

1 **Sialidases and Fucosidases of *Akkermansia muciniphila* are crucial for growth on mucin and**
2 **nutrient sharing with mucus-associated gut bacteria**

3
4
5 Bashar Shuoker^{1,2,7}, Michael J. Pichler^{1,7}, Chunsheng Jin³, Hiroka, Sakanaka¹, Haiyang Wu⁴, Ana
6 Martínez Gascueña⁴, Jining Liu⁵, Tine Sofie Nielsen¹, Jan Holgersson⁵, Eva Nordberg Karlsson²,
7 Nathalie Juge⁴, Sebastian Meier⁶, Jens Preben Morth^{1,8}, Niclas G. Karlsson³, Maher Abou
8 Hachem^{1,8}

9
10
11 ¹Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, 2800,
12 Denmark

13 ²Biotechnology, Department of Chemistry, Lund University, Lund, Sweden

14 ³Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg,
15 Sweden

16 ⁴Quadram Institute Bioscience, Norwich, United Kingdom

17 ⁵Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy,
18 University of Gothenburg, Gothenburg, Sweden

19 ⁶Department of Chemistry, Technical University of Denmark, Kgs Lyngby, Denmark

20
21 ⁷These authors contributed equally

22 ⁸Correspondence: Jens Preben Morth and Maher Abou Hachem

23 **Abstract**

24 The gut mucolytic specialist *Akkermansia muciniphila* is strongly associated with the integrity of
25 the mucus layer. Mucin glycan utilization requires the removal of diverse protective caps,
26 notably, fucose and sialic acid, but the enzymatic details of this process remain largely unknown.
27 Here, we describe the specificities of ten *A. muciniphila* glycoside hydrolases, which collectively
28 remove all known sialyl and fucosyl mucin caps including those with double sulphated epitopes.
29 Structural analyses revealed an unprecedented fucosidase modular arrangement and explained
30 the exclusive sialyl T-antigen specificity of a sialidase of a previously unknown family and catalytic
31 apparatus. Key cell attached sialidases and fucosidases conferred mucin-binding and their
32 inhibition abolished growth of *A. muciniphila* on mucin. Remarkably, the sialic acid fucose did not
33 contribute to *A. muciniphila* growth, but instead promoted butyrate production by co-cultured
34 Clostridia. This study brings unique mechanistic insight into the initiation of mucin O-glycan
35 degradation by *A. muciniphila* and the nutrient sharing between key mucus-associated bacteria.

36 **Introduction**

37

38 The gut microbiota (GM) exerts a major impact on the host immune and metabolic homeostasis^{1, 2}. Fiber intake promotes a balanced microbiota, whereas a fiber-poor diet is associated with 39 aberrant GM signatures and breach of the gut barrier^{3, 4}. The host's first defense line against 40 microbial insult is the intestinal mucosal barrier that shields epithelial cells from the GM and 41 increases in thickness towards the colon^{5, 6}. Mucins are the main structural and gel-forming 42 scaffolds of the mucosa, which is dominated by Mucin 2 (Muc2) in the colon⁷. Muc2, similarly to 43 other mucins, is an *O*-glycoprotein that is secreted by intestinal goblet cells and consist of up to 44 80% (w/w) glycans⁸.

45 The colonization of mucus and its resistance to proteolytic degradation are attributed to the 46 diversity of the mucin *O*-glycans (>100 structures reported)⁹. These glycan epitopes exhibit 47 longitudinal variations along the gastrointestinal tract (GIT)¹⁰, thereby creating variable adhesion 48 and nutritional niches for the microbiota. In humans, the *O*-glycans in the small intestine and 49 cecum regions are densely fucosylated, with a decreasing gradient toward the distal colon, 50 whereas an increasing gradient of sialylation and sulphation^{9, 10} is observed. A reverse gradient 51 is observed in mice¹¹. Recently, a single extracellular sulphatase was shown to be critical for the 52 growth of *Bacteroides* spp. on densely-sulphated mucin¹². Similarly, presence of a specific 53 sialidase is critical to growth of *Ruminococcus gnavus* on mucin¹³.

54 Only a few GM members can grow on mucin as a sole carbon source^{5, 14}. Atypically, *Akkermansia* 55 *muciniphila* relies solely on mucin and related host-derived glycans for growth¹⁵, which is 56 reflected by its large carbohydrate active enzyme (CAZyme) repertoire¹⁶. *A. muciniphila* has 57 received extensive attention due to its relative abundance in healthy hosts, as opposed to 58 patients of gut inflammatory bowel disease, including Crohn's disease and ulcerative colitis 59 (UC)¹⁷, and obesity¹⁸. Notably, *A. muciniphila*, positive association with Parkinson disease was 60 also reported¹⁹, suggesting complex interactions with the mucus-associated GM, manifested 61 beyond the gut niche²⁰. Remarkably, the molecular details of mucin *O*-glycan deconstruction by 62 *A. muciniphila* exoglycosidases, and especially the sialic acid and fucose decapping apparatus, 63 remain largely an uncharted territory.

64 Here, we used a panel of mucins to characterize the enzymes that collectively grant *A. muciniphila* access to all known fucosyl- and sialyl-mucin epitopes. Biochemical and structural 65 and microbiological studies allowed us to identify the key fucosidases and sialidases and. We also 66 investigated the contribution of the characterized enzyme panel to growth on mucin and on 67 sharing mucin-derived saccharides with Firmicutes members that are known to share the same 68 biogeography with *A. muciniphila*. Our findings promote a mechanistic understanding of initial 69 steps of mucin turnover by *A. muciniphila* and the importance of its unselfish mucin utilization 70 strategy in supporting other members of the mucus-adherent GM community.

71

72 **Results**

75

76 ***A. muciniphila* encodes six divergent fucosidases**

77 The genome of *A. muciniphila* encodes six fucosidases, four assigned into glycoside hydrolase
78 family 29 (GH29) and two into GH95 in the CAZy database²¹. These enzymes are henceforth
79 designated as *AmGH29A* (locus tag Amuc_0010), *AmGH29B* (Amuc_0146) *AmGH29C*
80 (Amuc_0392), *AmGH29D* (Amuc_0846), *AmGH95A* (Amuc_0186) and *AmGH95B* (Amuc_1120)
81 (Supplementary Fig. 1a). All enzymes possess signal peptides, indicating non-cytoplasmic
82 localization (Supplementary Table 1). The GH29-enzymes have variable architectures, with
83 *AmGH29C* and *AmGH29D* being the most complex and sharing two putative carbohydrate
84 binding modules (CBMs) (Supplementary Fig. 1a, Supplementary Fig. 2). The fucosidase catalytic
85 modules exhibit high sequence diversity (Supplementary Fig 1b) and populate hitherto
86 undescribed clusters in the phylogenetic trees of GH29 and GH95 sequences in CAZy
87 (Supplementary Fig. 3).

88 ***Two key enzymes responsible for the defucosylation of mucin and structurally related glycans***

89 We produced and purified all six enzymes and determined their kinetic parameters towards *para*-
90 nitrophenyl- α -L-fucoside (pNPFuc) (Supplementary Table 2).

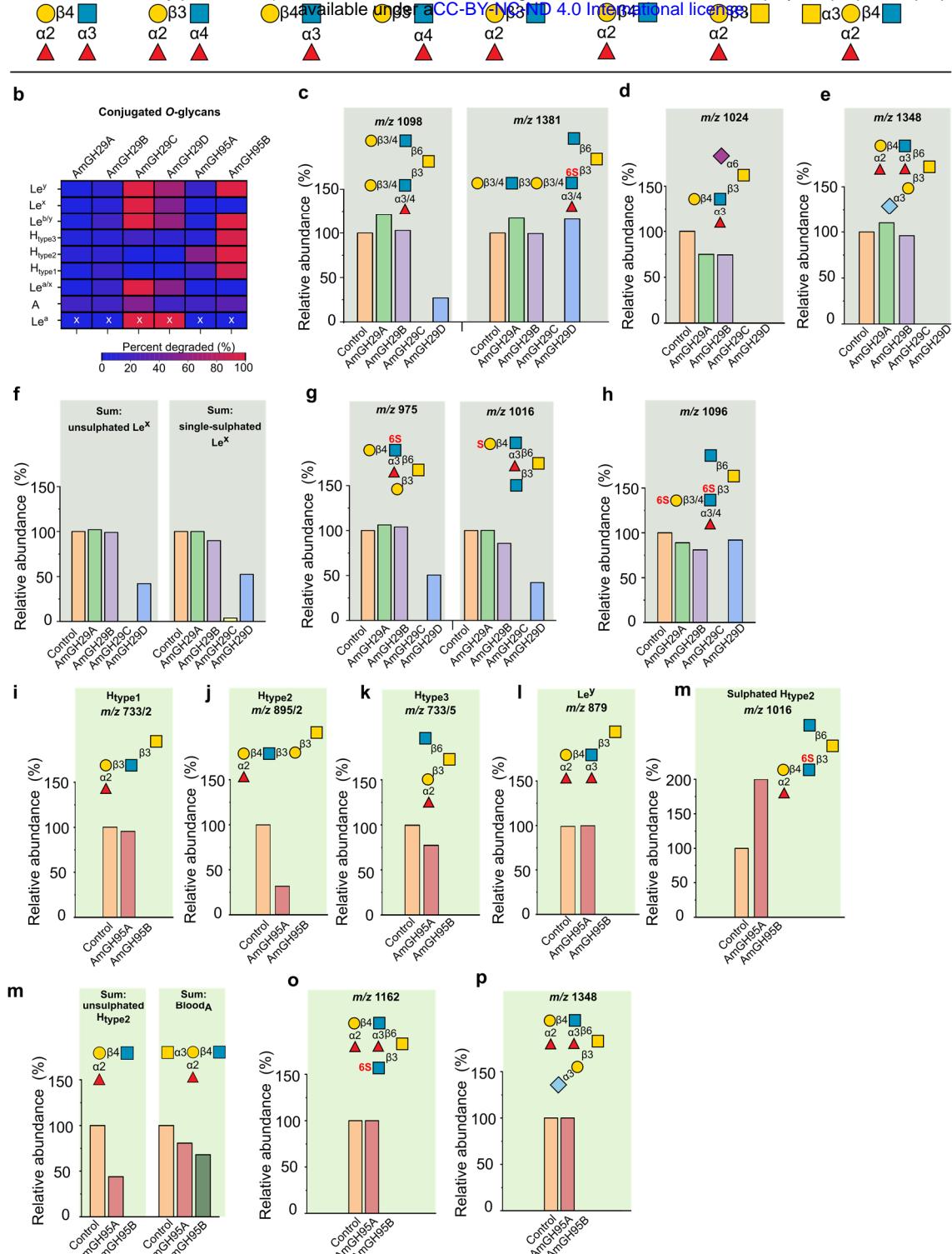
91 Next, we assayed the enzymes against a panel of fuco-oligosaccharides (Supplementary Fig. 4).
92 The main activity of *AmGH29A* and *AmGH29B* was on the Fuc α 1,3GlcNAc disaccharide
93 (Supplementary Fig. 4a). By contrast, *AmGH29C* and *AmGH29D* were active on larger
94 oligosaccharides from mothers' milk (HMOs) or Lewis (Le) epitopes (Supplementary Fig. 4a-d, f-
95 j). Both *AmGH29C* and *AmGH29D* hydrolyze 3-fucosyl lactose (3FL), but only *AmGH29C* can access
96 this motif in the extended structure LNFP V (Supplementary Fig. 4f,k,m). However, the profiles of
97 these two enzymes towards α -1,4-fucosyl in Le^{a/b} motifs were similar (Supplementary Fig. 4j-l).
98 Key differences between *AmGH29C* and *AmGH29D* were the activity of *AmGH29C* but not
99 *AmGH29D* towards the sialyl Le^a tetrasaccharide (Supplementary Fig 4n) and the activity of
100 *AmGH29D* towards 2'FL (Supplementary Fig. 4e).

101 The two GH95 enzymes were active on Fuc α 1,2Gal and 2'FL (Supplementary Fig. 4c,e). Only
102 *AmGH95A* exhibited activity on Fuc α 1,3GlcNAc, but not on the galactosyl-extended Le^x epitope
103 (Supplementary Fig. 4a,h). By contrast, only *AmGH95B* hydrolyzed α 1,2Fuc linkages in the Le^b
104 tetra- and hexasaccharide epitopes (Supplementary Fig. 4i,j) and additionally hydrolyzed α 1,3Fuc
105 linkages in 3FL (Supplementary Fig. 4f). These data indicate that *AmGH95B* possesses a broader
106 substrate range than *AmGH95A*.

