in the
677 dark. An incremental rotary encoder (SparkFun, COM-11102) was used to record the speed of the
678 voluntary running. Rotary signals were collected at 25Hz via an Arduino Due board (Arduino,
679 A000062). The signals were sent to Bonsai (<https://bonsai-rx.org/>) via serial port communication
680 and timestamped in Bonsai. Videos were simultaneously recorded at 25 frames per second (fps) in
681 Bonsai. FLiP data were collected at 1 Hz.

682 Raw data of running speed were binned to 4 Hz for analysis. Running epochs were defined by the
683 following criteria: 1) continuous forward or backward movement above a speed of 1cm/s; 2) no
684 more than 3 consecutive sub-threshold data points; 3) preceded by at least 10 seconds of sub-
685 threshold resting; and 4) at least 3 seconds in duration. For ACh sensor fluorescence analysis
686 during running, in order to account for sensor kinetics, 0.5 second at the beginning of each running
687 epoch was excluded and 2 seconds were extended from the end of the running epochs for analysis
688 Each resting epoch was specified as continuous below-threshold speed that lasts for more than 150
689 seconds. To account for sensor kinetics and ACh kinetics, the first and last 30 seconds of each
690 resting epoch were excluded for analysis. If a trimmed resting epoch is longer than 90 seconds, it
691 is split into 90 second epoch segments.

692 The median values of fluorescence intensity or fluorescence lifetime of ACh sensor for each
693 running or resting segment were quantitated for subsequent analysis.

694 **FLiP, EEG/EMG, and Video Recordings**

695 Mice that underwent GRAB_{ACh3.0} virus injection, optical fiber implantation, and EEG/EMG
696 implant were placed in a chamber with 12-hour/12-hour light-dark cycle (6am-6pm light).
697 Recordings from 9pm to 6 am (dark phase) were collected and analyzed. An additional infrared
698 light was used for video recording during the dark phase. Fluorescence lifetime and intensity data
699 were collected at 1 Hz with our custom-built FLiP setup. EEG/EMG recording was performed at
700 400 Hz with a system from Pinnacle Technology using our ScanImage software. Video recording
701 was performed at 25 fps in Bonsai. Video data were synchronized with FLiP and EEG/EMG data
702 via a TTL (transistor-transistor logic) signal from Matlab to Arduino Due board (Arduino,
703 A000062) to Bonsai to trigger the start of video recording.

704 **Sleep Stage Scoring**

705 Sleep stages were scored for every 4-second bin based on the EEG, EMG, and motion detection
706 from the video using a custom-written program in Python. Briefly, sleep scoring prediction was
707 generated with a random forest model, followed by user correction. The following criteria were
708 used to determine sleep/wake stages^{56,82}: 1) active wake: low variance in EEG, high variance in
709 EMG, and high movement based on video; 2) quiet wakefulness: low variance in EEG, low
710 variance in EMG, and low movement based on video; 3) NREM sleep: high variance in EEG with
711 high delta power (0.5-4 Hz), low variance in EMG, and no movement based on video; 4) REM
712 sleep: high theta (5-8 Hz) to delta power ratio based on EEG, low variance in EMG, and no
713 movement based on video.

714 **Pharmacology**

715 Unless otherwise noted, all chemicals were applied via bath perfusion: they were either added to
716 the perfusion reservoir or pre-made buffers with the specified chemicals were switched from one
717 to another. Lifetime was allowed to stabilize before a new chemical was added. When there was
718 no clear lifetime change, 10 minutes were recorded before the addition of another chemical or the
719 end of the experiment. The final concentrations of chemicals are specified in parentheses: ACh
720 chloride (0.001 μ M to 100 μ M), norepinephrine bitartrate monohydrate (NE, 10 μ M) and
721 dopamine hydrochloride (DA, 10 μ M) were from Sigma; serotonin hydrochloride (5-HT, 100 μ M),
722 muscarinic acetylcholine receptor antagonist tiotropium bromide (Tio, 5 μ M), and cholinesterase
723 inhibitor donepezil hydrochloride (5 μ M), were from Tocris.

724 For puffing experiments, a glass patch pipette was used to locally puff ACh (200 μ M in ACSF)
725 for 3 seconds onto a neuron in a brain slice through a Picospritzer (Parker, 052-0500-900) at 2 psi.

726 **FLIM Simulation**

727 The simulation was performed by customized MATLAB code. The null hypothesis is that with or
728 without ACh binding, GRAB_{ACh3.0} has the same fluorescence lifetime and can be described by the
729 same equation – thus, the apparent fluorescence lifetime change was solely due to altered
730 proportion of autofluorescence contribution. The fluorescence of GRAB_{ACh3.0} was modelled by a
731 double exponential decay.

$$732 F = F_0 \cdot (p_1 \cdot e^{\left(\frac{t}{\tau_1}\right)} + p_2 \cdot e^{\left(\frac{t}{\tau_2}\right)})$$

733 τ_1 , τ_2 , p_1 , and p_2 were determined empirically by measuring the fluorescence decay of ACh 3.0
734 expressed in HEK cells at saturating concentration (100 μ M) of ACh. A large population of
735 photons ($\sim 6 \times 10^6$) with specific lifetimes was generated based on the double exponential decay
736 and binned into 256 time channels over 12.5 ns (time interval between laser pulses for an 80 MHz
737 laser). The photon population was then convolved by a pulse response function measured
738 empirically. A small sample of photons was drawn with replacement from the large population,
739 and the number of photons in the sample corresponded to the average of measured photons at either
740 0 or 100 μ M of ACh respectively. Subsequently, we added to the photon sample photons due to
741 afterpulse (0.32% of total photon count, with even distribution across lifetime) and
742 autofluorescence. Photons due to autofluorescence were sampled from empirically determined
743 autofluorescence distribution from untransfected HEK 293T cells. Simulation was repeated 500
744 times for each sample size corresponding to 0 or 100 μ M of ACh. Empirical fluorescence lifetime
745 was calculated for each simulated combination and compared to experimentally observed values.

746 **QUANTIFICATION AND STATISTICAL ANALYSIS**

747 Detailed information of the quantification and statistics used are summarized in Figure Legends,
748 Figures, and Results. Wilcoxon test (with Bonferroni correction when appropriate) was performed
749 for paired data. Mann-Whitney test was performed for unpaired data. For analysis of variance,
750 Friedman test was performed for matched data, and Kruskal-Wallis test was performed for
751 unmatched data, followed by Dunn's multiple comparison (one-way ANOVA), or Šídák's multiple
752 comparison (two-way ANOVA). Nested t test was performed when comparison was made with
753 hierarchical data. All statistical analysis were performed in GraphPad Prism 9. Two-way ANOVA

754 was used to determine the contribution to the total variance from two independent variables. When
755 more than two independent variables were included, a stepwise-GLM model was performed in
756 MATLAB. The independent variables were added in order of weights (largest first based on
757 adjusted R²) and the subsequent improvement to overall adjusted R² was calculated as the
758 contribution to the variance for each independent variable. Logistic regression (LR) was used to
759 identify the strength of the relationship of individual independent variables (intensity and lifetime)
760 on states (resting/running; REM/NREM). LR was performed using Scikit-Learn in Python.
761 McFadden's pseudo R² values were used to evaluate the performance of the model. Sample size n
762 refers to biological replicates of number of cells, mice, or behavioral epochs.

763 **DATA AND SOFTWARE AVAILABILITY**

764 The MATLAB programs for ScanImage for data acquisition and analysis are available at
765 https://github.com/YaoChenLabWashU/2pFLIM_acquisition. The MATLAB codes for
766 simulation are available at <https://github.com/YaoChenLabWashU/Simulation>. The Python codes
767 for analysis of running vs resting states are available at
768 https://github.com/YaoChenLabWashU/RVR_v2/. The Python codes for sleep staging are
769 available at https://github.com/YaoChenLabWashU/neuroscience_sleep_scoring. Any additional
770 information required to reanalyze the data reported in this paper is available from the lead contact
771 upon request.

772

773

774

775 **SUPPLEMENTAL FIGURE LEGENDS**

776 **Figure S1 – related to Figure 1**

777 **Figure S1. GRAB_{ACh3.0mut} sensor showed no fluorescence lifetime or intensity change to ACh**
778 **application.**

779 **(A-B)** Traces (left) and summaries (right) of intensity (A) and fluorescence lifetime (B) response
780 of GRAB_{ACh3.0mut} sensor to ACh application (100 μ M). Wilcoxon test, n.s., not significant vs
781 baseline.

782

783 **Figure S2 – related to Figure 2**

784 **Figure S2. Fluorescence lifetime of sensor fluorescence and autofluorescence.**

785 **(A)** Measured histogram of fluorescence lifetime of HEK293T cells without sensor expression
786 (autofluorescence), and with GRAB_{ACh3.0} expression (in the presence of 100 μ M ACh). The inset
787 shows histogram normalized to peak photon count, indicating that the fluorescence lifetime of
788 autofluorescence is shorter than sensor fluorescence.

789 **(B)** Measured histogram and corresponding double exponential curve fitting results of
790 fluorescence lifetime of GRAB_{ACh3.0} in HEK293T cells in the presence of 100 μ M ACh.

791

792

793 **Figure S3 – related to Figure 3**

794 **Figure S3. Intensity of GRAB_{ACh3.0} responds to transient ACh in brain tissue.**

795 **(A-B)** Example trace and summaries (A), as well as heatmap (B) showing intensity of hippocampal
796 CA1 pyramidal neurons expressing GRAB_{ACh3.0} in response to ACh (1 μ M and 100 μ M, with 5
797 μ M AChEi Donepezil). Wilcoxon test with Bonferroni correction, $^*p < 0.05$ vs baseline, $^{\#}p < 0.05$
798 vs 1 μ M.

799 **(C)** Example trace and summaries showing fluorescence intensity of GRAB_{ACh3.0} in CA1
800 pyramidal neurons in response to a 3-second puff of ACh (200 μ M). Wilcoxon test, $^*p < 0.05$ vs
801 baseline.

802 Data are represented as median with interquartile range.

803

804 **Figure S4 - related to Figure 4**

805 **Figure S4. Fluorescence lifetime measurement of GRAB_{ACh3.0} is stable with repeated ACh**
806 **application.**

807 **(A-B)** Trace and summaries of intensity (A) and fluorescence lifetime (B) measurement of
808 GRAB_{ACh3.0} in HEK 293T cells in response to repeated flow-in of the same concentration of ACh

809 (1 μ M, with 5 μ M of AChEi Donepezil). Wilcoxon test; n.s.: not significant, vs 1st flow-in. Data
810 are represented as median with interquartile range.

