

Achieving quantitative and accurate measurement of the human gut microbiome

Dylan Maghini^{1*}, Mai Dvorak^{2*}, Alex Dahlen³, Morgan Roos⁴, Scott Kuersten⁴, Ami S. Bhatt^{1,5,^}

¹ Department of Genetics, Stanford University, Stanford, CA, USA

² Department of Biology, Stanford University, Stanford, CA, USA

³ Quantitative Science Unit, Stanford University, Stanford, CA, USA

⁴ Illumina, Inc., Madison, Wisconsin, USA

⁵ Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA

* These authors contributed equally

[^] Corresponding author: 269 Campus Drive, Stanford, CA 94305, USA; asbhatt@stanford.edu

1 Abstract

2 Robust benchmarking studies have highlighted how measured relative microbial abundances can
3 vary dramatically depending on how DNA is extracted, made into libraries, sequenced, and
4 analyzed. To build upon prior research, we investigated how sample preservation and storage
5 choices impact observed absolute microbial load and relative metagenomic and metatranscriptomic
6 measurements. Specifically, we studied how two common stool preservatives (OMNIgene GUT
7 OMR200 and Zymo DNA/RNA PowerShield) perform across a range of storage temperatures (-
8 80°C, 23°C and 40°C). For immediately frozen samples with no preservatives, we observed a
9 mean colonic load of ~100 trillion (1.2×10^{14}) prokaryotes across ten donors, revising the gut
10 prokaryote:human cell ratio of ~1:1 to ~4:1. We found that both preservatives introduce
11 significant bias in the metagenomics results; and, while OMNIgene results were robust to
12 storage temperature, samples stored in Zymo preservative had further bias with increasing
13 storage temperatures. In terms of measured composition, we observed a ~1.9x and ~1.5x
14 difference in the metagenomic Bacteroidetes:Firmicutes ratio in OMNIgene and Zymo
15 preservatives, respectively. Absolute abundance measurements revealed that these differences
16 are driven by higher measured Bacteroidetes in OMNIgene-preserved samples and lower
17 measured Firmicutes in Zymo-preserved samples. For metatranscriptomic measurements, we
18 also found that both preservatives introduced bias, but that RNA likely degraded in samples
19 stored in OMNIgene preservative at high temperature. In summary, we recommend the
20 OMNIgene preservative for studies that include significant field components. For
21 metatranscriptomics studies, we recommend kits rated for RNA preservation such as the Zymo
22 kit; however, existing samples collected in non-RNA rated kits might also be viable for limited
23 metatranscriptomic studies. This study demonstrates how sample collection and storage
24 choices can affect measured microbiome research outcomes, makes additional concrete
25 suggestions for sample handling best practices, and demonstrates the importance of including
26 absolute abundance measurements in microbiome studies.

27 Introduction

28 Microbiome research relies on sequencing DNA or RNA to determine the relative abundances of
29 various organisms, genes, or RNAs within a sample. It is known that different sample
30 preservatives, storage conditions, DNA extraction methods, sequencing library preparation
31 methods and bioinformatic analysis can impact measured relative abundances of microbes and
32 microbial genes within a sample. However, the majority of studies, such as the robust and
33 comprehensive Microbiome Quality Control project¹, have only studied how DNA extraction,
34 library preparation, sequencing and bioinformatic analysis choices impact results and overlook
35 the impact of preservative choices and storage conditions. Relatively few, more limited studies,
36 which are summarized in Supplementary Table 1, have reported how choice of sample
37 preservative and storage temperature conditions can affect results. The results from these
38 studies, while interesting, are at times conflicting, which makes it difficult to systematically
39 determine the impact of preservatives and storage on measured microbial composition of a
40 sample. Here, we evaluate the impacts of sample preservatives and handling on observed
41 absolute microbial load and relative metagenomic and metatranscriptomic measurements.

42

43 User-friendly collection kits have gained popularity but produce similarly variable measurements
44 as research grade preservatives. With the advent of home-collection kits such as OMNIgene GUT
45 OMR200 (OMNIgene) and Zymo Research DNA/RNA Shield (Zymo) that are marketed for long-
46 term room temperature storage and user-friendly collection, sample collection and preservation
47 has become more reliable. Despite these advances, there have been discordant reports about
48 the efficacies of these preservatives. A handful of studies have found that the OMNIgene and
49 Zymo preservatives typically outperform other preservatives in recapitulating microbiome
50 composition of immediately frozen samples²⁻⁷, which represent the current field standard for stool
51 sample collection. By contrast, other studies have identified that these kits lower recovered

52 taxonomic diversity or change abundances of various taxa⁸⁻¹⁰. While these kits, especially the
53 OMNIgene kit, are extensively used, these preservatives have not been extensively validated at
54 temperatures beyond room temperature, and it remains unknown whether taxonomic variations
55 are due to microbial blooms during storage, biased taxonomic lysis, or biased depletion of nucleic
56 acids. These kits have also not been validated and compared for RNA stability over extended
57 time and temperature ranges that are typical for studies that involve sample collection at a site
58 remote to the primary research location. Given the prevalent use of these preservatives, clear and
59 robust studies are needed to understand how preservative use can bias microbiome analyses, in
60 measurement of both relative and absolute abundances.

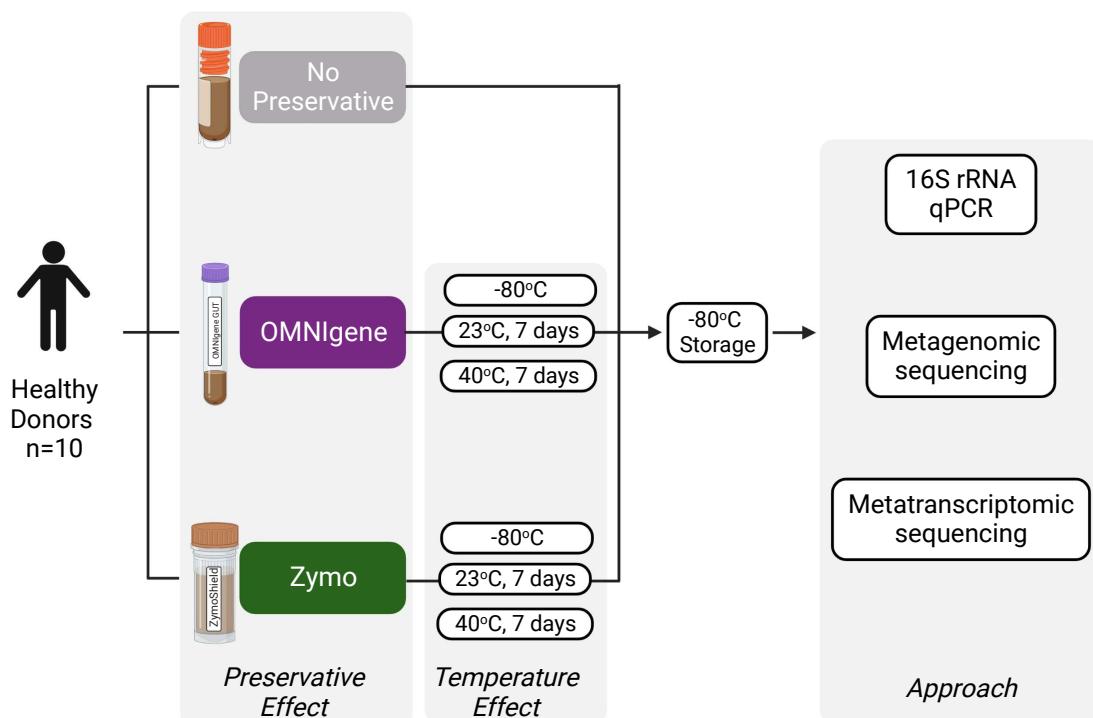
61

62 While most microbiome studies focus on relative abundance measurements, there is emerging
63 evidence that measurement of the total count of microbes in the gut, or “absolute abundance”,
64 provides a richer source of information. The use of absolute abundance measurements have been
65 demonstrated to correct false conclusions drawn from relative data. For example, one study
66 revealed that certain microbial taxa that appear relatively depleted in one soil environment are
67 actually more abundant in absolute count due to a higher overall microbial abundance¹¹. Absolute
68 abundance measurements have also revealed key biological insights. For example, one study
69 showed a ten-fold variation in total load across healthy individuals and a significantly lower
70 microbial load in individuals with Crohn’s disease, while identifying multiple conclusions drawn
71 from relative microbial profiling that were not maintained at the absolute level¹². More recently,
72 investigators using spike-ins of exogenous microbial cells to enable absolute quantification of
73 microbes identified direct, exploitative interactions between gut bacteria and fungi in a preterm
74 infant cohort during community assembly¹³. Methods such as microscopy, 16S rRNA FISH, spike-
75 ins, and 16S rRNA qPCR can be used to quantify absolute levels of prokaryotes in the gut^{14,15};
76 however, none are routinely used. This is unfortunate, as absolute quantification of microbes can
77 prevent drawing artifactual correlations of microbes to one another and to biological outcomes,

78 and can greatly inform the conclusions that are drawn about the effects of various components of
79 the microbiome on each other and the human host. Incorporation of absolute quantitation relies
80 on accurate and reliable measurement, however, little is known about the effect of preservative
81 choice and storage conditions on the sample and resulting absolute measurements. This is
82 particularly relevant as researchers are increasingly studying the gut microbiome in remote
83 settings where cold chain for sample preservation cannot be easily maintained and thus using
84 preservatives is necessary. Understanding the 'real life' consequences of preservative choice and
85 transport temperatures on the measured microbial compositions of these samples is thus of
86 critical importance.