107 Hitherto reported regioselectivities in GH29²² and GH95^{23,24} stem from measurements on simple
108 model oligosaccharides. The association of *A. muciniphila* with the mucin niche prompted us to
109 evaluate fucosidase specificities on complex mucin O-glycans.

110 We used a mixture of purified porcine gastric mucin (PGM), porcine colonic mucin (PCM) and
111 bovine fetuin (BF). Despite differences as compared to human intestinal mucins, this substrate

112 combination is powerful due to the large (160 structures) *O*-glycan diversity (Supplementary
113 Table 3) and the presence of dense sulphation and sialylation in PCM similarly to the human
114 counterpart. We evaluated activity on blood group A, H types 1-3 and four Le epitopes (Fig. 1a,b).
115 No reliable activity of *AmGH29A* and *AmGH29B* was observed on the analyzed glycans. By
116 contrast, *AmGH29C* and *AmGH29D* were active on all Le, but not H-epitopes (Fig. 1a,b). Both
117 enzymes could accommodate single fucosylated Le^x and Le^a motifs, as well as double fucosylation
118 (Le^{b/y}). (Fig. 1a,b; Supplementary Fig. 5a-c). *AmGH29D* displayed a lower overall de-fucosylation
119 yield than *AmGH29C* on single (Le^x), double (Le^y) or bifurcated fucosylated-epitopes, as well as
120 core 1-4 structures (Fig. 1a,b, Supplementary Fig. 5a-f). The lack of activity of *AmGH29D* on
121 internal epitopes is consistent with its observed lower efficacy (Fig. 1c).


122 Both *AmGH29C* and *AmGH29D* were active on Le epitopes with a sialylated adjacent branch (Fig.
123 1d,e). In addition, a single sulphation at either the Gal or GlcNAc of Le^x epitopes is tolerated (Fig.
124 1f,g), indicating that mono-sulphation is not restricting de-fucosylation. Notably, only *AmGH29C*,
125 but not *AmGH29D*, showed activity on the double sulphated terminal Le^x epitope (Fig 1h)
126 highlighting the overall broader epitope specificity of *AmGH29C*.

127 *AmGH95A* and *AmGH95B* share the α 1,2-fucosidases activity (Supplementary Fig. 5g-j). However,
128 marked differences in their epitope specificity and tolerance to non-fucosyl substitutions were
129 observed (Fig. 1b). *AmGH95A* is specific for the H2 but lacks activity on H1 and H3 epitopes (Fig.
130 1i-k). The activity of *AmGH95A* is also impaired by double fucosylation, e.g. in Le^y (Fig. 1l) and
131 sulphation (Fig. 1m). The exclusive H type 2-specificity of *AmGH95A* is unprecedented amongst
132 hitherto described fucosidases.

133 By contrast, *AmGH95B* has high activity on all H type epitopes, double fucosylated Le^y structures,
134 sulphated H2 epitopes (Fig. 1i-n), and Le^y epitopes at sulphated (Fig. 1o) or sialylated branches at
135 core structures (Fig. 1p). Both enzymes were sensitive to non-reducing end substitution of the H-
136 antigen (Fig. 1n) and none were active on Fuca1,6-linked core of *N*-glycans (Supplementary Fig.
137 5k).

138 To unambiguously confirm enzyme regioselectivities on mucin-type glycoproteins, we harnessed
139 glyco-engineered CHO cells, which display defined Lewis epitopes. *AmGH29C* and *AmGH29D*
140 showed activity on conjugated Fuca1,3/4 linkages in Le^{a/x} and Le^{b/y} (Supplementary Fig. 6a-d),
141 while *AmGH95B* hydrolyzed Fuca1,2 linkages in conjugated Le^{b/y} epitopes (Supplementary Fig.
142 6c,d), which concurred with our MS-based analyses on mucin.

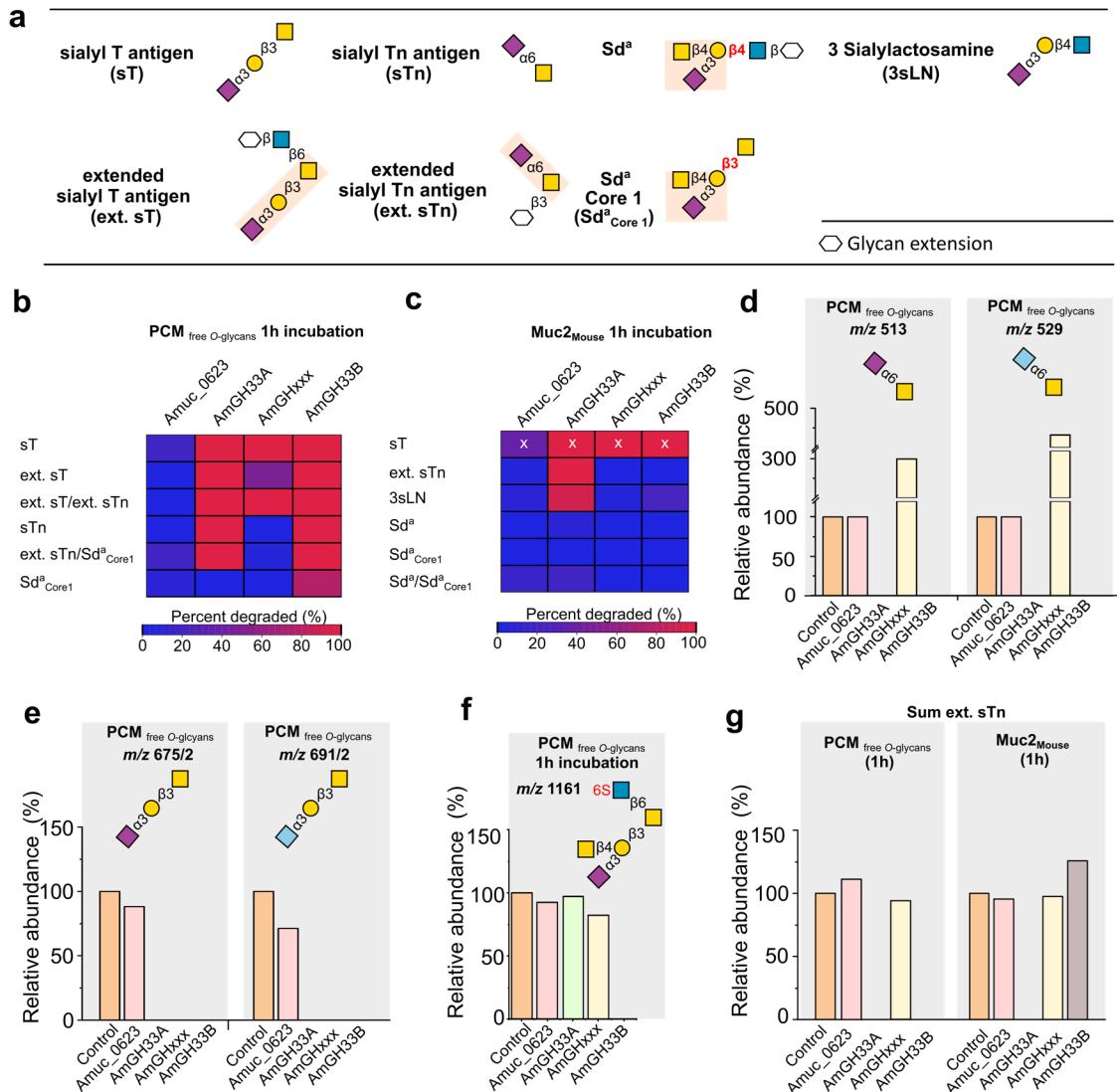
143 In summary, *AmGH29C* and *AmGH95B* resulted in highest overall reduction of α 1,3/4- as well as
144 α 1,2-fucosylation, respectively (Supplementary Table 4) and highest relative activities on HMOs
145 and mucins (Supplementary Table 5). The broad specificity of *AmGH29C* is illustrated by activity
146 on internal fucosylation and double sulphation, whereas *AmGH95B* was distinguished by activity

147 **Fig. 1: The activity profiles of the *A. muciniphila* fucosidases on mucin O-glycans:** **a**, Overview of the fucosylated epitopes present
 148 in the analyzed conjugated O-glycans from intact porcine gastric and colonic mucins as well as fetuin. **b**, The fucosidase activity
 149 heat map on different epitopes. **c**, Activity profiles that reveal the sensitivity of the activity toward the fucosylation position in
 150 the glycan chain. **d-h**, Selected examples illustrating the impact of sulphation (denoted with a red capital "S") and sialyl
 151 substitutions on fucosidase activity. **i-p**, Selected examples that demonstrate the differences in the activity profiles of the α1,2-
 152 fucosidases. Data are from a single experiment. The "x" marked data are obtained from a single glycan structure, attributed to
 153 the low abundance of assigned Le^a epitope based on the MS data. The linkage of the sulphatyl substituent is left out, when the
 154 assignment is not possible based on the MS data. For isobaric glycans structures with identical m/z , the additional number after
 155 the slash (/n) denotes the corresponding structure in the LC-MS data file (see extended data).

156 on all H epitopes and double fucosylation. Collectively, the fucosidase suite allows full removal
157 of mucin fucosyl substituents including from highly sulphated motifs.

158

159 **A. muciniphila sialidases remove all known mucin sialic acid linkages and include a sialyl-T-**
160 **antigen-specific enzyme**


161 The *AmGH33A* (Amuc_0625) and *AmGH33B* (Amuc_1835) are assigned into the CAZy family
162 GH33. Two additional sequences (Amuc_0623 and Amuc_1547), with bacterial-neuraminidase-
163 repeat-like domains that form the catalytic β -propeller fold in GH33 sialidases (Supplementary
164 Fig. 7a), were previously reported as active sialidases, based on an indirect chromogenic assay²⁵.
165 Sequences of Amuc_1547 and its close orthologues populate a separate and distant cluster in the
166 GH33 phylogenetic tree (Supplementary Fig. 7b,c), which together with substitutions in the
167 catalytic residues (detailed below) justified the enzyme encoded by Amuc_1547 (*AmGHxxx*) to
168 be the defining member of the new GHxxx family.

169 We expressed all four enzymes and assayed their activity on 3'-sialyl lactose (3sL), 6'-sialyl lactose
170 (6sL), sialyl-Le^a and on α 2,8-polysialic acid oligomers, which revealed activity for *AmGH33A*,
171 *AmGH33B* and *AmGHxxx*, but not Amuc_0623 (Supplementary Fig. 8).

172 Next, we evaluated the four *A. muciniphila* sialidases against released *N*-glycans from human
173 immunoglobulin G, released *O*-glycans and from PCM, and intact Muc2 from mouse (Muc2_{Mouse}).
174 Sialidase activity was observed for *AmGH33A*, *AmGH33B* and *AmGHxxx* on four abundant sialyl-
175 motifs, but Amuc_0623 activity was not reliably measured (Fig. 2a-c). The active enzymes
176 released both Neu5Ac and the animal-derived *N*-glycolylneuraminic acid (Neu5Gc), from porcine
177 mucin (Fig. 2d-e). The motifs targeted by each enzyme were not dependent on the specific *O*-
178 glycan core (Supplementary Fig. 9a-d).

