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Abstract

The human leukocyte antigen (HLA) locus is associated with more human complex diseases
than any other locus. In many diseases it explains more heritability than all other known loci
combined. Investigators have now demonstrated the accuracy of in silico HLA imputation
methods. These approaches enable rapid and accurate estimation of HLA alleles in the millions
of individuals that are already genotyped on microarrays. HLA imputation has been used to
define causal variation in autoimmune diseases, such as type | diabetes, and infectious
diseases, such as HIV infection control. However, there are few guidelines on performing HLA
imputation, association testing, and fine-mapping. Here, we present comprehensive statistical
genetics guide to impute HLA alleles from genotype data. We provide detailed protocols,
including standard quality control measures for input genotyping data and describe options to
impute HLA alleles and amino acids including a web-based Michigan Imputation Server. We
updated the HLA imputation reference panel representing global populations (African, East
Asian, European and Latino) available at the Michigan Imputation Server (n = 20,349) and
achived high imputation accuracy (mean dosage correlation r = 0.981). We finally offer best
practice recommendations to conduct association tests in order to define the alleles, amino
acids, and haplotypes affecting human traits. This protocol will be broadly applicable to the
large-scale genotyping data and contribute to defining the role of HLA in human diseases

across global populations.
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Main

Introduction

More than 50 years ago, some of the earliest complex human disease genetic associations
were reported within the major histocompatibility complex (MHC) locus™?. This locus has since
been mapped to the short arm of chromosome 6. Sequencing of the human genome has
revealed that the MHC locus consists of a cluster of more than 200 genes, including many with
immune functions®. The MHC locus is broadly divided into three subclasses: the class | region
(e.g., HLA-A, HLA-B and HLA-C genes), the class Il region (e.g., HLA-DPA1, HLA-DPB1,
HLA-DQA1l, HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-DRB1, HLA-DRB2,
HLA-DRB3, HLA-DRB4 and HLA-DRB5 genes), and the class Il region, which contains
additional genes implicated in immune and inflammatory responses (e.g., complement genes)*
(Figure 1a). Those HLA class | and Il genes encode protein molecules that form complexes
that present antigenic peptides to T cells, thereby influencing thymic selection and T cell
activation® (Figure 1b). The functional importance of the HLA genes and the highly polymorphic
nature of this locus have made the MHC region confer the largest number of disease
associations of any locus genome-wide (Figure 1c). MHC-disease risk is modulated by several
underlying mechanisms. For example, in rheumatoid arthritis, polymorphisms in the amino acid
sequence of HLA-DRB1 change the capability of presenting autoantigens® or increase the
autoreactive T cells during thymic selection®. In another example, the HLA-C*06:02 allele is
associated with psoriasis, probably due to increased CD8+ T-cell mediated inflammatory

reactions’. In another example, schizophrenia’s association within MHC locus was explained in
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part by structural variation in C4, which might modulate synaptic elimination during
development®.

The HLA genes within the MHC have been difficult to study because of their highly
polymorphic nature, the region’s complex relationship with natural selection, and its unique
long-range linkage disequilibrium (LD) structure. The highly polymorphic nature of HLA genes
renders traditional probe-based genotyping to be challenging. In addition, the genetic diversity
at HLA genes is highly population-specific, necessitating efforts to accurately genotype HLA
alleles and investigate phenotypic associations in global populations.

These challenges have driven high interest in the genetics community to develop and
deploy statistical techniques for HLA alleles. While the direct typing of HLA alleles continues to
be costly, labor-intensive and unscalable, in silico HLA imputation has recently enabled rapid
and accurate estimation of HLA alleles in individuals already genotyped on microarrays.
However, there are few guidelines for HLA imputation and to estimate and fine-mapping; these
methods are necessary to define HLA effects on human diseases, especially in biobank-scale
data from multiple populations.

In this context, here we provide detailed guidelines for imputing HLA alleles and testing for
an association with human diseases and traits, in large-scale cohorts and global biobanks. We
also provide a step-by-step online tutorial with scripts and available software
(https://github.com/immunogenomics/HLA_analyses_tutorial). Definitions of key terms used

throughout this article can be found in Box 1.
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Box 1 Key terms and definitions

MHC region

Linkage
disequilibrium

Imputation

Reference panel

Haplotype

Allele
HLA allele

Genotype

Fine-mapping

Homozygous

Heterozygous

Allele divergence

A genomic region that harbors the major histocompatibility complex
(MHC). In GRCh37, it corresponds to chr6:28,477,797-33,448,354
(6p22.1-21.3).