811

812 **Figure S5 - related to Figure 5**

813 **Figure S5. Distribution of fluorescence lifetime of GRAB_{ACh3.0} and GRAB_{ACh3.0mut}.**

814 (A) Fluorescence lifetime of GRAB_{ACh3.0} in HEK 293T cells before and after application of
815 mAChR antagonist Tiotropium (5 μ M). Wilcoxon test, n.s., not significant vs baseline.

816 (B) Distribution of fluorescence lifetime of GRAB_{ACh3.0} in HEK 293T cells with or without AChEi
817 Donepezil (5 μ M). Mann-Whitney test, n.s., not significant vs without AChEi.

818 (C) Distribution of fluorescence lifetime of GRAB_{ACh3.0mut} sensor in HEK 293T cells with or
819 without ACh (100 μ M). Mann-Whitney test, n.s., not significant vs without ACh.

820 Data are represented as median with interquartile range.

821

822 **Figure S6 - related to Figure 6**

823 **Figure S6. Intensity and fluorescence lifetime measurements of GRAB_{ACh3.0mut} sensor in the**
824 **hippocampus during running/resting.**

825 (A) Schematic illustrating the reduction in standard deviation of data in bulk measurement with
826 FLiP compared with cell-based imaging. Photometry data were modelled based on light collection
827 from 1000 cells. Data are represented as mean with standard deviation.

828 (B) Illustration showing expression of GRAB_{ACh3.0mut} in CA1 cells of hippocampus. AAV carrying
829 GRAB_{ACh3.0mut} driven by neuronal specific hSyn promoter was delivered to CA1 cells in the
830 hippocampus of wild-type mice.

831 (C) Example traces showing intensity (top, blue) or fluorescence lifetime (bottom, blue)
832 measurements from FLiP, and running speed (red) of GRAB_{ACh3.0mut}-expressing mice on a
833 treadmill.

834 (D) Distribution of intensity and fluorescence lifetime of GRAB_{ACh3.0mut} sensor in resting or
835 running states of one mouse. Data are represented as median with interquartile range.

836

837 **Figure S7 - related to Figure 7**

838 **Figure S7. Intensity and fluorescence lifetime measurements of GRAB_{ACh3.0mut} sensor in the**
839 **hippocampus across sleep-wake cycles.**

840 (A) Example of spectrogram of EEG recording, EMG trace, the corresponding scored sleep-wake
841 states, along with intensity and fluorescence lifetime traces of GRAB_{ACh3.0mut} sensor from a mouse
842 within 1 hour. Note the decrease in intensity during REM state.

843 **(B)** Summary of intensity and fluorescence lifetime measurements of GRAB_{ACh3.0mut} sensor in
844 different sleep-wake states. Kruskal-Wallis test with Dunn's multiple comparison, **p < 0.01, n.s.
845 not significant. Data are represented as median with interquartile range.

846 **(C)** Results from two-way ANOVA analysis showing the contribution to the total variance of the
847 measurements due to behavior states (NREM vs REM) or animal identities. Note that behavior
848 state (NREM or REM) gives minimal contribution to the total variance of the measurements.

849

850 **REFERENCES**

- 851 1. Bargmann, C.I., and Marder, E. (2013). FOCUS ON MAPPING THE BRAIN From the
852 connectome to brain function. *Nat Methods* *10*, 438–490. 10.1038/NMETH.2451.
- 853 2. Marder, E. (2012). Neuromodulation of Neuronal Circuits: Back to the Future. *Neuron* *76*, 1–11.
854 10.1016/j.neuron.2012.09.010.
- 855 3. Gershman, S.J., and Uchida, N. (2019). Believing in dopamine. *Nat Rev Neurosci* *20*.
856 10.1038/s41583-019-0220-7.
- 857 4. Zhang, S.X., Lutas, A., Yang, S., Diaz, A., Fluhr, H., Nagel, G., Gao, S., and Andermann, M.L.
858 (2021). Hypothalamic dopamine neurons motivate mating through persistent cAMP signalling.
859 *Nature* *597*. 10.1038/s41586-021-03845-0.
- 860 5. Weele, C.M.V., Siciliano, C.A., and Tye, K.M. (2019). Dopamine tunes prefrontal outputs to
861 orchestrate aversive processing. *Brain Res* *1713*. 10.1016/j.brainres.2018.11.044.
- 862 6. Xiao, L., Priest, M.F., Nasenbeny, J., Lu, T., and Kozorovitskiy, Y. (2017). Biased Oxytocinergic
863 Modulation of Midbrain Dopamine Systems. *Neuron* *95*. 10.1016/j.neuron.2017.06.003.
- 864 7. Lee, S.J., Lodder, B., Chen, Y., Patriarchi, T., Tian, L., and Sabatini, B.L. (2021). Cell-type-
865 specific asynchronous modulation of PKA by dopamine in learning. *Nature* *590*. 10.1038/s41586-
866 020-03050-5.
- 867 8. Lutas, A., Kucukdereli, H., Alturkistani, O., Carty, C., Sugden, A.U., Fernando, K., Diaz, V.,
868 Flores-Maldonado, V., and Andermann, M.L. (2019). State-specific gating of salient cues by
869 midbrain dopaminergic input to basal amygdala. *Nat Neurosci* *22*. 10.1038/s41593-019-0506-0.
- 870 9. Froemke, R.C., and Young, L.J. (2021). Oxytocin, Neural Plasticity, and Social Behavior. *Annu
871 Rev Neurosci* *44*. 10.1146/annurev-neuro-102320-102847.
- 872 10. Sippy, T., and Tritsch, N.X. (2023). Unraveling the dynamics of dopamine release and its actions
873 on target cells. *Trends Neurosci*.
- 874 11. Lubejko, S.T., Graham, R.D., Livrizzi, G., Schaefer, R., Banghart, M.R., and Creed, M.C. (2022).
875 The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia. *Front Syst
876 Neurosci*.
- 877 12. Francis, P.T., Palmer, A.M., Snape, M., and Wilcock, G.K. (1999). The cholinergic hypothesis of
878 Alzheimer's disease: A review of progress. *J Neurol Neurosurg Psychiatry* *66*.
879 10.1136/jnnp.66.2.137.
- 880 13. Spies, M., Knudsen, G.M., Lanzenberger, R., and Kasper, S. (2015). The serotonin transporter in
881 psychiatric disorders: Insights from PET imaging. *Lancet Psychiatry* *2*. 10.1016/S2215-
882 0366(15)00232-1.
- 883 14. Nestler, E.J., and Carlezon, W.A. (2006). The Mesolimbic Dopamine Reward Circuit in
884 Depression. *Biol Psychiatry* *59*. 10.1016/j.biopsych.2005.09.018.
- 885 15. Evans, A.H., and Lees, A.J. (2004). Dopamine dysregulation syndrome in Parkinson's disease.
886 *Curr Opin Neurol* *17*. 10.1097/01.wco.0000137528.23126.41.

887 16. Grace, A.A. (2016). Dysregulation of the dopamine system in the pathophysiology of
888 schizophrenia and depression. *Nat Rev Neurosci* 17. 10.1038/nrn.2016.57.

889 17. Higley, M.J., and Picciotto, M.R. (2014). Neuromodulation by acetylcholine: Examples from
890 schizophrenia and depression. *Curr Opin Neurobiol* 29. 10.1016/j.conb.2014.06.004.

891 18. Lovinger, D.M., and Alvarez, V.A. (2017). Alcohol and basal ganglia circuitry: Animal models.
892 *Neuropharmacology* 122, 46–55.

893 19. Savalia, N.K., Shao, L.-X., and Kwan, A.C. (2021). A dendrite-focused framework for
894 understanding the actions of ketamine and psychedelics. *Trends Neurosci* 44, 260–275.

895 20. McCall, J.G., Al-Hasani, R., Siuda, E.R., Hong, D.Y., Norris, A.J., Ford, C.P., and Bruchas, M.R.
896 (2015). CRH Engagement of the Locus Coeruleus Noradrenergic System Mediates Stress-Induced
897 Anxiety. *Neuron* 87, 605–620. 10.1016/J.NEURON.2015.07.002.

898 21. Jensen, K.R., Berthoux, C., Nasrallah, K., and Castillo, P.E. (2021). Multiple cannabinoid
899 signaling cascades powerfully suppress recurrent excitation in the hippocampus. *Proc Natl Acad
900 Sci U S A* 118. 10.1073/PNAS.2017590118/-/DCSUPPLEMENTAL.

901 22. Schmack, K., Bosc, M., Ott, T., Sturgill, J.F., and Kepcs, A. (2021). Striatal dopamine mediates
902 hallucination-like perception in mice. *Science* 372. 10.1126/SCIENCE.ABF4740.

903 23. Oikonomou, G., Altermatt, M., Zhang, R. wei, Coughlin, G.M., Montz, C., Gradinaru, V., and
904 Prober, D.A. (2019). The Serotonergic Raphe Promote Sleep in Zebrafish and Mice. *Neuron* 103,
905 686-701.e8. 10.1016/J.NEURON.2019.05.038.

906 24. Hangya, B., Ranade, S.P., Lorenc, M., and Kepcs, A. (2015). Central Cholinergic Neurons Are
907 Rapidly Recruited by Reinforcement Feedback. *Cell* 162. 10.1016/j.cell.2015.07.057.

908 25. Rho, H.J., Kim, J.H., and Lee, S.H. (2018). Function of selective neuromodulatory projections in
909 the mammalian cerebral cortex: Comparison between cholinergic and noradrenergic systems.
910 *Front Neural Circuits* 12. 10.3389/fncir.2018.00047.

911 26. Marucci, G., Buccioni, M., Ben, D.D., Lambertucci, C., Volpini, R., and Amenta, F. (2021).
912 Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease. *Neuropharmacology* 190.
913 10.1016/j.neuropharm.2020.108352.

914 27. Olanow, C.W., Obeso, J.A., and Stocchi, F. (2006). Continuous dopamine-receptor treatment of
915 Parkinson's disease: scientific rationale and clinical implications. *Lancet Neurology* 5.
916 10.1016/S1474-4422(06)70521-X.

917 28. Wu, M., Minkowicz, S., Dumrongprechachan, V., Hamilton, P., Xiao, L., and Kozorovitskiy, Y.
918 (2021). Attenuated dopamine signaling after aversive learning is restored by ketamine to rescue
919 escape actions. *Elife* 10. 10.7554/eLife.64041.

920 29. Post, R.J., and Warden, M.R. (2018). Depression: the search for separable behaviors and circuits.
921 *Curr Opin Neurobiol* 49.

922 30. Wightman, R.M. (2006). Probing cellular chemistry in biological systems with microelectrodes.
923 *Science* (1979) 311, 1570–1574. 10.1126/SCIENCE.1120027.

924 31. Ganesana, M., Lee, S.T., Wang, Y., and Venton, B.J. (2017). Analytical Techniques in
925 Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods. *Anal*
926 *Chem* *89*, 314–341. 10.1021/ACS.ANALCHEM.6B04278.

