

1

2 **Re-genotyping structural variants through an accurate 3 force-calling method**

4

5 Shuqi Cao^{1,2,*}, Tao Jiang^{1,2,*}, Yadong Liu¹, Shiqi Liu¹ and Yadong Wang^{1,*}

6

7 ¹Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China.

8 ²Joint first authors: Shuqi Cao and Tao Jiang.

9 *To whom correspondence should be addressed: tjiang@hit.edu.cn, ydwang@hit.edu.cn

10

11 **Abstract**

12 Long-read sequencing technologies have great potential for the comprehensive discovery of
13 structural variation (SV). However, the accurate genotype assignment for SV is still a challenge
14 since the unavoidable factors like specific sequencing errors or limited coverages. Herein, we
15 propose cuteSV2, a fast and accurate long-read-based re-genotyping approach that is able to
16 force-calling genotypes for the given records. cuteSV2 is an upgraded version of cuteSV and
17 applies an improved strategy of the refinement and purification of the heuristic extracted
18 signatures through spatial and allele similarity estimation. The benchmarking results on several
19 baseline evaluations demonstrate that cuteSV2 outperforms the-state-of-art methods and has
20 stable and robust capability in practice. cuteSV2 is available at
21 <https://github.com/tjiangHIT/cuteSV>.

22 **Keywords**

23 Structural variant, re-genotyping, force-calling, long read sequencing

24 **Background**

25 Structural variant (SV) is a fundamental type of genomic mutations with a strong association
26 with evolution, population structure, and clinical diseases ^[1-3]. Typically, the size of SV is over
27 50 bp and mainly contains insertion, deletion, inversion, duplication, translocation, and more
28 complex variant ^[4]. Previous population studies like genome-wide association studies (GWAS)
29 focus on the exhaustive characterization of single-nucleotide variant (SNV) underlying human
30 traits and diseases and ignore the important heritability of SV^[5, 6]. However, because of SV's
31 variety and wide-range alteration, it usually affects much more nucleotides on the genome and
32 has significant value in genome researches. Recently, long-read sequencing technologies
33 enable the discovery of full-spectrum SVs on a single individual^[7-10], which provides an
34 opportunity to reveal the population-based SVs through large-scale sequencing^[11-14].

35 Currently, the joint variant calling strategy is often applied for the construction of population-

1 based SV genetic maps. It can consider all samples simultaneously and generates high-quality
2 population-scale variant callsets, which can give an overall reveal of the variant distribution of
3 population. Since the much more difficulty of obtaining reliable genotypes for a given SV across
4 a population group, the critical step is to perform a re-genotyping for each sample at all SV
5 positions, which benefits refining the original genotypes or filling them up due to insufficient
6 coverage^[15, 16].

7 Here, we introduce an accurate and fast re-genotyping method by force calling, named
8 cuteSV2, to determine the zygosity of all SVs on each individual at the population scale. Using
9 a bisection search strategy on the diverse alignment signatures, the zygosity are obtained by
10 calculating the distribution likelihood of each candidate circumstance. The experiments are
11 implemented on an Ashkenazim trio-family and a population group with 100 Chinese individuals
12 respectively. The results indicate our re-genotyping method shows an outstanding and reliable
13 performance compared to the homogeneous state-of-the-art methods, which represents it will
14 assist in obtaining accurate allele frequencies of homology SVs for further population genetic
15 measurement and estimation.

16 **Results and Discussion**

17 We first evaluated the re-genotyping performance for cuteSV2 and other state-of-the-art
18 methods (i.e., Sniffles1^[17], Sniffles2^[18], and SVJedi^[19]), on a well-known human sample HG002
19 from the Ashkenazim trio-family group based on the Genome in a Bottle (GiaB) National
20 Institute of Standards and Technology (NIST) ground truthsets (SV v0.6). The target SV
21 candidates were integrated from the Ashkenazim trio-family group (i.e., HG002, HG003, and
22 HG004) detected by PBSV (<https://github.com/PacificBiosciences/pbsv>). The benchmarking
23 results (Fig. 1A and Supplementary Table S1~3) indicate that cuteSV2 achieved the highest
24 precision under each sequencing technology (96.73% for HiFi, 97.28% for CLR, 97.39% for
25 ONT), while the other three methods reported about twice more false positive SVs. When it
26 comes to recall rate, cuteSV2, Sniffles1, and Sniffles2 reached quite competitive performance
27 against others, besides SVJedi. Overall, cuteSV2 obtained the best F1 scores under the diverse
28 sequencing technologies (94.68% for HiFi, 94.97% for CLR, 95.76% for ONT) according to its
29 pretty high precision and stable recall. Furthermore, we assessed the genotype concordance
30 between the re-genotyped results and the ground truth. It is obvious that cuteSV2 achieved the
31 most optimal concordance on HiFi and CLR datasets (98.14% and 97.75% respectively),
32 followed by Sniffles2 (97.12% and 97.74%), while the other two methods perform worse on
33 genotype concordance (Sniffles1: 46.20% for HiFi and 46.13% for CLR, SVJedi: 71.58% for
34 HiFi and 91.36% for CLR). As for ONT datasets, Sniffles2 acquired the highest concordance at
35 96.53%, and cuteSV2 followed at 96.46% but is still much higher than the other two methods.

36 We then evaluated the performance of re-genotyping on GIAB Challenging Medically
37 Relevant Gene Benchmark (CMRG) v1.00 (Fig. 1A and Supplementary Table S4~6). For
38 precision, cuteSV2 still kept ahead among these methods regardless of the sequencing
39 technologies. Besides, it is worth noting that cuteSV2 achieved 100% precision for CLR data,
40 indicating all the SVs reported are accurate. When it comes to recall rate, cuteSV2 performed
41 best on HiFi and ONT data, and was about 2% behind Sniffles1 and Sniffles2 for CLR data.