A non-random association or dependence of alleles at different loci in
a given population, making the frequencies of the alleles deviate from
the expected when the alleles were independent.

A procedure of estimating the missing genotypes at loci that are not
assayed in the target dataset.

A panel of densely genotyped haplotypes to be referred to when
predicting the missing genotypes in the target cohort through
imputation.

A stretch of DNA sequences (including multiple polymorphic loci)
along one chromosome that tend to be inherited together due to
linkage disequilibrium.

One of two versions of DNA sequences. An individual inherits two
alleles (maternal and paternal) for any genomic location.

One of the sequence variations at a given HLA gene.

An individual's pattern of DNA sequence at a given location. Two
alleles from a mother and a father comprise a genotype.

A procedure to narrow down and define potentially causal genetic
variation(s) affecting the trait of interest, from all the associated
genetic variations at a given locus in GWAS by using statistical
methods.

A state where the two alleles at the genetic variation of interest (e.g.,
an HLA gene) are the same.

A state where the two alleles at the genetic variation of interest (e.qg.,
an HLA gene) are different.

A proxy for the functional difference in antigen binding between two
HLA alleles based on the divergence of their amino acid sequence.
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Figure 1. A simplified summary of the location and structure of HLA genes on human
chromosome 6, and their associations with human traits

a. A schematic representation of the human MHC locus, three classes of the region, and genes
within them. The genes in pink are the classical class | HLA genes, whereas those in blue are
the classical class Il HLA genes. b. Presentation of antigenic peptide by an antigen-presenting
cell to a T cell through interaction between MHC class Il molecule and T cell receptor (TCR).
The inset describes protein structure of MHC class I, HLA-DRA and DRB1 adapted from PDB

(3L6F). c. The number of traits associated with any variants within 2Mb genomic window with P
< 5x10® in UK Biobank or meta-analysis of UK Biobank and FinnGen among 198 diseases and

biomarkers®.
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Summary of the protocol

The protocol is summarized in Figure 2a. The protocol is comprised of two sections: HLA
imputation (Figure 2a-1) and HLA association testing (Figure 2a-2). HLA imputation is a
method to infer HLA alleles, amino acids and SNPs from microarray-based genotype within the
MHC region. We first introduce the concept of the HLA reference panel (1), which is used as a
dictionary to search for similar haplotypes (keyword) to infer unknown HLA types (definition).
We highlight specifically our multi-ancestry HLA reference panel, which we recently constructed
to enable accurate HLA inference in diverse global populations®. We next provide specific
instructions to perform QC of the input genotype data (2), per-individual and per-variant (3). The
quality of genotype data is critical in achieving accurate imputation, and a special caution
should be taken given the extremely complex and polymorphic nature of genetic variants within
MHC. We then introduce options to impute HLA (4), either (i) on a user’s local server or (ii) or by
using the Michigan Imputation Server (MIS)*, which is a publicly available, web-based
imputation platform we jointly support with Michigan University. We finally describe the quality
metrics and post QC of the imputed variants (5).

We next describe statistical methods to perform comprehensive association tests between
HLA genotype and human traits (Figure 2a-2). Since HLA associations are often explained by
amino acid sequences in the peptide binding groove of HLA molecules®, we describe
strategies to fine-map associations with the aim of pinpointing causal variation. We start from a
simple single-marker test which is similar to that commonly used in GWAS, and then elaborate

on the HLA-specific fine-mapping methods (e.g., an omnibus test (2) and a conditional
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138 haplotype test (3)). We also introduce statistical tests to define non-additive, interactive, and

139 multi-trait contribution of HLA alleles.

140
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Figure 2. The overview of HLA imputation, association, and fine-mapping, including
construction of HLA reference panel.

a. Overview of this protocol. (a-1) A toy example of HLA imputation, describing (1) HLA
imputation reference panel, (2) input genotype in the MHC region from the target cohort without
HLA types, (3) quality control of the target genotype, (4) genotype phasing and imputation to
predict the untyped HLA alleles in the target cohort, and (5) output of the predicted HLA alleles.
(a-2) Statistical methods to investigate and fine-map association of HLA alleles, amino acids
and their haplotypes with a trait of interest. b. The naming system (nomenclature) of HLA alleles,
consisting of four fields with each field corresponding to the types and consequences of
nucleotide variations. c. (top) The amino acid sequences defining each of three example
HLA-DRBL1 alleles. The amino acids colored in red indicate the positions where they have
variations among the alleles. The numbers (-25 and -24) at the bottom indicate the relative