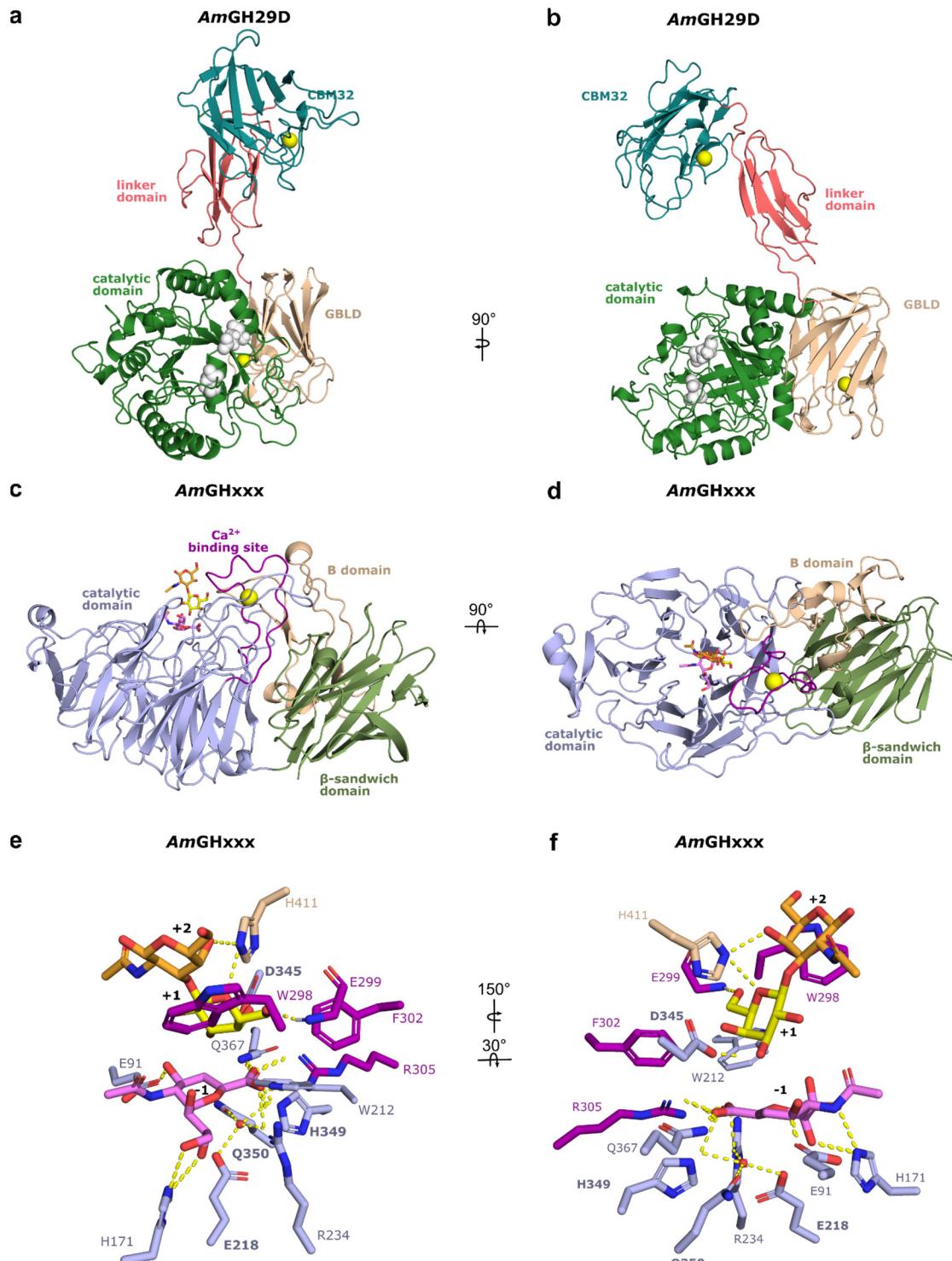
179 Both GH33 enzymes were active on sialyl decorations, *e.g.* in mucin α 2,3- and α 2,6-sialyl linkages
180 on both *O*- and *N*-glycans (Fig. 2b-e; Supplementary Fig. 9e). Striking specificity differences,
181 however, between the two enzymes were observed. Thus, *AmGH33B* was not hindered by the
182 substitution of the galactosyl moiety of Neu5A α 2,3Gal, *e.g.* on Sd^a_{Core1}, as opposed to *AmGH33A*
183 which was inactive on the same motif in released PCM *O*-glycans after 1 h incubation (Fig. 2a,b,f).
184 By contrast, only *AmGH33A* displayed similar efficiency towards the ext. sTn epitope on both
185 PCM released *O*-glycans and Muc2_{Mouse} attached *O*-glycans after 1 h reactions (Fig. 2a-c,g).
186 Similarly, only *AmGH33A* cleaved Neu5A α 2,3Gal in both released PCM *O*-glycans and intact
187 Muc2_{Mouse} after 1 h (Fig. 2b,c, Supplementary Fig. 9f). Our findings illustrate the importance of
188 the sialyl density and glycan context (free/attached) in interrogating enzyme efficiencies on
189 specific *O*-glycan motifs (Supplementary Tables 6 and 7), and merits caution when inferring
190 enzyme specificities based on a single time point on free *O*-glycans.

191

192

Fig. 2: The activity profiles of *A. muciniphila* sialidases. **a**, Overview of sialylated epitopes, as denoted with a lower case “s”, in the analyzed mucins and released mucin O-glycans. **b**, and **c**, Activity heat maps on sialylated epitopes in released porcine colonic mucin (PCM) O-glycans and Muc2 from mouse (Muc2_{Mouse}), respectively after a 1 h incubation. **d**, and **e**, Activity profiles on selected glycans revealing the broad substrate recognition of AmGH33A and AmGH33B towards α 2,3- and α 2,6-linked the Neu5Ac and Neu5Gc (light blue) sialic acid forms. **f**, Selected examples illustrating differences between AmGH33A and AmGH33B. **g**, A comparison of enzyme activity profiles on the sum of sialylated extended Tn epitopes either in free O-glycans from porcine colonic mucin (PCM) or attached O-glycans in Muc2_{Mouse}. All data are from a single experiment. The “x” marked data are obtained from a single glycan structure, due to the low abundance of the sialyl T epitope in the Muc2_{Mouse} sample. Sulphatyl substitutions are denoted with capital S in red and their linkage is left out, if the assignment was not possible based on the MS data.

193


194 Uniquely, AmGHxxx displayed exclusive specificity towards the sialyl-T-antigen, but accepts α 2,6-
 195 sialylation or β 1,6-substitution of the GalNAc unit (Fig. 2a-c,e,g; Supplementary Fig. 9g). Thus,
 196 AmGHxxx is inactive on a substituted Gal unit of the T-antigen, *e.g.* Sd^a epitopes (Fig. 2b,c,f), or
 197 on a different linkage/monosaccharides to the reducing end of the Neu5Aca2,3Gal motif, *e.g.* in
 198 3sLN (Fig. 2b,c, Supplementary Fig. 9f). To our knowledge, this strict specificity is unprecedented
 199 amongst reported sialidases.

200 **AmGH29D adopts a “Cobra strike pose” architecture, previously not observed in fucosidases**
201 Both of the AmGH29C/D enzymes consist of a catalytic N-terminal domain, followed by a
202 predicted galactose binding like domain (GBLD), an unassigned sequence patch, and a C-terminal
203 CBM32 (Supplementary Fig. 1a, Supplementary Fig. 2a,b). Amongst biochemically characterized
204 enzymes, this architecture was only observed in the mucolytic specialists *Bifidobacterium*
205 *bifidum*. Although crystallization attempts of both AmGH29C/D were carried out, we could only
206 determine the structure of AmGH29D, the most complex fucosidase structure to date (Fig 3 a,b).
207 Unique to this structure is that the GBLD domain is joined to a linker domain and a C-terminal
208 CBM32 (Fig 3 a,b, Supplementary Fig. 10a). The linker domain and the CBM32 form an extended
209 structure, which positions the CBM32 binding site above the catalytic domain (Fig 3 a,b). This
210 juxtapositioning of the linker-CBM32 domain relative to the catalytic domain, which resembles a
211 Cobra strike pose, is observed in the sialidase from *Micromonospora viridifaciens* (Supplementary
212 Fig. 10a-c), suggesting a case of convergent evolution to a similar putative mucin-binding motif.
213 The GBLD and the CBM32 share the same fold (Supplementary Fig. 10d), despite less than 22%
214 shared sequence identity (Supplementary Fig. 1b). The position and the chemistry of the putative
215 binding sites of the GBLD and the CBM32 domains are different, suggesting their possible
216 functional divergence (Supplementary Fig. 10e-g). The catalytic site of AmGH29D is similar to the
217 closest characterised counterpart from *Streptococcus pneumonia* (Supplementary Table 8), but
218 differs by being flanked with a flat positively charged surface (Supplementary Fig. 11a),
219 compatible with binding sialylated or sulphated glycans at the mucin surface.
220 To explain the specificity differences between AmGH29C and AmGH29D, we generated an
221 AlphaFold model of AmGH29C based on AmGH29D. Shortening of loops as compared to
222 AmGH29D (Supplementary Fig. 11d-e), results in a more open active site of AmGH29C. This allows
223 the accommodation of sulphated or larger fucosylated substrates that are extended at non-
224 reducing ends, consistent with exclusive activity of AmGH29C on internal fucosylated GlcNAc (Fig
225 1a-c,f; Supplementary Fig. 4k,n).
226

227 ***Structural signatures of the inverting mechanism and strict specificity of AmGHxxx***

228 To explain the strict specificity, we determined three structures of AmGHxxx, one in free form,
229 one bound with the transition-state inhibitor DANA, and one bound to both the T-antigen
230 disaccharide (GNB) and DANA, which provides a mimic for a substrate Michaelis complex. The
231 structure comprises an N-terminal catalytic domain joint to a C-terminal CBM-like domain (Fig. 3
232 c,d). An inserted B domain between β -strands 1 (sheet I) and 2 (sheet II) of the CBM-like domain
233 acts as a bridge by packing onto the catalytic domain via an extensive interface. A long loop in
234 propeller blade 2 forms a Ca^{2+} -binding domain (Fig. 3 c,d). The CBM-like domain occurs uniquely
235 within GHxxx (Supplementary Fig. 12a), with only very distant structural similarities to Galectin
236 galactoside-binding domains (Supplementary Table 10).
237 The catalytic module of AmGHxxx is distantly related to counterparts in GH33 (Supplementary
238 Table 9). The catalytic site comprises a shallow pocket, flanked by a positive electrostatic

239 potential (Supplementary Fig. 13a). The active site is open at one side of the β -propeller due to
240 shorter loops as compared to GH33 enzymes. The Ca^{2+} -binding domain, the B domain and two
241 large loops pack onto the β -propeller to give the enzyme a “sun-chair” architecture (Fig. 3c,d;
242 Supplementary Fig. 13b-f).
243 At the catalytic site, R234 and R305 are shared with GH33, whereas a glutamine (Q367)
244 substitutes the third arginine in the GH33 conserved triad (Fig. 3e, f; Supplementary Fig. 14a).
245 A unique signature is the substitution of the tyrosine catalytic nucleophile in the GH33 family to
246 a glutamine (Q350) that is preceded by a histidine (H349) in *AmGHxxx* (Supplementary Fig. 14b-
247 d). Strikingly, Q350 and an adjacent glutamate (E218), both invariant in GHxxx (Supplementary
248 Fig. 12b c), are potentially hydrogen bonded to a water molecule that overlays with the oxygen
249 in the GH33 catalytic tyrosine. This water is positioned for nucleophilic attack at the C2 of the
250 sialyl (or the inhibitor) at subsite -1 (Fig 1e,f; Supplementary Fig. 14b). Notably, a solvent tunnel
251 potentially provides catalytic water to the enzyme catalytic site (Supplementary Fig. 14e,f),
252 similarly to some exoglycosidases²⁶. An invariant aspartate (D345), unique for GHxxx, is hydrogen
253 bonded to the Gal C3-OH group at subsite +1 (Supplementary Fig. 14b). Based on the data from
254 the founding *AmGHxxx*, we propose, that the inverting mechanism of GHxxx, involves the
255 activation of a water molecule to act as a nucleophile instead of a tyrosine in GH33. The
256 conservation and the position of D324 (Supplementary Fig. 12b c) qualify this residue to be the
257 catalytic acid in the mechanism.
258 To investigate the stereochemical mechanism, the hydrolysis time course of 3'-sialyllactose by
259 *AmGHxxx* was analyzed using real-time NMR spectroscopy. The initially emerging signals were
260 for β -Neu5Ac and α -Neu5Ac, in the reactions catalyzed by *AmGHxxx* and *AmGH33A*, respectively
261 (Supplementary Fig. 15). These data corroborate the proposed inverting mechanism of *AmGHxxx*,
262 contrasting the retaining GH33 family and the larger evolutionary related CAZy clan E.
263 Comparison of free and the ligand bound structures of *AmGHxxx* revealed the flipping of a
264 tryptophan (W298) in the ligand-bound structures (Supplementary Fig. 16a,b). This
265 conformational change positions W277 (56.3 % conserved within GHxxx, Supplementary Fig. 12c
266 b), to stack onto the GalNAc unit of the T-antigen, thereby defining subsite +2. The invariant
267 histidine (H411) from domain B forms potential hydrogen bonds to the Gal and GalNAc units.
268 Thus, W298 and H390 form a “sugar tang” that restricts the T-antigen disaccharide. The galactosyl
269 at subsite +1 stacks onto an invariant tryptophan (W212) and is additionally recognized by two
270 hydrogen bonds (Fig. 3e, f, Supplementary Fig. 12c). Collectively, these aromatic stacking and

