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Abstract
The hippocampal-entorhinal system uses cognitive maps to represent spatial knowledge and other
types of relational information, such as the transition probabilities between objects. However,
objects can often be characterized in terms of different types of relations simultaneously, e.g.
semantic similarities learned over the course of a lifetime as well as transitions experienced over
a brief timeframe in an experimental setting. Here we ask how the hippocampal formation handles
the embedding of stimuli in multiple relational structures that differ vastly in terms of their mode
and timescale of acquisition: Does it integrate the different stimulus dimensions into one
conjunctive map, or is each dimension represented in a parallel map? To this end, we reanalyzed
functional magnetic resonance imaging (fMRI) data from Garvert et al. (2017) that had previously
revealed an entorhinal map which coded for newly learnt statistical regularities. We used a triplet
odd-one-out task to construct a semantic distance matrix for presented items and applied fMRI
adaptation analysis to show that the degree of similarity of representations in bilateral
hippocampus decreases as a function of semantic distance between presented objects. Importantly,
while both maps localize to the hippocampal formation, this semantic map is anatomically distinct
from the originally described entorhinal map. This finding supports the idea that the hippocampal-
entorhinal system forms parallel cognitive maps reflecting the embedding of objects in diverse

relational structures.
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Introduction
The hippocampal-entorhinal system builds rich models of the world called cognitive maps that
account for the relationships between locations, events, and experiences (e.g., Behrens et al., 2018;
Moser, Kropff, & Moser, 2008; O’Keefe & Nadel, 1978; Tolman, 1948). Abstracting and
organizing relational information in this way facilitates flexible behavior, enabling generalization
and inference. Beyond classical findings on the importance of cognitive maps for spatial
navigation (e.g., Burgess, Maguire, & O’Keefe, 2002; Ekstrom & Ranganath, 2018; O’Keefe &
Nadel, 1978), they are also thought to organize the relationships between objects (Constantinescu,
O’Reilly, & Behrens, 2016; Garvert, Dolan, & Behrens, 2017; Garvert, Saanum, Schulz, Schuck,
& Doeller, 2021; Morton, Schlichting, & Preston, 2020, Theves, Fernandez, & Doeller, 2019,
2020; Vigano, Rubino, Di Soccio, Buiatti, & Piazza, 2021), to represent temporal distances
(Bellmund, Deuker, & Doeller, 2019; Bellmund, Deuker, Montijn, & Doeller, 2022; Burgess,
Maguire, & O’Keefe, 2002; Schapiro, Kustner, & Turk-Browne, 2012; Solomon, Lega, Sperling,
& Kahana, 2019), and to structure knowledge in the context of social cognition (Park, Miller, Nili,
Ranganath, & Boorman, 2020; Son, Bhandari, & Feldmanhall, 2021; Tavares et al., 2015). While
cognitive mapping is thus proposed to be a universal, domain-unspecific coding principle to
systematically organize knowledge (Behrens et al., 2018; Bellmund, Gérdenfors, Moser, &
Doeller, 2018; Stachenfeld, Botvinick, & Gershman, 2017), it is unclear how the brain handles
stimuli embedded in multiple relational structures that are very distinct in terms of their mode and
timescale of acquisition. Does the hippocampal-entorhinal system form one conjunctive map that
integrates similarities along the different stimulus dimensions or does it form anatomically

separable maps for each stimulus dimension?
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In Garvert et al. (2017), participants acquired new relational knowledge about everyday
objects that were already embedded in semantic structures. Here, participants were trained on
object sequences generated from a pseudo-random walk along a hidden graph. Within the
hippocampal—-entorhinal system, the neural representations of the presented objects reflected the
link distance on the graph (Garvert et al., 2017). In this situation, besides the newly learned
transitional probabilities between objects, participants can be assumed to have explicit knowledge
about the semantic relationships between the same objects (e.g., rabbit and dog are both animals)
as acquired over the course of their lifetime. We conjectured that prior semantic knowledge about
objects would be simultaneously mapped in the same system, which also represents knowledge
about transition probabilities.