87

88 Ideally, microbiome measurements should reflect the true state of the composition, abundance,
89 and function of the gut microbiota. Unfortunately, it is currently unknown how sample collection
90 methodology affects absolute abundance measurements. Even relative metagenomic and
91 metatranscriptomic measurements have not been robustly evaluated at scale in certain common
92 shipping and storage conditions. In an attempt to better fulfill this objective, we investigated the
93 impact of several 'real world' preservation conditions on microbial measurements of stool
94 samples. We evaluate storage conditions across ten different donor samples by quantifying the
95 variation in microbial relative abundances at the genomic and transcriptional levels, and absolute
96 prokaryotic abundances at the genomic level in OMNIgene and Zymo collection kits. We find an
97 average total colonic load of 1.2×10^{14} bacteria (95% CI 5.1×10^{13} - 2.8×10^{14}), which is
98 approximately 3.2x higher than a previous estimate. By exposing samples to a range of storage
99 conditions, we find that the use of either preservative leads to an absolute metagenomic and
100 relative metatranscriptomic enrichment of Bacteroidetes and a depletion of Firmicutes, and we
101 find that the OMNIgene preservative is most effective at stabilizing metagenomic sample
102 composition when exposed to higher temperatures. Altogether, we expect that these sample


103 preservation biases may lead to confounded microbial community measurements, and make
104 concrete recommendations for specific best practices for future study design.

105

106 **Results**

107 **Sample Collection and Study Design**

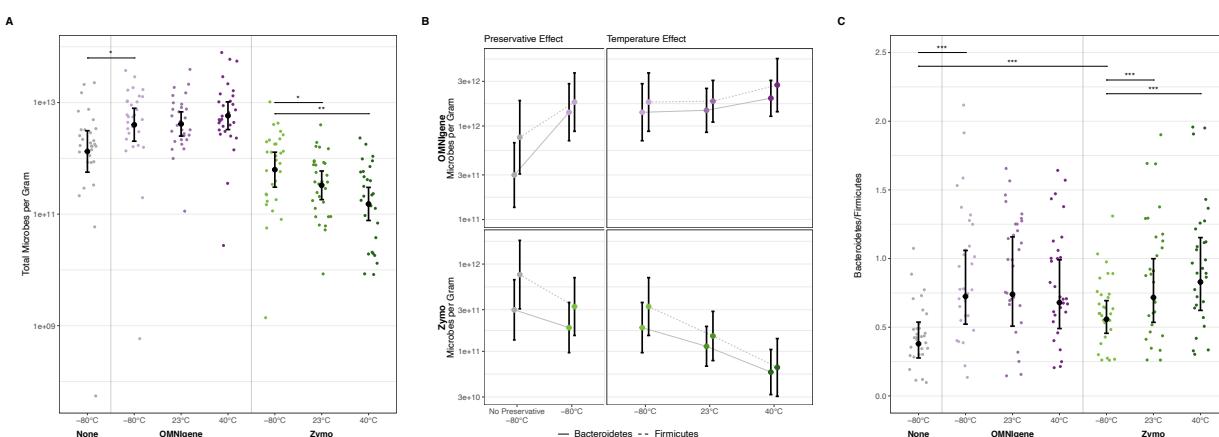
108 Ten healthy adult donors from California, USA provided a single stool sample (Figure 1) as a part
109 of a Stanford Institutional Review Board-approved research study. To evaluate the impact of
110 storage temperature and preservative choice on measured stool microbial load and microbial
111 composition, each sample was aliquoted either with or without a preservative buffer (OMNIgene
112 GUT OMR200 collection tubes (OMNIgene) or Zymo Research DNA/RNA Shield Fecal Collection
113 buffer (Zymo)). Samples without preservative buffer were immediately frozen at -80°C; samples
114 with a preservative were either directly frozen at -80°C, or kept at either 23°C or 40°C for 7 days

Figure 1: Overview of study workflow

Single stool samples were collected from ten donors. Each sample was stored in no preservative, DNA Genotek OMNIgene GUT OMR-200 preservative, or Zymo DNA/RNA Shield preservative. No preservative samples were stored immediately at -80°C. Samples in preservatives were stored at -80°C or stored for one week at 23°C or 40°C prior to storage at -80°C. All conditions were replicated in triplicate. Samples were then DNA extracted and RNA extracted, and measured with qPCR of the 16S ribosomal rRNA gene, metagenomic short-read shotgun sequencing, and metatranscriptomic short-read shotgun sequencing.

115 prior to storage at -80°C. Each of these seven experimental conditions was replicated in triplicate,
116 for a total of 21 samples per participant (Figure 1).

117


118 **DNA/RNA extraction, quality filtering and meta-'omic classification**

119 DNA was extracted from 210 samples (Supplementary Figure 1) followed by 150 base pair (bp)
120 paired-end sequencing, generating a median of 40.6 million reads per donor sample (range 11.3
121 - 231.5 million reads) (Supplementary Data 1-3) excluding one sample from Donor 3 stored in
122 Zymo preservative at 40°C that failed library preparation. Median metagenomic read depth was
123 27.4 million reads (range 7.4 - 167.2 million reads) per sample after quality control (see Methods).

124 RNA was also extracted from samples. While most samples yielded measurable RNA, we found
125 that samples stored at 40°C in OMNIgene preservative, which is not rated for RNA preservation,
126 did not reliably yield measurable RNA. Ribosomal RNAs were depleted from all samples. We
127 performed 150 bp paired-end RNA sequencing on all samples that yielded RNA and generated a
128 median of 62.1 million reads per donor sample (range 21.7 - 112.5 million reads) (Supplementary
129 Data 4-6). Median metatranscriptomic read depth was 11.9 million reads (range 0.2 - 53.4 million
130 reads) after quality control (see Methods). Quality-filtered metagenomic and metatranscriptomic
131 reads were classified against a custom reference database encompassing microbial genomes in
132 RefSeq and Genbank that were listed as “scaffold” quality or higher (as described in the methods).
133 Classification results can be found in Supplementary Data 7 and Supplementary Data 8.

