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Abstract 11 

Long-read sequencing technologies have great potential for the comprehensive discovery of 12 
structural variation (SV). However, the accurate genotype assignment for SV is still a challenge 13 
since the unavoidable factors like specific sequencing errors or limited coverages. Herein, we 14 
propose cuteSV2, a fast and accurate long-read-based re-genotyping approach that is able to 15 
force-calling genotypes for the given records. cuteSV2 is an upgraded version of cuteSV and 16 
applies an improved strategy of the refinement and purification of the heuristic extracted 17 
signatures through spatial and allele similarity estimation. The benchmarking results on several 18 
baseline evaluations demonstrate that cuteSV2 outperforms the-state-of-art methods and has 19 
stable and robust capability in practice. cuteSV2 is available at 20 
https://github.com/tjiangHIT/cuteSV. 21 
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Background 24 

Structural variant (SV) is a fundamental type of genomic mutations with a strong association 25 
with evolution, population structure, and clinical diseases [1-3]. Typically, the size of SV is over 26 
50 bp and mainly contains insertion, deletion, inversion, duplication, translocation, and more 27 
complex variant [4]. Previous population studies like genome-wide association studies (GWAS) 28 
focus on the exhaustive characterization of single-nucleotide variant (SNV) underlying human 29 
traits and diseases and ignore the important heritability of SV[5, 6]. However, because of SV's 30 
variety and wide-range alteration, it usually affects much more nucleotides on the genome and 31 
has significant value in genome researches. Recently, long-read sequencing technologies 32 
enable the discovery of full-spectrum SVs on a single individual[7-10], which provides an 33 
opportunity to reveal the population-based SVs through large-scale sequencing[11-14]. 34 

Currently, the joint variant calling strategy is often applied for the construction of population-35 
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based SV genetic maps. It can consider all samples simultaneously and generates high-quality 1 
population-scale variant callsets, which can give an overall reveal of the variant distribution of 2 
population. Since the much more difficulty of obtaining reliable genotypes for a given SV across 3 
a population group, the critical step is to perform a re-genotyping for each sample at all SV 4 
positions, which benefits refining the original genotypes or filling them up due to insufficient 5 
coverage[15, 16].  6 

Here, we introduce an accurate and fast re-genotyping method by force calling, named 7 
cuteSV2, to determine the zygosities of all SVs on each individual at the population scale. Using 8 
a bisection search strategy on the diverse alignment signatures, the zygosities are obtained by 9 
calculating the distribution likelihood of each candidate circumstance. The experiments are 10 
implemented on an Ashkenazim trio-family and a population group with 100 Chinese individuals 11 
respectively. The results indicate our re-genotyping method shows an outstanding and reliable 12 
performance compared to the homogeneous state-of-the-art methods, which represents it will 13 
assist in obtaining accurate allele frequencies of homology SVs for further population genetic 14 
measurement and estimation. 15 

Results and Discussion 16 

We first evaluated the re-genotyping performance for cuteSV2 and other state-of-the-art 17 
methods (i.e., Sniffles1[17], Sniffles2[18], and SVJedi[19]), on a well-known human sample HG002 18 
from the Ashkenazim trio-family group based on the Genome in a Bottle (GiaB) National 19 
Institute of Standards and Technology (NIST) ground truthsets (SV v0.6). The target SV 20 
candidates were integrated from the Ashkenazim trio-family group (i.e., HG002, HG003, and 21 
HG004) detected by PBSV (https://github.com/PacificBiosciences/pbsv). The benchmarking 22 
results (Fig. 1A and Supplementary Table S1~3) indicate that cuteSV2 achieved the highest 23 
precision under each sequencing technology (96.73% for HiFi, 97.28% for CLR, 97.39% for 24 
ONT), while the other three methods reported about twice more false positive SVs. When it 25 
comes to recall rate, cuteSV2, Sniffles1, and Sniffles2 reached quite competitive performance 26 
against others, besides SVJedi. Overall, cuteSV2 obtained the best F1 scores under the diverse 27 
sequencing technologies (94.68% for HiFi, 94.97% for CLR, 95.76% for ONT) according to its 28 
pretty high precision and stable recall. Furthermore, we assessed the genotype concordance 29 
between the re-genotyped results and the ground truth. It is obvious that cuteSV2 achieved the 30 
most optimal concordance on HiFi and CLR datasets (98.14% and 97.75% respectively), 31 
followed by Sniffles2 (97.12% and 97.74%), while the other two methods perform worse on 32 
genotype concordance (Sniffles1: 46.20% for HiFi and 46.13% for CLR, SVJedi: 71,58% for 33 
HiFi and 91.36% for CLR). As for ONT datasets, Sniffles2 acquired the highest concordance at 34 
96.53%, and cuteSV2 followed at 96.46% but is still much higher than the other two methods. 35 