Here we used a triplet odd-one-out task (Hebart, Zheng, Pereira, & Baker, 2020) to
construct a model of object similarity. We matched the stimuli used in Garvert et al. (2017) with
photographs of the same objects which have different visual features. This allowed us to isolate
the semantic relationships, which reflect high-level conceptual knowledge acquired from
experience, from low-level perceptual attributes of the specific objects (Rosch & Lloyd, 1978;
Tversky, 1977), while maintaining the richness of the visually perceived stimuli. Using fMRI
adaptation analysis on the data by Garvert et al. (2017), we found evidence consistent with a map
of semantic relationships between objects that precisely localized to the hippocampus. Although
both maps were represented in the hippocampal-entorhinal system, this semantic map was
anatomically distinct from the previously described entorhinal map, which coded for newly learnt
statistical regularities. By showing the hippocampal formation maps distinctive types of
relationships simultaneously in parallel maps, our results thus demonstrate that the hippocampal

formation does not form conjunctive maps that integrate similarities across distinct stimulus
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1 dimensions. Instead — at least in situations where the mode and timescale of acquisition are very

2 distinct — different stimulus dimensions are organized in anatomically separable maps.

4 Results

5 23 human participants were trained on object sequences whose transition probabilities followed a

6  discrete, non-spatial graph (Figure 1A, Garvert et al. 2017). Without being consciously aware of

7  the statistical regularities, participants’ neural activity in the hippocampus and entorhinal cortex

8 reflected the transitional relationships they had experienced between the objects on a subsequent

9 day (Figure 1B, 3A). However, the brain may not only represent the newly learned statistical

10  regularities, but also the semantic relationships between the objects acquired over the course of a

11 lifetime. Thus, we asked whether this information is also mapped in the same system.

A Day 1 - Implicit training

! 2 4
Trial transitions drawn from random walks along the grid

Outside the scanner
12 Orientation judgment

13

B Day 2 - Test

>—>9

N\
Random trial transitions

In the fMRI scanner
Did the preceding object have a patch?
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Figure 1. Experimental design. (A) Graph structure used to generate stimulus sequences on day
1. Trial transitions were drawn from random walks along the graph. (B) Objects on reduced graph
presented to participants in the scanner on day 2. Trial transitions were random. In both sessions,
participants performed simple behavioral cover tasks. Figure adapted from Garvert et al. (2017).
To address this question, we measured the semantic relationship between these objects using a
triplet odd-one out task, where participants were shown three objects on each trial and asked to
select the image that was the least similar to the other two (Figure 2A, Hebart et al., 2020). By
repeatedly varying the third object for a pair of target objects, their similarity could be assessed
in a wide range of different contexts. We first asked a separate group of 128 participants online
to rate the similarities of all 31 objects used in the original study. We then computed object
similarity as the probability of participants choosing two objects together, irrespective of the
context imposed by the third object. To separate the semantic relationships between objects from
the perceptual similarities, we matched our objects (Figure 2B, top rows) to corresponding real-
world photographs of the same objects in the THINGS database (Figure 2B, bottom rows; Hebart
et al., 2019). The THINGS database shows photographs of objects embedded in a natural
environment as opposed to simple line drawings of stereotypical objects used in our fMRI study.
In this way, the shared perceptual similarity between objects in these two data sets should be
reduced. The similarity of objects in the THINGS database was assessed by 5,301 participants in
an independent study using the same triplet odd-one-out task, in the context of a total of 1,854
objects (Hebart et al., 2020). The similarity ratings obtained for our objects and the
corresponding objects in the THINGS database were highly correlated (Spearman’s Rho = .89, p
<.001, Figure 2C) as expected if semantic relations are preserved across datasets.