134

135 Absolute Abundance of Gut Prokaryotes

Figure 2: Absolute abundance quantification of microbiome samples

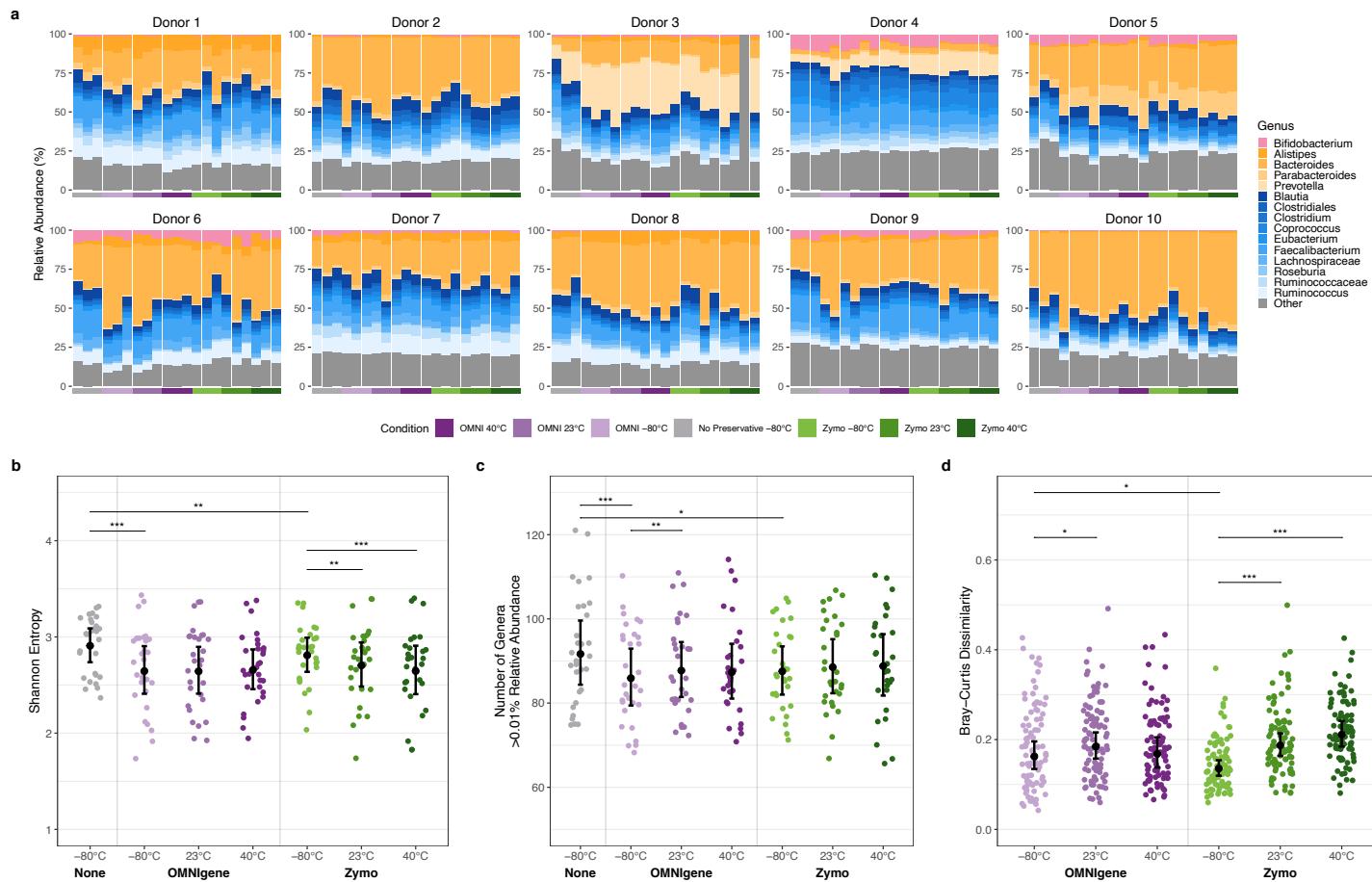
a) Total microbes per dry gram of stool for each sample as calculated with qPCR of the bacterial/archaeal 16S ribosomal rRNA gene. Scattered data points represent values from individual samples. b) Total count of Bacteroidetes and Firmicutes per dry gram of stool for each sample, in OMNIgene preserved samples (top) and Zymo preserved samples (bottom). Points represent estimated mean values from the GEE model. Significant differences are as follows: samples immediately frozen in OMNIgene preservative have an increase in Bacteroidetes relative to immediately frozen samples in no preservative ($p=0.002$). Samples stored at 23°C in Zymo have a decrease in Firmicutes ($p=0.014$) relative to samples stored in Zymo and immediately frozen. Samples stored at 40°C in Zymo have a decrease in Bacteroidetes ($p=0.017$) and Firmicutes ($p=0.001$) relative to samples stored in Zymo and immediately frozen. c) Ratio of Bacteroidetes count to Firmicutes count. Scattered data points represent values from individual samples. Center points indicate estimated mean values from the GEE model. Whiskers indicate 95% upper and lower confidence intervals from the GEE model. * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$.

136 We used qPCR targeting the bacterial/archaeal 16S ribosomal RNA gene to estimate the total
137 prokaryotic load of the gut across conditions. Samples that were immediately frozen without
138 preservative had an average of 1.33×10^{12} prokaryotes per gram of dry stool (95% CI 5.65×10^{11}
139 - 3.13×10^{12}) (Figure 2A; Supplementary Data 1-3). Adjusted for a previously reported total colonic
140 volume of 400 mL¹⁴, this results in an estimate of ~100 trillion (1.2×10^{14}) total prokaryotes in a
141 human gut, which is approximately 3.2x higher than a previous widely cited estimate¹⁴, although
142 it is important to note that our estimate is based on ten donors. This estimate of total microbial
143 load implies that the total prokaryote to human cell ratio is approximately 4:1.
144
145 These estimates of total microbial load were sensitive to how the samples were preserved and
146 stored. Samples stored in OMNIgene preservative had a 200.9% higher observed microbial load
147 relative to samples stored in no preservative (4.00×10^{12} bacteria per gram; 95% CI 2.03×10^{12} -

148 7.91×10^{12} ; $p = 0.038$), while samples stored in Zymo preservative had an insignificant but lower
149 detected microbial load (6.27×10^{11} bacteria per gram; 95% CI 3.05×10^{11} - 1.29×10^{12} ; $p =$
150 0.141). Moreover, while samples in OMNIgene preservative had a similar measured bacterial load
151 when stored either at 23°C or 40°C , samples stored in Zymo preservative yielded a progressively
152 lower bacterial load when stored at higher temperatures (Zymo 40°C 1.52×10^{11} bacteria per
153 gram; 95% CI 7.70×10^{10} - 3.02×10^{11} ; $p = 0.004$). Interestingly, preservative and temperature
154 explain 37.6% of the variation in microbial abundance while donor explains only 25.9%, indicating
155 that sample handling practices have greater influence than interindividual variation on absolute
156 measurement. Together, these results suggest that OMNIgene buffer may lyse gut bacteria more
157 effectively than standard extraction methods alone, while DNA may not be stable at higher
158 temperatures when stored in Zymo preservative.

159
160 Using total estimates of absolute counts as well as metagenomic taxonomic abundance, we
161 explored how storage preservative and temperature might differentially affect absolute counts of
162 the three most abundant phyla in our dataset. We found that samples stored in OMNIgene
163 preservative had no significant change in Actinobacteria load and higher total counts of
164 Bacteroidetes and Firmicutes relative to immediately frozen, unpreserved samples
165 (Supplementary Figure 2, Figure 2B), with a greater enrichment of Bacteroidetes relative to
166 Firmicutes. Samples stored in Zymo preservative had a lower total load of Actinobacteria relative
167 to immediately frozen, unpreserved samples (Supplementary Figure 2). With increasing
168 temperature, samples preserved in OMNIgene showed similar degrees of enrichment across the
169 three phyla, demonstrating the temperature stability of OMNIgene preservative. Conversely,
170 samples stored in Zymo preservative had depletion of all three phyla with increasing temperature,
171 with a greater depletion of Firmicutes relative to Bacteroidetes. Based on these changes in
172 Firmicutes and Bacteroidetes absolute load with preservative and temperature, we considered
173 the commonly reported ratio of Bacteroidetes and Firmicutes, which has been related to various

174 health conditions (Figure 2C). We found that samples stored in OMNIgene preservative had a
175 significantly higher Bacteroidetes:Firmicutes ratio (0.72; 95% CI 0.52 - 1.06; $p \leq 0.001$) relative to
176 unpreserved samples (0.38; 95% CI 0.28 - 0.54). Similarly, samples stored in Zymo preservative
177 had a higher Bacteroidetes:Firmicutes ratio than unpreserved samples (0.56; 95% CI 0.46 - 0.69;
178 $p \leq 0.001$). Furthermore, the Bacteroidetes:Firmicutes ratio significantly increased as temperature
179 increased in Zymo-preserved samples that were stored at 23°C or 40°C prior to freezing (0.72;
180 95% CI 0.54 - 1.00; $p \leq 0.001$ for 23°C; 0.83; 95% CI 0.62 - 1.15; $p \leq 0.001$ for 40°C). In summary,
181 we observe that preservative choice has a strong effect on measured microbial load, emphasizing
182 the impact of sample handling choices on absolute measurements. Further, we find that the use
183 of absolute counts allows for the specific identification of which taxa contribute to changing relative
184 ratios, demonstrating the importance of absolute abundance measurements in revealing key
185 information that is otherwise obscured in relative abundance data.


186

187 **The Impacts of Temperature and Preservatives on Metagenomic Measurements**

188 Storage temperature and preservative choice not only affect overall microbial abundance, but
189 also affect the relative abundances of the most common microbes (Figure 3). We found
190 considerable variation in relative community composition across the ten donors, but we also found
191 systematic differences introduced by use of preservatives (Figure 3A). Furthermore, like our
192 results for overall microbial abundance in the previous section, we found that samples stored with
193 the Zymo preservative had additional systematic bias introduced when stored at higher
194 temperatures. These results were consistent across a large number of different metagenomic
195 measurements.

