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Abstract 10 

Brookshire (2022) claims that previous analyses of periodicity in detection performance after a reset 11 

event suffer from extreme false-positive rates. Here we show that this conclusion is based on an 12 

incorrect implemention of a null-hypothesis of aperiodicity, and that a correct implementation 13 

confirms low false-positive rates. Furthermore, we clarify that the previously used method of 14 

shuffling-in-time, and thereby shuffling-in-phase, cleanly implements the null hypothesis of no 15 

temporal structure after the reset, and thereby of no phase locking to the reset. Moving from a 16 

corresponding phase-locking spectrum to an inference on the periodicity of the underlying process 17 

can be accomplished by parameterizing the spectrum. This can separate periodic from non-periodic 18 

components, and quantify the strength of periodicity. 19 

Introduction 20 

Brookshire (2022) revisited reports of rhythmicity in detection performance (e.g., Landau and Fries, 21 

2012; Fiebelkorn et al., 2013), and concluded that formerly employed methods lead to excessive 22 

false-positive rates. Previous studies had presented, per trial, one reset event (a flash), followed by 23 

one randomly timed probe, and had recorded the behavioral response (hit or miss). Across many 24 

trials, the reset-aligned accuracy time course (ATC) was calculated. The ATC was then Fourier 25 

transformed, and the resulting spectrum compared to spectra obtained after randomly pairing, across 26 

trials, behavioral reports and probe time points, i.e., after <shuffling-in-time=. This procedure tests for 27 

temporal structure. Brookshire makes the valuable point that rejecting the null hypothesis of no 28 

temporal structure does not unequivocally demonstrate the presence of periodic structure, and 29 

therefore argues that the null hypothesis should consist of a temporal structure that is aperiodic. 30 

The calculation of false positives - a single noisy time course is not noisy enough 31 

Brookshire’s implementation of the aperiodic null hypothesis is based on different types of noise 32 

processes, primarily the first-order autoregressive (AR(1)) process and its special case, the random 33 

walk. In an AR(1) process, the signal at time t is the sum of a specified fraction of the signal at time 34 
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t-1 plus a random step (Figure 1A). When many realizations of an AR(1) process are Fourier 35 

transformed, their average spectrum decays monotonically with frequency according to 1/fn, without 36 

peaks indicative of periodicity (Figure 1B, left). However, single realizations of an AR(1) process 37 

often yield spectra that do not decline monotonically with frequency and thus have spectral peaks 38 

(Figure 1B, right). Despite this fact, Brookshire simulates the ATC on the basis of a single AR(1) 39 

realization; this realization is taken as a probability time course, and probabilistic draws from it 40 

generate the hits and misses of all trials (and all subjects; Figure 1C, D); the resulting ATC is then 41 

analyzed with the shuffling-in-time statistics, often yielding significant results for some frequency bins 42 

(Figure 1E-G). Brookshire argues that these results should be considered false positives, because 43 

the AR(1) process is aperiodic. However, as explained above, this does not hold for single AR(1) 44 

realizations. When we use the code provided with Brookshire (2022) and modify it to implement 45 

separate AR(1) realizations for each trial of each subject (Figure 2A), or even just for each subject 46 

(Figure 2B), false positives are substantially diminished. 47 

The use of a single time course to generate many simulated trials (and many subjects) trivially leads 48 

to phase-locked modulation of simulated behavior. The hits and misses generated in single trials are 49 

just (very) noisy replications of the single time course. If this time course is not entirely flat, then it 50 

has some temporal structure, and the noisy replications of this temporal structure across trials are 51 

equivalent to phase locking of the trials to the reset event. Thus, phase-locking metrics as used in 52 

Landau and Fries (2012) should and do actually provide significant results in this case. The 53 

significance increases when more trials are simulated (Figure 1G), demonstrating that many draws 54 

of a single time course are not an implementation of <structured noise= as claimed by Brookshire. 55 

Note that several previous studies modeled e.g. evidence accumulation as AR(1) process (drift 56 

diffusion), but they consistently implemented separate AR(1) realizations per trial (Ratcliff and 57 

McKoon, 2008; Shadlen and Kiani, 2013)). Other studies did use one function to model trends in 58 

trial-averaged behavioral time courses, but they used deterministic processes, such as Gaussian or 59 

exponential functions (Grabenhorst et al., 2019; Grabenhorst et al., 2021), and not stochastic ones, 60 

such as AR(1) or random walk. 61 

From spectra to interpretation 62 

It is important to clarify what shuffling-in-time actually tests. Shuffling-in-time followed by Fourier 63 

transformation is equivalent to shuffling-in-phase. If statistical tests based on shuffling-in-phase are 64 

significant for a given frequency bin, this means that there is significant phase locking (to the reset 65 

event) at that frequency bin. An isolated significant frequency bin in a phase-locking spectrum is 66 

consistent with a periodicity in a frequency band including this frequency, i.e. with a spectrum 67 

containing a distinct peak. Yet, it is also consistent with a different spectral pattern that is not 68 

indicative of periodicity. To move from a phase-locking spectrum to the inference on a likely 69 

underlying, periodic or non-periodic, process, one needs to consider the shape of the entire spectrum 70 

or at least of a substantial part of the spectrum (Tosato et al., 2022). This interpretation of the 71 

spectrum can be achieved by, e.g., parameterizing the spectrum (Donoghue et al., 2020). Such 72 

parameterization can objectively separate periodic from non-periodic components, and quantify the 73 

strength of the observed periodicity.  74 
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When periodicity has been established, the evidence can be further strengthened by replication, e.g. 75 

across different conditions within one study (for a similar approach, see Vinck et al., 2022). Indeed, 76 

several studies have found that different experimental conditions produce phase locking to the reset 77 

event at very similar frequencies (Landau and Fries, 2012; Zhang et al., 2019).   78 