We regressed the matched similarity matrix (x-axis, Figure 2C) onto our original

similarity matrix (y-axis, Figure 2C). By doing this, we were able to separate the variance into
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two parts: (1) the part that could be explained by an independent measure of object similarity
obtained from a matched set of stimuli, and (2) the part that could not be explained by the
independent measure. Although semantic and perceptual features are unlikely to be fully
separable in this way, we consider the first part to primarily reflect the semantic relationships
between our objects that are preserved across different ways of visualizing objects (hereafter:
semantic distance); while the second part reflected a combination of features that are not
accounted for in terms of semantics, including perceptual similarities (hereafter: residual
distance). To visualize the most faithful two-dimensional representation of distances between
objects, we applied multidimensional scaling (MDS) to the two resulting distance matrices. The
semantic MDS reveals that the similarity ratings led to the emergence of object category clusters
(e.g., fruit, animals, man-made objects) and replicates well-known distinctions between
“animate-inanimate” and “natural - man-made” (Hebart et al. 2020, Figure 2D). The residual
distance continued to express differences between man-made and natural objects, however the
overall arrangement was less structured (Figure 2E). Neither the semantic distance nor the
residual distance was correlated with link distance (semantic: Spearman’s Rho mean = .03, SD
= .12, range = -.25 — .30, t22 = 1.04, p = .31); residual: Spearman’s Rho mean =-.03, SD = .09,

range = -.22 — .15, to =-1.52, p = .14).
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Figure 2. Semantic distance constructed using the triplet odd-one-out task. (A) An example
trial of the triplet odd-one-out task. The task measures object similarity as the probability of
participants choosing two objects together, irrespective of the context imposed by the third object
(Hebart et al., 2020). (B) Stimuli used in the odd-one-out task. Top rows: all 31 stimuli from the
original study; bottom rows: a subset of stimuli from the THINGS database, matched with the 31
object stimuli used in the original study. The rating of the matched objects is done in the context
of a total of 1,854 objects (Hebart et al., 2020). (C) Correlation between similarity ratings based
on our own stimuli and ratings based on the corresponding stimuli from the THINGS database
(Spearman’s Rho = .70, p <.001). (D) Visualization of the 31 objects’ semantic distance in a two-
dimensional space according to multi-dimensional scaling (MDS). (E) 2D MDS visualization of
the 31 objects’ residual distance.
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Following the approach adopted in the original study, we exploited fMRI adaptation
(Barron, Garvert, & Behrens, 2016; Grill-Spector, Henson, & Martin, 2006) to investigate the
representational similarity for different objects. fMRI adaptation relies on the observation that the
repeated activation of the same population of neurons leads to a suppressed response. In this way,
the amount of suppression can serve as a proxy for the similarity of the underlying neural
representations. In line with the decrease in fMRI adaptation as a function of link distance observed
in the entorhinal cortex (Garvert et al. 2017), we reasoned that in areas representing object
relationships (e.g., semantic relationships), fMRI adaptation should scale with the corresponding
distance measures (i.e., semantic distance). We included link distances, semantic distance, and
residual distance as parametric regressors in the same GLM and looked for brain regions whose
fMRI responses to each object decreased as a linear function of these distance measures to the
preceding object.

We expected both the semantic information and the statistical regularities to be mapped in
the hippocampal formation. Therefore, we focused our analysis on regions within an anatomical
mask comprising bilateral entorhinal cortex, subiculum, and hippocampus (see mask used for
small-volume correction in Supplementary material S1). Areas outside these regions were only
considered significant if they survived whole-brain correction.

The results replicated our original finding of the link distance effect after accounting for
the semantic distance and the residual distance. The fMRI adaptation analysis showed a cluster
bilaterally in the entorhinal cortex (Figure 3A), with the left, but not the right peak surviving small-
volume correction within the entorhinal-hippocampal mask (family-wise error (FWE) corrected at
peak level, left peak 12 = 4.44, p = .029, [-18, -19, -25], right peak > = 3.50, p = .17, [21, -22, -

25]). Critically, we also observed a semantic distance effect in the bilateral hippocampus (Figure
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3B), which was significant in the right hemisphere in the same entorhinal-hippocampal mask (left
peak 22 =4.10, p = .06, [-27, -34, -10], right peak 722 = 4.69, p = .019, [24, -31, -10]). No region
showed fMRI adaptation effects covarying with residual distance (all ps > .99, FWE corrected on
the cluster level, no suprathreshold cluster).