1 Considering the sensitivity and accuracy at the same time, cuteSV2 reached the highest F1
2 score on HiFi and ONT data, and the second best on CLR data (1% lower than that of Sniffles2).
3 For the genotype concordance, cuteSV2 and Sniffles2 still performed better over 10% higher
4 than the other two methods, while no more than 1% between these two methods.

5 Furthermore, we randomly down-sampled the datasets above to 30×, 20×, 10× and 5× and
6 re-genotyped the HG002 on them (Supplementary Table S1~6). While decreasing the
7 sequencing coverage, the performance of all the methods descended to some extent (Fig. 1B),
8 however, cuteSV2 still remained almost the best performance in most conditions. Especially
9 focusing on precision, cuteSV2 only dropped less than 1%, even a little raising when the
10 coverage varies from the origin coverage to 5× (from 96.73% to 96.96% for HiFi, from 97.28%
11 to 97.33% for CLR, from 97.39% to 97.37% for ONT), which is all higher than the other methods.
12 The recall rate of each method fell more because of the absence of pivotal SV signatures in
13 low-coverage data. cuteSV2 and Sniffles2 dropped about 6% when the coverage descends to
14 10×, while Sniffles1 and SVJedi dropped much more. Comprehensively considering precision
15 and recall, cuteSV2 still reached the best F1 scores on various coverage data under all
16 sequencing technologies. When it comes to genotype concordance, Sniffles2 performed best
17 on low coverage datasets (dropped by 8.24% for HiFi, 15.48% for CLR, 12.98% for ONT), with
18 cuteSV2 following close (dropped by 12.31% for HiFi, 16.82% for CLR, 14.10% for ONT).

19 To evaluate the re-genotyping performance on a large-scale cohort, we applied the methods
20 (SVJedi was discarded due to its relatively low capability) on a real population group consisting
21 of 100 Chinese individuals that were sequenced by ONT on about 10~15×. After re-genotyping,
22 BcfTools^[20] was adopted to calculate the allele frequency (AF), the test score of excess
23 heterozygosity (ExcHet), and the test score of Hardy-Weinberg Equilibrium (HWE) of each
24 variant. After removing the nonexistent SVs whose AF equals 0, cuteSV2 remained 102,095
25 SVs which is much more than that of Sniffles2 (95,184) and Sniffles1 (73,962), which indicates
26 the ability of cuteSV2 to detect abundant SVs (Fig. 2A and Supplementary Table S7). CuteSV2
27 had the smallest number of SVs with ExcHet test scores lower than 0.05, and the largest
28 number of SVs with ExcHet test scores higher than 0.95, indicating its outstanding genotype
29 assignments for heterozygous (Fig. 2B and Supplementary Table S8). In the HWE test,
30 Sniffles2 (14.26%) and cuteSV2 (16.56%) reported a less proportion of SVs with HWE test
31 scores lower than 0.05, while Sniffles1 have much more bad cases (30.63%) compared with
32 the other two (Fig. 2B and Supplementary Table S8~10).

33 We randomly selected three samples from this large-scale group to further assessed the
34 consistency of SV calling and corresponding genotyping through orthogonal PacBio HiFi
35 sequencing. From the distribution of consistency rate (CR) and SV amount under different AF
36 intervals shown in Fig. 2C, it is obvious that cuteSV2 and Sniffles2 showed the outstanding
37 ability to detect SVs with reporting over 20,000 SVs for each sample (20,429 for cuteSV2 and
38 23,068 for Sniffles2, in average), while Sniffles1 only reported about 15,398 SVs in average
39 (Fig. S2 and Supplementary Table S11~13). When it comes to consistency rate, Sniffles1
40 performed the highest (about 80%) and cuteSV2 followed close (about 78%), while Sniffles2
41 performed much lower (about 70%). Taking these two aspects into account, cuteSV2 detected
42 the largest number of consistent SVs with both high total amount and consistency rate.
43 Furthermore, we benched the CR of different SV types and Fig. 2C shows that for insertions

1 and deletions, the conclusion is similar to that above, that is, cuteSV2 detected the most
2 consistent SVs (Supplementary Table S14). cuteSV2 discovered much more inversions than
3 other methods (about 70 for cuteSV2, 30 for Sniffles1, and 40 for Sniffles2), meanwhile, there
4 are about twice as consistent inversions. When it comes to duplications, cuteSV2 reported
5 about ten times more, and there are about 30 consistent duplications while Sniffles1 and
6 Sniffles2 only discovered less than 10 duplications in total. Hence, cuteSV2 not only performed
7 better in insertions and deletions, but also in longer and more complex SVs. Furthermore, we
8 took the various genomic regions where SVs were involved into account. It is obvious that
9 cuteSV2 achieved almost the highest consistency rate for those SVs located in gene-related
10 regions (Fig. 2C and Supplementary Table S15). This consequence indicates the highly
11 accurate SV detection ability, especially in high genetic conservation regions, which would
12 benefit the studies that highly rely on functional SVs.

13 Finally, we examined the computational performance of these tools in different datasets.
14 From the assessments of elapsed time on the HG002 sample (Fig. 2D and Supplementary
15 Table S16), Sniffles2 had the fastest speed regardless of the dataset (i.e., HiFi: 871s, CLR:
16 8,263s, ONT: 4,655s), with cuteSV2 (i.e., HiFi: 1,256s, CLR: 19,134s, ONT: 11,400s) followed
17 at approximately one time slower and Sniffles1 (i.e., HiFi: 5,705s, CLR: 24,978s, ONT: 16,380s)
18 and SVJedi (i.e., HiFi: 96,765s, CLR: 93,062s, ONT: 103,471s, all under 16 threads) were much
19 slower. Notably, cuteSV2 and Sniffles2 both achieved a quasilinear speedup and time reduction
20 with the increasing threads. Hence, there would be no significant time discrepancy between
21 cuteSV2 and Sniffles2 when applying more CPU threads. In terms of memory footprint,
22 Sniffles1 (from 2.6 to 38.7 GB) and Sniffles2 (from 0.6 to 4.3 GB) were variable and highly
23 related to the size of the data. SVJedi cost a larger memory that was about 7 GB. By contrast,
24 cuteSV2 used a relatively small and stable memory (about 3 GB) regardless of the size of the
25 dataset, which is mainly due to the about 3 GB size of the human reference genome involved
26 in the reference allele generation. For the assessments of the 100 Chinese individuals (Fig. 2E
27 and Supplementary Table S17), cuteSV2 and Sniffles2 achieved equivalent and fast speed (i.e.,
28 320s and 281s respectively), whereas the average memory footprint for cuteSV2 (3.53 GB)
29 was smaller than that for Sniffles2 (4.14 GB). Sniffles1 cost much more time (10,162s) and
30 memory (5.45 GB) on each sample significantly.