927 32. Ungerstedt, U., and Hallström, Å. (1987). In vivo microdialysis - a new approach to the analysis of
928 neurotransmitters in the brain. *Life Sci* *41*. 10.1016/0024-3205(87)90181-0.

929 33. Venton, B.J., and Cao, Q. (2020). Fundamentals of fast-scan cyclic voltammetry for dopamine
930 detection. *Analyst* *145*. 10.1039/c9an01586h.

931 34. Puthongkham, P., and Venton, B.J. (2020). Recent advances in fast-scan cyclic voltammetry.
932 *Analyst* *145*. 10.1039/c9an01925a.

933 35. Sabatini, B.L., and Tian, L. (2020). Imaging Neurotransmitter and Neuromodulator Dynamics
934 In Vivo with Genetically Encoded Indicators. *Neuron* *108*, 17–32.
935 10.1016/J.NEURON.2020.09.036.

936 36. Dong, C., Zheng, Y., Long-Iyer, K., Wright, E.C., Li, Y., and Tian, L. (2022). Fluorescence
937 Imaging of Neural Activity, Neurochemical Dynamics, and Drug-Specific Receptor Conformation
938 with Genetically Encoded Sensors. *Annu Rev Neurosci* *45*, 273–294. 10.1146/ANNUREV-
939 NEURO-110520-031137.

940 37. Wu, Z., Lin, D., and Li, Y. (2022). Pushing the frontiers: tools for monitoring neurotransmitters
941 and neuromodulators. *Nat Rev Neurosci* *23*, 257–274. 10.1038/S41583-022-00577-6.

942 38. Day-Cooney, J., Dalangin, R., Zhong, H., and Mao, T. (2022). Genetically encoded fluorescent
943 sensors for imaging neuronal dynamics in vivo. *J Neurochem*. 10.1111/jnc.15608.

944 39. Beyene, A.G., Delevich, K., Del Bonis-O'Donnell, J.T., Piekarski, D.J., Lin, W.C., Wren Thomas,
945 A., Yang, S.J., Kosillo, P., Yang, D., Prounis, G.S., et al. (2019). Imaging striatal dopamine
946 release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor. *Sci*
947 *Adv* *5*. 10.1126/sciadv.aaw3108.

948 40. Chen, Y., and Sabatini, B.L. (2012). Signaling in dendritic spines and spine microdomains. *Curr*
949 *Opin Neurobiol* *22*, 389–396. 10.1016/j.conb.2012.03.003.

950 41. Yasuda, R. (2006). Imaging spatiotemporal dynamics of neuronal signaling using fluorescence
951 resonance energy transfer and fluorescence lifetime imaging microscopy. *Curr Opin Neurobiol* *16*,
952 551–561. 10.1016/j.conb.2006.08.012.

953 42. Becker, W., and Bergmann, A. (2002). Lifetime imaging techniques for optical microscopy.
954 Becker & Hickl GmbH, Berlin, 1–41.

955 43. Koveal, D., Díaz-García, C.M., and Yellen, G. (2020). Fluorescent Biosensors for Neuronal
956 Metabolism and the Challenges of Quantitation. *Curr Opin Neurobiol* *63*.
957 10.1016/j.conb.2020.02.011.

958 44. Lazzari-Dean, J.R., Gest, A.M.M., and Miller, E.W. (2019). Optical estimation of absolute
959 membrane potential using fluorescence lifetime imaging. *Elife* *8*. 10.7554/ELIFE.44522.

960 45. Zheng, K., Jensen, T.P., and Rusakov, D.A. (2018). Monitoring intracellular nanomolar calcium
961 using fluorescence lifetime imaging. *Nature Protocols* *2018* *13*: *13*, 581–597.
962 10.1038/nprot.2017.154.

963 46. Lakowicz, J.R., Szmacinski, H., and Johnson, M.L. (1992). Calcium Imaging Using Fluorescence
964 Lifetimes and Long-Wavelength Probes. *J Fluoresc* 2, 47. 10.1007/BF00866388.

965 47. Laviv, T., Scholl, B., Parra-Bueno, P., Foote, B., Zhang, C., Yan, L., Hayano, Y., Chu, J., and
966 Yasuda, R. (2019). In Vivo Imaging of the Coupling between Neuronal and CREB Activity in the
967 Mouse Brain. *Neuron*. 10.1016/j.neuron.2019.11.028.

968 48. Chen, Y., Granger, A.J., Tran, T., Saulnier, J.L., Kirkwood, A., and Sabatini, B.L. (2017).
969 Endogenous G_q-Coupled Neuromodulator Receptors Activate Protein Kinase A. *Neuron* 96.
970 10.1016/j.neuron.2017.10.023.

971 49. Chen, Y., Saulnier, J.L., Yellen, G., and Sabatini, B.L. (2014). A PKA activity sensor for
972 quantitative analysis of endogenous GPCR signaling via 2-photon FRET-FLIM imaging. *Front
973 Pharmacol* 5 APR. 10.3389/fphar.2014.00056.

974 50. Massengill, C.I., Bayless-Edwards, L., Ceballos, C.C., Cebul, E.R., Cahill, J., Bharadwaj, A.,
975 Wilson, E., Qin, M., Whorton, M.R., Baconguis, I., et al. (2022). Sensitive genetically encoded
976 sensors for population and subcellular imaging of cAMP in vivo. *Nat Methods* 19.
977 10.1038/s41592-022-01646-5.

978 51. Zheng, K., Bard, L., Reynolds, J.P., King, C., Jensen, T.P., Gourine, A. V., and Rusakov, D.A.
979 (2015). Time-Resolved Imaging Reveals Heterogeneous Landscapes of Nanomolar Ca²⁺ in
980 Neurons and Astroglia. *Neuron* 88. 10.1016/j.neuron.2015.09.043.

981 52. Brinks, D., Klein, A.J., and Cohen, A.E. (2015). Two-Photon Lifetime Imaging of Voltage
982 Indicating Proteins as a Probe of Absolute Membrane Voltage. *Biophys J* 109, 914.
983 10.1016/J.BPJ.2015.07.038.

984 53. van der Linden, F.H., Mahlandt, E.K., Arts, J.J.G., Beumer, J., Puschkhof, J., de Man, S.M.A.,
985 Chertkova, A.O., Ponsioen, B., Clevers, H., van Buul, J.D., et al. (2021). A turquoise fluorescence
986 lifetime-based biosensor for quantitative imaging of intracellular calcium. *Nature Communications*
987 2021 12:1 12. 1–13. 10.1038/s41467-021-27249-w.

988 54. Mongeon, R., Venkatachalam, V., and Yellen, G. (2016). Cytosolic NADH-NAD(+) Redox
989 Visualized in Brain Slices by Two-Photon Fluorescence Lifetime Biosensor Imaging. *Antioxid
990 Redox Signal* 25, 553–563. 10.1089/ARS.2015.6593.

991 55. Jing, M., Zhang, P., Wang, G., Feng, J., Mesik, L., Zeng, J., Jiang, H., Wang, S., Looby, J.C.,
992 Guagliardo, N.A., et al. (2018). A genetically encoded fluorescent acetylcholine indicator for in
993 vitro and in vivo studies. *Nat Biotechnol*. 10.1038/nbt.4184.

994 56. Jing, M., Li, Y., Zeng, J., Huang, P., Skirzewski, M., Kljakic, O., Peng, W., Qian, T., Tan, K.,
995 Zou, J., et al. (2020). An optimized acetylcholine sensor for monitoring in vivo cholinergic
996 activity. *Nat Methods* 17. 10.1038/s41592-020-0953-2.

997 57. Wan, J., Peng, W., Li, X., Qian, T., Song, K., Zeng, J., Deng, F., Hao, S., Feng, J., Zhang, P., et al.
998 (2021). A genetically encoded sensor for measuring serotonin dynamics. *Nat Neurosci* 24, 746–
999 752. 10.1038/S41593-021-00823-7.

1000 58. Borden, P.M., Zhang, P., Shivange, A. V, Marvin, J.S., Cichon, J., Dan, C., Podgorski, K.,
1001 Figueiredo, A., Novak, O., Tanimoto, M., et al. (2020). A Fast Genetically Encoded Fluorescent

1002 1 Sensor for Faithful *in vivo* Acetylcholine Detection in Mice, Fish, Worms and Flies. SSRN
1003 2 Electronic Journal. 10.2139/SSRN.3554080.

1004 3 59. Sun, F., Zhou, J., Dai, B., Qian, T., Zeng, J., Li, X., Zhuo, Y., Zhang, Y., Wang, Y., Qian, C., et al.
1005 4 (2020). Next-generation GRAB sensors for monitoring dopaminergic activity *in vivo*. *Nat Methods* 17, 1156. 10.1038/S41592-020-00981-9.

1006 5 60. Feng, J., Zhang, C., Lischinsky, J.E., Jing, M., Zhou, J., Wang, H., Zhang, Y., Dong, A., Wu, Z.,
1007 6 Wu, H., et al. (2019). A Genetically Encoded Fluorescent Sensor for Rapid and Specific *In Vivo*
1008 7 Detection of Norepinephrine. *Neuron* 102, 745-761.e8. 10.1016/J.NEURON.2019.02.037.

1009 8 61. Howe, M., Ridouh, I., Mascaro, A.L.A., Larios, A., Azcorra, M., and Dombeck, D.A. (2019).
1010 9 Coordination of rapid cholinergic and dopaminergic signaling in striatum during spontaneous
1011 10 movement. *eLife* 8. 10.7554/eLife.44903.

1012 11 62. Buzsaki, G., Bickford, R.G., Ponomareff, G., Thal, L.J., Mandel, R., and Gage, F.H. (1988).
1013 12 Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. *Journal of*
1014 13 *Neuroscience* 8. 10.1523/jneurosci.08-11-04007.1988.

1015 14 63. Dudar, J.D., Whishaw, I.Q., and Szerb, J.C. (1979). Release of acetylcholine from the
1016 15 hippocampus of freely moving rats during sensory stimulation and running. *Neuropharmacology*
1017 16 18. 10.1016/0028-3908(79)90034-0.

1018 17 64. Xu, M., Chung, S., Zhang, S., Zhong, P., Ma, C., Chang, W.C., Weissbourd, B., Sakai, N., Luo,
1019 18 L., Nishino, S., et al. (2015). Basal forebrain circuit for sleep-wake control. *Nat Neurosci* 18.
1020 19 10.1038/nn.4143.

1021 20 65. Vazquez, J., and Baghdoyan, H.A. (2001). Basal forebrain acetylcholine release during REM sleep
1022 21 is significantly greater than during waking. *Am J Physiol Regul Integr Comp Physiol* 280.
1023 22 10.1152/ajpregu.2001.280.2.r598.