When we assessed object dissimilarity using our own stimuli, a measure that encompasses
not only semantic, but also perceptual and other types of object relationships, and used this as a
predictor in our fMRI adaptation analysis, we identified a cluster in the visual cortex, whereas a
hippocampal cluster surpassed the cluster-defining threshold, but did not survive correction for
multiple comparisons (Supplementary Material S2). This is consistent with the view that object
similarity ratings are strongly influenced by both perceptual and semantic features (Rosch &
Lloyd, 1978; Tversky, 1977).

While the link distance and the semantic distance are both represented in the
hippocampal formation, they were located in two non-overlapping clusters within this region
(Figure 3C). To investigate this at a more fine-grained level, we defined two functional regions
of interest (ROIs): (1) a bilateral ROI in the entorhinal cortex defined by the link distance effect
(Figure 3A, hereafter: EC ROI), and (2) a bilateral ROI in the hippocampus defined by the
semantic distance effect (Figure 3B, hereafter: HC ROI). We used these two ROIs (both
thresholded at p < .01, uncorrected) to extract parametric estimates from the opposite contrast.
As shown in Figure 3D, the individual semantic distance effect extracted from the EC ROI and
the link distance effect extracted from the HC ROI were not significantly different from 0O

(semantic: f2 = -0.25, p = .81; link: 122 = 0.54, p = .60).
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Figure 3. Statistical and semantic relationships are represented in non-overlapping clusters
in the hippocampal-entorhinal system. (A) Whole-brain analysis showing a decrease in fMRI
adaptation with link distance in the entorhinal cortex, when link distance, semantic distance and
residual distance are included in the model. (B) Whole-brain analysis showing a decrease in fMRI
adaptation with semantic distance in the hippocampus, when link distance, semantic distance and
residual distance are included in the model. (C) Link distance effect (red) and semantic distance
effect (blue) are represented in non-overlapping clusters. Whole-brain results are displayed using
Slice Display (Zandbelt, 2017) using a dual-coding data visualization approach (Allen, Erhardt, &
Calhoun, 2012), with color indicating the parameter estimates and opacity the associated ¢
statistics. Solid and dotted contours outline statistically significant clusters for the link and the
semantic effects, respectively. (D) Bottom: The two ROIs defined based on the link distance effect
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in the entorhinal cortex (in red) and the semantic distance effect in the hippocampus (in blue). Top:
boxplot of the parameter estimates for the link distance and semantic distance effects extracted
from the two ROIs. The thick horizontal line inside the box indicates the median, and the bottom
and top of the box indicate the first and third quartiles of each condition. Each dot represents one
participant. The plot is for visualization only, since the contrast used for defining the ROIs is not
independent from the interaction effect of interest here. Both (A) and (B) are thresholded at p < .01,
uncorrected for visualization.

Together, our results suggest that both recently learned statistical regularities of which
participants have no conscious awareness, as well as long-term semantic relationships that are
explicitly accessible and acquired over the course of a lifetime, are represented in the hippocampal
formation simultaneously, albeit in different subregions: While transition probabilities are

represented in more entorhinal regions, semantic relationships are represented in more

hippocampal regions.