196

197 Metrics of community diversity show significant differences across the preservation methods.
198 Genus-level Shannon entropy was significantly lower in samples stored in either OMNIgene (2.7;
199 95% CI 2.4 - 2.9; $p \leq 0.001$) or Zymo (2.8; 95% CI 2.6 - 3.0 $p = 0.002$) preservatives relative to

Figure 3: Metagenomic characterization of samples across storage conditions

a) Metagenomic relative abundance of the top 15 genera by total relative abundance across samples. Genera are colored by phylum. Only classified reads are shown. Replicate two from the Donor 3 Zymo 40C condition was excluded from the following analyses due to failed library preparation. b) Genus-level Shannon entropy across samples. Scattered data points represent values from individual samples. c) Genus-level richness across samples, filtered for genera present at greater than 0.01% relative abundance. Scattered data points represent values from individual samples. d) Genus-level Bray-Curtis dissimilarity between samples from each preservative condition and the no preservative, immediately frozen condition. Each replicate from a given donor and condition was compared to each replicate from the corresponding donor in the no preservative, immediately frozen condition (for nine total comparisons per donor and condition). Scattered data points represent Bray-Curtis dissimilarity between pairs of samples. In panels B-D, center points indicate estimated mean values from the GEE model. Whiskers indicate 95% upper and lower confidence intervals from the GEE model. * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$.

200 unpreserved samples (2.9; 95% CI 2.7 - 3.1) (Figure 3B). As before, we found no significant
 201 changes with temperature for OMNIgene, but the measured entropy of samples stored in the
 202 Zymo kits progressively decreased when stored at 23°C (2.7; 95% CI 2.5 - 2.9; $p = 0.009$) and at
 203 40°C (2.6; 95% CI 2.4 - 2.9; $p \leq 0.001$). We observed similar trends using the inverse Simpson
 204 index (Supplementary Figure 3). We defined richness as the count of total genera present at
 205 >0.01% abundance. As with Shannon entropy, we found a decrease of -6.3% detected genera in

206 OMNIgene-preserved samples (86 genera; 95% CI 79 - 93 p ≤ 0.001) and -4.5% detected genera
207 Zymo-preserved samples (88 genera; 95% CI 82 - 93; p = 0.02) relative to unpreserved samples
208 (92 genera; 95% CI 84 - 100) (Figure 3C). Richness was stable across temperatures in both
209 preservatives, except for a slight increase in richness in samples stored in OMNIgene at 23°C
210 relative to those that were immediately frozen (88 genera; 95% CI – 94; p = 0.007). Overall, we
211 found that immediately freezing samples without a preservative is the best approach for
212 maximizing detection of taxonomic diversity, as measured by Shannon entropy and overall
213 richness.

214

215 To determine the similarity of the preserved samples to the immediately frozen, no preservative
216 samples, we computed genus-level beta diversity (between sample differences) using the Bray-
217 Curtis dissimilarity index formula (Supplementary Data 9-11). We found that samples stored in
218 OMNIgene preservative were more dissimilar (median Bray Curtis dissimilarity of 0.16; 95% CI
219 0.13 - 0.20) than samples stored in Zymo preservative relative to immediately frozen, no
220 preservative samples (median Bray Curtis dissimilarity of 0.14; 95% CI 0.12 - 0.15; p = 0.022)
221 (Figure 3D). Further, we found that samples stored at 23°C and 40°C in Zymo preservative
222 became increasingly dissimilar to immediately frozen, no preservative samples (0.19, 95% CI
223 0.16 - 0.21 for 23°C; 0.21, 95% CI 0.18 - 0.24 for 40°C; p ≤ 0.001 for both comparisons). Finally,
224 we found minimal dissimilarity between technical replicates from the same sample, indicating that
225 all storage methods had minimal technical variability (Supplementary Figure 4). In summary, we
226 again find that both preservatives lead to shifts in community composition, and that increased
227 temperature causes additional community shifts in the Zymo preservative.

228

229 Finally, we sought to examine how sample handling affects taxonomic relative abundances, as
230 relative data are still commonly reported in the field. Specifically, we evaluated the relative
231 abundances of the three most abundant bacterial phyla, Bacteroidetes, Firmicutes, and

232 Actinobacteria, as well as viruses and fungi (Supplementary Figure 5). Compared to immediately
233 frozen, no preservative samples, samples preserved in either OMNIgene or Zymo preservative
234 showed significant relative enrichment of Bacteroidetes and a significant relative depletion of both
235 Firmicutes and Actinobacteria. Also, while samples preserved in OMNIgene were robust to
236 increasing storage temperature, we found that samples stored in Zymo preservative showed
237 further enrichment of Bacteroidetes and depletion of Firmicutes and Actinobacteria as the storage
238 temperature was increased. The only exception were viruses, which increased in abundance with
239 temperature in both the OMNIgene and Zymo preservatives. We also tested for systematic biases
240 introduced by preservative and storage temperature in all microbial genera with a relative
241 abundance $>0.1\%$ in at least one condition (Supplementary Figure 6). Results seem to be driven
242 predominantly by phylum-level effects: most Bacteroidetes genera, like Bacteroides and Alistipes,
243 were enriched and most Firmicutes genera, like Faecalibacterium and Ruminococcus, were
244 depleted. When stored at higher temperatures, Bacteroidetes genera were further enriched in the
245 Zymo preservative, and Firmicutes genera showed heterogeneous responses to temperature in
246 both preservatives. After adjusting for multiple comparisons, we found no statistically significant
247 genus-level effects that were not already captured by the phylum-level effects characterized
248 above.