1024 23 66. Lee, M.G., Hassani, O.K., Alonso, A., and Jones, B.E. (2005). Cholinergic basal forebrain neurons
1025 24 burst with theta during waking and paradoxical sleep. *Journal of Neuroscience* 25.
1026 25 10.1523/JNEUROSCI.0178-05.2005.

1027 26 67. Marroso, F., Portas, C., Mascia, M.S., Casu, M.A., Fà, M., Giagheddu, M., Imperato, A., and
1028 27 Gessa, G.L. (1995). Microdialysis measurement of cortical and hippocampal acetylcholine release
1029 28 during sleep-wake cycle in freely moving cats. *Brain Res* 671. 10.1016/0006-8993(94)01399-3.

1030 29 68. Szymusiak, R., and McGinty, D. (1986). Sleep-related neuronal discharge in the basal forebrain of
1031 30 cats. *Brain Res* 370. 10.1016/0006-8993(86)91107-8.

1032 31 69. Détrári, L., Juhász, G., and Kukorelli, T. (1984). Firing properties of cat basal forebrain neurones
1033 32 during sleep-wakefulness cycle. *Electroencephalogr Clin Neurophysiol* 58. 10.1016/0013-
1034 33 4694(84)90062-2.

1035 34 70. Picciotto, M.R., Higley, M.J., and Mineur, Y.S. (2012). Acetylcholine as a Neuromodulator:
1036 35 Cholinergic Signaling Shapes Nervous System Function and Behavior. *Neuron* 76.
1037 36 10.1016/j.neuron.2012.08.036.

1038 37 71. Hasselmo, M.E. (2006). The role of acetylcholine in learning and memory. *Curr Opin Neurobiol*
1039 38 16. 10.1016/j.conb.2006.09.002.

1040 39

1041 72. Klinkenberg, I., Sambeth, A., and Blokland, A. (2011). Acetylcholine and attention. *Behavioural*
1042 *Brain Research* 221. 10.1016/j.bbr.2010.11.033.

1043 73. Power, A.E. (2004). Slow-wave sleep, acetylcholine, and memory consolidation. *Proc Natl Acad*
1044 *Sci U S A* 101. 10.1073/pnas.0400237101.

1045 74. Xia, J., Yang, H., Mu, M., Micovic, N., Poskanzer, K.E., Monaghan, J.R., and Clark, H.A. (2021).
1046 Imaging in vivo acetylcholine release in the peripheral nervous system with a fluorescent
1047 nanosensor. *Proc Natl Acad Sci U S A* 118. 10.1073/pnas.2023807118.

1048 75. Scimemi, A., and Beato, M. (2009). Determining the neurotransmitter concentration profile at
1049 active synapses. *Mol Neurobiol* 40. 10.1007/s12035-009-8087-7.

1050 76. Nirogi, R., Mudigonda, K., Kandikere, V., and Ponnamaneni, R. (2010). Quantification of
1051 acetylcholine, an essential neurotransmitter, in brain microdialysis samples by liquid
1052 chromatography mass spectrometry. *Biomedical Chromatography* 24. 10.1002/bmc.1347.

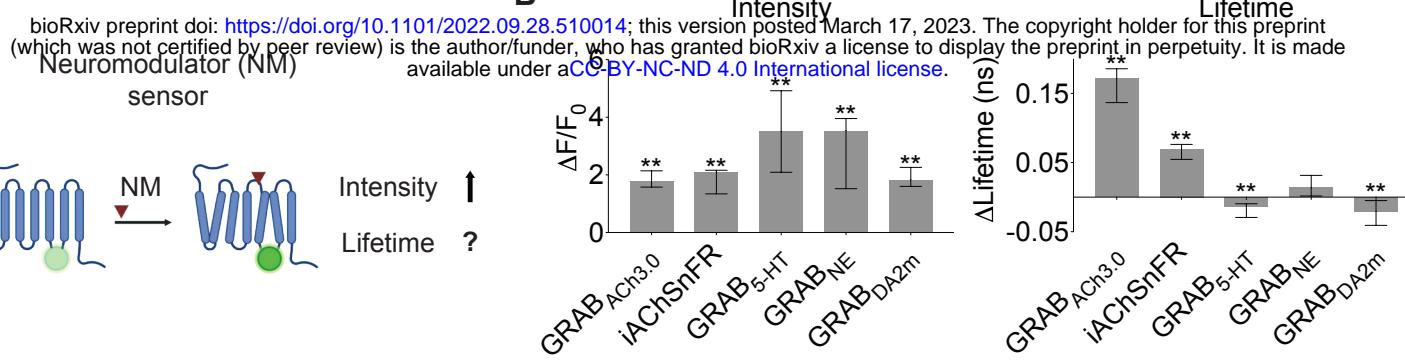
1053 77. Parikh, V., Kozak, R., Martinez, V., and Sarter, M. (2007). Prefrontal Acetylcholine Release
1054 Controls Cue Detection on Multiple Timescales. *Neuron* 56, 141–154.
1055 10.1016/j.neuron.2007.08.025.

1056 78. Lee, S.J., Chen, Y., Lodder, B., and Sabatini, B.L. (2019). Monitoring Behaviorally Induced
1057 Biochemical Changes Using Fluorescence Lifetime Photometry. *Front Neurosci* 13, 766.
1058 10.3389/fnins.2019.00766.

1059 79. Gorski, J.A., Talley, T., Qiu, M., Puelles, L., Rubenstein, J.L.R., and Jones, K.R. (2002). Cortical
1060 excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing
1061 lineage. *Journal of Neuroscience* 22. 10.1523/jneurosci.22-15-06309.2002.

1062 80. Ting, J.T., Lee, B.R., Chong, P., Soler-Llavina, G., Cobbs, C., Koch, C., Zeng, H., and Lein, E.
1063 (2018). Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective
1064 Recovery Method. *J Vis Exp*, 53825. 10.3791/53825.

1065 81. Pologruto, T.A., Sabatini, B.L., and Svoboda, K. (2003). ScanImage: flexible software for
1066 operating laser scanning microscopes. *Biomed Eng Online* 2, 13. 10.1186/1475-925X-2-13.


1067 82. Oishi, Y., Takata, Y., Taguchi, Y., Kohtoh, S., Urade, Y., and Lazarus, M. (2016). Polygraphic
1068 recording procedure for measuring sleep in mice. *Journal of Visualized Experiments* 2016, 53678.
1069 10.3791/53678.