Discussion
The brain forms cognitive maps of the relationships between landmarks that help an animal
navigate their physical environment (Burgess et al., 2002; Ekstrom & Ranganath, 2018; O’Keefe
& Nadel, 1978; Tolman, 1948). Previous studies have shown that the same organizing principle
also applies to other non-spatial types of relational information (Constantinescu et al., 2016;
Garvert et al., 2017; Garvert et al. 2021; Morton et al., 2020; Theves et al, 2019, 2020; Vigano et
al, 2021). For example, when participants acquire new knowledge about the relationships between
objects by being exposed to experimentally generated object sequences, the hippocampal
formation extracts the associated transition structure and stores it as a cognitive map (Garvert et
al. 2017). However, it is also the case that participants already have existing knowledge about the
semantic relationships between these objects acquired over an entire lifetime. Here we show that

this prior knowledge is also simultaneously mapped in the same neural system that codes for newly

12
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learned structural information. This suggests a common framework for the representation of
relational knowledge that extends beyond relationships that can be extracted from the statistics of
sequences we experience in the short term, with knowledge acquired over vastly different time
frames (an hour on the previous day as opposed to an entire lifetime) organized in similar ways.

Cognitive mapping is proposed to be an organizing principle that underlies our ability to
generalize and make inferences (Behrens et al., 2018). Here we show that the hippocampal
formation extracts the embedding of a stimulus in multiple relational structures even when neither
stimulus feature is directly task relevant. The representation of both a statistical map and a semantic
map in the same system is remarkable, given their very different timescales and modes of
acquisition (i.e., implicit vs. explicit learning). However, while the two relational structures are
represented in the same neural system, they are not represented in overlapping voxels, suggesting
that the brain extracts separable relational structures in parallel rather than integrating multiple
structures in one compositional map (Spiers, 2020). A representation of separable maps could be
useful in situations where different stimulus dimensions can become relevant for generalization at
different times, enabling the hippocampus to guide generalization flexibly depending on the task
demands (Garvert et al., 2021). Our finding that a semantic map is represented in the hippocampus
is also consistent with previous findings that hippocampal activity reflects distances in semantic
spaces (Estefan et al., 2021; Romero, Barense, & Moscovitch, 2019; Solomon et al., 2019).
Notably, we decoded the semantic map even though we did not explicitly manipulate the semantic
similarity of the stimuli and this information was not task-relevant, demonstrating how prevalent
the representation of relational information is in the hippocampus.

Interestingly, the statistical map is found in the entorhinal cortex whereas the semantic map

is represented in the hippocampus. One potential reason for this segregation may relate to a

13
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difference in the “age” of the acquired regularities. Whereas the statistical regularities were learnt
on the day prior to scanning, the semantic relationships were acquired over the course of one’s
lifetime. One possibility is that relational memories might transition from the entorhinal cortex
(“new” knowledge) to the hippocampus (“old” knowledge), a suggestion that however contradicts
the conventional view that memories are first encoded in hippocampus and later represented in the
neocortex in a more permanent form of storage (Dudai, Karni, & Born, 2015; Marr, 1971).
Alternatively, the segregation of the two maps might reflect differences in the learning process by
which statistical versus semantic relational knowledge is acquired. The formation of a statistical
map requires learning transitional probabilities between sequential states (Whittington,
McCaffary, Bakermans, & Behrens, 2022). Entorhinal grid cell activity has been suggested to
reflect a principal component decomposition of predictive maps, or successor representations
(Stachenfeld, Botvinick, & Gershman, 2014; Stachenfeld et al., 2017). A representation of the
transition structure in this region is consistent with this account of grid cell function. Conversely,
semantic knowledge is not necessarily acquired in a sequential fashion and might instead reflect
common associations or co-occurrences between objects, a representation much better suited to
putative coding principles underlying hippocampal place cell firing.

In sum, our study shows that the hippocampal-entorhinal system extracts diverse relational
structures in which a stimulus is embedded. Both the semantic and the statistical maps are
separately and simultaneously represented even when neither structure is task relevant. This allows
relevant knowledge to be flexibly selected at a later timepoint in order to guide goal-directed

behavior in novel situations (Behrens et al., 2018; Spiers, 2020; Whittington et al., 2020).