31 Through re-genotyping SVs via long reads, we supply an accurate and fast re-genotyping
32 solution, which is promoting the studies like population genetic measurement and estimation
33 effectively. In order to better apply cuteSV2 in practice, there are still several advantages and
34 disadvantages that need to explain in detail.

35 ● cuteSV2 implements a two-round purification on SV signatures to select the reads that
36 support the target SV. The first round follows the refinement step of cuteSV to distinguish
37 signatures with various allele lengths, while the second round performs an enhanced
38 purification strategy by inspecting the allele similarity comprehensively. An example (Fig.
39 S3) shows that a target deletion (1,620bp) on chromosome 13 was obtained correctly
40 genotype only by cuteSV2. This is mainly due to the strength of the two-round purification
41 strategy for figuring out the signatures on the complex genomic region.

42 ● cuteSV2 applies a merging strategy for those fragile signatures affected by the erroneous

1 read-alignment and generates agglomerated signatures. This will improve the sensitivity
2 of re-genotyping through the maintenance of the potential signatures as many as
3 possible. An example (Fig. S4) shows that a target insertion (299bp) on chromosome X
4 was determined as homozygous only by cuteSV2 and is concordant with the
5 corresponding ground truth. For the absence or limitation of the merging strategy,
6 Sniffles1 and Sniffles2 reported wrong genotypes.

7 ● The heuristic SV signature extraction module enables cuteSV2 to discover more amount
8 and more accurate signatures, especially for longer and more complex SVs such as
9 inversions and duplications, which helps to carry out high-quality genotype assignments.
10 From Fig. S5, there is an inversion of 1,200bp on chromosome 1 and only cuteSV2
11 reported the real genotype successfully. Another example of duplication of 7,759bp on
12 chromosome 1 is shown in Fig. S6, all the other methods reported the genotype as 0/0
13 except cuteSV2. This duplication is located on the *HRNR* gene that is highly associated
14 with gene compression, and only cuteSV2 achieved the genotype assignment correctly
15 for this, which indicates that cuteSV2 has the potential for functional SV discovery in
16 those accurate clinical studies.

17 ● Although cuteSV2 contains a great ability of re-genotyping, however, there are still left
18 several limitations both for it and the current re-genotyping technologies. On the one
19 hand, cuteSV2 can widely handle most of the SV types including insertion, deletion,
20 inversion, duplication, and translocation, but it is difficult to accomplish the re-genotyping
21 of Copy Number Variation (CNV) till now. On the other hand, it is the main mission for
22 cuteSV2 and other methods to complete the re-genotyping on the diploid genome but
23 not on the polyploid genome like plants, and this is also a bottom-neck in the variant
24 calling field. Hence, we will further focus on these topics and try to solve them in the
25 future.

26 **Conclusions**

27 In this article, we introduce an accurate and fast re-genotyping method cuteSV2 to assign
28 genotypes for population-based SVs via long-read sequencing. It is owing to the two algorithms
29 of heuristic signature purification and specific-designed scanning line, that cuteSV2 achieves
30 accurate signature marking and effective read distribution statistics, benefitting to the reliable
31 likelihood estimation of SV genotypes. The benchmarking results indicate that cuteSV2 retains
32 outstanding re-genotyping performance compared with the-state-of-art methods in various
33 aspects. Especially, it has high accuracy with all sequencing technologies regardless of the
34 sequencing depth. These strengths demonstrate that cuteSV2 has a reliable genotype
35 recognition ability contributing to high-quality SV detection for large-scale population studies
36 and precise clinical practice. We believe that cuteSV2 will have wide application in cutting-edge
37 genomic research.

38 **Methods**

39 The force-calling re-genotyping method as an expansion module is integrated into our previous
40 SV detector cuteSV^[21, 22]. It can parallelly assign new genotypes referring to the given

1 population-scale SVs, for each SV type on each chromosome among every individual. The
2 approach has four major steps as follows (see Fig. S1).

3 **Step 1. Signatures extraction of various SV types**

4 We follow the signature extraction module of cuteSV to comprehensively collect various types
5 of SV signatures including insertions, deletions, inversions, duplications, and translocations.

6 **Step 2. Candidate signatures marking for SVs**

7 For each re-genotyped SV call, cuteSV2 marks all candidate signatures extracted in Step 1
8 through specific-designed spatial similarity measurement and allele-similarity estimation. First,
9 a binary search strategy is implemented in the ordered signature list to find the signature
10 Sig_{flag} which has the nearest coordinate as the given SV. Then cuteSV2 measures the spatial
11 similarity of signatures upstream and downstream and collects them recursively. For a collected
12 signature Sig_{NN} , its nearest neighborhood signature Sig_{NN}' will be collected when it satisfies:

$$\begin{cases} |BP_{NN} - BP_{flag}| \leq 2000 \\ |BP_{NN} - BP_{NN}'| \leq max_cluster_bias \end{cases} \quad (1)$$

13 where BP_{NN} , BP_{NN}' and BP_{flag} are the breakpoints of Sig_{NN} , Sig_{NN}' and Sig_{flag} ,
14 respectively; $max_cluster_bias$ indicates a threshold which is mutative due to various SV
15 types and sequencing platforms (by default, 200, 100, 500, 500 and 50 for DEL, INS, DUP, INV
16 and TRA, respectively). It is worth noting that, for translocations, an additional condition that
17 constrains the same transferred chromosome ID of signatures is designed to ensure the spatial
18 similarity of collected signatures.