1070

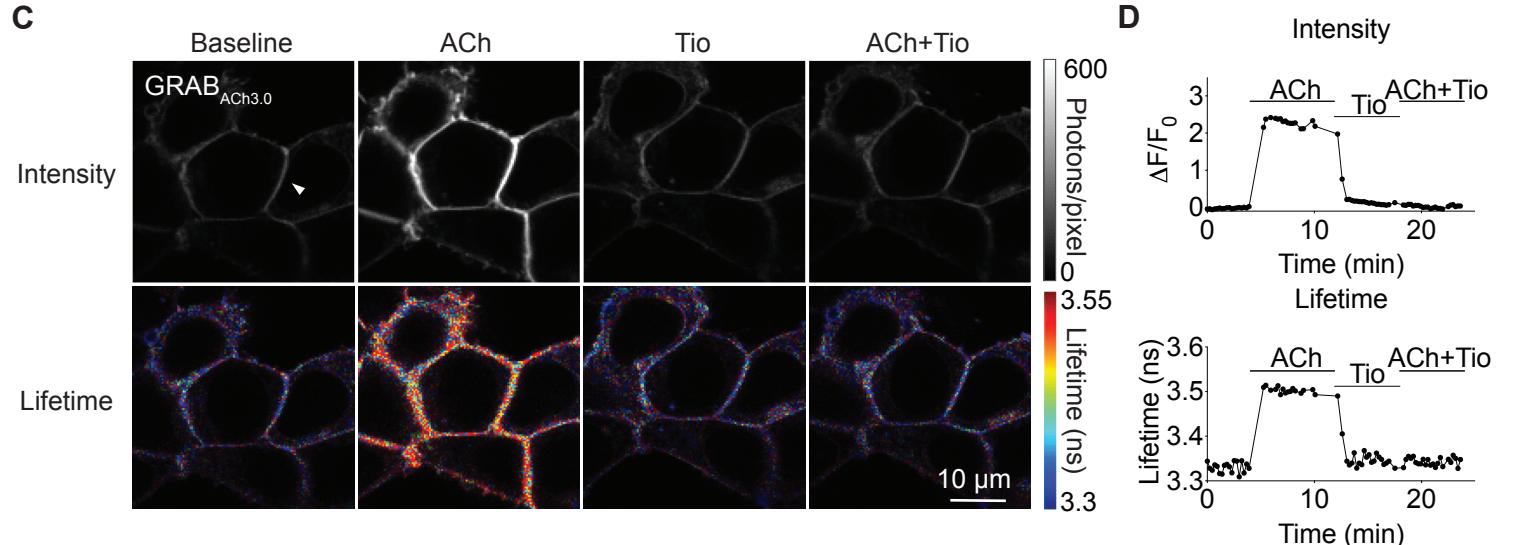

1071

Figure 1

A

C

E

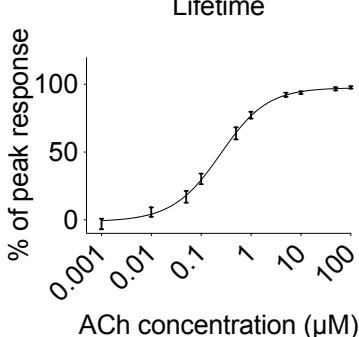
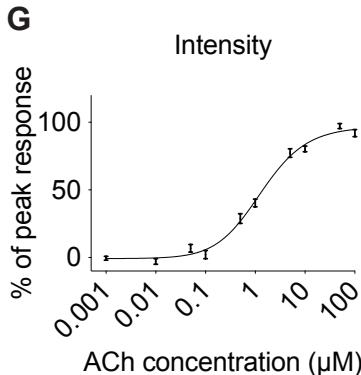
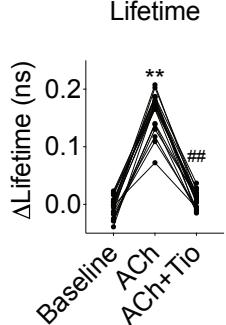
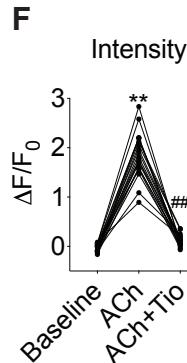
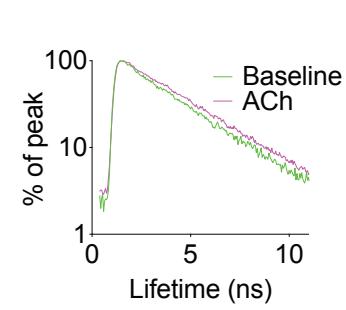
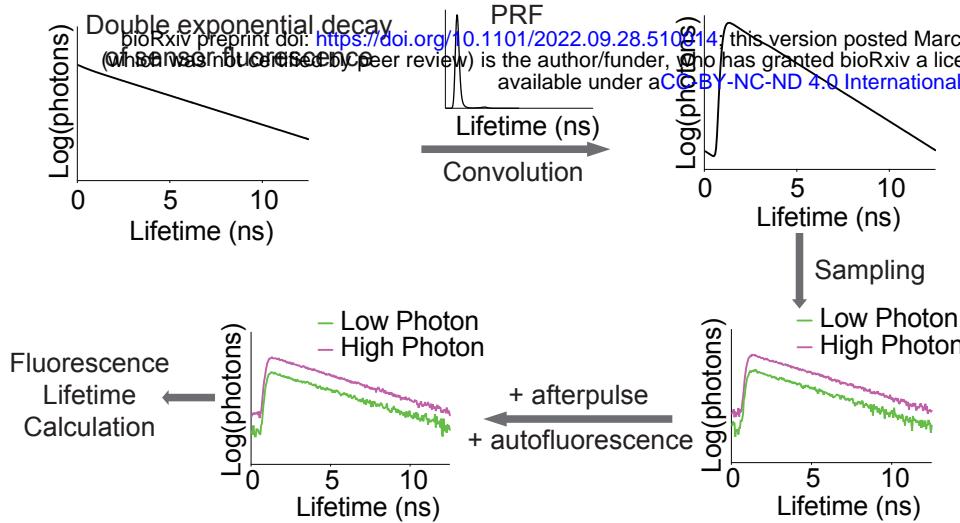







Figure 2

A

B

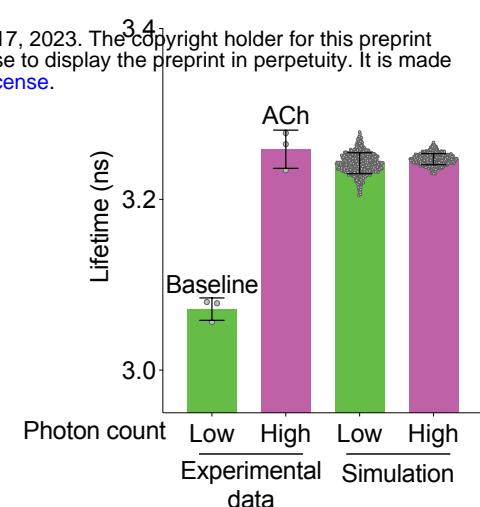


Figure 3

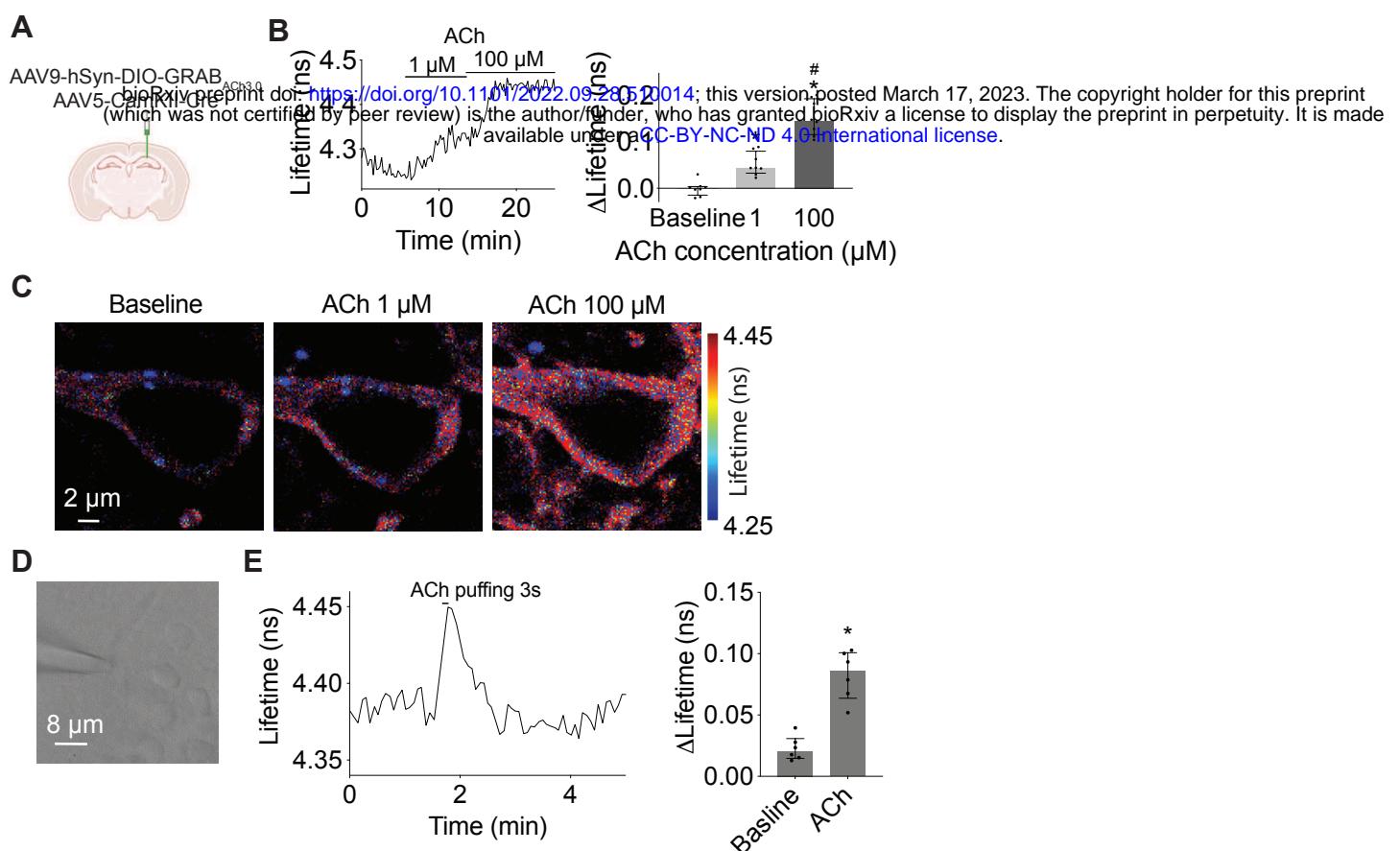
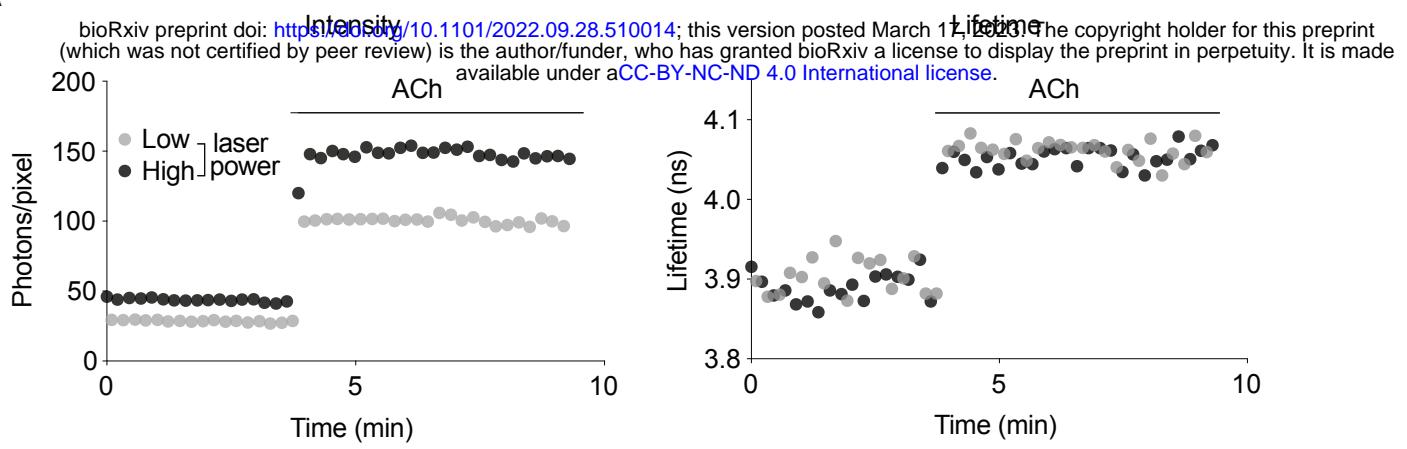
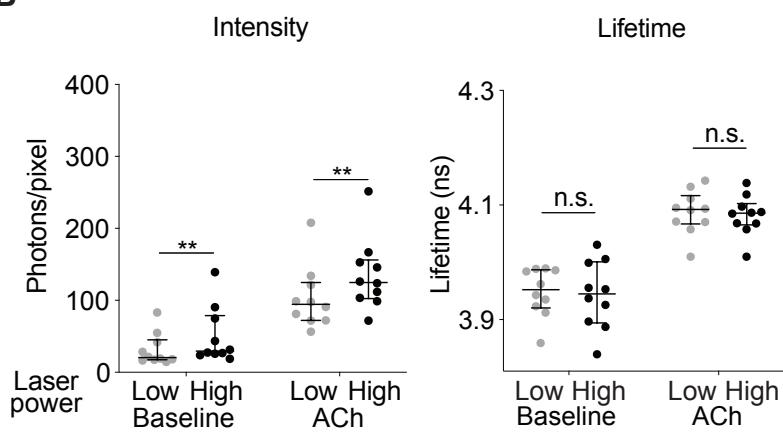