14
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Materials and Methods

fMRI study

23 human participants (15 men, meanage = 23.5, SDage = 3.7, rangeage 18-31) were trained on object
sequences whose transitions followed a pseudo-random walk along a graph (Figure 1A). The graph
structure was the same for all participants, with the link distance between objects on the graph
ranging from one to four. For each participant, a subset of 12 objects were selected from a total of
31 objects used in the study, and randomly assigned to the 12 nodes on the graph. Objects within
the same semantic categories were avoided to be assigned to the same participant. In the scanning
session, 7 out of the 12 training objects were used (Figure 1B) to reduce the total number of

stimulus—stimulus transitions and thereby increase statistical power.

Behavioral experiment of object similarity

Participants

A separate group of 128 workers from the online crowdsourcing platform Amazon Mechanical
Turk took part in a triplet odd-one-out task (55 men, meanage = 42.6, SDage = 11.9, rangeage 20-70).
All workers were located in the United States and provided informed consent. The online research
was approved by the Office of Human Research Subject Protection and conducted following all

relevant ethical regulations, and the workers were compensated financially for their time.

Stimuli and task
The 31 objects in the original study (Garvert et al., 2017) were used in the triplet odd-one-out task.
All images depict colored and shaded objects and were selected from the “Snodgrass and

Vanderwart” database (Rossion & Pourtois, 2004).
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The task was carried out in sets of 20 trials. Participants could choose how many sets they
would like to take part in. On average, participants performed 140.63 trials (min = 20, max = 1460),
with a median RT of 2221 ms. On each trial, participants were shown three object images side by
side and were asked to select the image that was the least similar to the other two (Figure 2A).
Each object triplet and the order of stimuli were chosen randomly, but such that after collection of
the entire data set each cell in the 31 x 31 similarity matrix had been sampled at least once. The
object similarity was defined as the probability p(i,j) of the participants choosing objects i and j to

belong together, irrespective of context (Hebart et al., 2020).

fMRI data analysis
Computation of the parametric regressors
For each participant, we compute a link distance matrix and three matrices describing object
relations (i.e., object dissimilarity, semantic distance, residual distance, explained below).
Whereas the link distance matrix (values range from 1 to 4) was identical for all participants
(Figure S2A, left panel), the object similarity matrices were unique for each participant (Figure
S2A, right panel). To turn object similarities into a distance measure, we computed object
dissimilarities by subtracting the similarity values from 1. Therefore, a number close to 1 means
that two objects are dissimilar to each other, whereas a number close to 0 means the objects are
very similar to each other.

The object dissimilarity matrix was derived directly from the triplet odd-one-out task
described above. Given that each participant received a different set of object stimuli in the
training, we standardized the individual 12 * 12 dissimilarity matrices for each participant and

used the z-score values as parametric regressors in the fMRI analysis.
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To isolate semantic relationships, we made use of an independent similarity rating from a
different dataset (Hebart et al., 2020). The rationale is that the part of variance that can be explained
by an independent rating reflects prior semantic knowledge that is independent of the precise visual
display of a particular object. The independent rating is based on 1,854 images from the THINGS
database (Hebart et al., 2019) which depicts photographs of objects embedded in a natural
background, rated by a total of 5,301 participants using the same triplet odd-one-out task. From
the 1,854 images, we selected 31 pictures (Figure 2B) that depict the same objects as the 31 objects
in the original study of Garvert et al. (2017) and computed a sub-matrix of these 31 objects. Since
each fMRI participant was trained on 12 out of the total 31 stimuli, we linearly regressed for each
participant the 12 x 12 dissimilarity matrix based on object images from the THING database (X
in the regression below, Hebart et al., 2020) onto the 12 x 12 dissimilarity matrix based on object
images from the original fMRI experiment (Y in the regression, Garvert et al., 2017). Both matrices
were z-scored, therefore no intercept was included in the regression.

Y ~ B * X + residual

We consider  * X to reflect the variance of object dissimilarity that could be explained by
an independent rating, likely to capture mostly semantic relationships. In contrast, the residual
values reflect the variance that is not shared across different visual object stimuli, including
specific perceptual features.