We then evaluated the performance of re-genotyping on GIAB Challenging Medically 36 
Relevant Gene Benchmark (CMRG) v1.00 (Fig. 1A and Supplementary Table S4~6). For 37 
precision, cuteSV2 still kept ahead among these methods regardless of the sequencing 38 
technologies. Besides, it is worth noting that cuteSV2 achieved 100% precision for CLR data, 39 
indicating all the SVs reported are accurate. When it comes to recall rate, cuteSV2 performed 40 
best on HiFi and ONT data, and was about 2% behind Sniffles1 and Sniffles2 for CLR data. 41 
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Considering the sensitivity and accuracy at the same time, cuteSV2 reached the highest F1 1 
score on HiFi and ONT data, and the second best on CLR data (1% lower than that of Sniffles2). 2 
For the genotype concordance, cuteSV2 and Sniffles2 still performed better over 10% higher 3 
than the other two methods, while no more than 1% between these two methods. 4 

Furthermore, we randomly down-sampled the datasets above to 30×, 20×, 10× and 5× and 5 

re-genotyped the HG002 on them (Supplementary Table S1~6). While decreasing the 6 
sequencing coverage, the performance of all the methods descended to some extent (Fig. 1B), 7 
however, cuteSV2 still remained almost the best performance in most conditions. Especially 8 
focusing on precision, cuteSV2 only dropped less than 1%, even a little raising when the 9 
coverage varies from the origin coverage to 5× (from 96.73% to 96.96% for HiFi, from 97.28% 10 

to 97.33% for CLR, from 97.39% to 97.37% for ONT), which is all higher than the other methods. 11 
The recall rate of each method fell more because of the absence of pivotal SV signatures in 12 
low-coverage data. cuteSV2 and Sniffles2 dropped about 6% when the coverage descends to 13 
10×, while Sniffles1 and SVJedi dropped much more. Comprehensively considering precision 14 

and recall, cuteSV2 still reached the best F1 scores on various coverage data under all 15 
sequencing technologies. When it comes to genotype concordance, Sniffles2 performed best 16 
on low coverage datasets (dropped by 8.24% for HiFi, 15.48% for CLR, 12.98% for ONT), with 17 
cuteSV2 following close (dropped by 12.31% for HiFi, 16.82% for CLR, 14.10% for ONT). 18 

To evaluate the re-genotyping performance on a large-scale cohort, we applied the methods 19 
(SVJedi was discarded due to its relatively low capability) on a real population group consisting 20 
of 100 Chinese individuals that were sequenced by ONT on about 10~15×. After re-genotyping, 21 

Bcftools[20] was adopted to calculate the allele frequency (AF), the test score of excess 22 
heterozygosity (ExcHet), and the test score of Hardy-Weinberg Equilibrium (HWE) of each 23 
variant. After removing the nonexistent SVs whose AF equals 0, cuteSV2 remained 102,095 24 
SVs which is much more than that of Sniffles2 (95,184) and Sniffles1 (73,962), which indicates 25 
the ability of cuteSV2 to detect abundant SVs (Fig. 2A and Supplementary Table S7). CuteSV2 26 
had the smallest number of SVs with ExcHet test scores lower than 0.05, and the largest 27 
number of SVs with ExcHet test scores higher than 0.95, indicating its outstanding genotype 28 
assignments for heterozygous (Fig. 2B and Supplementary Table S8). In the HWE test, 29 
Sniffles2 (14.26%) and cuteSV2 (16.56%) reported a less proportion of SVs with HWE test 30 
scores lower than 0.05, while Sniffles1 have much more bad cases (30.63%) compared with 31 
the other two (Fig. 2B and Supplementary Table S8~10). 32 