Figure 4

A

B

C

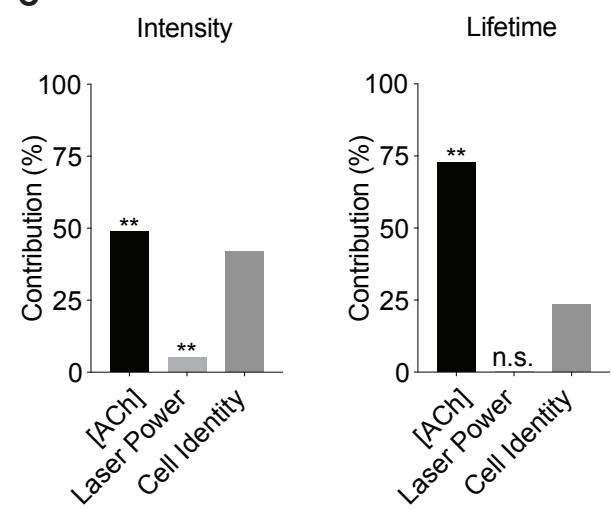
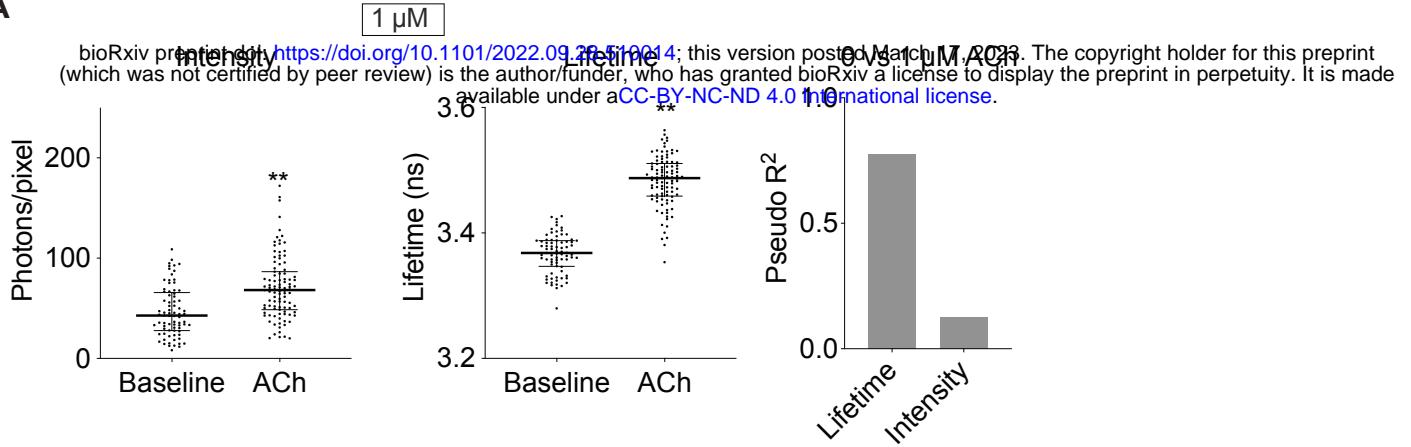
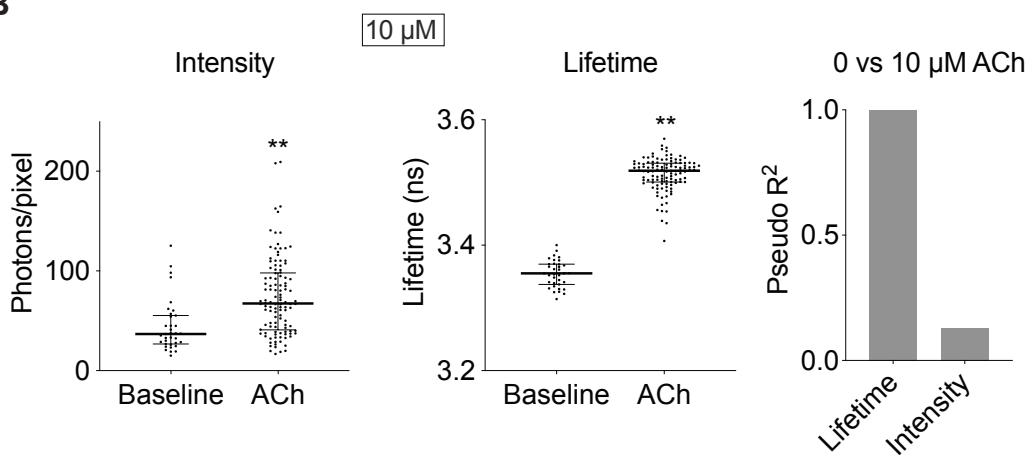
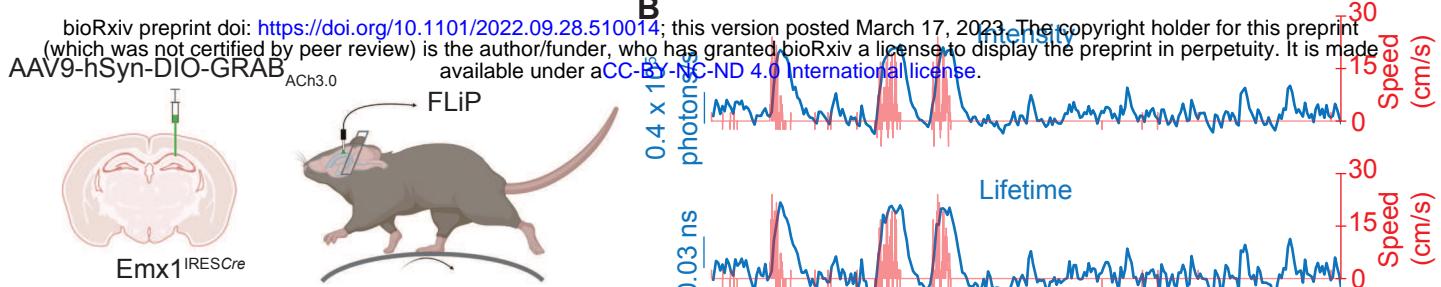
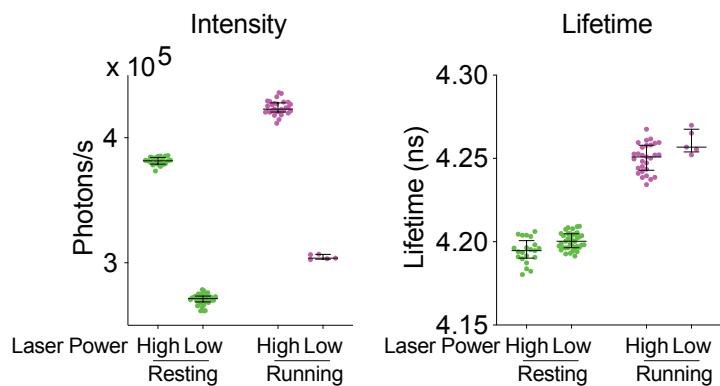