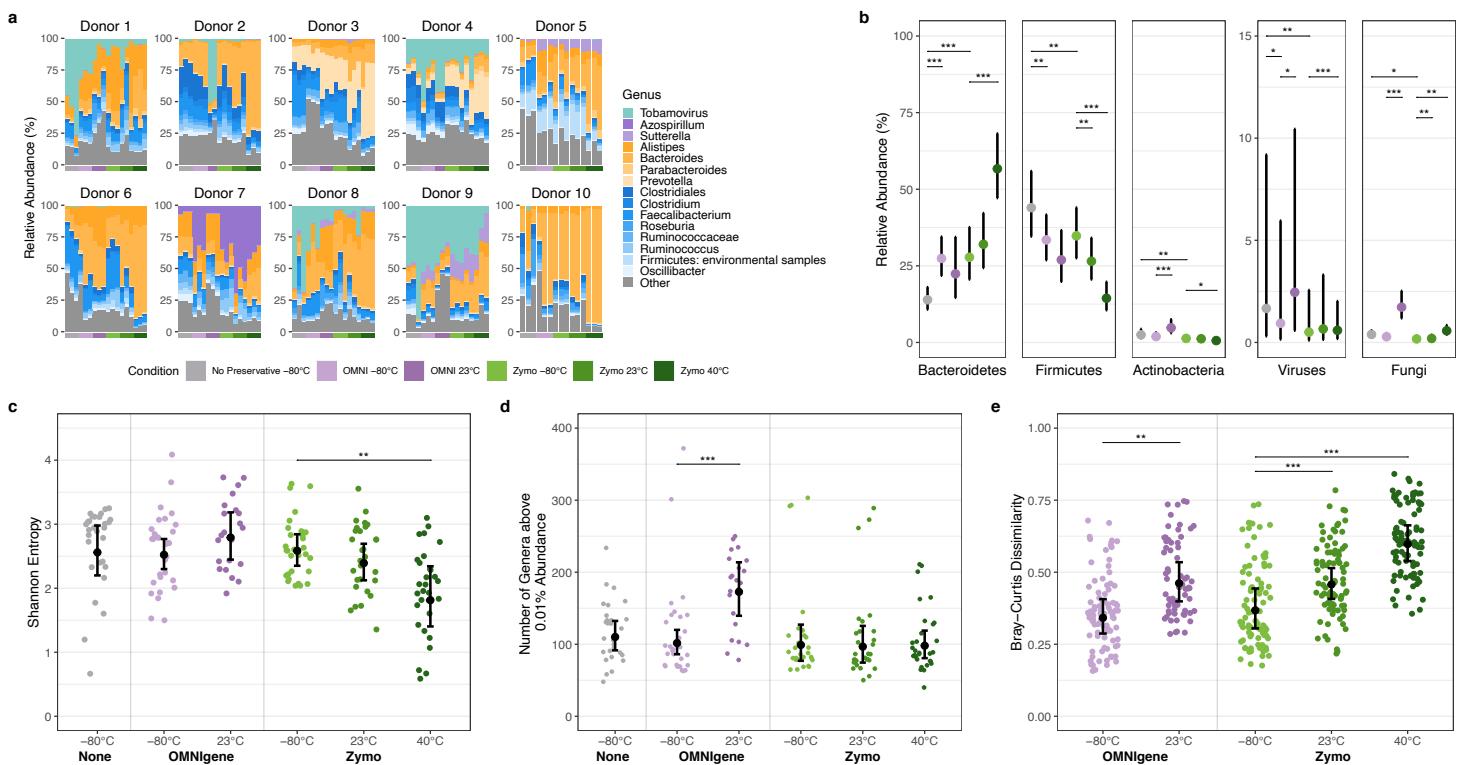
249

250 Taken together, across a wide array of measured metrics related to taxonomic abundances, we
251 see that both OMNIgene and Zymo preservatives lead to significant systematic differences from
252 the immediately frozen, no preservative samples. Furthermore, while results in OMNIgene
253 preservative are robust to temperature, Zymo kits show additional systematic differences when
254 stored at higher temperatures. These results suggest that OMNIgene preservative differentially
255 lyses some bacteria relative to unpreserved samples, while Zymo preservative better captures
256 the composition of unpreserved samples but does not maintain sample composition with exposure
257 to high temperature.

258

259

260


261 **The Impacts of Temperature and Preservatives on Metatranscriptomic Measurements**

262 Metatranscriptomic analyses can quantify the active functional landscape of the gut microbiota,
263 offering insight into the dynamic gene expression of gut microbes as they respond to
264 environmental stimuli. While microbial transcriptional responses may be more compelling
265 biomarkers of disease states, stabilization of RNA from stool samples is more difficult than
266 stabilization of DNA because of the temperature sensitivity of RNA and the presence of potent
267 RNases in stool samples. Unlike the Zymo kit, the OMNIgene kit is not rated for RNA preservation;
268 however, it is among the most commonly used preservatives in stool microbiome studies, which
269 means that scores of biobanked samples are preserved in this buffer. As there is likely interest in
270 determining whether these samples may be extended for use beyond DNA-based applications,
271 we evaluated the OMNIgene kit for its ability to preserve RNA for metatranscriptomic studies. We
272 found that RNA could be extracted from samples stored in OMNIgene preservative and
273 immediately frozen or exposed to 23°C for one week, indicating some potential for this kit to be
274 used for transcriptomic analysis (Supplementary Figure 1). By contrast, we were unable to extract
275 RNA from samples stored in OMNIgene preservative that had been exposed to 40°C for one
276 week, and therefore excluded those samples from the following analyses.

277

278 We measured the metatranscriptome of samples across all ten donors and six conditions (Figure
279 4). We observed strong variability in metatranscriptomic taxonomic composition across
280 preservation conditions and temperatures (Figure 4A), underscoring the importance of identifying
281 an adequate stabilizer for RNA preservation. Similar to our observations in the absolute
282 abundance and relative metagenomic data, we found that using OMNIgene or Zymo
283 preservatives had significant effects on the measured outcomes. In contrast to the metagenomic

284 results, we found that neither preservative was robust to temperature effects, though the Zymo
 285 preservative does yield RNA after exposure to 40°C. We observed these trends across many
 286 different comparisons of transcriptional composition.

287
 288 First, we evaluated the relative abundances of transcripts from the most abundant bacterial phyla,
 289 viruses, and fungi to determine which specific microbial taxa were transcriptionally enriched or
 290 depleted across sample collection methods (Figure 4B). We found that samples immediately
 291 frozen in either preservative had a higher abundance of Bacteroidetes and a lower abundance of
 292 Firmicutes and viruses relative to immediately frozen, no preservative samples. Samples frozen

293 in Zymo preservative had a lower abundance of Actinobacteria and fungi as well. Neither
294 preservative was sufficient to protect against the effects of increased storage temperature, with
295 all phyla demonstrating significant enrichment or depletion in at least one storage condition. We
296 also tested for differences in metatranscriptomic relative abundance at the genus-level for all
297 genera present at a relative abundance $>0.1\%$ in any condition. We observed that genus-level
298 differences are largely driven by the phylum-level observations detailed above. Both OMNIgene
299 and Zymo samples had a strong enrichment of Bacteroidetes genera such as *Bacteroides*,
300 *Parabacteroides*, and *Prevotella*, and depletion of Firmicutes genera such as *Faecalibacterium*
301 and *Oscillibacter* (Supplementary Figure 7). We also observed that immediately frozen Zymo
302 samples had a strong depletion of the *Tobamovirus* virus, a RNA virus that infects tobacco,
303 potatoes, tomatoes, and other crops.

304

305 Metrics of taxonomic community diversity showed more subtle differences across the preservation
306 methods. Shannon entropy of samples stored in either preservative was comparable to no
307 preservative, immediately frozen samples, and there were no significant changes with
308 temperature in OMNIgene preserved samples (Figure 4C). By contrast, Shannon entropy was
309 higher in the Zymo-preserved samples that were immediately frozen (2.59; 95% CI 2.35 - 2.84)
310 compared to the Zymo-preserved samples that were exposed to 40°C (1.81; 95% CI 1.40 - 2.34;
311 $p = 0.003$). Defining richness as the count of total genera present at $>0.01\%$ abundance, we found
312 that samples stored in preservatives had similar richness relative to unpreserved samples (Figure
313 4D). Richness was stable across temperatures in samples stored in Zymo preservative, while
314 richness increased by 10.7% in samples stored in OMNIgene at 23°C (173 genera; 95% CI 140 -
315 214) relative to those that were immediately frozen (101 genera; 95% CI 86 - 120; $p \leq 0.001$).
316 These metrics of alpha diversity demonstrate that samples stored in preservatives maintain
317 similar alpha diversity to immediately frozen, no preservative samples, but preservatives have
318 variable ability to protect against temperature changes.

319
320 We then compared beta diversity metrics to measure the microbial community similarity of
321 preserved samples to immediately frozen, no preservative samples (Supplementary Data 12-14).
322 Samples stored in either OMNIgene or Zymo preservative had increasing dissimilarity relative to
323 the immediately frozen, no preservative samples when exposed to higher temperature (Figure
324 4E). Specifically, we observed higher dissimilarity in samples that were stored at 23°C in the
325 OMNIgene (0.46; 95% CI 0.40 - 0.53) than those that were immediately frozen (0.34; 95% CI 0.29
326 - 0.41; $p = 0.01$), and observed higher dissimilarity in samples that were stored in Zymo
327 preservative at 23°C (0.46; 95% CI 0.41 - 0.51) and 40°C (0.60; 95% CI 0.54 - 0.66) relative to
328 samples that were stored in Zymo and immediately frozen (0.37; 95% CI 0.30 - 0.44; $p \leq 0.001$
329 for both comparisons). Finally, we measured dissimilarity between technical replicates from the
330 same sample and found that all storage methods had comparable technical variability
331 (Supplementary Figure 4). Taken together, we observe that use of either the OMNIgene or the
332 Zymo preservative leads to significant differences in measured metatranscriptomic composition
333 relative to samples immediately frozen without preservative. We also observe that both kits,
334 including those rated for RNA preservation, may still permit sample degradation that leads to
335 significant shifts in metatranscriptomic taxonomic composition after exposure to high temperature.
336

337 Discussion

338 Accurate measurement of the gut microbiome is essential for understanding the relationship
339 between gut microbiota and human health. Such measurement relies on the investigation of a
340 comprehensive range of variables and the minimization of study bias. Most studies measure
341 relative taxonomic abundance, but overlook additional fundamental observations such as total
342 microbial load and microbial transcript levels. Simultaneously, accurate measurement can be
343 affected by biases in sample processing, from sample preservation through library preparation.
344 Therefore, it is important to form data-driven decisions behind sample collection practices to

345 optimize our ability to study the microbiome. Here, we focused on sample preservation, as
346 variations in these practices can lead to nucleic acid degradation or biased microbial lysis^{2,16,17}.
347 We evaluate the performance of the two most common home collection kits for their ability to
348 stabilize DNA and RNA and preserve total microbial load.