19 The above-collected signatures only consider the spatial similarity but ignore the similarity in
20 alleles. Therefore, cuteSV2 then purifies the collected signatures through the allele-similarity
21 estimation and only retains the signatures with high allele-similarity as candidate signatures.
22 For insertions and deletions, to restore the signatures as many as possible, the fragile
23 signatures from the same read are merged together to generate novel potential signatures.
24 Then cuteSV2 implements the refinement step of cuteSV on the signatures to discard them into
25 various clusters and measures the allele-similarity of each cluster to re-genotyped SV as below:

$$Similarity_{cluster} = \frac{\min(\frac{1}{n} \times \sum_{i=1}^n LEN_i, LEN_{given})}{\max(\frac{1}{n} \times \sum_{i=1}^n LEN_i, LEN_{given})} \quad (2)$$

26 where LEN_{given} and LEN_i indicate the length of the given re-genotyped SV and the i th
27 signature in the cluster, respectively. cuteSV2 selects the cluster with the highest allele-
28 similarity as once purified collected signatures. For inversions, duplications, and translocations,
29 cuteSV2 uses the collected signatures directly. In the second purification, cuteSV2 measures
30 the allele-similarity of each purified collected signature through (3) and remains the signatures
31 whose allele similarity exceeds 0.7 as the final candidate signatures.

$$Similarity_{allele} = \frac{\min(LEN_{allele}, LEN_{given})}{\max(LEN_{allele}, LEN_{given})} \quad (3)$$

32 **Step 3. Overlapped reads marking for SVs**

1 cuteSV2 computes the distribution of reads around each re-genotyped SV breakpoint by an
2 overlap scanning line. Specifically, for each SV, cuteSV2 records all alignment reads that cover
3 the SV on the chromosome.

4 All the re-genotyped SVs and alignment reads are collected together as 2-tuple (s_{SV}, e_{SV}) ,
5 (s_{read}, e_{read}) , where s_{read} and s_{SV} represent the start coordinate of read/SV, e_{read} and e_{SV}
6 represent the end coordinate of read/SV, respectively. The tuples are grouped by chromosome,
7 and in each group, all the breakpoints in tuples are sorted in order according to their coordinates.
8 Then cuteSV2 designs a line scanning the ordered breakpoints from head to tail. While moving
9 the scanning line, cuteSV2 uses a read set R to record the reads that stride over the line and
10 $R = \{read | s_{read} < bp_{line} < e_{read}\}$, where bp_{line} represents the breakpoint that the scanning
11 line reaches. In detail, the read is added into read set when the scanning line reaches s_{read}
12 and removed from read set when the line reaches e_{read} . And when the line reaches s_{SV} or e_{SV} ,
13 cuteSV2 records reads in the read set R as the reads cover the SV breakpoint. The intersection
14 of reads covering both the start and end breakpoint of an SV is marked as the reads that cover
15 the SV.

16 **Step 4. Assign genotypes based on likelihood estimation**

17 In step2 and step3, candidate signatures and cover reads are marked for the re-genotyped SVs.
18 Due to the fact that candidate signatures represent the reads that support the SV, the difference
19 set between the cover reads and the reads where candidate signatures come from represents
20 the reads that support the reference. Using these two read sets, cuteSV2 uses the genotyping
21 module from cuteSV to assign genotype through the bi-allelic assumption on the likelihood of
22 various zygosity.

23

24 **Implementation of benchmark**

25 For the Ashkenazim Trio, we obtain the PacBio HiFi sequencing alignment data of HG002,
26 HG003, and HG004 from GiaB and apply PBSV to detect the individual SVs. The cohort-level
27 structural variations are generated by merging the three individuals via SURVIVOR^[23]. Then we
28 obtain the CLR and ONT sequencing alignment data of HG002 from GiaB and re-genotype the
29 cohort-level structural variations by four methods (cuteSV2, Sniffles1, Sniffles2, SVJedi). The
30 re-genotyping results are benchmarked via Truvari.

31 For the 100 Chinese population group, we implement ONT sequencing on 100 samples and
32 PacBio HiFi sequencing on three of these samples (i.e., Sample #1, #2, and #3). Four different
33 callers (cuteSV, SVIM^[24], Sniffles1, and Nanovar^[25]) are applied for individual SV calling and
34 SURVIVOR is applied for multiple samples merging. With the merged cohort-level SVs, we
35 implement re-genotyping methods on 100 samples and apply SURVIVOR the second time to
36 achieve revised cohort-level SVs. Then we implement PBSV on three HiFi sequencing sample
37 to achieve the ground truth. The HWE and ExchHET are achieved via bcftools and the consistent
38 rate is obtained from Truvari.

39 The benchmark is implemented with a server having 2 Intel(R) Xeon(R) Gold 6240 CPU @
40 2.60GHz (32 cores in total), 15.8 Terabytes RAM and 6221 Terabytes hard disk space (no SSD
41 is used), running on CentOS Linux release 7.5.1804 Operating System. The runtime and

1 memory footprint were assessed by using the “/usr/bin/time -v” command of the Linux Operating
2 System.

3 The detailed commands can be referred in Supplementary Note.

4 **Declarations**

5 **Ethics approval and consent to participate**

6 Not applicable

7 **Consent for publication**

8 Not applicable

9 **Availability of data and materials**

10 The force calling module in cuteSV2 has been implemented in Python and can be easily
11 installed via bio-conda and PyPI. Its source code is available at github.com/tjiangHIT/cuteSV.
12 The alignment data in the Ashkenazim Trio experiment is available at <https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/>. The original data of 100
13 Chinese individuals is restricted access, please contact ydwang@hit.edu.cn for permission
14 acquirement.
15

16 **Competing interests**

17 The authors declare that they have no competing interests

18 **Funding**

19 This work has been supported by the National Natural Science Foundation of China (Grant
20 number 32000467), China Postdoctoral Science Foundation (Grant Number 2020M681086),
21 and Heilongjiang Postdoctoral Foundation (Grant Number LBH-Z20014).