Methods proposed by Brookshire – and their problems 79 

Brookshire (2022) proposes two methods for analyzing behavioral time courses, namely <AR 80 

surrogate= and <robust estimation=, which are presented as having better detection ratio (the ratio of 81 

true positives to false positives). The AR surrogate method models the empirical ATC with an AR(1) 82 

process, and then uses this AR(1) process to generate surrogate ATCs, which form the basis for 83 

statistical testing. This method does generate multiple realizations of the AR(1) process. However, 84 

the surrogate ATCs are scaled using the standard deviation of the noise, which unfortunately causes 85 

their values to exceed the range of possible detection rates, i.e., 0 to 1. This leads to an inflation of 86 

the power of the surrogate data compared to realistically simulated and empirical data. As a result, 87 

Brookshire (2022) reports a very low false-positive rate with this method, which leads to falsely high 88 

detection ratios. When the scaling is corrected, false-positive rate is higher (Figure 2, arrow; 0.08 89 

instead of 0.03 in Brookshire (2022)), and detection ratio is slightly lower. 90 

The second method proposed, the robust estimation method, is presented as having an acceptable 91 

detection ratio. However, the true-positive rate of this methodology is unacceptably low (Figure 3; as 92 

pointed out by several commentaries on this work, e.g., Fiebelkorn, 2022; Vinck et al., 2022). This 93 

fact is masked in the detection ratios by false-positive rates approaching zero. Figure 3 shows the 94 

false- and the true-positive rate for our method as well as the two methods proposed by Brookshire. 95 

We simulated a periodic modulation with a frequency of 4 Hz and with modulation depths (defined 96 

as in Brookshire (2022)) of 0.3, 0.2, and 0.1, similar to empirically observed modulation depths 97 

(Busch et al., 2009; Landau et al., 2015; Benedetto and Morrone, 2017; Tomassini et al., 2017; Re 98 

et al., 2019). On these simulated data, all methods were tested, and the methods proposed by 99 

Brookshire (2022) suffer from very low true-positive rates (Figure 3).  100 

Conclusion 101 

Brookshire’s main claim of extreme false-positive rates in previous analyses is unfounded. Previous 102 

analyses correctly tested for phase locking per frequency. Moving from a phase-locking spectrum to 103 

an inference on (the periodicity of) the underlying process can proceed by parameterizing the phase-104 

locking spectrum - a fruitful endeavor for future work. 105 
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 119 

 120 

Figure 1: Illustration of the null-hypothesis implementation proposed by Brookshire (2022). 121 

(A) Several realizations of an AR(1) process. (B) Left: Power spectrum averaged over 1000 122 

realizations. This average spectrum declines monotonically, except at its low-frequency end where 123 

it shows the effect of linear detrending. Right: Power spectra of single realizations, showing clear 124 

peaks. (C) The single realization used as a probability function for hit and misses underlying the 125 

ATC. Brookshire refers to this probability function as <structured noise=. (D) A binomial process is 126 

used to draw the single-trial outcome from the probability distribution in C for each time bin t. (E) The 127 

outcomes are averaged over trials to obtain the ATC for each subject. (F) The ATCs averaged over 128 

subjects are shown for different numbers of trials per time point (10 and 1000, respectively). Average 129 

ATCs are similar to the single AR(1) realization shown in C, more so, the more trials are included. 130 

(G) ATC power spectra, and corresponding significance thresholds (dashed), for 10 (purple) and 131 

1000 (orange) trials per time bin. Increasing trial numbers lead to increasing significance, contrary 132 

to what is expected from a noise process.  133 
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 134 

 135 

Figure 2: Replotting Figure 3a from Brookshire (2022) using provided analysis code. The gray bars 136 

show false-positive rates reported in Brookshire (2022), where trials and subjects were drawn from 137 

a single realization of the chosen noise process (except for the Fully random condition). The colored 138 

bars are based on the same analysis, only implementing separate realizations per trial (A) or per 139 

subject (B), which resulted in false-positive rates close to 0.05, with negligible differences between 140 

methods. Although separate realizations should be used per trial (panel A), even the use of separate 141 

realizations merely at the level of each subject (panel B) is sufficient to have low false-positive rates 142 

in all analysis methods. Note that the gray bars for the AR surrogate include a normalization step, 143 

which leads to higher false-positive rates, and which was missing in Brookshire’s implementation 144 

(see section on <Methods proposed by Brookshire – and their problems=).  145 
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 146 

  147 

Figure 3: True-positive and false-positive rates for different analysis methods. We simulated a 148 

probability time course characterized for all trials by a 4 Hz sinusoidal modulation, and additionally 149 

added different random-walk noise, per trial. We simulated 3 conditions with sinusoidal modulation 150 

depths (defined as in Brookshire (2022)) of 0.3, 0.2 or 0.1, and one condition without modulation. 151 

For the conditions with modulation, the y-axis reflects the true-positive rate, and for the condition 152 

without modulation the false-positive rate. As in figure 2, a previously used method (Landau and 153 

Fries, 2012) results in low false-positive rates and reasonable true-positive rates. Robust estimation 154 

and AR surrogate on the other hand show a true-positive rate below 0.5 for all conditions.  155 
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