349

350 In comparing the performance of various preservatives, we observed differences in total microbial
351 load, metagenomic alpha diversity and taxonomic relative abundances, and metatranscriptomic
352 alpha diversity and taxonomic relative abundances. We posit that the majority of these differences
353 occur as a result of two main phenomena: changes in lysis of microbial cells, and degradation of
354 nucleic acids. Considering the detailed comparisons we report in this manuscript, we propose the
355 following explanatory model: First, the addition of the OMNIgene preservative enhances overall
356 lysis relative to unpreserved samples, and preferentially enhances lysis of certain organisms. This
357 model is supported by the observation of a higher total microbial load in OMNIgene samples, and
358 a further enrichment in total Bacteroidetes load relative to Firmicutes. We suspect that this
359 increased load is due to improved lysis rather than degradation because we do not observe
360 lowered total DNA concentration in samples exposed to higher temperatures and it is unlikely that
361 no preservative, immediately frozen samples experience increased DNA degradation relative to
362 immediately frozen OMNIgene samples, as established previously^{6,18,19}. Consistent with the
363 OMNIgene kit not being rated for RNA preservation, we find that the OMNIgene preservative does
364 not protect against non-specific RNA degradation, as evidenced by lower or no RNA yield from
365 samples exposed to higher temperatures. We observe a similar enrichment of Bacteroidetes and
366 depletion of Firmicutes at the metatranscriptomic level as at the metagenomic level, reflecting the
367 OMNIgene kit's biased lysis of Bacteroidetes. Second, our model is that the Zymo preservative
368 leads to biased lysis of certain organisms but does not protect as effectively against DNA
369 degradation. This model is supported by the increased relative ratio of Bacteroidetes to
370 Firmicutes, while diminishing total microbial load with increasing heat suggests that the Zymo

371 preservative is not sufficient to protect against DNA degradation. We suspect that this change is
372 due to nucleic acid degradation rather than decreases in lysis, as exposure to heat should not
373 impair lysis. We also observe a relative enrichment of Bacteroidetes and depletion of Firmicutes
374 taxonomic at the metatranscriptomic level, reflecting the Zymo kit's biased lysis of Bacteroidetes.

375

376 Together, our results suggest that sample storage practices can lead to significant differences in
377 observed microbial measurements that should be taken into account when designing
378 experiments. As our model indicates that there is minimal DNA degradation of samples stored in
379 the OMNIgene preservative, use of the OMNIgene collection kit may be advisable to reduce
380 confounding for large cohort studies in which samples may travel for long periods or be exposed
381 to high temperatures. Furthermore, the OMNIgene kit also yielded the highest total microbial load
382 estimates, and is therefore recommended for absolute quantification studies. As our model
383 suggests minimal RNA degradation in the Zymo kit and our results show a high degree of similarity
384 between the Zymo kit and immediately frozen, unpreserved samples, the Zymo collection kit may
385 be preferred for samples that will be immediately frozen after collection or for studies that plan on
386 evaluating the metatranscriptome. These recommendations are detailed in Supplementary Table
387 2. Of note, this study was carried out before the introduction of a new DNA/RNA preservation
388 product from DNAGenotek. Given the large number of studies that have already been carried out
389 with the original OMNIgene kit, we anticipate that information on its performance for DNA/RNA
390 applications as reported here will be useful for researchers who plan to access the likely hundreds
391 of thousands of samples that have already been preserved in the OMNIgene reagent.

392

393 These results also help us frame the reproducibility crisis in the microbiome field. While many
394 studies over the past decades have identified microbial features that have strong associations
395 with human health outcomes, these associations are often inconsistent or not observed in follow
396 up studies. Examples of this include discordant conclusions regarding the utility of the

397 Bacteroidetes:Firmicutes ratio as a biomarker of dysbiosis²⁰, the effects of Prevotella on gut
398 inflammation and insulin sensitivity²¹, and the patient responsiveness to immunotherapy treatment
399 after fecal microbiota transplant^{22,23}. These disparate results may be due biological factors, such
400 as microbial strain variation or patient-to-patient variation. However, the results herein suggest
401 that technical noise due to sample collection and other aspects of study design can have a strong
402 effect on observed microbial measurements. Furthermore, most existing studies rely on relative
403 quantification, whereas we have observed that absolute quantification is necessary to disentangle
404 true changes in overall microbial load and the individual taxonomic abundance. Therefore, we
405 advocate that absolute microbial measurements should become standard practice in future
406 microbiome studies.

407

408 While this study endeavored to be thorough in terms of assessing the role of preservatives and
409 temperatures across multiple donors and replicates, it has several limitations. Our study was
410 limited in both scope and size, focusing on ten donors from the United States who share relatively
411 similar diets and lifestyles. We chose to maximize the number of conditions studied and technical
412 replication over maximizing donor number. Further research in this space would benefit from
413 evaluating more diverse cohorts to understand the effects of sample collection methods on a
414 wider range of microbes. Additionally, while qPCR provided an estimate of total bacterial load,
415 this method detects intact 16S rRNA gene sequences, which includes both dead and actively
416 replicating bacteria and archaea while missing non-prokaryotic gut taxa, such as viruses and
417 microbial eukaryotes. While absolute quantification can help disentangle whether taxonomic shifts
418 are due to an increase in one taxon or decrease in another, we cannot definitively identify whether
419 these shifts are due to changes in lysis efficiency, nucleic acid degradation, or microbial blooms.
420 These results are based exclusively on extracted DNA, and therefore should be considered a
421 lower bound as they do not reflect microbes that evaded lysis. Finally, there exist other sample
422 preservation methods that are designed for RNA preservation that were not considered in this

423 study. We chose to evaluate the OMNIgene GUT and Zymo DNA/RNA Shield kits as they
424 represent two commonly used at-home stool collection systems, though the OMNIgene kits are
425 not rated for RNA preservation. Emerging kits that are rated for both DNA and RNA preservation,
426 such as the upcoming OMNIgene GUT DNA/RNA collection kit, can be evaluated using the
427 framework we present here. Finally, we chose to focus this study on metagenomic and
428 metatranscriptomic measurements, as these are common areas of investigation and compatible
429 with many at-home stool collection kits. Future studies should incorporate other microbiome
430 measurements, such as metabolomics, which represent an exciting and growing area of interest
431 for microbiome researchers.

432

433 Through this study, we identified that sample collection methods can have a strong effect on
434 microbial community measurements. We demonstrate that the use of preservatives can
435 significantly affect total microbial load and alter genus- and phylum-level taxonomic abundances.
436 Even in this small cohort of individuals, we found that the total absolute abundance of prokaryotes
437 varied across donors. Given the importance of bacterial load and related features such as
438 membrane lipopolysaccharide dosage on host biology and the importance of open niches for
439 microbial community assembly, we suspect that total microbial load may be an important
440 biomarker for disease progression and treatment outcomes. We expect that future research will
441 leverage this method to measure absolute abundance to better correlate the microbiome and
442 health outcomes. We anticipate that these results and related studies will guide best practices
443 around large cohort study design, inform the cross-cohort comparisons made in meta-analyses,
444 and enable researchers to optimize sample collection methods for their specific research
445 questions.

446 Methods

447 *Fecal sample collection*

448 Fecal samples were collected from ten healthy adults in California, USA. Human subjects
449 research approval was obtained (Stanford IRB 42043; PI: Ami S. Bhatt) and informed consent
450 was obtained from all participants. Fecal samples were processed in three technical replicates
451 across a range of conditions. These conditions include immediate storage at -80°C in no
452 preservative, OMNIgene GUT OMR200 collection kits, or Zymo Research DNA/RNA Shield
453 tubes, as well as storage at -80°C after temporary storage for seven days at 23°C or 40°C in the
454 OMNIgene or Zymo collection kits. All stool was homogenized and stored at -80°C after
455 processing.

456

457 *DNA extraction*

458 All DNA extractions were performed using the QIAamp PowerFecal Pro DNA Kit (Qiagen).
459 Sample input consisted of 250 mg of samples stored without preservative or 250 uL of samples
460 stored in OMNIgene or Zymo preservatives. For each technical replicate, samples were randomly
461 distributed across four batches of DNA extraction, such that the same donors or same conditions
462 were not pooled together. Every extraction batch contained one blank negative control (sterile
463 nuclease-free water) and one positive control (ZymoBIOMICS Microbial Community Standard).
464 DNA extractions were performed according to the manufacturer's protocol with the exception of
465 using the EZ-Vac Vacuum Manifold (Zymo Research) instead of centrifugation. DNA
466 concentration was measured using a Qubit 3.0 fluorometer (Thermo Fisher Scientific) with the
467 dsDNA High Sensitivity kit.