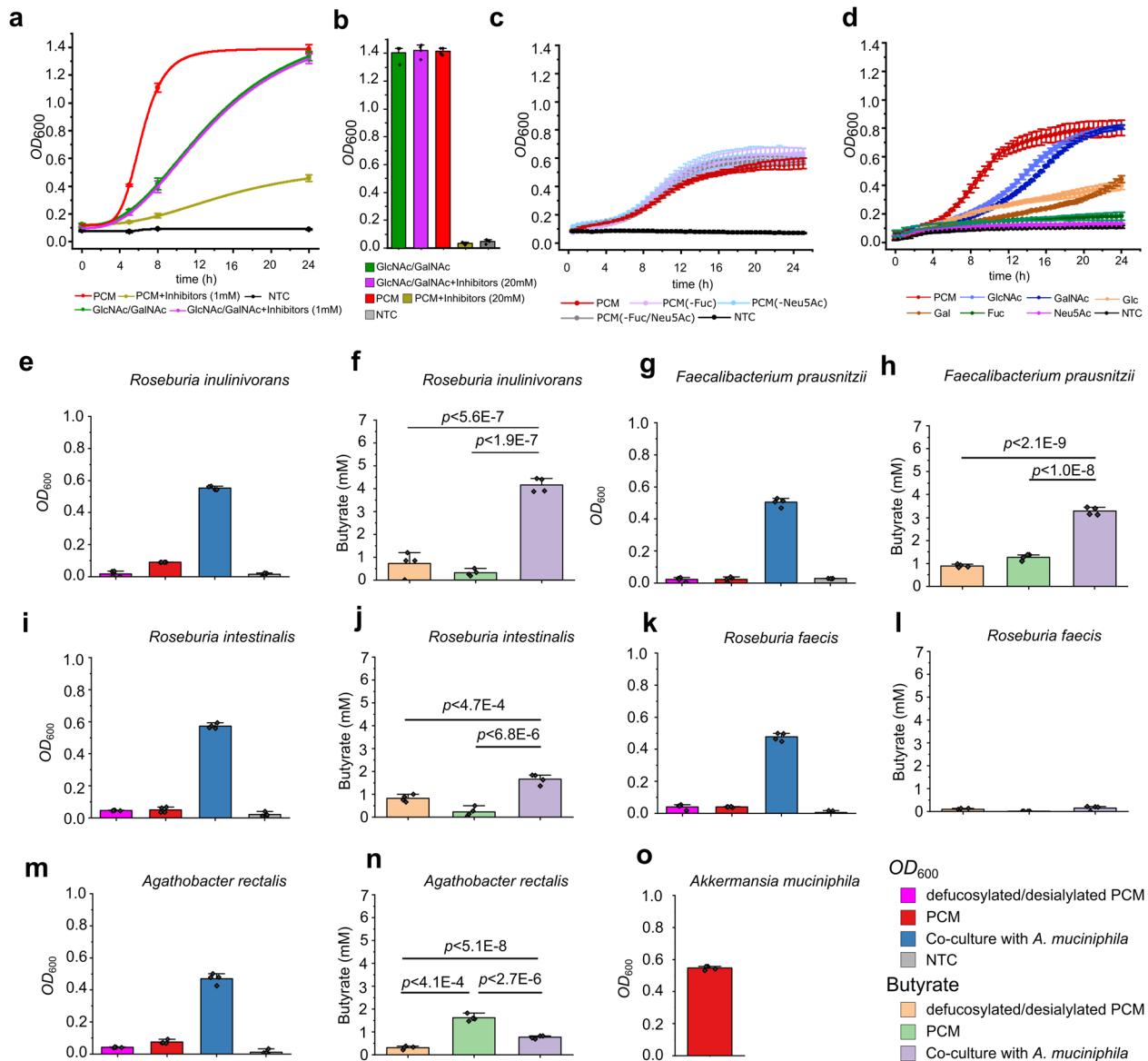
271

272 **Fig. 3: The crystal structures of the *AmGH29D* fucosidase and *AmGHxxx* sialidase from *A. muciniphila*.** **a**, Overall structure of
273 *AmGH29D* comprising a catalytic N-terminal (β/α)8 domain (amino acids 38-362), a predicted β -sandwich galactose binding like
274 domain (GBLD, aa 363-489), a linker domain comprising two β -sheets formed by five antiparallel strands (aa 490-571) and a C-
275 terminal CBM32 (aa 572-704). The inferred catalytic residues (white) and the bound Ca^{2+} ions (orange) are shown as spheres. **b**, A 90° rotation of the view in **a**. **c**, Overall structure of *AmGHxxx*, comprising an N-terminal 6-fold β -propeller catalytic domain (aa
276

277 23-281 and 307-384) with a Ca^{2+} -binding domain, formed by an extended loop between the two inner β -strands in the propeller
278 blade 2 (aa 282-306). The Ca^{2+} (orange sphere) is assigned based on coordination geometry and distance. The catalytic domain is
279 joint to a C-terminal β -sandwich CBM-like domain (residues 457-595) and an inserted B domain (aa 391-456) between the β -
280 strands 1 (sheet I) and 2 (sheet II) of the CBM-like domain. **d**, A 90° rotation of the view in **c**. **e**, The active site of *AmGHxxx* with
281 the inhibitor *N*-Acetyl-2,3-dehydro-2-deoxyneuraminic acid (DANA) at subsite -1, and the Gal and GalNAc units of the T-antigen
282 disaccharide bound at the +1 and +2 subsites, respectively. The same domain colours are used in panels **c-f**. The bold font
283 highlights invariant potential catalytic residues in *GHxxx*.

284
285 polar interactions provide a plausible explanation for the strict specificity of the enzyme.
286 The presence of two potential saccharide surface binding sites (SBSs) is an intriguing observation.
287 The first of these sites is adjacent to the active site, where an inhibitor molecule was modelled,
288 whereas a galactosyl unit was modelled at the second binding site located on the opposite side
289 of the catalytic site (Supplementary Fig. 16c-g). Although both SBSs are conserved in *Akkermansia*
290 sequences that populate a single clade in the phylogenetic tree of *GHxxx*, only moderate
291 conservation was observed for other phylogenetic clusters (Supplementary Fig. 12d-g). The
292 presence of a CBM-like domain and of two potential secondary binding sites are indicative of the
293 association of the enzyme to mucin, which is explored below.

294
295 **Key fucosidases and sialidases display mucin binding and their corresponding activities are cell
296 attached**


297 The presence of putative CBMs prompted us to investigate enzyme binding to PGM. Strikingly,
298 *AmGH29C*, *AmGH29D*, *AmGH33B* and *AmGHxxx*, all containing annotated or putative CBMs, were
299 mainly bound to mucin in pull-down assays (Supplementary Fig. 17a,c-d), whereas no binding or
300 weak binding (e.g. *GH95s*, Supplementary Fig. 17b,d) was shown for the rest of the enzymes.

301 To test localization, we grew cells on PCM and assayed the intact cells and cell lysates against
302 2'FL (*GH95* substrate), Le^{α} trisaccharide (*AmGH29C/AmGH29D* substrate), the disaccharide
303 $\text{Fuc}\alpha 1,3\text{GlcNAc}$ (*AmGH29A/AmGH29B* substrate) and 6sL (*AmGH33A/AmGH33B* substrate).
304 Enzymatic activity on 2'FL, Le^{α} and 6sL, but not $\text{Fuc}\alpha 1,3\text{GlcNAc}$, was detected mainly in the cell
305 fraction (Supplementary Fig. 18), whereas no activity was detected in the cell lysate. Enzymatic
306 activity was also detected in the supernatant, especially at higher OD values and longer
307 incubation times, which could be due to enzyme release due to proteolysis. These results are
308 supportive of the display of the corresponding sialidases and fucosidases on the surface of *A.*
309 *muciniphila* and not in the periplasm.

310
311 ***A. muciniphila* fucosidases and sialidases are crucial for growth on mucin and sharing of mucin
312 derived sugars**

313 In the absence of gene knock-out tools for *A. muciniphila*, we deployed inhibitors to probe the
314 impact of the fucosidases and sialidases on mucin *O*-glycan utilization. First, we evaluated the
315 inhibition potency toward the fucosidases ($\text{IC}_{50}<54 \mu\text{M}$) and sialidases ($\text{IC}_{50}<200 \mu\text{M}$)
316 (Supplementary Tables 11 and 12). *A. muciniphila* cells grew undistinguishably on
317 monosaccharides in presence or absence of 1 mM (Fig. 4a) or 20 mM (Fig. 4b) of each inhibitor.

318 By contrast, growth on mucin (PCM) in the presence of the inhibitors was heavily impaired at 1
319 mM and completely abolished at 20 mM of each inhibitor (Fig. 4a,b; Supplementary Table 13).
320 The results showed that the fucosidase and sialidase suite was critical for initiating mucin
321 deconstruction. Next, we compared the growth of *A. muciniphila* on the intact and de-
322 sialylated/de-fucosylated PCM. Strikingly, the difference in growth profiles was modest (Fig. 4c),
323 indicating that the rate of release of fucose/sialic acid was not the limiting step during growth on
324 mucin. Growth assays showed that sialic acid did not sustain *A. muciniphila* growth, whereas
325 fucose supported very slow growth, in agreement with previous studies^{27, 28} (Fig. 4d). The lack of
326 relevant contribution of the released sialic acid and fucose during growth on mucin highlighted
327 possible nutritional sharing of these monosaccharides with other GM. We performed co-cultures
328 of *A. muciniphila* and other mucus-associated butyrate-producing Clostridia to investigate cross-
329 feeding. Generally, the tested strains grew poorly on mucin, consistent with low butyrate levels
330 in culture supernatants (Fig. 4d-n). Significantly higher butyrate concentrations, however, were
331 observed in co-culture supernatants of all but one strain with *A. muciniphila* (Fig. 4e,g, i and m),
332 which was suggestive of nutritional sharing by *A. muciniphila* to mucus-associated Clostridia.
333 Notably, the butyrate production was highest for *Roseburia inulinivorans* and *Faecalibacterium*
334 *prausnitzii*, in excellent agreement with the growth of both species on sialic acid (Supplementary
335 Fig. 19c). These findings suggest that the decapping enzymes promote direct sharing of their
336 product monosaccharides to other GM, besides their key role for initiating mucin deconstruction
337 and the access of *A. muciniphila* to the underlying glycans.

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356 **Discussion**

357 The modulation of the metabolic and immune systems of the host by *A. muciniphila*^{29, 30}
358 correlates to the relative abundance of this symbiont and its interplay with other mucus-
359 associated bacteria. Remarkably, the molecular mechanisms of mucin glycan degradation³¹ and
360 utilization by *A. muciniphila* remain largely underexplored. Here, we present detailed enzymatic,
361 microbiological and structural analyses, which led to the identification of key glycoside
362 hydrolases that collectively were able to removal all known mucin fucose and sialic acid caps,
363 from mucin *O*-glycans.

364 The prevalence of the genes encoding the key fucosidases and sialidases in different *A.*
365 *muciniphila* strains (Supplementary Table 14), underscores the importance of these enzymes for
366 mucin *O*-glycan utilization. In addition, the sequence divergence of catalytic modules is consistent
367 with the observed distinct enzymatic signature of each enzyme.

368 Interestingly, two of the enzymes, *AmGH95A* and *AmGHxxx*, display exclusive specificities
369 towards a single glycan each, *e.g.* the abundant H2³² and the sialyl-T-antigen epitopes,
370 respectively. To our knowledge, *AmGH95A* and *AmGHxxx*, are the most specific fucosidase and
371 sialidase reported to date. By comparison, *AmGH95B* and *AmGH29C* are highly promiscuous,
372 enabling the removal of multiple complex epitopes, *e.g.* *AmGH95B* targets H1, H2, H3 type and
373 Le^{b/y} antigens (Fig. 1b, i-k) and *AmGH29C* is active on internal fucosylations, sialylated Le^{a/x} and
374 Le^{b/y} epitopes as well as double sulphated motifs (Fig. 1b-h, Supplementary Table 4). The
375 previously not reported ability to hydrolyze fucose from double sulphated motifs, suggests that
376 de-fucosylation by *A. muciniphila* is feasible without prior de-sulphation.

377 The evolution of a specificity gradient that spans mono-epitope-specific to highly promiscuous
378 fucosidases and sialidases, may be driven by the optimization of enzyme affinities (K_m) to
379 promote efficient decapping of highly diverse mucin *O*-glycans to promote growth. The
380 importance of enzyme affinity is also evident from the strong association of *AmGH29C*,
381 *AmGH29D*, *AmGH33B* and *AmGHxxx* to mucin. Mucin-binding of these enzymes correlates to the
382 presence of putative carbohydrate-binding modules and saccharide surface binding sites, both
383 known to increase the enzymatic efficiency of CAZymes towards insoluble glycans^{33, 34}, which also
384 applies to mucus matrix.