We randomly selected three samples from this large-scale group to further assessed the 33 
consistency of SV calling and corresponding genotyping through orthogonal PacBio HiFi 34 
sequencing. From the distribution of consistency rate (CR) and SV amount under different AF 35 
intervals shown in Fig. 2C, it is obvious that cuteSV2 and Sniffles2 showed the outstanding 36 
ability to detect SVs with reporting over 20,000 SVs for each sample (20,429 for cuteSV2 and 37 
23,068 for Sniffles2, in average), while Sniffles1 only reported about 15,398 SVs in average 38 
(Fig. S2 and Supplementary Table S11~13). When it comes to consistency rate, Sniffles1 39 
performed the highest (about 80%) and cuteSV2 followed close (about 78%), while Sniffles2 40 
performed much lower (about 70%). Taking these two aspects into account, cuteSV2 detected 41 
the largest number of consistent SVs with both high total amount and consistency rate. 42 
Furthermore, we benched the CR of different SV types and Fig. 2C shows that for insertions 43 
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and deletions, the conclusion is similar to that above, that is, cuteSV2 detected the most 1 
consistent SVs (Supplementary Table S14). cuteSV2 discovered much more inversions than 2 
other methods (about 70 for cuteSV2, 30 for Sniffles1, and 40 for Sniffles2), meanwhile, there 3 
are about twice as consistent inversions. When it comes to duplications, cuteSV2 reported 4 
about ten times more, and there are about 30 consistent duplications while Sniffles1 and 5 
Sniffles2 only discovered less than 10 duplications in total. Hence, cuteSV2 not only performed 6 
better in insertions and deletions, but also in longer and more complex SVs. Furthermore, we 7 
took the various genomic regions where SVs were involved into account. It is obvious that 8 
cuteSV2 achieved almost the highest consistency rate for those SVs located in gene-related 9 
regions (Fig. 2C and Supplementary Table S15). This consequence indicates the highly 10 
accurate SV detection ability, especially in high genetic conservation regions, which would 11 
benefit the studies that highly rely on functional SVs. 12 

Finally, we examined the computational performance of these tools in different datasets. 13 
From the assessments of elapsed time on the HG002 sample (Fig. 2D and Supplementary 14 
Table S16), Sniffles2 had the fastest speed regardless of the dataset (i.e., HiFi: 871s, CLR: 15 
8,263s, ONT: 4,655s), with cuteSV2 (i.e., HiFi: 1,256s, CLR: 19,134s, ONT: 11,400s) followed 16 
at approximately one time slower and Sniffles1 (i.e., HiFi: 5,705s, CLR: 24,978s, ONT: 16,380s) 17 
and SVJedi (i.e., HiFi: 96,765s, CLR: 93,062s, ONT: 103,471s, all under 16 threads) were much 18 
slower. Notably, cuteSV2 and Sniffles2 both achieved a quasilinear speedup and time reduction 19 
with the increasing threads. Hence, there would be no significant time discrepancy between 20 
cuteSV2 and Sniffles2 when applying more CPU threads. In terms of memory footprint, 21 
Sniffles1 (from 2.6 to 38.7 GB) and Sniffles2 (from 0.6 to 4.3 GB) were variable and highly 22 
related to the size of the data. SVJedi cost a larger memory that was about 7 GB. By contrast, 23 
cuteSV2 used a relatively small and stable memory (about 3 GB) regardless of the size of the 24 
dataset, which is mainly due to the about 3 GB size of the human reference genome involved 25 
in the reference allele generation. For the assessments of the 100 Chinese individuals (Fig. 2E 26 
and Supplementary Table S17), cuteSV2 and Sniffles2 achieved equivalent and fast speed (i.e., 27 
320s and 281s respectively), whereas the average memory footprint for cuteSV2 (3.53 GB) 28 
was smaller than that for Sniffles2 (4.14 GB). Sniffles1 cost much more time (10,162s) and 29 
memory (5.45 GB) on each sample significantly. 30 