468

469 *RNA extraction*

470 All RNA extractions were performed using the RNeasy PowerMicrobiome Kit (Qiagen). Sample
471 input consisted of 250 mg of samples stored without preservative and 250 uL of samples stored
472 in OMNIgene or Zymo preservatives. Samples were extracted in the same batch randomization
473 format as the DNA extraction. Every extraction batch contained one blank negative control (sterile
474 nuclease-free water) and one positive control (ZymoBIOMICS Microbial Community Standard).
475 RNA extractions followed manufacturer's protocol with the exception of using the EZ-Vac Vacuum
476 Manifold (Zymo Research) instead of centrifugation. RNA concentration was measured using a
477 Qubit 3.0 fluorometer (Thermo Fisher Scientific) with the RNA High Sensitivity kit. Of note,
478 samples stored in OMNIgene GUT and incubated at 40°C for seven days consistently failed RNA
479 extraction (RNA levels were undetectable by Qubit). These samples were excluded from
480 downstream analysis.

481

482 *Metagenomic library preparation and sequencing*

483 Samples were split into 96-well three plates for library preparation. Each plate consisted of
484 extractions from a single technical replicate (70 samples and associated extraction controls) that
485 were randomly distributed across the plate. Metagenomic sequencing libraries were prepared
486 using the Illumina DNA Prep Kit (Illumina, Inc.). Libraries from each plate were pooled in equal
487 concentration (barring positive and negative controls, which were pooled in lower concentrations)
488 and sequenced on a NovaSeq 6000 (Illumina, Inc.) at 2x150 reads.

489

490 *Metatranscriptomic library preparation and sequencing*

491 Initial RNA cleanup was performed with RNAClean XP beads (Beckman Coulter) according to the
492 Illumina Stranded Total RNA Prep (Illumina, Inc.), with one additional EtOH wash. Samples were
493 split into three 96-well plates for library preparation. Each plate consisted of extractions from a
494 single technical replicate (70 samples and associated extraction controls) that were randomly
495 distributed across the plate. Ribosomal rRNAs were depleted and metatranscriptomic libraries

496 were prepared with the Illumina Stranded Total RNA Prep, Ligation with Ribo-Zero Plus
497 Microbiome kit (Illumina, Inc.). Libraries from each plate were pooled in equal concentration
498 (barring positive and negative controls, which were pooled in lower concentrations). We
499 performed 150 bp paired-end RNA sequencing on all samples that yielded RNA using a NovaSeq
500 6000 (Illumina, Inc.).

501

502 *Metagenomic and metatranscriptomic preprocessing and profiling*

503 Metagenomic reads from the same sample and replicate were merged and reads were filtered to
504 have a minimum read length of 60, a minimum quality of 30, and trimmed using TrimGalore v0.6.5.
505 Reads were deduplicated using SuperDeduper v1.2.0 with default parameters, and reads that
506 aligned to the human genome were removed using BWA v0.7.17. Metatranscriptomic reads were
507 trimmed and filtered for host reads using the same methods and parameters as above, excluding
508 deduplication. Ribosomal RNA reads were removed using sortmerna v4.3.4 against RFAM and
509 SILVA ribosomal RNA databases. Metagenomic and metatranscriptomic reads were classified
510 using Kraken v2.0.9 against a custom reference database including GenBank bacterial and
511 archaeal genomes assembled to “scaffold” quality or higher as of January 2020.

512

513 *16S rRNA qPCR*

514 Quantification of absolute abundance for each sample was determined by qPCR for all samples.
515 For the qPCR reaction, all sample DNA was diluted 1:1000 in sterile nuclease-free water.
516 Standards were created using custom-synthesized plasmids containing a portion of the 16S rRNA
517 gene from either *F. prausnitzii* or *B. vulgatus* (Supplementary Table 3). These organisms were
518 chosen as they are the most abundant organisms across all samples. Standards were diluted
519 from 1:10-1:10M in sterile nuclease-free water to produce the 10-log-fold standard curve.
520 Universal 16S rRNA primers, 331F/797R primers, were used, as previously described²⁴. For each
521 technical replicate, samples were randomly distributed across a 96-well plate, such that the same

522 donors or same conditions were not pooled together. Each plate included two negative controls,
523 DNA extraction buffer and sterile nuclease-free water, in duplicate.

524
525 PCR conditions follow the protocol described by Jian et al²⁵. All qPCR samples were run in
526 triplicate using the QuantStudio 12K Flex (Applied Biosystems) with SsoAdvanced Universal
527 SYBR® Green Supermix (Bio-Rad). qPCR analysis was performed using QuantStudio Design &
528 Analysis 2.6.0 (Thermo Fisher Scientific). To calculate total microbial load, Cq values for each
529 sample were converted to the number of 16S rRNA copies per microliter using the standard curve.
530 16S rRNA copies per dry gram of stool was calculated by adjusting copies/uL by the total dry
531 weight of stool present in each preservative and the total input volume for DNA extraction. The
532 copies/gram were then divided by the sum of the relative abundance of a given taxon multiplied
533 by its 16S rRNA copy number, as noted in rrNDB²⁶, to yield total microbes per dry gram of stool.
534 For taxa without a known copy number, the average 16S rRNA copy number across all taxa
535 observed, 4.6, was used.

536
537 *Statistical analysis and plotting*
538 Our statistical protocol was pre-registered with the Open Science Foundation prior to the
539 completion of data collection (<https://osf.io/vj2fx>). Our primary outcomes were the abundance of
540 the three most common bacterial phyla, Bacteroidetes, Firmicutes, and Actinobacteria, as well as
541 the abundances of viruses and fungi. Each of these taxonomic abundances was measured in
542 three ways: as an absolute abundance (microbes per gram of dry stool), as a metagenomic
543 relative abundance, and as a metatranscriptomic relative abundance. We also reported the
544 abundance ratio between Bacteroidetes and Firmicutes to test for disproportionate depletions
545 between those two phyla. For our secondary outcomes, we focused on genus-level sequencing
546 results and normalized by total classified matches. We considered several measures of alpha-
547 and beta-diversity: Shannon entropy, Inverse Simpson distance, richness of genera with a relative

548 abundance greater than 0.01%, and Bray-Curtis distance; we considered each of these diversity
549 metrics separately for the metagenomic and metatranscriptomic data. Finally, we looked at each
550 microbial genus with a relative abundance greater than 0.1% in at least one condition.

551
552 For each of these outcomes, we tested for systematic differences by kit and by temperature with
553 a Generalized Estimating Equations (GEE) approach: we used an unadjusted regression model
554 with fixed effects for the 7 conditions, and an exchangeable correlation structure between the
555 participant-level clusters to account for repeat measurements. We varied our distributional
556 assumption based on the different outcomes. Specifically, for absolute abundances, we used a
557 log-transformed linear model which brings the distribution into a roughly Gaussian shape. For
558 relative abundances, we followed the approach of MaAsLin2²⁷ and used a log-transformed linear
559 model on TSS-normalized data, which they found to be a robust method for handling inherently
560 compositional data. We controlled for multiple comparisons in our secondary outcomes of the
561 relative abundances of individual genera with a Benjamini-Hochberg correction with a false
562 discovery rate of 10%, again following the methodology of MaAsLin2. To model the ratio of
563 Bacteroidetes to Firmicutes, we transformed the ratio to a probability and log transformed. Finally,
564 to model richness, we used a Poisson count model, and to model Bray-Curtis distance, we
565 focused only on within-patient distances and used an unadjusted model with fixed effects for each
566 pair of conditions that we measured distance between. The GEE models were fit using the
567 statsmodels package (v0.13) of Python.

568
569 For a sensitivity analysis, we repeated this analysis for our primary outcomes using a different
570 model structure: we took a within-patient approach instead of a marginal approach, replacing the
571 GEE with patient-level fixed effects. Results were robust to these modeling changes
572 (Supplementary Table 4).

573

574 Plotting was performed using R v4.1.2 with packages tidyverse v1.3.1²⁸, reshape2 v1.4.4²⁹,
575 ggsignif v0.6.3³⁰, ggplot2 v3.3.5³¹, cowplot v1.1.1³², ggpubr v0.4.0, ggnewscale v0.4.7³³, and
576 paletteer v1.4.0³⁴. Figure 1 was created using BioRender.

577 Data Availability

578 All sequencing data generated for this study will be deposited on the NCBI Sequence Read
579 Archive prior to publication. Source data for figures is available on GitHub at
580 <https://github.com/dgmaghini/Benchmarking>.