385

386 The observed extracellular cell-attached localization of fucosidase and sialidase activities indicate
387 that sialic acid and fucose removal occurs fully extracellularly, which is crucial for further mucin
388 glycan breakdown by the extracellular exo-glycosidases and endo-glycanases of *A. muciniphila*
389 with³¹. This strategy is in excellent agreement with impairment of *A. muciniphila* growth on PCM
390 in the presence of sialidase and fucosidase inhibitors (Fig. 4a,b) and with a critical role of the
391 decapping enzymes in initiating mucin deconstruction. *Bifidobacterium bifidum* extracellular
392 fucosidases and sialidases mediate cross-feeding on mucin with other infant gut bifidobacteria³⁵.
393 Here we show that *A. muciniphila* may assume a similar ecological role amongst the mucus-
394 adherent microbial community in adults, which is dominated by Lachnospiraceae,

395 Oscillospiraceae (Fig. 4d-m) and to a less extent *Bacteroides* species^{36, 37}. The butyrate
396 concentration was commensurate to the growth of co-cultured Clostridia on sialic acid
397 (Supplementary Fig. 19), which unveils the important contribution of this monosaccharide to the
398 altruistic behavior of *A. muciniphila*^{38, 39}. The very poor growth of *A. muciniphila* on fucose (Fig.
399 4d) is also expected to allow sharing this monosaccharide with fucose-utilizing bacteria⁴⁰.
400 *Bacteroides* species typically rely on minimal extracellular processing¹² and subsequent import of
401 large complex glycans for further periplasmic deconstruction⁴¹. By contrast, extracellular mucin
402 decapping by *A. muciniphila*, is compatible with leakage of released sugars to mucus-associated
403 Clostridia that possess efficient ABC transporters of fucosylated-glycans and sialic acid^{39, 42}. The
404 “soft” unselfish strategy is consistent with the observed cross-feeding (Fig. 4e-n) and may
405 partially explain the poor competitiveness of *A. muciniphila* upon increased abundance of other
406 mucolytic Clostridia, e.g. *Ruminococcus* species during dysbiosis¹⁷. Our work brings unique insight
407 into the initial steps of mucin O-glycan deconstruction by *A. muciniphila* and on the mechanism
408 of nutrient sharing with major mucus-associated butyrogenic Clostridia.
409
410

411 **Conclusions**

412 Microbial mucin turnover is of paramount significance for the maintenance of symbiosis between
413 the host and the mucus-associated microbiota as well as for pathologies linked to the excessive
414 breakdown of the mucosal layer. Our findings offer unprecedented insight into the enzymatic
415 apparatus that initiates mucin degradation and promotes nutrients sharing by a key dedicated
416 mucolytic symbiont with the mucus-associated microbiota. The identification of the key
417 enzymatic activities responsible for de-shielding mucin offers possible targets to block mucin
418 collapse to treat downstream inflammatory disorders. The exquisite specificity of *A. muciniphila*
419 sialidases and fucosidases expands the analytical toolbox for unambiguous linkage assignment in
420 MS-based O-glycan analyses or for targeting specific glycan motifs.
421
422

423 **Materials and Methods**

424 **Chemicals and carbohydrates**

425 *p*-Nitrophenyl α -L-fucopyranoside (*p*NP α Fuc), *N*-acetylneuraminic acid (Neu5Ac), α -L-fucose (Fuc),
426 Galactose (Gal), Glucose (Glc), *N*-acetylglucosamine (GlcNAc), *N*-acetylgalactosamine (GalNAc),
427 Fetuin (from fetal bovine serum) and Type III porcine gastric mucin were from Sigma (St. Louis,
428 MI, USA). Lewis antigens (Le^a triose, Le^x triose, Le^b tetraose, Le^y tetraose), 6-Sialyllactose (6sL), 3-
429 Sialyllactose (3sL), 2'-Fucosyllactose (2FL), 3-Fucosyllactose (3FL) were purchased from Dextra
430 (Reading, UK). α Fuc1,3GalNAc, α Fuc1,4GalNAc, α Fuc1,2Gal and α Fuc1,3Gal were from Toronto
431 Research Chemicals (Toronto, Canada), Lacto-*N*-difucopentaose I (LNDFP I), Lacto-*N*-
432 difucopentaose II (LNDFP II), Lacto-*N*-difucohexaose I (LNDFH I), Lacto-*N*-difucohexaose II (LNDFH
433 II), sialylated Le^a triose (sLe^a), Colominic acid, *N*-Acetyl-2,3-dehydro-2-deoxyneuraminic acid

434 sodium salt (DANA), 1-Deoxyfuconojirimycin HCl (DFJ), 4-Methylumbelliferyl *N*-acetyl- α -D-
435 neuraminic acid sodium salt (4MU-Neu5Ac) and Galacto-*N*-biose (GNB) were from Carbosynth
436 (Berkshire, UK). Recombinant P-selectin glycoprotein ligand-1 (PSGL-1) with *O*-glycans that are
437 terminated with Lewis antigens were prepared in Gothenburg University. Antibodies against
438 Lewis antigens were from Sigma and Santa Cruz biotechnology. All purchased chemicals were of
439 analytical grade unless otherwise stated and were used without further purification.

440

441 **Porcine gastric and colonic mucins and mouse colonic mucin**

442 Type III porcine gastric mucin (PGM), purchased from Sigma (St. Louise, MI, USA), was further
443 purified according to Miller et al⁴³. Briefly, 2.5% (w/v) mucin was dissolved in phosphate buffered
444 saline (PBS) pH=7.2 and stirred (20 h, room temperature), followed by centrifugation (10,000x *g*,
445 30 min, 4°C. The soluble mucin-containing supernatant was collected and precipitated by adding
446 ice-cold EtOH to 60% (v/v) twice. Thereafter, the purified soluble mucin was dialyzed against
447 Milli-Q using a 50 kDa molecular weight cut off membrane (SpectraPore7, Rancho Dominguez,
448 CA, USA), freeze dried, and subsequently stored at -20°C until further use. Porcine colonic mucin
449 (PCM) and Muc2 from mouse (Muc2_{Mouse}) were prepared and purified as previously described³⁹,
450⁴⁴.

451

452 **Preparation of *O*-glycan from PGM and PCM and *N*-glycans from human IgG**

453 *O*-glycans from PCM and PGM were released from mucin glycoproteins by reductive β -
454 elimination, before glycans were desalted and dried as previously described⁴⁵. *N*-glycans were
455 released from serum human IgG (Sigma-Aldrich) using PNGase F (CarboClip, Spain). In short,
456 human IgG (1 mg) was reduced (10 mM DTT, 95 °C, 20 min) and alkylated (25 mM iodoacetamide,
457 in dark at RT for 1 h). The *N*-glycans were then released by PNGase F in 50 mM NH₄OAc (pH 8.4),
458 37 °C overnight incubation, before *N*-glycans were reduced (0.5 M NaBH₄ in 20 mM NaOH, 50 °C
459 overnight), desalted and dried⁴⁵.

460

461 **Cloning, expression and purification of putative fucosidases and sialidases**

462 The gene fragments of the glycoside hydrolase families GH29, GH95, GH33 and the putative
463 sialidases with Bacterial-Neuraminidase-Repeat (BNR)-like domains, which encode the mature
464 peptides lacking the signal peptides (as predicted by SignalP 5.0)⁴⁶, were amplified from
465 *Akkermansia muciniphila* ATCC BAA-835 (DSM 22959) genomic DNA using the primers as shown
466 in (Supplementary Table 1). Infusion cloning (Clonetech/takara, CA, USA) was used to clone these
467 amplicons into the Ncol and Xhol sites of the pET28a(+) vector (Novagen, Madison, WI). The
468 resulting recombinant plasmids, which encode the members of GH29, GH33 and GH95 enzymes
469 were transformed into *Escherichia coli* (*E. coli*) DH5 α and transformants were selected on LB
470 plates supplemented with kanamycin (50 μ g mL⁻¹). After full sequencing, the plasmids were
471 transformed into a *E. coli* BL21 (DE3) $\Delta lacZ$ production strain (a kind gift from Professor Takane
472 Katayama, Kyoto University, Kyoto, Japan) and the transformants were grown in 2 L LB medium

473 with kanamycin (50 μ g mL⁻¹) at 30 °C to $OD_{600}\approx 0.5$, followed by cooling on ice for 30 min before
474 induction with isopropyl β -D-1-thiogalactopyranoside (IPTG) to 200 μ M. Thereafter, growth was
475 continued overnight at 18 °C and cells were harvested by centrifugation (10,000 g , 30 min), re-
476 suspended in 10 ml of the purification buffer A (20mM HEPES, 500 mM NaCl, 10mM imidazole,
477 10% (v/v) glycerol, pH 7.5) and disintegrated by one passage through a high pressure
478 homogenizer (SPCH-1, Stansted Fluid Power, Essex, UK) at 1000 bar, followed by incubation for
479 30 min on ice with 5 μ l benzonase nuclease (Sigma). The lysates were then centrifuged for 20 min
480 at 45,000 g and 4 °C and the supernatants were filtered (0.45 μ M) and loaded onto HisTrap HP
481 columns (GE Healthcare, Uppsala, Sweden). Then, bound proteins were washed (13 column
482 volumes, CV) and eluted with the same buffer using an imidazole gradient from 10 to 400 mM in
483 15 CV. Pure protein fractions based on SDS-PAGE analysis were collected, concentrated, applied
484 onto a HiLoad 16/600 Superdex 75 prep grade column (GE healthcare) and eluted by 1.2 column
485 volumes of 20 mM HEPES, 150 mM NaCl, pH 6.8. The fractions containing each enzyme were
486 pooled and concentrated (10 kDa Amicon® Ultra Centrifugal filters, Millipore, Darmstadt,
487 Germany). Pure fractions, as judged by SDS-PAGE analysis, were pooled, concentrated as above
488 and the protein concentration was determined using a Nanodrop (Thermo, Waltham, MA) using
489 the theoretically predicted extinction coefficients at 280 nm (ϵ_{280}) using the ProtParam tool
490 (<http://web.expasy.org/protparam>). Finally, NaN₃ (0.005% w/v) was added to the enzyme stocks
491 that were stored at 4°C for further use.

492

493 **Enzyme activity and inhibition assays on synthetic substrates**

494 All enzyme activity and inhibition reactions were performed in 20 mM HEPES, 150 mM NaCl, pH
495 6.8 unless otherwise state. For fucosidase kinetics, the initial reaction rates of *AmGH29A* (0.5
496 nM), *AmGH29B* (20 nM), *AmGH29C* (400 nM) *AmGH29D* (250 nM), *AmGH95A* (10 nM) and
497 *AmGH29B* (50 nM) were determined on seven *p*NPfuc concentrations in the range 0.25-15 mM
498 (except for *AmGH95B*, which was extended with a 30 mM substrate concentration). The reactions
499 were carried out at 37 °C for 3 hours for all enzymes except *AmGH29D*, which was incubated for
500 4 hours. Aliquots of the reactions were collected at 30 min and 40 min intervals for 3 h and 4 h
501 reactions, respectively, and quenched into Na₂CO₃ (0.4 M final concentration). The concentration
502 of the *p*NP enzymatic product was determined by measuring $A_{405\text{ nm}}$ using a 96-well plate reader
503 (BMG Labtech, Ortenberg, Germany) using a *p*NP standard curve (0 to 140 μ M *p*NP). The
504 Michaelis-Menten equation was fit to the initial rates using Prism 6 (GraphPad San Diego, USA).
505 For determining the inhibition constants (I/C_{50}), reactions were performed continuously at 37 °C
506 for 30 min in a microtiter plate and absorbance ($A_{405\text{ nm}}$, fucosidases) or emission ($E_{450\text{ nm}}$;
507 Excitation_{370 nm}, sialidases) was measured in 60 sec intervals using a 96-well plate reader. The
508 initial reactions rates of *AmGH95A* (0.25 μ M), *AmGH95B* (0.5 μ M), *AmGH29A* (0.5 μ M) *AmGH29B*
509 (0.5 μ M) *AmGH29C* (10 μ M) and *AmGH29D* (10 μ M) were determined using 2 mM *p*NPfuc and
510 Deoxyfuconojirimycin (DFJ) over a concentrations range of 0.1-10 mM (*AmGH29A*, *AmGH29B* and
511 *AmGH29C*) or 1-100 mM (*AmGH95A*, *AmGH95B* and *AmGH29D*). Sialidase inhibition reactions

512 were determined at enzyme concentration of 50 nM, except Amuc_0623 which was assayed at
513 200 nM. The initial rates were determined using 1 mM 4-Methylumbelliferyl *N*-acetyl- α -D-
514 neuraminic acid (4MU-Neu5Ac) and 0.01–1 mM *N*-Acetyl-2,3-dehydro-2-deoxyneuraminic acid
515 (DANA). A Hill equation was fit to the initial rates using OriginPro 2021. All enzyme activity and
516 inhibition reactions were performed in independent triplicates.