Through re-genotyping SVs via long reads, we supply an accurate and fast re-genotyping 31 
solution, which is promoting the studies like population genetic measurement and estimation 32 
effectively. In order to better apply cuteSV2 in practice, there are still several advantages and 33 
disadvantages that need to explain in detail. 34 

 cuteSV2 implements a two-round purification on SV signatures to select the reads that 35 
support the target SV. The first round follows the refinement step of cuteSV to distinguish 36 
signatures with various allele lengths, while the second round performs an enhanced 37 
purification strategy by inspecting the allele similarity comprehensively. An example (Fig. 38 
S3) shows that a target deletion (1,620bp) on chromosome 13 was obtained correctly 39 
genotype only by cuteSV2. This is mainly due to the strength of the two-round purification 40 
strategy for figuring out the signatures on the complex genomic region. 41 

 cuteSV2 applies a merging strategy for those fragile signatures affected by the erroneous 42 
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read-alignment and generates agglomerated signatures. This will improve the sensitivity 1 
of re-genotyping through the maintenance of the potential signatures as many as 2 
possible. An example (Fig. S4) shows that a target insertion (299bp) on chromosome X 3 
was determined as homozygous only by cuteSV2 and is concordant with the 4 
corresponding ground truth. For the absence or limitation of the merging strategy, 5 
Sniffles1 and Sniffles2 reported wrong genotypes. 6 

 The heuristic SV signature extraction module enables cuteSV2 to discover more amount 7 
and more accurate signatures, especially for longer and more complex SVs such as 8 
inversions and duplications, which helps to carry out high-quality genotype assignments. 9 
From Fig. S5, there is an inversion of 1,200bp on chromosome 1 and only cuteSV2 10 
reported the real genotype successfully. Another example of duplication of 7,759bp on 11 
chromosome 1 is shown in Fig. S6, all the other methods reported the genotype as 0/0 12 
except cuteSV2. This duplication is located on the HRNR gene that is highly associated 13 
with gene compression, and only cuteSV2 achieved the genotype assignment correctly 14 
for this, which indicates that cuteSV2 has the potential for functional SV discovery in 15 
those accurate clinical studies. 16 

 Although cuteSV2 contains a great ability of re-genotyping, however, there are still left 17 
several limitations both for it and the current re-genotyping technologies. On the one 18 
hand, cuteSV2 can widely handle most of the SV types including insertion, deletion, 19 
inversion, duplication, and translocation, but it is difficult to accomplish the re-genotyping 20 
of Copy Number Variation (CNV) till now. On the other hand, it is the main mission for 21 
cuteSV2 and other methods to complete the re-genotyping on the diploid genome but 22 
not on the polyploid genome like plants, and this is also a bottom-neck in the variant 23 
calling field. Hence, we will further focus on these topics and try to solve them in the 24 
future. 25 

Conclusions 26 

In this article, we introduce an accurate and fast re-genotyping method cuteSV2 to assign 27 
genotypes for population-based SVs via long-read sequencing. It is owing to the two algorithms 28 
of heuristic signature purification and specific-designed scanning line, that cuteSV2 achieves 29 
accurate signature marking and effective read distribution statistics, benefitting to the reliable 30 
likelihood estimation of SV genotypes. The benchmarking results indicate that cuteSV2 retains 31 
outstanding re-genotyping performance compared with the-state-of-art methods in various 32 
aspects. Especially, it has high accuracy with all sequencing technologies regardless of the 33 
sequencing depth. These strengths demonstrate that cuteSV2 has a reliable genotype 34 
recognition ability contributing to high-quality SV detection for large-scale population studies 35 
and precise clinical practice. We believe that cuteSV2 will have wide application in cutting-edge 36 
genomic research. 37 

Methods 38 

The force-calling re-genotyping method as an expansion module is integrated into our previous 39 
SV detector cuteSV[21, 22]. It can parallelly assign new genotypes referring to the given 40 
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population-scale SVs, for each SV type on each chromosome among every individual. The 1 
approach has four major steps as follows (see Fig. S1). 2 

Step 1. Signatures extraction of various SV types 3 

We follow the signature extraction module of cuteSV to comprehensively collect various types 4 
of SV signatures including insertions, deletions, inversions, duplications, and translocations.  5 