position of those amino acids within a coding region of HLA-DRB1. (bottom) A procedure to
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155 code each of the HLA alleles and amino acid polymorphisms as binary markers: 1 if that marker
156 is present within a haplotype and O otherwise. Each of the residues are coded separately for a
157  given amino acid position in the corresponding HLA protein.
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Introduction to HLA nomenclature
Sequence variation within HLA genes is organized by the International Immunogenetics
database (IMGT)", which has documented and named 33,490 unique HLA alleles (URL:
https://www.ebi.ac.uk/ipd/imgt/hla/about/statistics/). Within each of the HLA alleles, there are
nucleotide variants which sometimes cause amino acid changes (i.e., non-synonymous
nucleotide substitutions) and sometimes not (i.e., synonymous, intronic and intergenic
nucleotide substitutions). A detailed nomenclature system at IMGT has been developed to
organize those polymorphisms in HLA genes into four fields (Figure 2b)*. In this nomenclature,
field 1 (i.e., the first two digits, e.g., HLA-DRB1*01) describes the serological type, which was
historically defined based on similar seroreactivity to immunological reagents. Field 2 (i.e., the
next set of digits, e.g., HLA-DRB1*01:01) corresponds to the unique amino acid sequence of
the gene; all the non-synonymous changes are reflected in this set. Field 3 (e.g.,
HLA-DRB1*01:01:01) reflects synonymous nucleotide substitutions within the coding
sequences, and field 4 (e.g., HLA-DRB1*01:01:01:01) reflects polymorphisms within the
intronic or non-coding regions. Thus, whereas nucleotide variants define HLA alleles at up to
four-field resolution, most disease associations are captured by two-field HLA resolution since
amino acid sequence captures most of the structural differences between the alleles.

The four-field naming system is the current standard and most widely used, but it is worth
expanding upon the alternative nomenclatures since they are sometimes seen in practice.
Before the current four-field naming system was introduced, the IMGT had used the

nomenclature without a field separator (:'), where each field must have two digits. Therefore,

11
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one-field alleles had been called two-digit alleles, and two-field alleles had been called four-digit
alleles. However, as the number of two-field alleles belonging to a given one-field allele began
to exceed 100 (e.g., HLA-A*02101 and HLA-B*15101), the name *“four-digit” designation
became inappropriate. Thus, the IMGT updated the previous nomenclature system by
introducing the field separator (e.g., HLA-A*02:101 and HLA-B*15:101) and four-field naming
system.

In this same update, the IMGT introduced two additional nomenclature schemes to
facilitate practical reporting of HLA typing: G group and P group. Current classical HLA typing
technologies sometimes cannot resolve an HLA allele at four-field resolution and define a group
of similar alleles based on the variations within peptide binding domains (exon 2 and 3 for class
| HLA genes and exon 2 for class Il HLA genes). The G group nomenclature represents HLA
alleles that share the same nucleotide sequence in the peptide binding domains. For instance,
HLA-A*01:02:01G includes HLA-A*01:02:01:01, HLA-A*01:02:01:02, HLA-A*01:02:01:03, and
HLA-A*01:412, but not HLA-A*01:02:02. The P group nomenclature represents HLA alleles that
share the same protein sequence in the peptide binding domains. For example, HLA-A*01:02P
includes HLA-A*01:02:01:01, HLA-A*01:02:01:02, HLA-A*01:02:01:03, HLA-A*01:02:02, and

HLA-A*01:412.

Introduction to HLA imputation
Genotype imputation is the term used to describe estimation of missing genotypes that are not

assayed in the target dataset. Most imputation methods use data from densely genotyped

12
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samples as a reference dataset in which haplotypes have been inferred'®. They typically use
statistical approaches such as hidden Markov models (HMM) to fill in missing genotypes in a
dataset of interest with incomplete genotype data. Here the genotype data reflects the observed
states, while the template haplotypes are represented as the unknown hidden states. Most
imputation algorithms produce a probabilistic prediction of each imputed genotype. These
probabilities can be used to either (1) calculate a probabilistic dosage, which is a simple sum of
those expected probabilistic allele count, or (2) a best-guess genotype, which is a combination
of alleles which have the largest probability. These values can then be used in the downstream
analyses. Dosages inferred from imputed results are a continuous value between 0 and 2,
whereas guess genotypes are discrete values of 0, 1, or 2 alleles. Genotype imputation can
boost the power of the association studies, fine-map the signal, and enable meta-analysis of
multiple cohorts™.