Figure 5

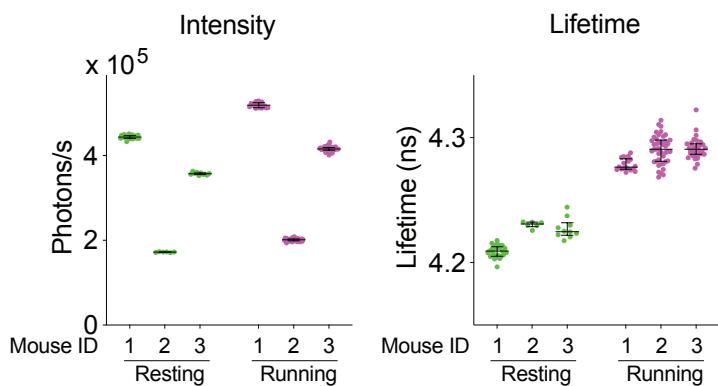
A

B

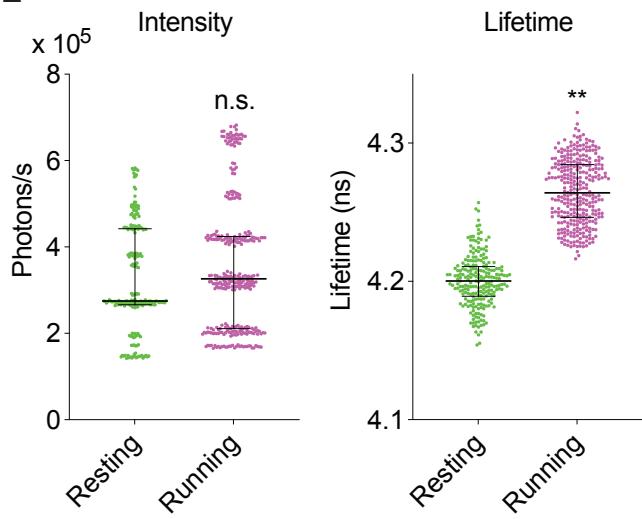




Figure 6

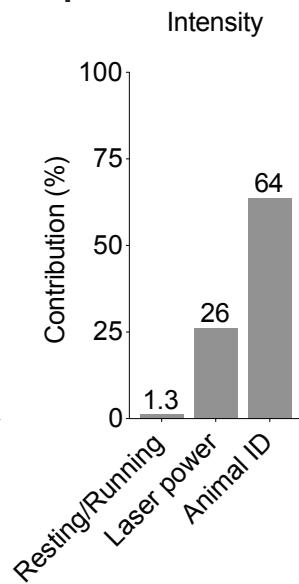
A


C

One mouse across laser powers



D


One laser power across mice

E

F

G

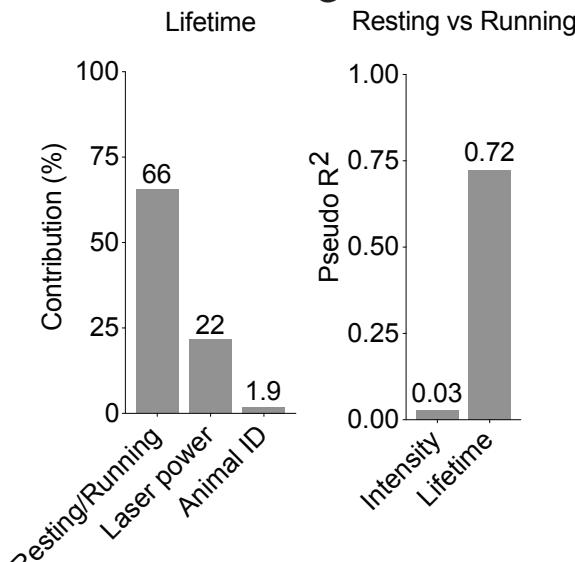


Figure 7

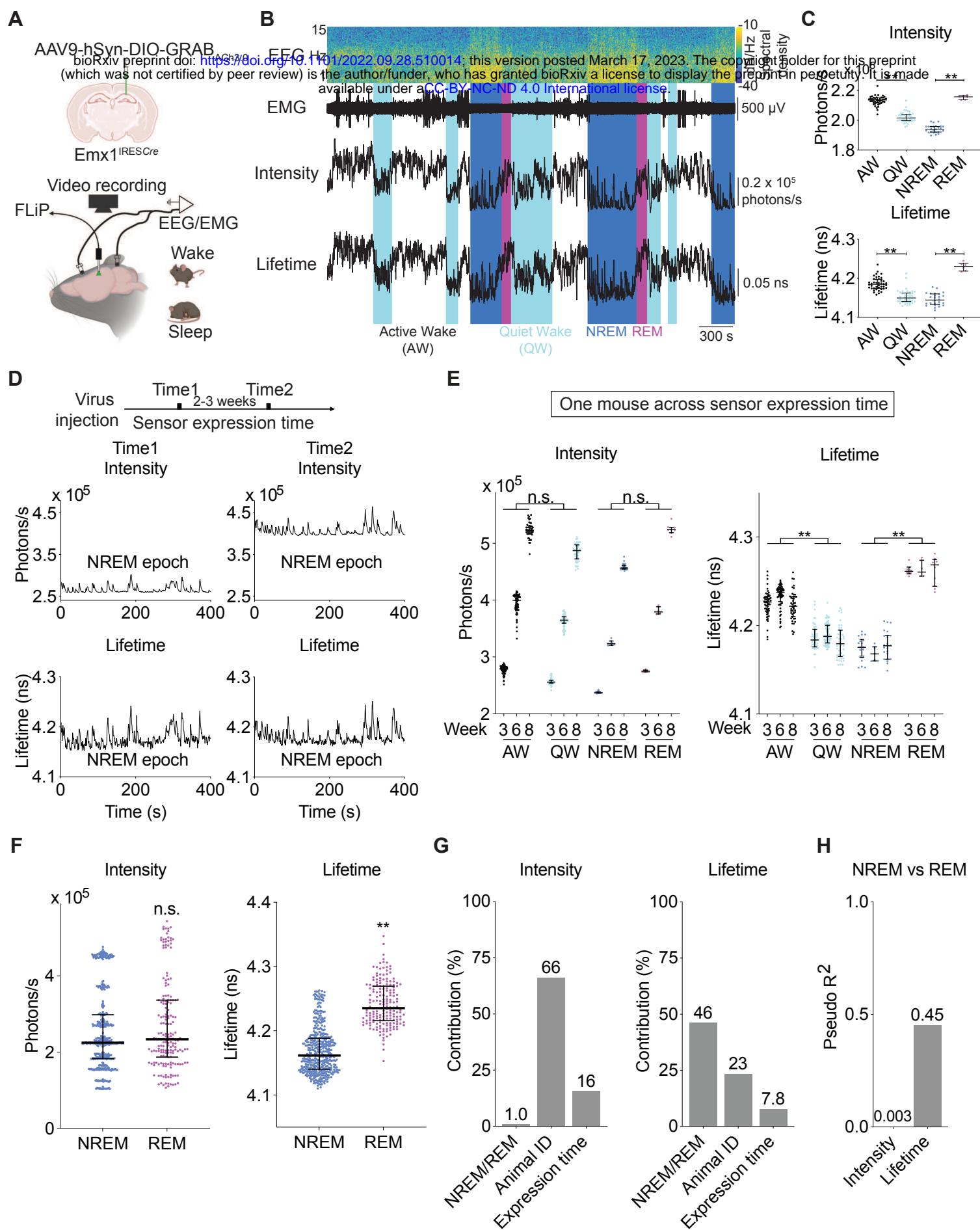
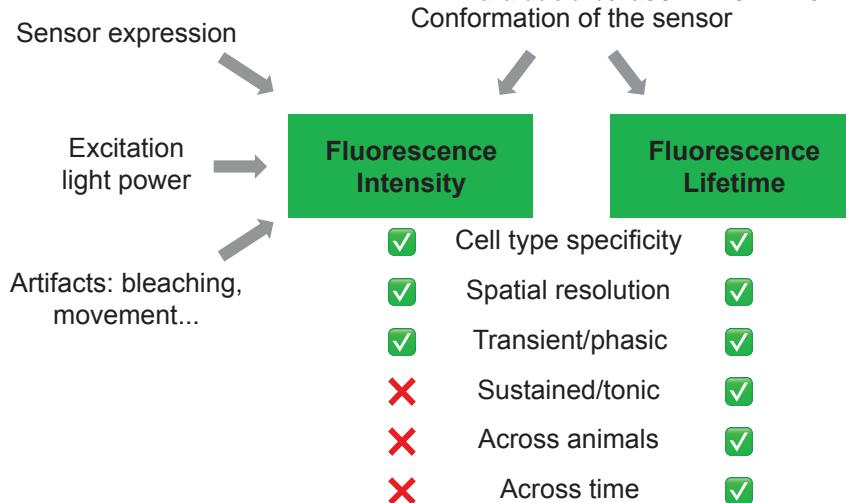



Figure 8

Neuromodulator

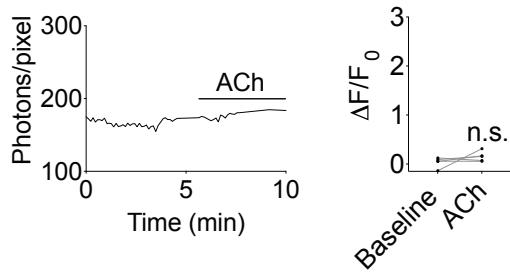

bioRxiv preprint doi: <https://doi.org/10.1101/2022.09.28.510014>; this version posted March 17, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure S1

A

bioRxiv preprint doi: <https://doi.org/10.1101/2022.09.28.510014>; this version posted March 17, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

B

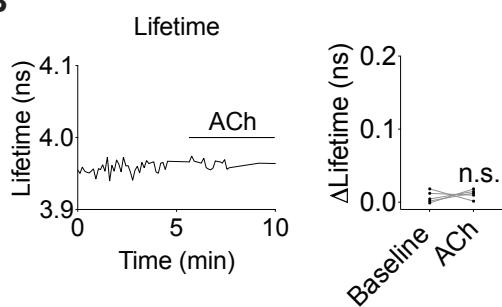


Figure S2

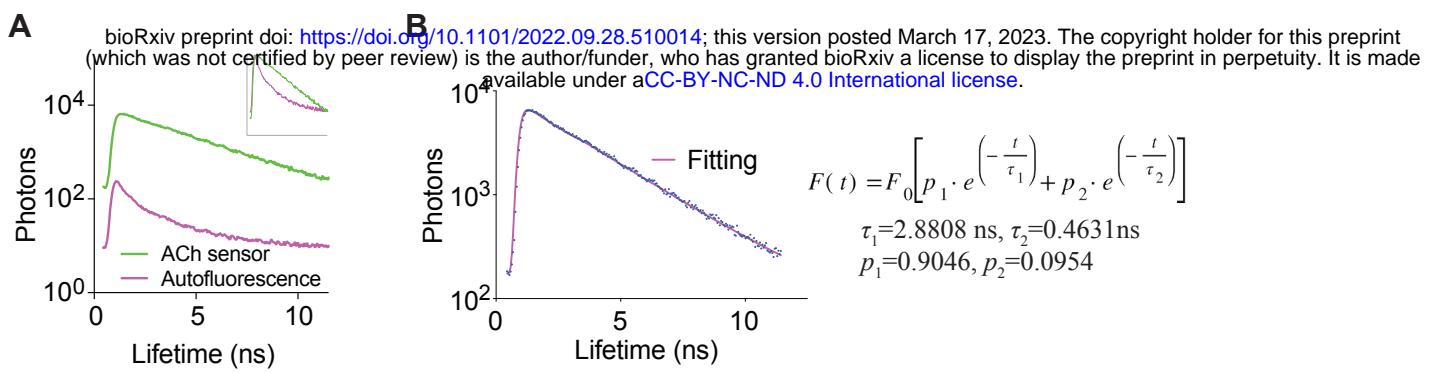
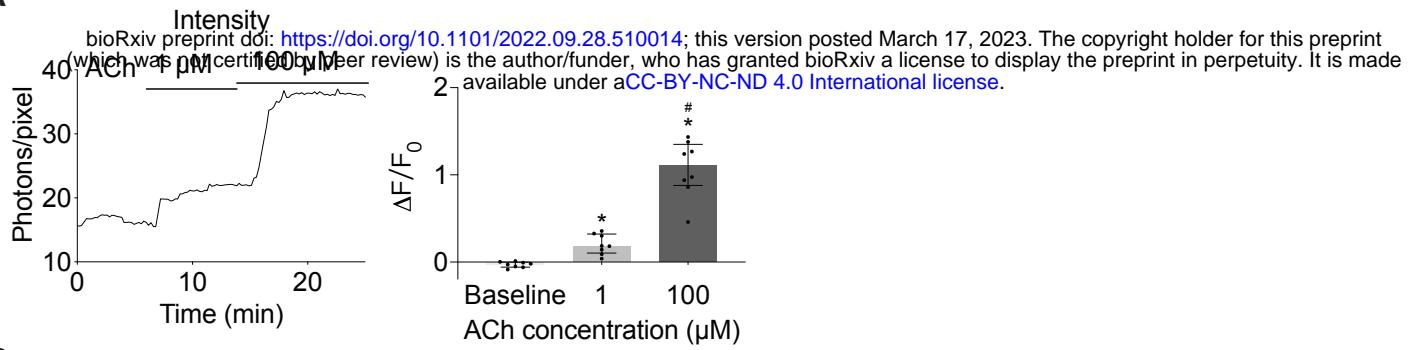
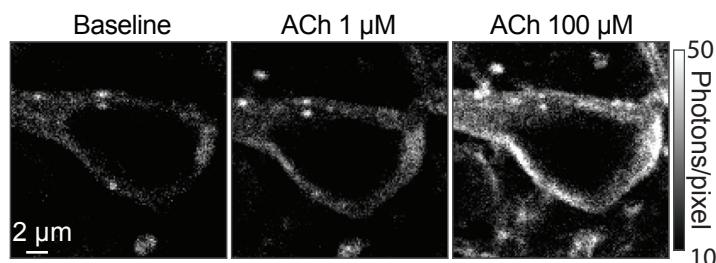




Figure S3

A

B

C

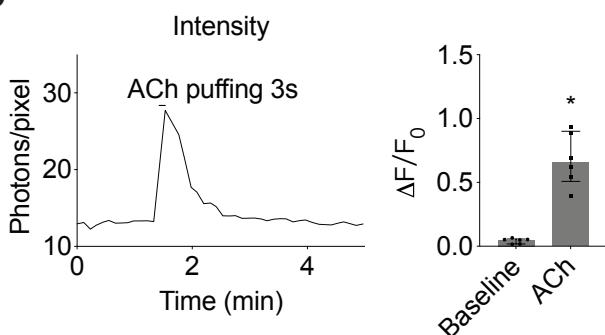
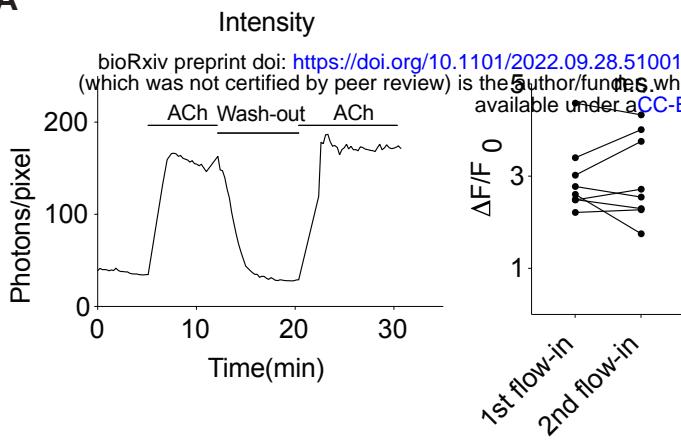