517 **Thin-layer chromatography**

518 Thin layer chromatography (TLC) was used to screen the specificity of GH29 and GH95 enzymes
519 towards the fuco-oligosaccharides α -Fuc(1,3)GalNAc, α -Fuc(1,4)GalNAc, α -Fuc(1,3)Gal, α -
520 Fuc(1,2)Gal, 2'FL, 3FL, Le^a triose, Le^x triose, Le^b tetraose, LNDFH I, LNDFH II, LNFP II, LNFP V and
521 sialylated Le^a triose (sLe^a triose) while the GH33, GHxxx and Amuc_0623 putative sialidase where
522 screened on 6sL, 3sL and Colominic acid. Reactions (10 μ L) were carried out using 2 mM of each
523 substrate, 0.5 μ M of each enzyme in 20 mM HEPES, 150 mM NaCl pH 6.8 at 37 °C for 1 h. Aliquots
524 of 2 μ L were spotted on a silica gel 60 F254 plate (Merck, Germany) and the products were
525 separated using a mobile phase of butanol/ethanol/Milli-Q (5:3:2, v/v/v) except for products
526 obtained from 3sL that were separated using a mobile phase of isopropanol/ethyl acetate/Milli-
527 Q (3:2:1, v/v/v). The plates were dried, sprayed with 2 % 5-methylresorcinol, 80 % EtOH and 10
528 % H₂SO₄, all v/v, and visualized by tarring at 300 °C. All enzyme activity reactions analyzed by
529 thin-layer chromatography were performed in independent triplicates.

530

531 **Enzymatic analysis towards recombinant P-selectin glycoprotein ligand-1 (PSGL-
532 1)/immunoglobulin mIgG2b chimeras carrying defined Lewis epitopes**

533 To demonstrate enzymatic activity against intact mucin-type glycoproteins, PSGL-1/mIgG2b
534 chimeras were produced and purified in glyco-engineered CHO cells as previously described⁴⁷. In
535 short, the extracellular portion of PSGL-1 was genetically fused with mouse immunoglobulin G2b
536 creating the PSGL-1/mIgG2b expression plasmid, which was expressed in CHO cells together with
537 plasmids encoding *O*-glycan core enzymes and combinations of fucosyl transferase genes. Thus,
538 CHO cells were programmed to express the Lewis antigens (Le^a, Le^x, Le^b or Le^y, Supplementary
539 Fig. 6) on the mucin-type fusion protein. The produced PSGL-1/mIgG2b were purified from the
540 cell culture supernatants using goat anti-mouse IgG agarose beads (Sigma–Aldrich). Each enzyme
541 (2 μ M) was incubated with beads carrying PSGL-1 glycoprotein (displaying a distinct Le antigens)
542 in 20 mM HEPES buffer 150 mM NaCl pH 6.8 at 37 °C for 3 h in 50 μ L. The beads were boiled in
543 presence of SDS-loading buffer containing 25 mM DTT for 10 min at 95°C. The samples were
544 electrophoretically separated on 8% NuPAGE gels (Invitrogen, Waltham, MA, USA) and thereafter
545 blotted onto PVDF membranes (Immobilon P membranes, 0.45 μ M) according to the
546 manufacturer's manual (Invitrogen). The membrane blots were blocked with phosphate-buffered
547 saline containing 0.2% Tween-20 (v/v, PBS-T) and 3% bovine serum albumin (w/v, BSA), which
548 was also used for the dilution of the following primary mouse antibodies, followed by washing
549 with PBS-T twice for 5 minutes. Then each membrane was incubated with the corresponding
550 primary antibody (mouse IgG anti-Lewis antigen, Sigma–Aldrich, 1:500 dilution) for 1 h at 4°C,

551 washed as above and then HRP-conjugated poly-clonal goat anti-mouse IgM (1:5000 dilution,
552 Sigma–Aldrich) was added for 1 h at 4 °C and lastly washed with PBS-T. Bound secondary
553 antibodies detected by chemiluminescence using the ECL kit according to the manufacturer's
554 instructions (GE Healthcare, Uppsala, Sweden). Finally, membranes were stripped with Restore
555 Western Blot Stripping Buffer (Thermo Scientific) under agitation at room temperature for 20
556 min and re-probed with HRP-conjugated poly-clonal goat anti-mouse IgG Fc (1:5000 dilution,
557 Sigma–Aldrich) for checking the integrity of the mouse IgG2b Fc domain of the fusion protein,
558 then the bound antibody was visualized as above. The following primary mouse antibodies were
559 used: IgG anti-Blood Group Lewis A (7LE) (Santa Group Biotechnology, cat log: sc-51512), IgM
560 anti-Blood Group Lewis B (T218) (Santa Group Biotechnology, cat log: sc-59470), IgM anti-Lewis
561 X antibody: CD15 (C3D-1) (Santa Cruz Biotechnology, sc-19648), IgM anti-Blood Group Lewis Y
562 (F3) (abcam, cat log: ab 3359). The secondary goat antibodies for Lewis A: Peroxidase goat anti-
563 mouse IgG, F(ab')2 (Jackson ImmunoResearch, cat log: 115-035-006) and for Lewis B, X and Y:
564 Peroxidase goat anti-mouse IgM antibody (Sigma-Aldrich A-8786).

565
566 **Enzymatic assay towards glycans from mucin or glycoprotein using ESI-LC MS/MS**
567 Fucosidase activity of GH29 and GH95 enzymes was analyzed on a mixture of intact PCM, PGM
568 and fetuin dot-blotted on PVDF membranes or on previously release *N*-glycans (from human IgG)
569 dot-blotted on membranes. Sialidase activity was assayed using released *O*-glycans from PCM or
570 PGM, Muc2_{Mouse} glycoproteins, or released *N*-glycans (human IgG) were used.

571
572 For dot-blot assays, whole mouse colonic mucin⁴⁸ glycoproteins or released *O*- or *N*-glycans from
573 porcine colonic mucin or from human IgG were transferred to PVDF membrane (Immobilon P
574 membranes, 0.45 µm) using dot blotting apparatus separately (0.1 mg per dot). Each enzyme (50
575 µL, 1.5 µM in 20 mM HEPES buffer with 150 mM NaCl, pH 6.8) was incubated with the substrate
576 dots. For analyzing GH29 and GH95 fucosidases, 24 h incubations were performed, while sialidase
577 activity was tested in 1h (*O*-glycans from PCM and PGM, Muc2_{Mouse} glycoprotein) and 24 h (*O*-
578 glycans from PCM and PGM, Muc2_{Mouse} glycoprotein and *N*-glycans from human IgG) incubations.
579 Afterwards, the residual *O*-linked glycans on the dot were released by reductive β-elimination
580 after rinsing. The released *O*-glycans were desalted, dried as described elsewhere⁴⁵. The resultant
581 glycans were purified by passage through graphitized carbon particles (Thermo Scientific) packed
582 on top of a C18 Zip-tip (Millipore). Samples were eluted with 65% (v/v) ACN in 0.5% trifluoroacetic
583 acid (v/v), dried, and stored at –20 °C until further enzymatic analyses.

584
585 Released glycans were resuspended in 10 µL of Milli-Q water and analyzed by liquid
586 chromatograph-electrospray ionization tandem mass spectrometry (LC-ESI/MS) using a 10 cm ×
587 250 µm I.D. column, packed with 5 µm porous graphitized carbon particles (Hypercarb, Thermo-
588 Hypersil, Runcorn, UK)). Glycans were eluted using a linear gradient 0–40% acetonitrile in 10 mM
589 NH₄HCO₃ over 40 min at a flow rate 10 µL min⁻¹. The eluted *O*-glycans were detected using an LTQ

590 mass spectrometer (Thermo Scientific, San José, CA) in negative-ion mode with an electrospray
591 voltage of 3.5 kV, capillary voltage of -33.0 V and capillary temperature of 300 °C. Air was used
592 as a sheath gas. Full scan (m/z 380-2000, two microscan, maximum 100 ms, target value of
593 30,000) was performed, followed by data-dependent MS² scans (two microscans, maximum 100
594 ms, target value of 10,000) with normalized collision energy of 35%, isolation window of 2.5 units,
595 activation p=0.25 and activation time 30 ms). The threshold for MS² was set to 300 counts. The
596 data were processed using Xcalibur software (version 2.0.7, Thermo Scientific). Glycans were
597 identified from their MS/MS spectra by manual annotation as previously described⁴⁹. Raw data
598 was uploaded on Glycopost Glycopost
599 (<https://glycopost.glycosmos.org/preview/1939229808630f42efa8e7f>). The peak area (the area
600 under the curve, AUC) of glycan structure was calculated using the Progenesis QI software
601 (Nonlinear Dynamics, Waters Corp., Milford, MA, USA). The AUC of each structure was
602 normalized to the total AUC and expressed as a percentage.

603

604 **NMR spectroscopy**

605

606 Substrate solutions (2.5 mM) of 6'-sialyllactose (for AmGH33B) or of 3'-sialyllactose (for
607 AmGHxxx) were prepared in 50 mM MES buffer, pH 6.8 in ²H₂O. A 200 µL aliquot of the substrate
608 solution was transferred into a 3 mm NMR tube and the sample was placed into an 800 MHz
609 Bruker Avance III instrument equipped with a 5 mm TCI cryoprobe and thermally equilibrated to
610 310 K. The sample was tuned, matched, and shimmed in order to allow a rapid monitoring of the
611 AmGHXXX-catalyzed conversion. The reaction was started by the addition of AmGH17X (1 µL, 10
612 µM) or AmGH33B (1 µL, 10 µM) into the NMR tube to a final concentration of 50 nM and mixing
613 briefly before starting the analysis. A time series of one-dimensional ¹H NMR spectra was
614 acquired to follow the reaction in real time. The ¹H NMR spectra sampled 16384 complex data
615 points for an acquisition time of the free induction decay of 1.28 seconds. For each time point,
616 16 transients were summed up with an inter-scan relaxation delay of 2.0 seconds and using two
617 dummy scans per time point, resulting in a time resolution of approximately one min. To validate
618 the assignment of the α-Neu5Ac, the reaction was restarted and an ¹H-¹H TOCSY (2048 × 256
619 complex data points sampling 123 ms and 16 ms in the direct and indirect dimension,
620 respectively) was acquired using a 10 kHz spin lock field during a mixing time of 80 ms. The ¹H-¹H
621 TOCSY spectrum on the reaction mixture containing intermediates of 6'-sialyllactose or 3'-
622 sialyllactose reaction were compared with a reference standard spectrum of Neu5NAc. The NMR
623 data were considered unambiguous when acquired in single time-series experiments. Restarted
624 assays using ¹H-¹H TOCSY confirmed the interpretation. All NMR spectra were acquired and
625 processed with ample zero filling using Bruker Topspin 3.5 pl7 software and were subsequently
626 analyzed with the same software.

627

628 **Crystallization**

629

630 The crystallization of *AmGHxxx* (Amuc_1547) was performed by the sitting drop method using a
631 mosquito robot (mosquito Xtal3, SPT labtech, Melbourn, United Kingdom) to mix 0.15 μ L
632 reservoir: 0.15 μ L enzyme (30.5 mg mL⁻¹) and the plates were thereafter incubated at 18°C. The
633 first crystals appeared after two weeks in the Index screen from Hampton Research (Aliso Viejo,
634 CA, USA), condition 82 (0.2 M MgCl₂·(H₂O)₆, 0.1 M BIS-TRIS pH 5.5, 25% w/v Polyethylene glycol
635 3,350). After optimization, the best crystals were obtained under the same condition as above,
636 but using a lower concentration (18% w/v) of Polyethylene glycol 3,350. To evaluate if *O*-glycans
637 from PCM could facilitate the crystallization of the enzyme with ligand, the crystallization
638 protocol and condition as described above was used to co-crystallize *AmGHxxx* with PCM. Thus,
639 the enzyme (30.5 mg mL⁻¹) and PCM (4% (w/v) prepared in Milli-Q) were mixed at room
640 temperature at a 1:1 ratio (v/v) (resulting in a final PCM concentration of 2% w/v) before the
641 enzyme-glycan solution was mixed with the reservoir as described above and plates were
642 incubated at 18 °C. Enzyme crystals were flash-frozen in liquid nitrogen in nylon loops using 25%
643 ethylene glycol as cryoprotectant. Of note, the crystals from the co-crystallization appeared only
644 after hours were much larger rhombus-shaped as compared to the crystals in the lack of added
645 glycans.