581 Code Availability

582 Workflow for metagenomic and metatranscriptomic preprocessing can be found at
583 https://github.com/bhattlab/bhattlab_workflows. Workflow for metagenomic and
584 metatranscriptomic taxonomic classification can be found at
585 https://github.com/bhattlab/kraken2_classification. Analysis and plotting scripts can be found at
586 <https://github.com/dgmaghini/Benchmarking>. Python code for fitting the GEE models can be
587 found at https://github.com/alex-dahlen/Gut_Microbiome_Measurement_Bias.

588 Acknowledgements

589 We thank the study participants for their participation in this study. We thank Scott Hazelhurst,
590 Ovokeraye Oduaran, and Gary Schroth for their thoughtful recommendations for this project. We
591 thank Erin Brooks, Meenakshi Chakraborty, Alvin Han, Aravind Natarajan, Ryan Park, Summer
592 Vance, and Soumaya Zlitni for their technical assistance and support. This work was supported
593 in part by NIH grant P30CA124435, which supports the Stanford Cancer Institute Genetics
594 Bioinformatics Service Center. Computing costs were also supported, in part, by a NIH S10
595 Shared Instrumentation Grant 1S10OD02014101. This work was supported in part by NIH

596 R01AI14862302 & R01AI14375702, a Stand Up 2 Cancer Grant, the Chan Zuckerberg Initiative,
597 a Sloan Foundation Fellowship and the Allen Distinguished Investigator Award (to A.S.B.). We
598 thank David Solow-Cordero and Sopheak Sim for assistance in using the Stanford Functional
599 Genomics Facility and High-Throughput Bioscience Center, which is supported by the NIH Shared
600 Instrumentation Grant S10RR019513, S10RR026338, S10OD025004, S10OD026899 and by an
601 anonymous donation. D.M. is supported by the Stanford Graduate Fellowships in Science and
602 Engineering program and the Stanford Gerald J. Lieberman Fellowship. M.D. is supported by NIH
603 Cellular and Molecular Biology Training Program training grant T32GM007276.

604 Author Information

605 A.S.B., S.K., D.M., M.D., and A.D. conceptualized the study. D.M. and M.D. designed the study,
606 enrolled participants, collected samples, and performed extraction and qPCR on all samples. S.K.
607 and M.R. performed ribosomal RNA depletion, library preparation, and sequencing on all
608 samples. D.M., M.D., and A.D. carried out all analysis and generated figures. D.M., M.D., A.D.,
609 and A.S.B. wrote the manuscript. All authors read and approved the final manuscript.

610 Ethics declarations

611 Competing Interests: S.K. and M.R. are employees of Illumina, Inc.

612

613 References

- 614 1. Sinha, R., Abnet, C. C., White, O., Knight, R. & Huttenhower, C. The microbiome quality
615 control project: baseline study design and future directions. *Genome Biology* **16**, 276
616 (2015).
- 617 2. Choo, J. M., Leong, L. E. & Rogers, G. B. Sample storage conditions significantly influence

618 faecal microbiome profiles. *Sci Rep* **5**, 16350 (2015).

619 3. Doukhanine, E., Bouevitch, A., Pozza, L. & Merino, C. OMNIgene®•GUT enables reliable
620 collection of high quality fecal samples for gut microbiome studies. *4* (2015).

621 4. Doukhanine, E. *et al.* OMNIgene®•GUT stabilizes the microbiome profile at ambient
622 temperature for 60 days and during transport. *5* (2016).

623 5. Song, S. J. *et al.* Preservation Methods Differ in Fecal Microbiome Stability, Affecting
624 Suitability for Field Studies. *mSystems* **1**, e00021-16 (2016).

625 6. Anderson, E. L. *et al.* A robust ambient temperature collection and stabilization strategy:
626 Enabling worldwide functional studies of the human microbiome. *Sci Rep* **6**, 31731 (2016).

627 7. Kazantseva, J., Malv, E., Kaleda, A., Kallastu, A. & Meikas, A. Optimisation of sample
628 storage and DNA extraction for human gut microbiota studies. *BMC Microbiology* **21**, 158
629 (2021).

630 8. Bartolomaeus, T. U. P. *et al.* Quantifying technical confounders in microbiome studies.
631 *Cardiovascular Research* **117**, 863–875 (2021).

632 9. Hill, C. J. *et al.* Effect of room temperature transport vials on DNA quality and phylogenetic
633 composition of faecal microbiota of elderly adults and infants. *Microbiome* **4**, 19 (2016).

634 10. Han, M. *et al.* A novel affordable reagent for room temperature storage and transport of
635 fecal samples for metagenomic analyses. *Microbiome* **6**, 43 (2018).

636 11. Tkacz, A., Hortala, M. & Poole, P. S. Absolute quantitation of microbiota abundance in
637 environmental samples. *Microbiome* **6**, 110 (2018).

638 12. Vandepitte, D. *et al.* Quantitative microbiome profiling links gut community variation to
639 microbial load. *Nature* **551**, 507–511 (2017).

640 13. Rao, C. *et al.* Multi-kingdom ecological drivers of microbiota assembly in preterm infants.
641 *Nature* **591**, 633–638 (2021).

642 14. Sender, R., Fuchs, S. & Milo, R. Revised Estimates for the Number of Human and Bacteria
643 Cells in the Body. *PLoS Biol* **14**, e1002533 (2016).

644 15. Wang, X., Howe, S., Deng, F. & Zhao, J. Current Applications of Absolute Bacterial
645 Quantification in Microbiome Studies and Decision-Making Regarding Different Biological
646 Questions. *Microorganisms* **9**, 1797 (2021).

647 16. Sinha, R. *et al.* Collecting Fecal Samples for Microbiome Analyses in Epidemiology Studies.
648 *Cancer Epidemiol Biomarkers Prev* **25**, 407–416 (2016).

649 17. Song, S. J. *et al.* Preservation Methods Differ in Fecal Microbiome Stability, Affecting
650 Suitability for Field Studies. *mSystems* **1**, e00021-16 (2016).

651 18. Carroll, I. M., Ringel-Kulka, T., Siddle, J. P., Klaenhammer, T. R. & Ringel, Y.
652 Characterization of the Fecal Microbiota Using High-Throughput Sequencing Reveals a
653 Stable Microbial Community during Storage. *PLOS ONE* **7**, e46953 (2012).

654 19. Ott, S. J. *et al.* In vitro alterations of intestinal bacterial microbiota in fecal samples during
655 storage. *Diagnostic Microbiology and Infectious Disease* **50**, 237–245 (2004).

656 20. Magne, F. *et al.* The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in
657 Obese Patients? *Nutrients* **12**, 1474 (2020).

658 21. Cani, P. D. Human gut microbiome: hopes, threats and promises. *Gut* **67**, 1716–1725
659 (2018).

660 22. Baruch, E. N. *et al.* Fecal microbiota transplant promotes response in immunotherapy-
661 refractory melanoma patients. *Science* **371**, 602–609 (2021).

662 23. Davar, D. *et al.* Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in
663 melanoma patients. *Science* **371**, 595–602 (2021).

664 24. Nadkarni, M. *et al.* Determination of bacterial load by real-time PCR using a broad-range
665 (universal) probe and primers set. *Microbiology* (2002).

666 25. Jian, C., Luukkonen, P., Yki-Järvinen, H., Salonen, A. & Korpela, K. Quantitative PCR
667 provides a simple and accessible method for quantitative microbiota profiling. *PLOS ONE*
668 **15**, e0227285 (2020).

669 26. Stoddard, Steven F *et al.* rrnDB: improved tools for interpreting rRNA gene abundance in

670 bacteria and archaea and a new foundation for future development. *Nucleic acids research*
671 vol. 43, (2015)

672 27. Mallick, H. *et al.* Multivariable association discovery in population-scale meta-omics studies.
673 *PLOS Computational Biology* **17**, e1009442 (2021).

674 28. Wickham, H. *et al.* Welcome to the Tidyverse. *JOSS* **4**, 1686 (2019).

675 29. Wickham, H. Reshaping Data with the reshape Package. *J. Stat. Soft.* **21**, 1–20 (2007).

676 30. Ahlmann-Eltze, C. & Patil, I. ggsignif: R Package for Displaying Significance Brackets for
677 ‘ggplot2’. Preprint at <https://doi.org/10.31234/osf.io/7awm6> (2021).

678 31. Wickham, H. *ggplot2: Elegant Graphics for Data Analysis*. (Springer-Verlag New York,
679 2016).

680 32. Wilke, C. O. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. (2020).

681 33. Campitelli, E. ggnewscale: Multiple Fill and Colour Scales in ‘ggplot2’. (2022).

682 34. Hvitfeldt, E. paletteer: Comprehensive Collection of Color Palettes. (2021).