Step 2. Candidate signatures marking for SVs 6 

For each re-genotyped SV call, cuteSV2 marks all candidate signatures extracted in Step 1 7 
through specific-designed spatial similarity measurement and allele-similarity estimation. First, 8 
a binary search strategy is implemented in the ordered signature list to find the signature 9 ������� which has the nearest coordinate as the given SV. Then cuteSV2 measures the spatial 10 

similarity of signatures upstream and downstream and collects them recursively. For a collected 11 
signature �����, its nearest neighborhood signature �����′ will be collected when it satisfies: 12 

 � ����� − ������� ≤ 2000|���� − ����′| ≤ ���_�������_���� (1) 

where ���� , ����′  and ������  are the breakpoints of ����� , �����′  and ������� , 13 

respectively; ���_�������_����  indicates a threshold which is mutative due to various SV 14 
types and sequencing platforms (by default, 200, 100, 500, 500 and 50 for DEL, INS, DUP, INV 15 
and TRA, respectively). It is worth noting that, for translocations, an additional condition that 16 
constrains the same transferred chromosome ID of signatures is designed to ensure the spatial 17 
similarity of collected signatures. 18 

The above-collected signatures only consider the spatial similarity but ignore the similarity in 19 
alleles. Therefore, cuteSV2 then purifies the collected signatures through the allele-similarity 20 
estimation and only retains the signatures with high allele-similarity as candidate signatures. 21 
For insertions and deletions, to restore the signatures as many as possible, the fragile 22 
signatures from the same read are merged together to generate novel potential signatures. 23 
Then cuteSV2 implements the refinement step of cuteSV on the signatures to discard them into 24 
various clusters and measures the allele-similarity of each cluster to re-genotyped SV as below: 25 

 ����������������� = min (1� × ∑ �������� , ��������)max (1� × ∑ �������� , ��������) (2) 

where ��������  and ����  indicate the length of the given re-genotyped SV and the ��ℎ 26 

signature in the cluster, respectively. cuteSV2 selects the cluster with the highest allele-27 
similarity as once purified collected signatures. For inversions, duplications, and translocations, 28 
cuteSV2 uses the collected signatures directly. In the second purification, cuteSV2 measures 29 
the allele-similarity of each purified collected signature through (3) and remains the signatures 30 
whose allele similarity exceeds 0.7 as the final candidate signatures. 31 

 ���������������� = min (��������� , ��������)max (��������� , ��������) (3) 

Step 3. Overlapped reads marking for SVs 32 
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cuteSV2 computes the distribution of reads around each re-genotyped SV breakpoint by an 1 
overlap scanning line. Specifically, for each SV, cuteSV2 records all alignment reads that cover 2 
the SV on the chromosome. 3 

All the re-genotyped SVs and alignment reads are collected together as 2-tuple (���, ���), 4 
(�����, �����), where ����� and ��� represent the start coordinate of read/SV, ����� and ��� 5 
represent the end coordinate of read/SV, respectively. The tuples are grouped by chromosome, 6 
and in each group, all the breakpoints in tuples are sorted in order according to their coordinates. 7 
Then cuteSV2 designs a line scanning the ordered breakpoints from head to tail. While moving 8 
the scanning line, cuteSV2 uses a read set R to record the reads that stride over the line and 9 � = {����|����� < ������ < �����} , where ������  represents the breakpoint that the scanning 10 
line reaches. In detail, the read is added into read set when the scanning line reaches ����� 11 
and removed from read set when the line reaches �����. And when the line reaches ��� or ���, 12 
cuteSV2 records reads in the read set R as the reads cover the SV breakpoint. The intersection 13 
of reads covering both the start and end breakpoint of an SV is marked as the reads that cover 14 
the SV. 15 

Step 4. Assign genotypes based on likelihood estimation 16 

In step2 and step3, candidate signatures and cover reads are marked for the re-genotyped SVs. 17 
Due to the fact that candidate signatures represent the reads that support the SV, the difference 18 
set between the cover reads and the reads where candidate signatures come from represents 19 
the reads that support the reference. Using these two read sets, cuteSV2 uses the genotyping 20 
module from cuteSV to assign genotype through the bi-allelic assumption on the likelihood of 21 
various zygosity. 22 
  23 