22 **Authors' contributions**

23 SC, TJ, and YL designed the method. SC and TJ implemented the method. SC and SL
24 performed the experiments and data analysis. SC and TJ wrote the manuscript. The authors
25 read and approved the final manuscript.

26 **References**

27 [1] De Vries B B, Pfundt R, Leisink M, et al. Diagnostic genome profiling in mental retardation
28 [J]. Am J Hum Genet, 2005, 77(4): 606-616.

29 [2] Sebat J, Lakshmi B, Malhotra D, et al. Strong association of de novo copy number
30 mutations with autism [J]. Science, 2007, 316(5823): 445-449.

31 [3] Lupski J R. Structural variation mutagenesis of the human genome: Impact on disease
32 and evolution [J]. Environmental and Molecular Mutagenesis, 2015, 56(5):

33 [4] Sudmant P H, Rausch T, Gardner E J, et al. An integrated map of structural variation in
34 2,504 human genomes [J]. Nature, 2015, 526(7571): 75-81.

1 [5] Patron J, Serra-Cayuela A, Han B, et al. Assessing the performance of genome-wide
2 association studies for predicting disease risk [J]. PLoS ONE, 2019, 14(12): e0220215.

3 [6] Halvorsen M, Huh R, Oskolkov N, et al. Increased burden of ultra-rare structural variants
4 localizing to boundaries of topologically associated domains in schizophrenia [J]. Nature
5 Communications, 2020, 11(1): 1842.

6 [7] Huddleston J, Chaisson M J, Steinberg K M, et al. Discovery and genotyping of structural
7 variation from long-read haploid genome sequence data [J]. Genome Research, 2016, 27(5):

8 [8] Liu Y, Jiang T, Su J, et al. SKSV: ultrafast structural variation detection from circular
9 consensus sequencing reads [J]. Bioinformatics, 2021, 37(20): 3647-3649.

10 [9] Jiang T, Liu B, Li J, et al. rMETL: sensitive mobile element insertion detection with long
11 read realignment [J]. Bioinformatics, 2019, 18): 18.

12 [10] Jiang T, Fu Y, Liu B, et al. Long-Read based Novel Sequence Insertion Detection with
13 rCANID [J]. IEEE Transactions on NanoBioscience, 2019, 1-1.

14 [11] Breyter D, Ingimundardottir H, Oddsson A, et al. Long-read sequencing of 3,622 Icelanders
15 provides insight into the role of structural variants in human diseases and other traits [J]. Nature
16 Genetics, 2021, 53(6): 779-786.

17 [12] Audano P A, Sulovari A, Graves-Lindsay T A, et al. Characterizing the Major Structural
18 Variant Alleles of the Human Genome [J]. Cell, 2019, 176(3): 663-675.e619.

19 [13] Chaisson M J P, Sanders A D, Zhao X, et al. Multi-platform discovery of haplotype-resolved
20 structural variation in human genomes [J]. Nature Communications, 2019, 10(1): 1784.

21 [14] Ebert P, Audano P A, Zhu Q, et al. Haplotype-resolved diverse human genomes and
22 integrated analysis of structural variation [J]. Science, 2021, 372(6537): eabf7117.

23 [15] Koboldt D C. Best practices for variant calling in clinical sequencing [J]. Genome Medicine,
24 2020, 12(1):

25 [16] Jiang T, Liu S, Cao S, et al. Long-read sequencing settings for efficient structural variation
26 detection based on comprehensive evaluation [J]. BMC Bioinformatics, 2021, 22(1): 1-17.

27 [17] Sedlazeck F J, Rescheneder P, Smolka M, et al. Accurate detection of complex structural
28 variations using single-molecule sequencing [J]. Nature Methods, 2018,

29 [18] Smolka M, Paulin L F, Grochowski C M, et al. Comprehensive Structural Variant Detection:
30 From Mosaic to Population-Level [J]. bioRxiv, 2022,

31 [19] Lecompte L, Peterlongo P, Lavenier D, et al. SVJedi: Genotyping structural variations with
32 long reads [J]. Cold Spring Harbor Laboratory, 2019, 17):

33 [20] Danecek P, Bonfield J K, Liddle J, et al. Twelve years of SAMtools and BCFtools [J].
34 GigaScience, 2021, 10(2):

35 [21] Jiang T, Liu Y, Jiang Y, et al. Long-read-based human genomic structural variation
36 detection with cuteSV [J]. Genome Biology, 2020, 21(1): 189.

37 [22] Jiang T, Liu S, Cao S, et al. Structural Variant Detection from Long-Read Sequencing Data
38 with cuteSV [M]//Ng C, Piscuoglio S. Variant Calling: Methods and Protocols. New York, NY;
39 Springer US. 2022: 137-151.