After imputation, it is essential to understand the accuracy of imputation. The quality of
predictions can be technically measured by masking the genotype, imputing them, and deriving
the correlation between the true (masked) genotype and the predicted genotype. We favor
using this correlation as a metric, as opposed to accuracy (percent of concordance between
true genotype and imputed genotype calls), since accuracy can be upwardly biased for rare
alleles. In practice, true genotype data is often missing. In these instances, we can also
estimate the quality of imputation by the ratio of the empirically observed variance of the allele

dosage to the expected binomial variance at Hardy-Weinberg equilibrium (Rsq).

13
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HLA imputation is natural extension of the genotype imputation. The HLA imputation infers
HLA alleles, amino acid polymorphisms, and intragenic SNPs within HLA (hidden state). Due to
the excessive variation of these HLA genes, these variants generally cannot be accurately
assayed with popular probe-based genotyping arrays. HLA alleles are inferred indirectly by
using surrounding genotyped SNP variants in the MHC region (“scaffold” variants; Figure 2c).
Reference haplotypes are constructed from samples with both genotyped SNP variants and
HLA alleles genotyped by either classical sequence-based typing (SBT)'® or inference from
untargeted sequencing data, such as whole genome sequencing (WGS) data'*®. The HLA
amino acid sequences and intragenic SNPs within HLA genes can also be included in the
reference haplotypes to enable their imputation. There are many widely used statistical
software tools to perform the HLA imputation, such as SNP2HLA®, HIBAG?, and HLA*IMP%,
HLA-IMPUTER?, and GRIMM?®. The SNP2HLA and HLA*IMP methods use the same HMM
algorithm used in genome-wide imputation, whereas the HIBAG method uses a
machine-learning technique: a bagging method?®. Imputation performance is often related to
the size, quality, and suitability of the reference panel rather than the statistical software used.
The output of the HLA imputation is a posterior probability as well as an effective dosage
(ranging from 0 to 2) for each HLA allele in a given sample. Subsequent association tests
usually account for the uncertainty of the imputation by using the estimated dosage as an

explanatory variable.

HLA imputation reference panel
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There have been many efforts to construct haplotype reference panels in the MHC region to
enable HLA imputation. Since the haplotype structure within the MHC region differs significantly
among populations®®, it is important that the target dataset is well represented by the reference
haplotype panel. The current availability of published HLA reference panels is summarized in

Table 1.
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Imputation
software Name Ancestry/population Nsamples  Availability
Upon
SNP2HLA™ T1DGC European 5,225 registration
Han Chinese, Southeast Asian Malay, Tamil Indian Publicly
SNP2HLA Pan Asian® ancestries, and Japanese 530 available
SNP2HLA Hirata etal.® Japanese 1,120 Upon request
Publicly
SNP2HLA Zhou etal?”  Han Chinese 20,635 available
Publicly
SNP2HLA Kim et al.”® Korean 413 available
Publicly
SNP2HLA 1KG Global populations in 1000 Genomes Project 2,504 available
HLA-TAPAS? Publicly
0 1KG Global populations in 1000 Genomes Project 2,504 available
Limited public
MIS Multi-ancestr accessibility
(Minimac) y Multi-ancestry 20,349  onweb
Publicly
HIBAG® HLARES Multi-ancestry 4,000 available
Publicly
HIBAG IKMB Multi-ancestry 1,360 available
Degenhardt
HIBAG et al. Multi-ancestry ~1,300  Upon request
1958 Birth Limited public
Cohort + accessibility
HLA*IMP?! HapMapCEU European ~2,500 onweb

Table 1. A list of available HLA imputation reference panels

A list of currently available HLA imputation reference panels, the sample ancestry, the number

of samples, and whether they are publicly available or not. Limited public accessibility means

that while the raw reference panel (individual-level genetic data) is not accessible, users can