646 Similarly, *AmGH29D* (25 mg mL⁻¹) was co crystallized with the same glycan mixture as above and
647 mixed with the glycan mixture (1:1 v/v). The first crystals appeared in the Molecular Dimensions
648 structure screen 2 (Holland, OH, USA) condition 28 (0.1M HEPES pH 7.5, 20% PEG 10,000) at 18
649 °C. After optimization, the best diffraction data were obtained by mixing *AmGH29D* (25 mg mL⁻¹)
650 with glycans at 1:0.8 ratio (v/v) at room temperature, and reservoir condition 0.1M HEPES pH
651 7.7 16% PEG 10,000, and thereafter incubation of the plate at 16 °C. Diffraction data were
652 collected at the BioMAX beamline at the MAX IV synchrotron radiation facility (Lund, Sweden)
653 and the P13 EMBL Beamline at the DESY (Hamburg, Germany). The data was processed with XDS
654 and the structures were refined using PHENIX.refine⁵⁰ and manually rebuilt using Coot⁵¹
655 (Supplementary Tables 15 and 16). Structure validation was performed using MolProbity⁵².
656

657 **Fucosidase and sialidase activity measurements on whole cells and in culture supernatant**

658 For localizing fucosidase and sialidase activity, *A. muciniphila* was grown in three biological
659 triplicates anaerobically in 8 mL YCFA medium containing 0.5% (w/v) PCM for 16h. For preparing
660 whole cells, 2 mL culture were harvested (5000 g, 10min at 4 °C) and cells were washed three
661 times (5000 g, 10 min at 4 °C) with 1 mL ice cold 10 mM sodium phosphate, 150 mM NaCl, pH=6.5
662 buffer before resuspension to $OD_{600}=0.5$ and $OD_{600}=8$ in the same buffer. Cell lysates and cell
663 debris were prepared by lysing (Qsonica sonicator, 5 mm probe tip, 4 x 15 s at 4 °C) OD_{600} adjusted
664 cell suspensions (prepared as described above), separating insoluble cell debris from the clarified
665 lysates (20,000 g for 30 min at 4 °C) and resuspension of the cell debris in the same buffer to
666 equal volumes as the whole cell preparations to $OD_{600}=0.5$ and $OD_{600}=8$. For released proteins to
667 culture supernatants, cells were removed (20,000 g for 20 min at 4 °C) from 2 mL cultures, the
668 supernatants were exchanged three times to the same buffer as above (Amicon Ultra 0.5 mL, 10
669 kDa cut off (Merck, Darmstadt, Germany) (10,000 g for 20 min at 4 °C) before adjusting to the
670 volumes of the whole cell preparation to $OD_{600}=0.5$ and $OD_{600}=8$. Next, thin layer
671 chromatography was used to screen for fucosidase active towards 2FL, Le^a trisaccharide and
672 Fuc(α1,3)GlcNAc as well as for sialidases activity towards 6sL. Reactions were initiated out by

673 mixing 10 μ L of 5 mM of each substrate in the same buffer as above and 10 μ L whole cell, cell
674 debris, cell lysate or supernatant solutions at 37 °C. Aliquots of 2 μ L were spotted on a silica gel
675 60 F254 plate (Merck, Germany) after 1 h, 2 h, 3 h, and 4 h and the products were separated, and
676 the plates developed as described above. The growth assays were performed in three biological
677 triplicates and a single TLC analysis was performed for each of the three biological triplicates.
678

679 **Mucin binding assay**

680 Binding of *A. muciniphila* GH29/GH95 fucosidases and GH33/GHxxx sialidases to PGM and to
681 Avicel (used as negative control) was assessed by a pull-down assay, followed by sodium dodecyl
682 sulfate polyacrylamide gel electrophoresis (SDS-PAGE). In short, insoluble PGM and Avicel were
683 washed three times (20,000 g, 5 min, 4 °C) with 1 mL standard buffer (20 mM HEPES buffer with
684 150 mM NaCl, pH 6.8), before resuspension to a concentration of 1 % (w/v) in the above buffer.
685 Next, 50 μ L of the PGM or Avicel suspensions were mixed with 50 μ L of fucosidases (0.1 mg mL⁻¹),
686 sialidases (0.1 mg mL⁻¹) or bovine serum albumin (0.1 mg mL⁻¹) used as negative control),
687 incubated for 20 min on 4 °C and centrifuged (20,000 g, 10 min, 4 °C). Resulting supernatants
688 were transferred into fresh 1.5 mL reaction tubes and PGM/Avicel pellets were washed twice
689 (20,000 g, 5 min, 4 °C) with 100 μ L buffer, before resuspension in 100 μ L standard buffer. Next,
690 100 μ L protein solution was supplemented with 35 μ L SDS sample buffer (NuPAGE) and the
691 samples were boiled for 10 min, loaded (15 μ L) into a gel, and analyzed using SDS-PAGE. The
692 binding assay was performed in two independent replicates and SDS-PAGE analyses were
693 performed once per independent replicate.
694

695 **Growth experiments, co-culture experiments and butyrate quantification**

696 For single strain monocultures *Roseburia inulinivorans* DSM 16841, *Roseburia intestinalis* DSM
697 14610, *Roseburia faecis* DSM 16840, *Agathobacter rectalis* DSM 17629, *Faecalibacterium*
698 *prausnitzii* DSM 17677 and *Akkermansia muciniphila* DSM 22959 were grown anaerobically at
699 37°C in YCFA media using a Whitley DG259 Anaerobic Workstation (Don Whitley Scientific).
700 Growth media were supplemented with 0.5% (w/v) carbohydrates sterilized by filtration (soluble
701 carbohydrates, 0.45 μ m filters) or autoclaving (mucins, 15 min at 121 °C) and cultures were
702 performed in at least three independent biological replicates unless otherwise indicated. For the
703 inhibition of *A. muciniphila* fucosidases and sialidases, culture media were supplemented with
704 the sterile filtered (0.45 μ m filters) DFJ and DANA inhibitors to a final concentration of 1 mM or
705 20mM each. Bacterial growth was monitored by measuring OD_{600} and for growth experiments
706 performed in airtight sealed microtiter plates (sealing tape for 96-well plates, Thermo Scientific),
707 a Power Wave XS microplate reader (BioTek Agilent) was used to monitor OD_{600} . For sialic acid
708 and fucose quantification in culture supernatants aliquots (30 μ L) were collected, mixed with 100
709 μ L 0.9% (w/v) NaCl, before cells were removed by centrifugation (20,000 g, 4 °C 10 min). Next,
710 supernatants were frozen at -20 °C before further analysis.

711 For co-culture experiments, *R. inulinivorans*, *R. intestinalis*, *R. faecis*, *A. rectalis*, *F. prausnitzii*
712 and *A. muciniphila* were grown in 10 mL YCFA to mid-late exponential phase (OD_{600} =0.6-0.7).
713 From these pre-cultures, equal amounts of cells (OD_{600}) were used to inoculate 1 mL fresh YCFA
714 medium supplemented with 0.5% (w/v) of PCM to a start OD_{600} =0.01. All cultures were
715 performed in four independent biological replicates and growth was followed (OD_{600}) by

716 sampling at 0 and 24h. Samples (200 μ L) from time 0 h and after 24 h were collected for SCFA
717 quantification. The samples were centrifuged (20,000 g , 4 °C 10min) and the resulting
718 supernatants diluted with 200 μ L 5 mM H₂SO₄ before sterile filtrated (0.45 μ m filters) and storage
719 at -80 °C for further analysis.

720 Butyrate in culture supernatants was quantified as previously described³⁹. In short, an HPLC
721 coupled to a refracting index detector (RID) and diode array detector (DAD) on an Agilent HP
722 1100 system (Agilent) was used to quantify standards of butyric acid (0.09-25 mM) (prepared in
723 5 mM H₂SO₄) and 20 μ L of standard or filtered (0.45 μ M filter) culture supernatants samples from
724 three biological replicates were injected on a 7.8 \times 300 mm Aminex HPX-87H column (Biorad)
725 combined with a 4.6 \times 30 mm Cation H guard column (Biorad). Elution was performed with a
726 constant flow rate of 0.6 mL min⁻¹ and a mobile phase of 5 mM H₂SO₄. Standards were analyzed
727 as above in three technical triplicates.

728 **Quantification and statistical analysis:**

729 For determining the statistical significance between butyrate concentrations in the different
730 cultures, a one-Way ANOVA and Tukey post hoc test was used (OriginPro 2021). Statistical
731 parameters, including values of n and p-values are reported in the figures and figure legends. The
732 data are expressed as arithmetic means with standard deviations (SD), unless otherwise
733 indicated. The statistical significance between growth levels reached on mucin/monosaccharides
734 with and without the inhibitors was evaluated using an unpaired two-tailed Student's t-test using
735 OriginPro 2021.

736

737 **Bioinformatics**

738 SignalP (v.5.0), PSORTb (v.3.0.3), TMHMM (v.2.0) were used for signal peptide and
739 transmembrane domain prediction. CAZy, dbCAN meta server and InterPro were used under
740 default settings to analyses size and modular organization of proteins. For phylogenetic analyses,
741 sequences data sets were generated by identified orthologues via batch BLASTP searches using
742 both *A. muciniphila* GH29, GH95 fucosidases or GH33/BRN repeat-like domain sialidases and
743 those sequences that are defined as characterized in the particular GH families within the CAZy
744 database as queries, against 7950 (meta)genomes from the human gut microbiota (retrieved
745 from the PATRIC (v.3.6.12) database, date: November 2021, inclusion criteria: host:
746 "human/*Homo sapiens*", isolation source: "feces/fecal sample", genome quality "good").
747 Redundancy in sequence datasets was reduced using CD-HIT server under default settings and
748 with a sequence identity cut off = 0.95. Structural guided protein sequence alignments were
749 performed using PROMALS3D and by using structurally characterized orthologues from the
750 particular CAZy GH families. Phylogenetic trees were constructed using the MAFFT server
751 interfaced (<https://mafft.cbrc.jp/alignment/software/>) (neighbor-joining algorithm and with
752 bootstraps performed with 1000 replicates) and afterwards visualized in iTOL. The prevalence of
753 the different enzymes was analysed using 177 *A. muciniphila* good quality genomes from the
754 same database. Identification of closest structural characterized orthologues were done using
755 the Dali server⁵³. Orthologues to AmGHxxx were identified by a BlastP search against the

756 nonredundant protein sequence and by using *AmGHxxx* (Amuc_1547) as query sequence.
757 Redundancy of resulting sequencing (e-value cut off: 1e-25) was reduced using the CD-HIT server
758 under default settings and with a sequence identity cut off = 0.90 and the redundancy reduced
759 dataset was structurally guided aligned using the PROMALS3d server (used protein structures:
760 *AmGHxxx*, and structurally characterized orthologues from the GH33). *AmGHxxx* orthologues
761 were selected in resulting alignment by the presence of the conserved catalytic machinery as
762 displayed by *AmGHxxx*. Alphafold modelling was performed using ColabFold⁵⁴ on its web
763 interface

764 (<https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb>)
765 under standard settings (template mode on: (Structure of *AmGH29D*); msa_mode: MMseq2,
766 pair_mode: unpaired and paired; model_type: auto, num_recycles: 3). Sequence logos were
767 generated using the Seq2Logo⁵⁵ web interface using standard settings (Logo type: Kullback-
768 Leiber; Clustering method: Hobohm1; clustering threshold: 0.63 and 200 pseudo counts).

769

770 **Data availability** Data that support the findings of this study are available in the Article and the
771 Supplementary material.