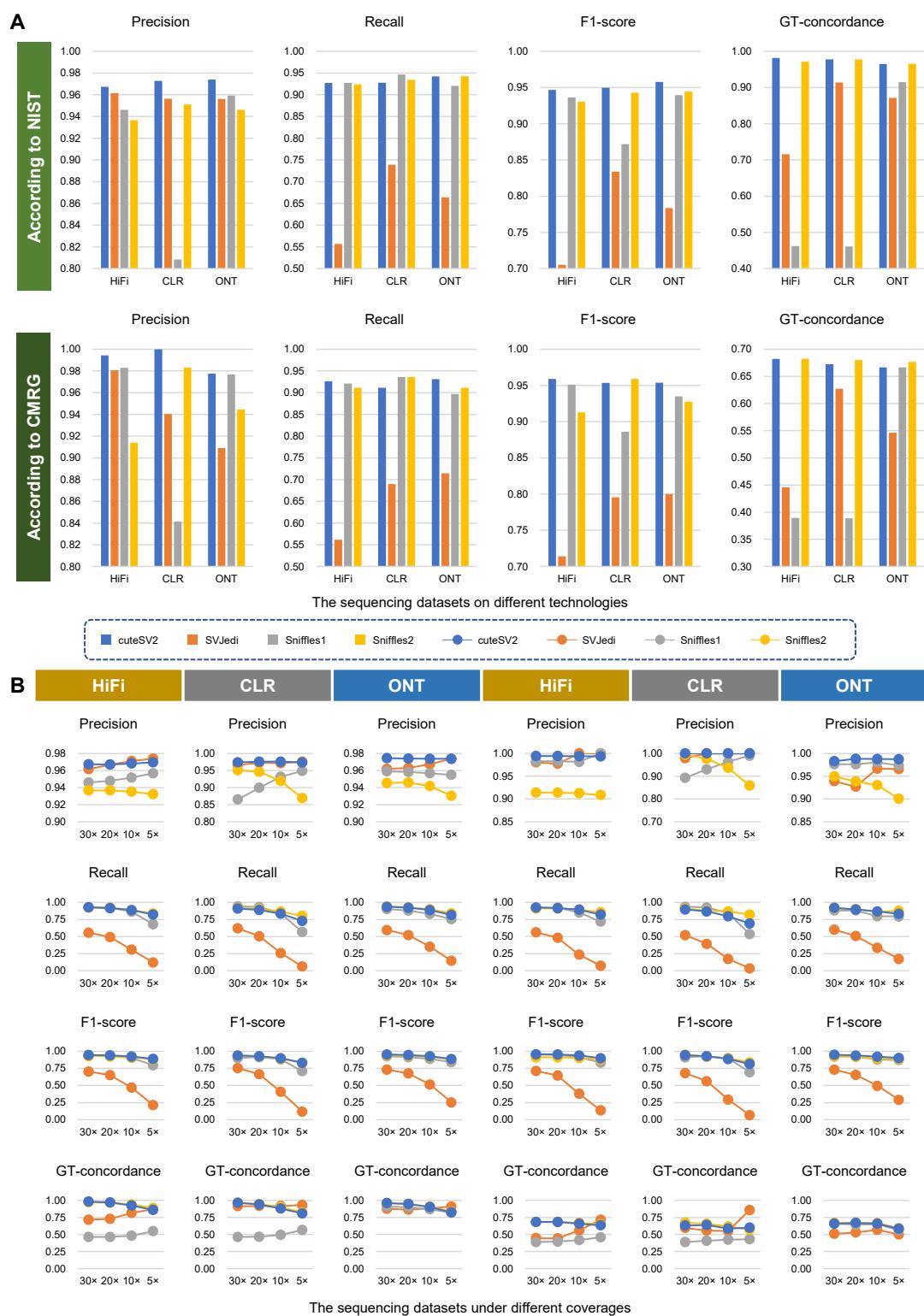
40 [23] Jeffares D C, Jolly C, Hoti M, et al. Transient structural variations have strong effects on
41 quantitative traits and reproductive isolation in fission yeast [J]. Nature Communications, 2017,
42 8(1): 14061.

43 [24] David H, Martin V. SVIM: structural variant identification using mapped long reads [J].
44 Bioinformatics, 17): 2907-2915.

1 [25] Tham C Y, Tirado-Magallanes R, Goh Y, et al. NanoVar: accurate characterization of
2 patients' genomic structural variants using low-depth nanopore sequencing [J]. Genome Biol,
3 2020, 21(1): 56.