To visualize the object relatedness acquired from the triplet odd-one-out task, we
performed multidimensional scaling (MDS) on the dissimilarity matrices. In the output MDS
(Figures 2D, 2E, S2B), objects are arranged on a two-dimensional space, where the Euclidean
distances reflect the dissimilarities between objects as well as possible. Note that MDS can only

be performed on matrices with positive entries. We therefore subtracted the minimum value of the
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matrix and added 1. The addition of constants does not affect the resulting visualization of

distances.

JMRI adaptation analysis

We performed two event-related generalized linear models (GLMs) to analyze the fMRI data. In
the GLM for the main analysis, we included three parametric regressors which corresponded to
the link distance (defined as the minimum number of links between the pairs of objects; i.e.
distance 1, 2, or 3) and the semantic and residual distance derived from the ratings of the triplet
odd-one-out task between the object on trial t and the preceding object on trial t-1. In the GLM for
the supplementary analysis, we included the object dissimilarity regressor extracted from the odd-
one-out task performed on the original stimuli and the link distance regressor. All regressors were
standardized in the GLMs. No orthogonalization was applied.

Both GLMs contained separate onset regressors for each of the seven objects with a patch
and without a patch. Each onset regressor was accompanied by different parametric regressors. By
analogy to the original analysis, both GLMs included a button press regressor as a regressor of no
interest. Trials associated with a button press and the two subsequent trials were not included in
the main regressors in order to avoid button press-related artifacts. The same six motion regressors
and the 17 physiological regressors (ten for cardiac phase, six for respiratory phase and one for
respiratory) used in the original analysis were also included in the current GLMs. All regressors
were convolved with a canonical hemodynamic response function. Blocks were modeled
separately within the GLMs. Only the non-patch trials were included for our contrasts of interest.
The contrast images of all participants from the first level were analyzed as a second-level random

effects analysis. We report our results at a cluster-defining statistical threshold of p < .01
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uncorrected, combined with small-volume correction (SVC) for multiple comparisons (peak-level
FWE corrected at p < .05). For the SVC procedure, we used an anatomically defined mask
comprising bilateral entorhinal cortex, subiculum, and hippocampus (Supplementary figure S1).
Activations in other brain regions were only considered significant at a level of p < .001
uncorrected if they survived whole-brain FWE correction at the cluster level (p < .05). All
statistical parametric maps presented in the manuscript are unmasked.

To illustrate the non-overlapping clusters for the link distance effect and the semantic
distance effect (Figure 3C), we defined two regions of interest (ROIs) based on the two parametric
estimations from non-patch trials in the main GLM. The link distance effect revealed a cluster in
bilateral entorhinal cortex, which we used to define the EC ROI; the semantic distance effect
revealed a cluster in bilateral hippocampus, which we used to define the HC ROI. For both ROIs
we included all the voxels exceeding a ¢ value of 2.5, corresponding to p < .01. From the two ROls,
we then extracted parameter estimates for each of the 23 participants for the two effects (Figure
3D). Due to the statistical dependence between the data and the ROI definition, no statistical
inference was made regarding the interaction.

The statistical analysis was done using SPM12 (Wellcome Trust Centre for Neuroimaging,

http://www.fil.ion.ucl.ac.uk/spm) and visualization was done using FSLeyes (Wellcome Centre

for Integrative Neuroimaging, https://git.fmrib.ox.ac.uk/fsl/fsleyes/fsleyes/). The dual coded

visualization of the fMRI data (Figure 3C) used a procedure introduced by Allen et al. (2012) and
implemented by Zandbelt (2017). Clusters in the dual-coded map show brain activities as a
function of the link distance (red) and the semantic distance (blue) simultaneously. The hue

indexes the size of the parameter estimate, and the opacity indexes the unthresholded ¢ values.
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Significant clusters (cluster-level corrected, FWE, p < .05) are encircled in solid (link distance) or

dotted (semantic distance) contours.