772

773

774

775

776

777

778

779

780 **References**

- 781 1. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes
782 the immune system. *Science* **352**, 539-544 (2016).
- 783 2. Koh A, Bäckhed F. From Association to Causality: the Role of the Gut Microbiota and Its
784 Functional Products on Host Metabolism. *Mol Cell* **78**, 584-596 (2020).
- 785 3. Zou J, *et al.* Fiber-Mediated Nourishment of Gut Microbiota Protects against Diet-Induced
786 Obesity by Restoring IL-22-Mediated Colonic Health. *Cell Host & Microbe* **23**, 41-53.e44 (2018).
- 787 4. Desai MS, *et al.* A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and
788 enhances pathogen susceptibility. *Cell* **167**, 1339-1353.e1321 (2016).
- 789 5. Tailford LE, Crost EH, Kavanaugh D, Juge N. Mucin glycan foraging in the human gut microbiome.
790 *Front Genet* **6**, No. 81 (2015).
- 791 6. Martens EC, Neumann M, Desai MS. Interactions of commensal and pathogenic microorganisms
792 with the intestinal mucosal barrier. *Nat Rev Microbiol* **16**, 457–470 (2018).
- 793 7. Johansson MEV, Larsson JMH, Hansson GC. The two mucus layers of colon are organized by the
794 MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. *Proc Natl
795 Acad Sci U S A* **108**, 4659-4665 (2011).
- 796 8. S J Gendler a, Spicer AP. Epithelial Mucin Genes. *Annu Rev Physiol* **57**, 607-634 (1995).
- 797 9. Robbe C, Capon C, Coddeville B, Michalski J-C. Structural diversity and specific distribution of O-
798 glycans in normal human mucins along the intestinal tract. *The Biochemical journal* **384**, 307-316
799 (2004).
- 800 10. Robbe C, *et al.* Evidence of regio-specific glycosylation in human intestinal mucins: presence of
801 an acidic gradient along the intestinal tract. *J Biol Chem* **278**, 46337-46348 (2003).
- 802 11. Holmen Larsson JM, Thomsson KA, Rodriguez-Pineiro AM, Karlsson H, Hansson GC. Studies of
803 mucus in mouse stomach, small intestine, and colon. III. Gastrointestinal Muc5ac and Muc2
804 mucin O-glycan patterns reveal a regiospecific distribution. *Am J Physiol Gastrointest Liver
805 Physiol* **305**, G357-363 (2013).
- 806 12. Luis AS, *et al.* A single sulfatase is required to access colonic mucin by a gut bacterium. *Nature*
807 **598**, 332-337 (2021).

819

820 13. Owen CD, *et al.* Unravelling the specificity and mechanism of sialic acid recognition by the gut
821 symbiont *Ruminococcus gnavus*. *Nat Commun* **8**, 2196 (2017).

822

823 14. Glover JS, Ticer TD, Engevik MA. Characterizing the mucin-degrading capacity of the human gut
824 microbiota. *Sci Rep* **12**, 8456 (2022).

825

826 15. Derrien M, Collado MC, Ben-Amor K, Salminen S, de Vos WM. The mucin degrader *Akkermansia*
827 *muciniphila* is an abundant resident of the human intestinal tract. *Appl Environ Microbiol* **74**,
828 1646-1648 (2008).

829

830 16. van Passel MWJ, *et al.* The genome of *Akkermansia muciniphila*, a dedicated intestinal mucin
831 degrader, and its use in exploring intestinal metagenomes. *PLoS One* **6**, 8 (2011).

832

833 17. Png CW, *et al.* Mucolytic bacteria with increased prevalence in IBD mucosa augment *in vitro*
834 utilization of mucin by other bacteria. *Am J Gastroenterol* **105**, 2420-2428 (2010).

835

836 18. Derrien M, Belzer C, de Vos WM. *Akkermansia muciniphila* and its role in regulating host
837 functions. *Microb Pathog*, (2016).

838

839 19. Nishiwaki H, *et al.* Meta-Analysis of Gut Dysbiosis in Parkinson's Disease. *Mov Disord* **35**, 1626-
840 1635 (2020).

841

842 20. Sugihara K, *et al.* Mucolytic bacteria license pathobionts to acquire host-derived nutrients during
843 dietary nutrient restriction. *Cell Rep* **40**, 111093 (2022).

844

845 21. Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes
846 database (CAZy) in 2013. *Nucleic Acids Res* **42**, D490-D495 (2014).

847

848 22. Wu H, *et al.* Fucosidases from the human gut symbiont *Ruminococcus gnavus*. *Cell Mol Life Sci*,
849 (2020).

850

851 23. Katayama T, *et al.* Molecular cloning and characterization of *Bifidobacterium bifidum* 1,2- α -L-
852 fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95). *J Bacteriol* **186**,
853 4885-4893 (2004).

854

855 24. Klontz EH, *et al.* Structure and dynamics of an α -fucosidase reveal a mechanism for highly
856 efficient IgG transfucosylation. *Nat Commun* **11**, 6204 (2020).

857

858 25. Huang K, *et al.* Biochemical characterisation of the neuraminidase pool of the human gut
859 symbiont *Akkermansia muciniphila*. *Carbohydr Res* **415**, 60-65 (2015).

860

861 26. Møller MS, *et al.* Enzymology and structure of the GH13_31 glucan 1,6- α -glucosidase that
862 confers isomaltooligosaccharide utilization in the probiotic *Lactobacillus acidophilus* NCFM. *J
863 Bacteriol* **194**, 4249-4259 (2012).

864

865 27. Ottman N, *et al.* Genome-acale Model and omics analysis of metabolic capacities of
866 *Akkermansia muciniphila* reveal a preferential mucin-degrading lifestyle. *Appl Environ Microbiol*
867 **83**, e01014-01017 (2017).

868

869 28. Kostopoulos I, *et al.* *Akkermansia muciniphila* uses human milk oligosaccharides to thrive in the
870 early life conditions in vitro. *Sci Rep* **10**, 14330 (2020).

871

872 29. Bae M, *et al.* *Akkermansia muciniphila* phospholipid induces homeostatic immune responses.
873 *Nature*, 1-6 (2022).

874

875 30. Cani PD, Knauf C. A newly identified protein from *Akkermansia muciniphila* stimulates GLP-1
876 secretion. *Cell Metabolism* **33**, 1073-1075 (2021).

877

878 31. Crouch LI, *et al.* Prominent members of the human gut microbiota express endo-acting O-
879 glycanases to initiate mucin breakdown. *Nat Commun* **11**, 4017 (2020).

880

881 32. Hakomori S. Antigen structure and genetic basis of histo-blood groups A, B and O: their changes
882 associated with human cancer. *Biochimica Et Biophysica Acta-General Subjects* **1473**, 247-266
883 (1999).

884

885 33. Gilbert HJ, Knox JP, Boraston AB. Advances in understanding the molecular basis of plant cell
886 wall polysaccharide recognition by carbohydrate-binding modules. *Curr Opin Struct Biol* **23**, 669-
887 677 (2013).

888

889 34. Cockburn D, *et al.* Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with
890 focus on glycoside hydrolase families 13 and 77-a mini-review. *Biologia* **69**, 705-712 (2014).

891

892 35. Egan M, Motherway MOC, Ventura M, van Sinderen D. Metabolism of sialic acid by
893 *Bifidobacterium breve* UCC2003. *Appl Environ Microbiol* **80**, 4414-4426 (2014).

894

895 36. Li H, *et al.* The outer mucus layer hosts a distinct intestinal microbial niche. *Nat Commun* **6**, 8292
896 (2015).

897

898 37. Daniel N, Léchner E, Chassaing B. Host/microbiota interactions in health and diseases-Time for
899 mucosal microbiology! *Mucosal Immunol* **14**, 1006-1016 (2021).

900

901 38. Chia LW, *et al.* Deciphering the trophic interaction between *Akkermansia muciniphila* and the
902 butyrogenic gut commensal *Anaerostipes caccae* using a metatranscriptomic approach. *Antonie Van Leeuwenhoek* **111**, 859-873 (2018).

904

905 39. Pichler MJ, *et al.* Butyrate producing colonic Clostridiales metabolise human milk
906 oligosaccharides and cross feed on mucin via conserved pathways. *Nat Commun* **11**, 3285
907 (2020).

908

909 40. Schwab C, Ruscheweyh HJ, Bunesova V, Pham VT, Beerenwinkel N, Lacroix C. Trophic
910 Interactions of Infant *Bifidobacteria* and *Eubacterium hallii* during L-Fucose and Fucosyllactose
911 Degradation. *Front Microbiol* **8**, 95 (2017).

912

913 41. Martens EC, Chiang HC, Gordon JI. Mucosal glycan foraging enhances fitness and transmission of
914 a saccharolytic human gut bacterial symbiont. *Cell Host & Microbe* **4**, 447-457 (2008).

915

916 42. Severi E, Rudden M, Bell A, Palmer T, Juge N, Thomas GH. Multiple evolutionary origins reflect
917 the importance of sialic acid transporters in the colonization potential of bacterial pathogens
918 and commensals. *Microb Genom* **7**, (2021).

919

920 43. Miller RS, Hoskins LC. Mucin degradation in human colon ecosystems: Fecal population densities
921 of mucin-degrading bacteria estimated by a most probable number method. *Gastroenterology*
922 **81**, 759-765 (1981).

923

924 44. Skoog EC, Sjöling Å, Navabi N, Holgersson J, Lundin SB, Lindén SK. Human gastric mucins
925 differently regulate *Helicobacter pylori* proliferation, gene expression and interactions with host
926 cells. *PLoS One* **7**, e36378 (2012).

927

928 45. Schulz BL, Packer NH, Karlsson NG. Small-scale analysis of O-linked oligosaccharides from
929 glycoproteins and mucins separated by gel electrophoresis. *Anal Chem* **74**, 6088-6097 (2002).

930

931 46. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from
932 transmembrane regions. *Nat Methods* **8**, 785-786 (2011).

933

934 47. Löfling JC, Holgersson J. Core saccharide dependence of sialyl Lewis X biosynthesis.
935 *Glycoconjugate J* **26**, 33-40 (2008).

936

937 48. Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. The inner of the two
938 Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. *Proc Natl Acad Sci U S A*
939 **105**, 15064-15069 (2008).

940

941 49. Jin C, *et al.* Structural diversity of human gastric mucin glycans. *Mol Cell Proteomics* **16**, 743-758
942 (2017).

943

944 50. Afonine PV, *et al.* Towards automated crystallographic structure refinement with phenix.refine.
945 *Acta Crystallogr D Biol Crystallogr* **68**, 352-367 (2012).

946

947 51. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. *Acta*
948 *crystallographica Section D, Biological crystallography* **66**, 486-501 (2010).

949

950 52. Adams PD, *et al.* PHENIX: a comprehensive Python-based system for macromolecular structure
951 solution. *Acta Crystallographica Section D-Biological Crystallography* **66**, 213–221.

952

953 53. Holm L, Laakso LM. Dali server update. *Nucleic Acids Res* **44**, W351-355 (2016).

954

955 54. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making
956 protein folding accessible to all. *Nat Methods* **19**, 679-682 (2022).

957

958 55. Thomsen MCF, Nielsen M. Seq2Logo: a method for construction and visualization of amino acid
959 binding motifs and sequence profiles including sequence weighting, pseudo counts and two-
960 sided representation of amino acid enrichment and depletion. *Nucleic Acids Res* **40**, W281-W287
961 (2012).

962

963 **Acknowledgements** The study was funded by the Ministry of Higher Education and Scientific Research of
964 Iraq through a PhD scholarship for B.S. Additional funding was from the Independent Research Fund
965 Denmark, Natural Sciences grant 1026-00386B for M.A.H. The NMR spectra were recorded at the NMR
966 Center DTU, supported by the Villum Foundation. Saromics Biostructures AB (Dr. Maria Håkansson) are
967 thanked for initial crystallization data. We acknowledge MAX IV Laboratory for time on Beamline BioMax
968 under Proposal 20200120 Research conducted at MAX IV, a Swedish national user facility, is supported by
969 the Swedish Research council under contract 2018-07152, the Swedish Governmental Agency for
970 Innovation Systems under contract 2018-04969, and Formas under contract 2019-02496 and we
971 acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision
972 of experimental facilities. Parts of this research were carried out at P13 and we would like to thank Isabel
973 Bento for assistance in data collection. Beam time was allocated for proposal(s) MX846. The authors would
974 like to thank Professor Bernard Henrissat for his kind input and discussion on the defining member of
975 GHxx.

976 **Author contributions** B.S., E.N.K. and M.A.H. conceptualized the research and provided funding. M.A.H.
977 led the study and wrote the manuscript with B.S. and M.J.P. B.S. cloned and produced the enzymes for
978 the initial TLC and LC-MS analysis. B.S. and C.J. performed the enzymatic LC-MS analyses. B.S., M.J.P., C.J.
979 and N.G.K. analyzed and interpreted the glycomic LC-MS data. B.S., J.L. and J.H. performed and interpreted
980 the enzyme activity on recombinant PSGL1. H.W., A.M.G. and N.J. performed and analyzed the fucosidase
981 kinetic assays. M.J.P. and S.M. designed the NMR analysis, which was carried out by S.M, who also
982 generated the NMR analysis figure. M.J.P. performed the microbiology growth and inhibition assay, with
983 help from T.S.N. The structural biology work was carried out by H.S., T.S.N. and J.P.M. The final version of
984 the figures (except for the NMR analysis) was generated by M.J.P. All authors contributed to editing the
985 manuscript and accept the present findings and conclusions.

986 **Competing interests** The authors declare no competing interests.