4

5



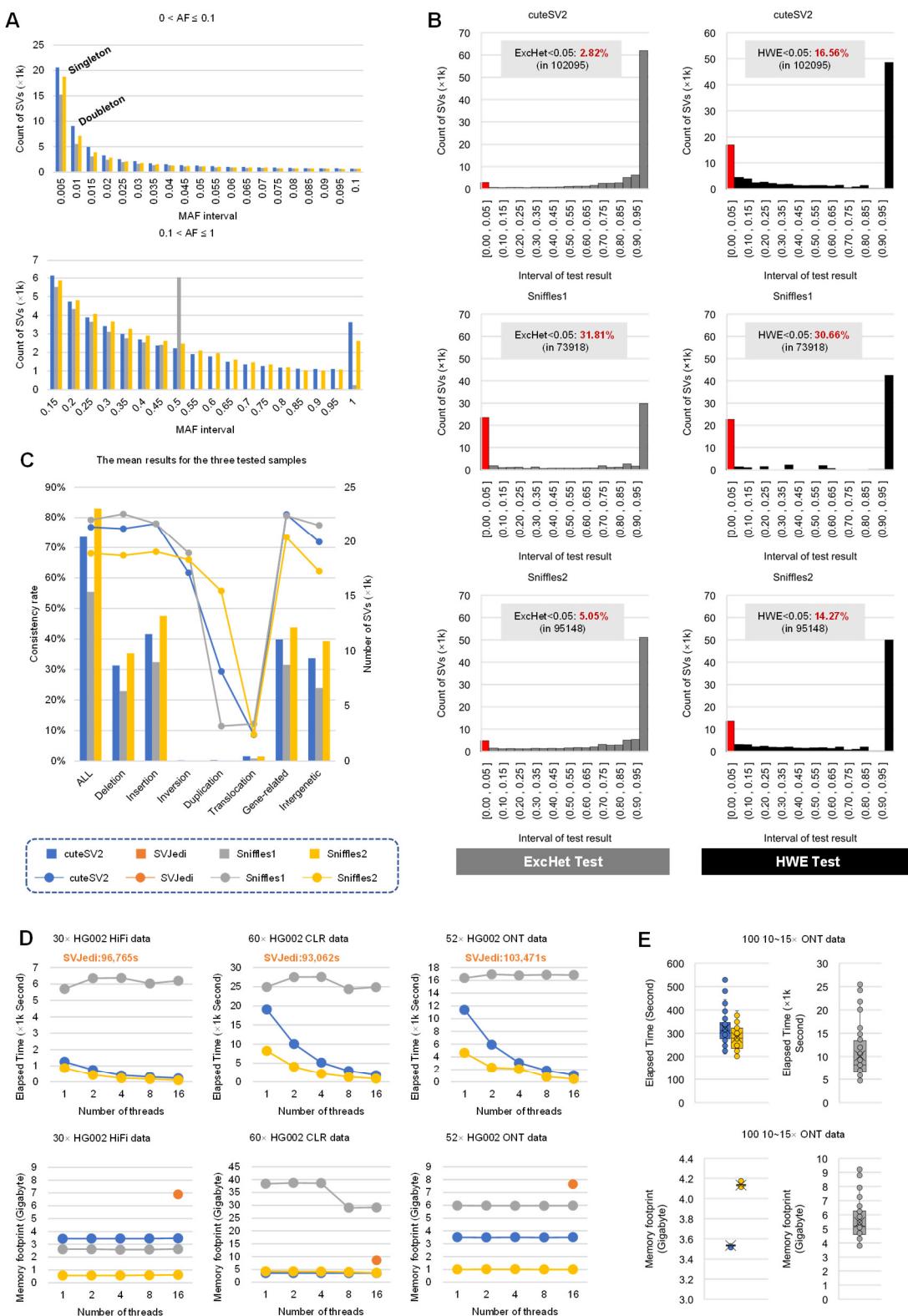
1

2 **Fig 1. The benchmark results of the re-genotyping performance on the HG002 sample.**

3 **A.** The precision, recall, F1 score, and genotype concordance on different sequencing
4 technologies including HiFi (PacBio HiFi sequencing), CLR (PacBio CLR sequencing), and
5 ONT (Oxford Nanopore Technologies sequencing). The ground truth is Genome in a Bottle
6 (GiaB) National Institute of Standards and Technology (NIST) ground truthsets (SV v0.6) and

1 the GIAB Challenging Medically Relevant Gene Benchmark (CMRG) v1.00, respectively. **B**.
2 The precision, recall, F1 score, and genotype concordance under different sequencing
3 coverages (i.e., 30 \times , 20 \times , 10 \times , and 5 \times) on different sequencing technologies (i.e., HiFi, CLR,
4 and ONT) based on NIST and CMRG ground truth.

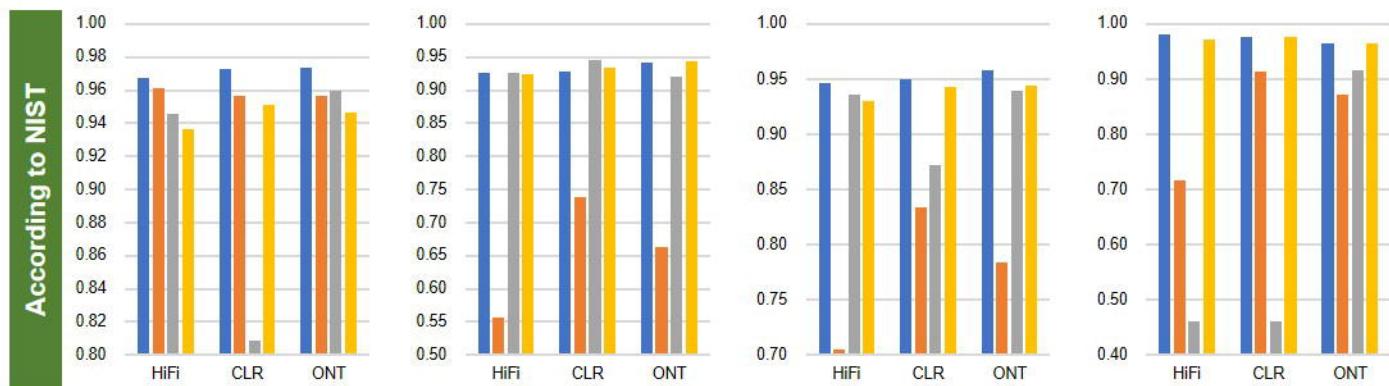
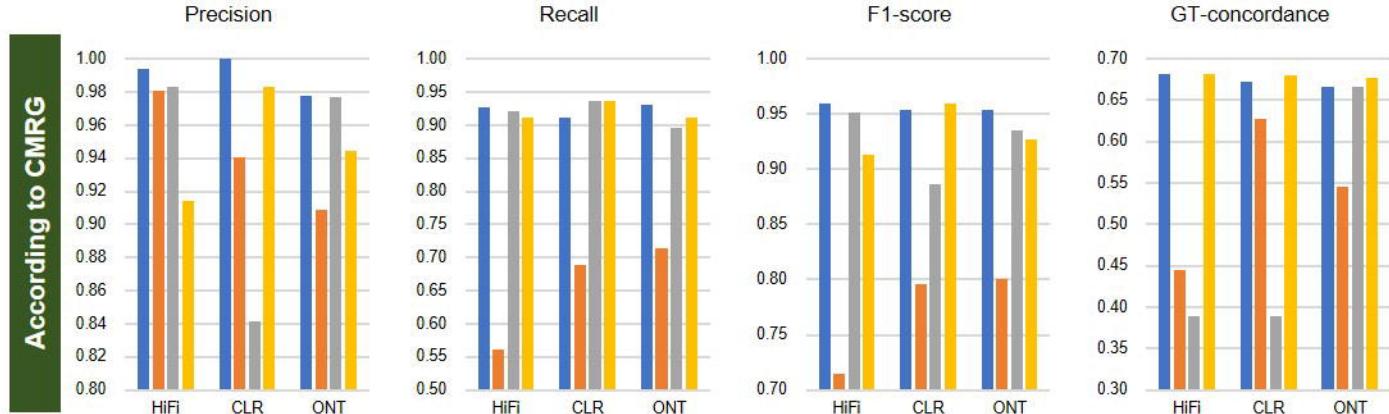
5