Data and Code Availability
Data and codes of the original study are available on  datadryad
(https://doi.org/10.5061/dryad.nk08s).
Additional data and codes for the current follow-up study are available at the Donders Repository

(https://doi.org/10.34973/8m6q-qj39). They will be shared publicly upon manuscript acceptance.
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Supplementary Materials
Supplementary Figure S1: Anatomically defined mask used for small-volume correction

(incl. bilateral entorhinal cortex, subiculum, and hippocampus)

Supplementary Material S2: Additional analysis of object similarity

To explore the representation of stimulus dissimilarities for the objects we used in our study, we
ran a triplet odd-one-out task (Hebart et al., 2020) in a separate group of 128 participants.
Participants were instructed to select the object that was the least similar to the other two, without
a specific instruction as to whether specific stimulus features such as semantic or perceptual
similarities should guide this decision. Stimulus similarity ratings are therefore likely to be
influenced by both of those stimulus dimensions. We then computed object similarity as the
probability of participants choosing two objects together, irrespective of the context imposed by
the third object and transformed the similarity rating into an object dissimilarity measure by
subtracting each similarity measure from 1. Since every participant was only exposed to a unique
subset consisting of 12 of the 31 objects, the dissimilarity matrix was different for each participant

(Figure S2A, right panel). In contrast, the link distance between objects on the graph was the same
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for all participants (Figure S2A, left panel). It is worth noting that the link distance matrix and the
object dissimilarity matrix did not correlate across participants (Spearman’s Rho mean = .01, SD
= .11, range = -.20 — .25, 1> = 0.34, p = .74). We standardized each individual’s 12 * 12 object
dissimilarity matrix based on the unique set of 12 objects each participant was trained on. A two-
dimensional representation of distances between objects in the dissimilarity matrix using MDS
confirms that the objects are closely grouped according to semantic features (e.g., natural - man-
made, Figure S2B). In addition, perceptual properties such as object color also influenced
similarity ratings to some degree, suggesting that object similarity ratings reflect a mixture of
perceptual and semantic relationships (Rosch & Lloyd, 1978; Tversky, 1977).

To investigate the representation of these dissimilarity structures in the brain, we set up a
GLM that included the link distance as well as this measure of object dissimilarity. We observed
that fMRI adaptation scaled as a function of object dissimilarity in the visual cortex (FWE
corrected at cluster-level, Kg = 86, p = .004, peak 2 = 5.49, [27, -76, 17]). Voxels in the
hippocampal formation also passed the cluster-defining threshold for both the object dissimilarity
effect (Figure S2C) and the link distance effect (Figure S2D). However, neither of them survived
small-volume correction using the hippocampal-entorhinal mask (link: right peak 22 = 3.93, p
= .08, [24, -25, -25] and left peak 22 = 3.40, p = .21, [-18, -19, -25]; object: right peak 22 = 4.01,
p=.07,[24, -31, -10] and left peak f22 = 3.42, p = .21, [-24, -31, -10]). We reason that this might
be due to similarity ratings in this setting reflecting a mixture of semantic and perceptual

similarities.
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Supplementary Figure S2. Additional analysis of object similarity. (A) The link distance
matrix (left) and one example object dissimilarity matrix (right) corresponding to the graph
structure and the stimulus set used in the original fMRI study. The link distance matrix was the
same for all participants. The object dissimilarity matrix was unique for each participant. The
black frame indicates the subset of seven objects presented in the scanner and used in the fMRI
analysis. (B) Visualization of the object dissimilarity matrix in two dimensions, according to
multi-dimensional scaling (MDS). More similar objects are located near each other. (C, D) fMRI
adaptation effects of object dissimilarity (C) and link distance (D). Whole-brain analysis
showing a decrease in fMRI adaptation with object dissimilarity in the visual cortex, when link
distance and object dissimilarity are both included as parametric modulators in the model. All
images are thresholded at p < .01, uncorrected for visualization.
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