use it for imputation via web-based imputation service. MIS: Michigan Imputation Server.
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It is also possible to construct a custom HLA reference panel. SNP2HLA and
HLA-TAPAS!®* are tools to construct such custom reference panels. Starting with a SNP
genotyped cohort (“scaffold variants”), we can either (1) obtain the gold standard SBT of HLA
alleles (such as sequence-specific oligonucleotide probe hybridization (SSOP)™) if DNA is
available or (2) infer HLA alleles from WGS (e.g., HLA*PRG and HLA*LA)'"!8?°  Reference
panels can include alleles of classical HLA genes (Ngene = 8)*, which are most polymorphic and
disease-associated, or both classical and non-classical HLA genes (Ngene = 33)%°. In the
SNP2HLA algorithm, HLA alleles are converted to biallelic markers (e.g., 1 indicates the
presence of the allele and 0 indicates the absence of the allele). Classical SBT, such as SSOP,
is the most accurate approach to HLA genotyping. Incorporation of SBT genotypes into
reference panels results in highly accurate imputation; however, since SBT is costly and
labor-intensive, it cannot be easily used to build large reference panels. Graph-based inference
of HLA alleles from WGS is a potential alternative method that can be easily applied to large
sequencing datasets that are increasingly available!”*®2°, However, an important caveat is that
the accuracy of HLA typing by those graph-based methods can be variable. For example,
imputation performance is affected by (i) quality of the sequencing data, (ii) read depth and
length, (iii) representation of the population in reference databases such as IMGT, and (iv) the
degree of sequence variation within the targeted HLA gene. For studying under-represented
populations or highly polymorphic genes, gold standard SSOP might still be necessary to

construct a suitably accurate reference panel.
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To enable imputation of amino acid polymorphisms and intragenic HLA SNPs, we can
encode all these variants as binary markers based on the refence amino acid and nucleotide
sequences of each observed HLA allele from the IMGT HLA Database

(https://www.ebi.ac.uk/ipd/imgt/hla/) (Figure 2d). The scaffold genetic variants within the MHC

region are usually obtained by either genotyping with a SNP microarray or WGS. Stringent SNP
QC is essential for accurate phasing, and ultimately accurate imputation. In constructing and
updating a multi-ancestry HLA reference panel, we optimized this QC process to maximize
imputation accuracy. Specifically, we started with QCing each of the global cohorts separately,
with genotype call rate (> 95%) and sample call rate (>90%). We then retained all the variants
that were present in the 1000 Genomes Project and excluded any variants that were not
included in commonly used genotyping arrays (lllumina Multi-Ethnic Genotyping Array, Global
Screening Array, OmniExpressExome, and Human Core Exome), since these variants that are
not included in the target genotype data are more likely to result in phasing switch errors without
improving imputation accuracy. When combining all the cohorts to construct the multi-ancestry
panel, we cross-imputed all the variants together to avoid excluding population-specific variants
that are polymorphic in a specific cohort but monomorphic and thus not called in the other
cohorts (Supplementary Figure 1). The final reference panel includes the HLA alleles, amino
acids, intragenic HLA SNPs, and the “scaffold” variants (i.e., SNP variants outside of HLA gene
but within the extended MHC region), which are then phased statistically or by using trios.
Imputed HLA alleles and variants are often used for subsequent association testing and

meta-analyses to fine-map disease risk. Such studies potentially include data from multiple
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cohorts, datasets, or populations. To avoid spurious associations due to batch effects and
population stratification, it is essential to perform HLA imputation on all datasets using the same
reference panel, ideally with all case and control samples genotyped together. Given that such
case-control cohorts may originate from multiple populations to increase the fine-mapping
resolution, we previously constructed an HLA reference panel covering multiple global
populations™.

With the publication of this protocol, we present an updated version of this multi-ancestry
panel (version 2). Briefly, we added samples from European (n = 2,233) and Japanese (n =
723) ancestry for a total of 20,349 individuals. This panel represents admixed African, East
Asian, European and Latino populations. We also updated HLA allele calls and a set of scaffold
variants. We plan to maintain and update the panel further to increase representation of globally
diverse populations, improve the HLA allele calls, and refine selection of the scaffold variants to

achieve the most accurate imputation.

Recommendations for collecting genotype and phenotype information

When designing a study to investigate the effect of HLA variation on human traits, it is important
to be strategic when collecting genotype and phenotype data. For genotype data collection, one
should ensure that the genotyping array used for the target cohort has a high coverage in the
MHC region in order to adequately tag, through LD, HLA alleles, which contributes to accurate
imputation. While most currently used genotyping arrays include a sufficient number of SNPs to

tag HLA alleles for accurate imputation, some arrays have limited SNP coverage of the MHC
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region (Supplementary Table 1)*°. We and others have shown that lower MHC coverage

results in inaccurate imputation'®3

. Furthermore, all study participants should ideally be
genotyped together with the same genotyping array, to avoid introducing any structure that
could cause a bias in imputation and the subsequent association testing and possibly
fine-mapping.