1

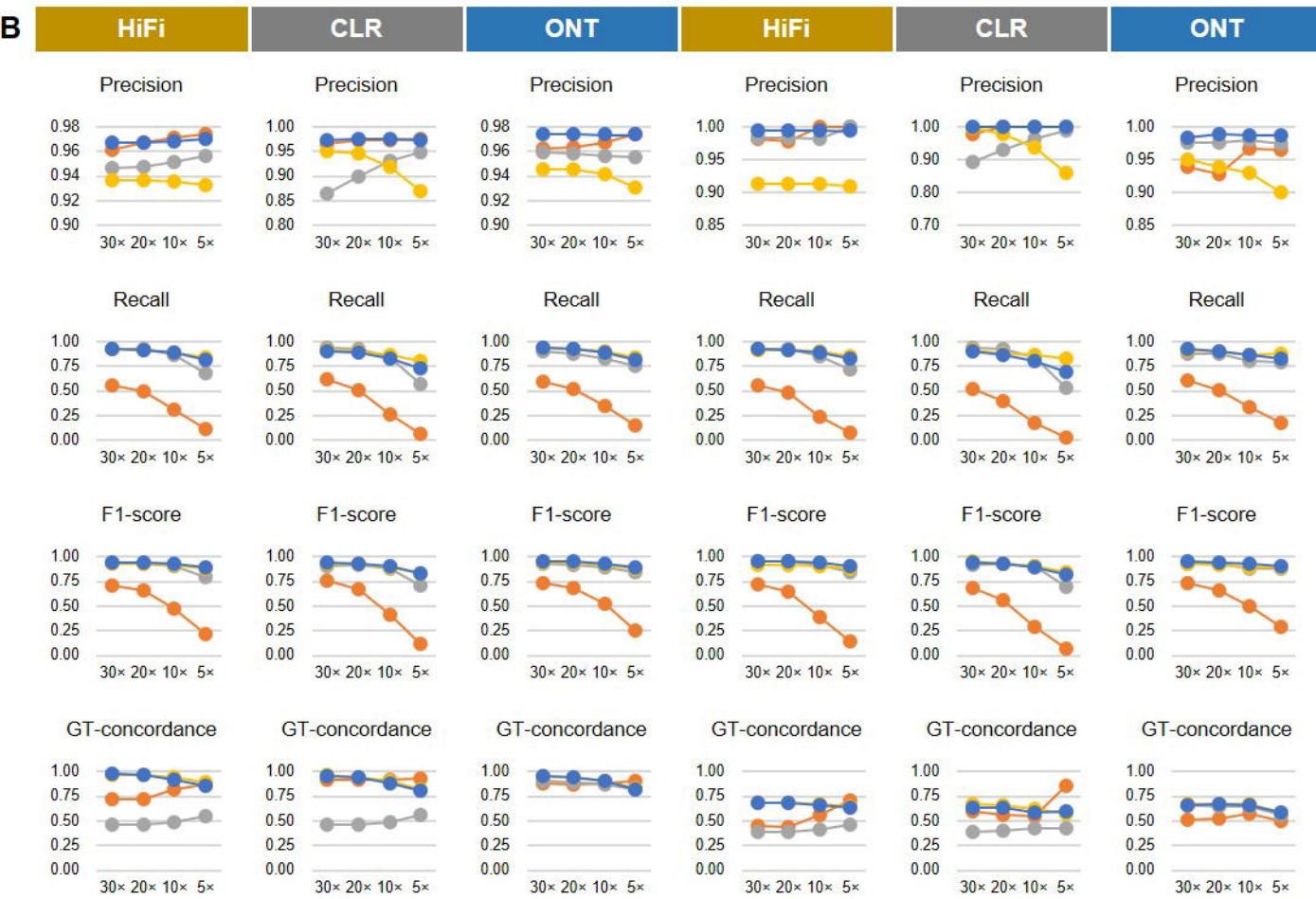
2 **Fig 2. The benchmark results of the re-genotyping performance on the Chinese**
3 **population group and the computational performance tests. A.** The distribution of SV
4 amount under different minor allele frequency (MAF) intervals. The above one shows the
5 distribution of SVs whose MAF is smaller than 0.1 and the below one shows more common
6 SVs with MAF larger than 0.1. It is also worth mentioning that the SVs in the regions of

1 MAF=0.005 and MAF=0.01 indicate singletons and doubletons respectively. **B.** The distribution
2 of test scores of excess heterozygosity (ExHet) and Hardy-Weinberg Equilibrium (HWE) for
3 these three methods in the population group. The left three figures with gray columns represent
4 the ExHet scores, and the right with black columns represent the HWE scores. The red column
5 indicates the SVs with test scores lower than 0.05 and demonstrates failures in the ExHet or
6 HWE test. **C.** The mean consistency rate for the three tested samples on different SV types
7 (deletion, insertion, inversion, duplication, translocation) and different genomic regions (gene-
8 related and inter-genetic regions). Each column and line represent the mean number of SV and
9 mean consistency rate of the three samples, respectively. **D.** The elapsed time and memory
10 footprint on the different HG002 datasets (PacBio HiFi, PacBio CLR, and ONT) with various
11 threads (1, 2, 4, 8, 16). **E.** The box plot of the elapsed time and memory footprint on the 100
12 Chinese individuals.

A

The sequencing datasets on different technologies

cuteSV2	SVJedi	Sniffles1	Sniffles2	cuteSV2	SVJedi	Sniffles1	Sniffles2
---------	--------	-----------	-----------	---------	--------	-----------	-----------

B

The sequencing datasets under different coverages

According to NIST

According to CMRG