Implementation of benchmark 24 

For the Ashkenazim Trio, we obtain the PacBio HiFi sequencing alignment data of HG002, 25 
HG003, and HG004 from GiaB and apply PBSV to detect the individual SVs. The cohort-level 26 
structural variations are generated by merging the three individuals via SURVIVOR[23]. Then we 27 
obtain the CLR and ONT sequencing alignment data of HG002 from GiaB and re-genotype the 28 
cohort-level structural variations by four methods (cuteSV2, Sniffles1, Sniffles2, SVJedi). The 29 
re-genotyping results are benchmarked via Truvari. 30 

For the 100 Chinese population group, we implement ONT sequencing on 100 samples and 31 
PacBio HiFi sequencing on three of these samples (i.e., Sample #1, #2, and #3). Four different 32 
callers (cuteSV, SVIM[24], Sniffles1, and Nanovar[25]) are applied for individual SV calling and 33 
SURVIVOR is applied for multiple samples merging. With the merged cohort-level SVs, we 34 
implement re-genotyping methods on 100 samples and apply SURVIVOR the second time to 35 
achieve revised cohort-level SVs. Then we implement PBSV on three HiFi sequencing sample 36 
to achieve the ground truth. The HWE and ExcHet are achieved via bcftools and the consistent 37 
rate is obtained from Truvari. 38 

The benchmark is implemented with a server having 2 Intel(R) Xeon(R) Gold 6240 CPU @ 39 
2.60GHz (32 cores in total), 15.8 Terabytes RAM and 6221 Terabytes hard disk space (no SSD 40 
is used), running on CentOS Linux release 7.5.1804 Operating System. The runtime and 41 
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memory footprint were assessed by using the </usr/bin/time -v= command of the Linux Operating 1 
System. 2 

The detailed commands can be referred in Supplementary Note. 3 
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 1 

Fig 1. The benchmark results of the re-genotyping performance on the HG002 sample. 2 
A. The precision, recall, F1 score, and genotype concordance on different sequencing 3 
technologies including HiFi (PacBio HiFi sequencing), CLR (PacBio CLR sequencing), and 4 
ONT (Oxford Nanopore Technologies sequencing). The ground truth is Genome in a Bottle 5 
(GiaB) National Institute of Standards and Technology (NIST) ground truthsets (SV v0.6) and 6 
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the GIAB Challenging Medically Relevant Gene Benchmark (CMRG) v1.00, respectively. B. 1 
The precision, recall, F1 score, and genotype concordance under different sequencing 2 
coverages (i.e., 30×, 20×, 10×, and 5×) on different sequencing technologies (i.e., HiFi, CLR, 3 

and ONT) based on NIST and CMRG ground truth. 4 
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 1 

Fig 2. The benchmark results of the re-genotyping performance on the Chinese 2 
population group and the computational performance tests. A. The distribution of SV 3 
amount under different minor allele frequency (MAF) intervals. The above one shows the 4 
distribution of SVs whose MAF is smaller than 0.1 and the below one shows more common 5 
SVs with MAF larger than 0.1. It is also worth mentioning that the SVs in the regions of 6 
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MAF=0.005 and MAF=0.01 indicate singletons and doubletons respectively. B. The distribution 1 
of test scores of excess heterozygosity (ExcHet) and Hardy-Weinberg Equilibrium (HWE) for 2 
these three methods in the population group. The left three figures with gray columns represent 3 
the ExcHet scores, and the right with black columns represent the HWE scores. The red column 4 
indicates the SVs with test scores lower than 0.05 and demonstrates failures in the ExcHet or 5 
HWE test. C. The mean consistency rate for the three tested samples on different SV types 6 
(deletion, insertion, inversion, duplication, translocation) and different genomic regions (gene-7 
related and inter-genetic regions). Each column and line represent the mean number of SV and 8 
mean consistency rate of the three samples, respectively. D. The elapsed time and memory 9 
footprint on the different HG002 datasets (PacBio HiFi, PacBio CLR, and ONT) with various 10 
threads (1, 2, 4, 8, 16). E. The box plot of the elapsed time and memory footprint on the 100 11 
Chinese individuals. 12 
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