Figure S4

A

B

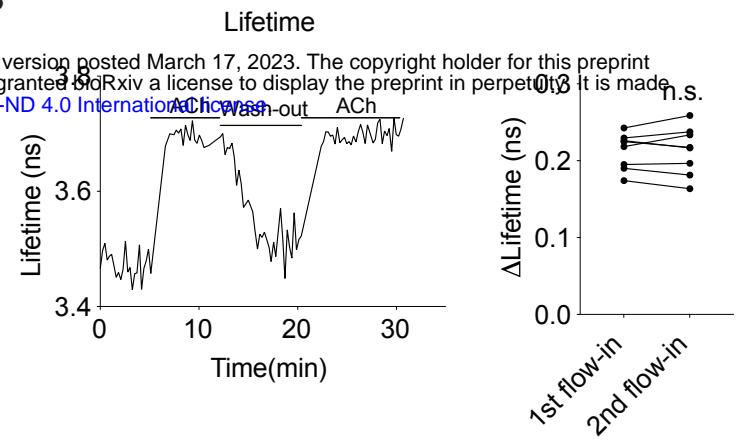


Figure S5

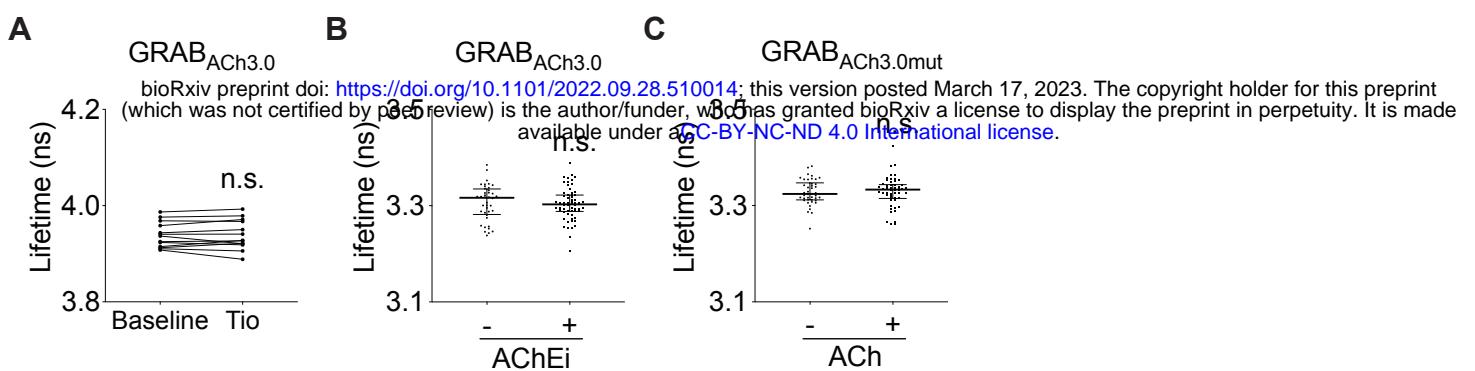


Figure S6

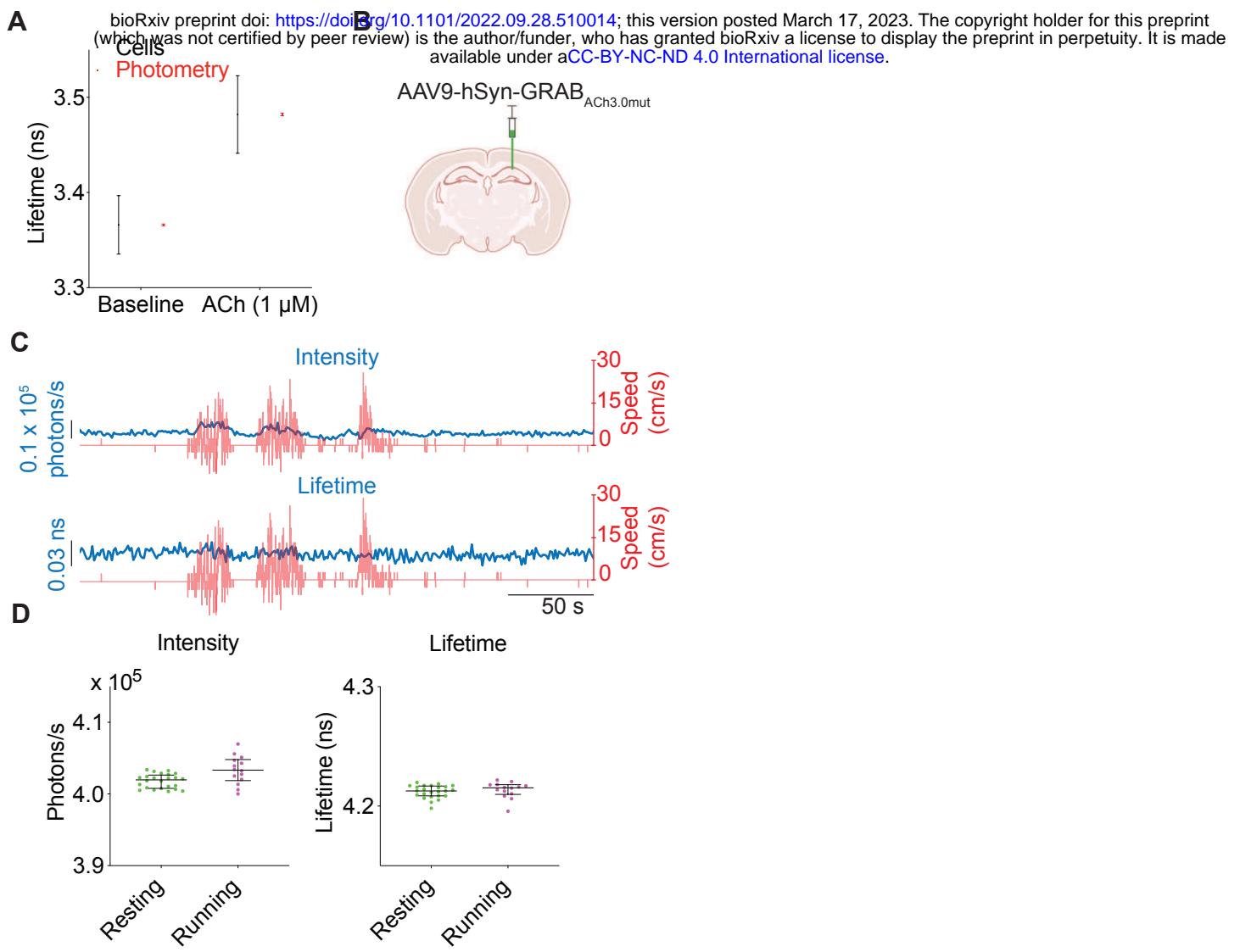
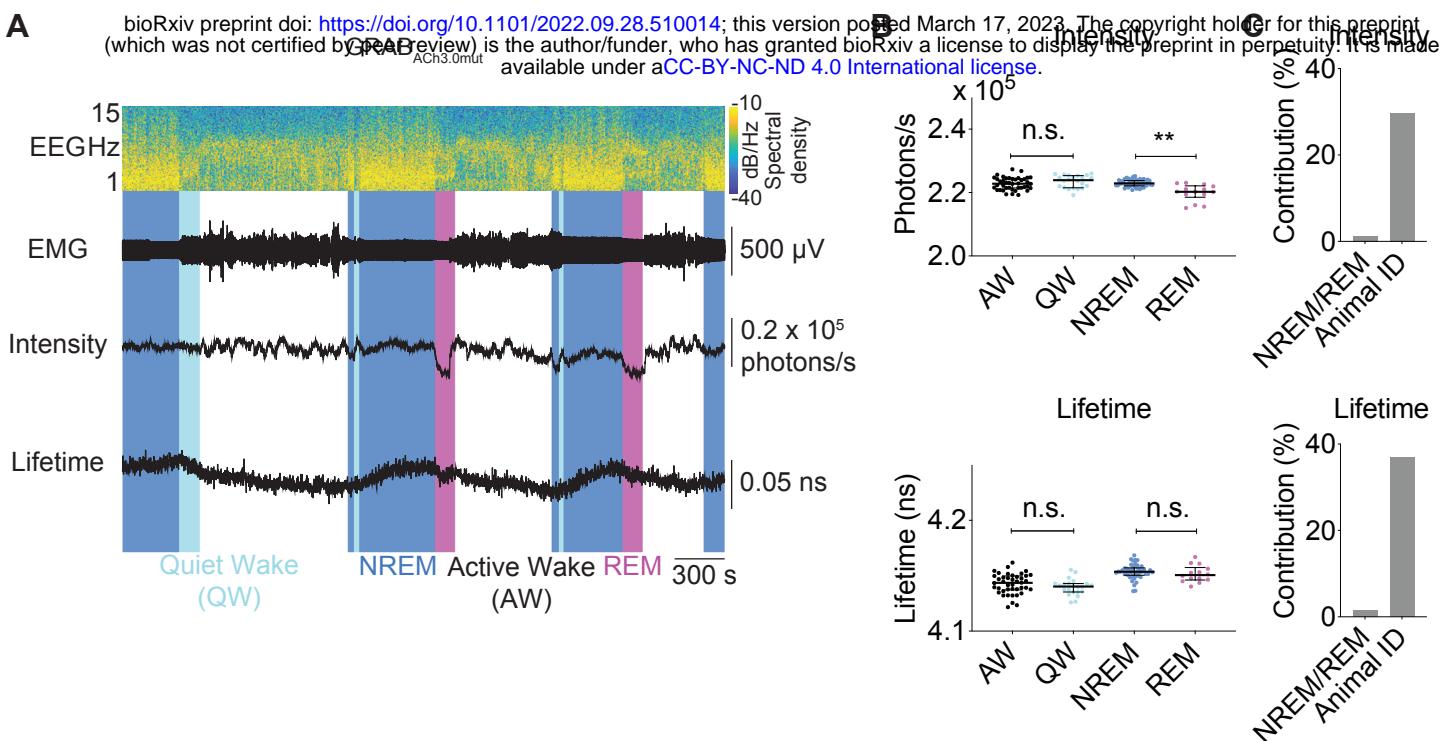



Figure S7

A