Careful phenotype curation is very important when fine-mapping disease-associated
variants. Discovery of HLA association signals can be enhanced by the addition of more
samples, even at the risk of misclassified samples. However, fine-mapping can be affected by
including misclassified samples. For example, studies of autoimmune disease including
individuals with different subgroups of patients can obscure efforts to localize disease alleles.
This has for instance been observed in rheumatoid arthritis, where patients with positive
antibody status are phenotypically and genetically different from those with negative antibody
status®**®. Recently, many efforts have been made to curate the phenotypes in large-scale
biobanks®** using self-reported disease status or billing code (e.g., ICD-10)*. While the total
number of samples with these forms of phenotyping is large in these biobanks and may enable
discovery, imprecise phenotype labeling may confuse HLA fine-mapping. In contrast,
physician-curated cohorts may be important for fine-mapping efforts.

In addition to disease phenotypes, one must exercise caution when measuring HLA-related
molecular phenotypes, such as HLA gene and protein expression. It is well established that

HLA gene and protein expression is affected by the cis-regulatory genetic variants (i.e.,

expression quantitative trait loci (eQTL) and protein expression quantitative trait loci
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(pQTL))**. When conducting eQTL studies, measuring HLA expression in RNA-seq is
particularly challenging due to the high degree of genetic polymorphism among individuals.
Standard expression quantification pipelines rely on a single human reference genome to align
sequencing reads. The number of reads mapping to each HLA gene might be biased for two
reasons: (1) the reads may fail to map to the reference due to the high degree of sequence
variation (i.e., a large number of mismatches) and (2) the reads may not uniquely map to a
single gene in the reference due to the similarity among nearby HLA genes (i.e.,
multi-mapping)®®. To address this, more accurate gene expression estimates can be obtained
by using an HLA-personalized reference®; instead of using a standard single human reference
genome, we can supply customized HLA sequences for each target individual for each HLA
gene (either based on classical HLA typing or HLA imputation) to minimize the degree of
variation between the RNA-seq reads and the reference and hence reduce the possibility of
mapping failures and multi-mapping. Similarly, caution should be taken for HLA pQTL studies.
HLA protein expression is often measured by antibody-based methods (e.g., antibody-derived
tags) at single-cell resolution. However, these antibodies may have differing binding affinities to
the protein products of different HLA alleles. We should take caution when conducting pQTL
studies, since this differing affinity might cause a bias towards specific HLA alleles when

measuring the abundance of HLA proteins across individuals.

Quiality control of the target genotype data
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Data quality control (QC) of genotype data prior to HLA imputation is extremely important. We
next outline the basic QC measures commonly used in GWAS®, as well as specific instructions
to handle genetic variants within the MHC region. These QC measures are typically performed
once for each genotyping batch, followed by data integration and the final QC for the combined

dataset (Figure 3).

Per-individual QC

We follow established guidelines®***

to perform standard per-individual QC in GWAS.
Typically, we remove (i) individuals with high missingness (e.g., > 0.02), (ii) individuals with
outlier high heterozygosity on suspicion of sample contamination, (iii) individuals with
discordant sex information between the meta data and genotype, and (iv) individuals suspected
to be duplicate samples based on genotype relatedness. We note that the threshold for each

QC measure could be data-dependent, and thus we recommend reviewing the distributions of

those metrics for each of the datasets.

Per-variant QC

It is important to select high-quality variants to achieve accurate imputation. We will describe
the variant QC that is generally recommended for GWAS as well as specific considerations for
the MHC region. As part of standard GWAS QC, we recommend ensuring that the target
genotype data has genomic positions based on the same genome build as the reference panel.

LiftOver software** can be used to lift the genomic position over to the desired genome build.
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Next, genomic variants are typically aligned to the forward strand to be consistent with the
reference panel. We also identify duplicated variants within the dataset based on genomic
position and alleles, and de-duplicate them by removing ones with higher missingness. We then
remove (i) variants with high missingness (e.g., > 0.01), (ii) variants demonstrating a significant
deviation from the Hardy-Weinberg equilibrium (HWE), and (iii) variants with very low minor
allele frequency (MAF). Specifically, we remove variants with very low MAF (e.g., < 0.01 or
0.005) or small minor allele count (MAC; e.g., < 5), assuming low accuracy in genotype calling
from clustering. The sample size and the estimated ancestry should be accounted for when
selecting the threshold in order to retain informative population-specific markers. We usually
only keep biallelic variants and remove multi-allelic variants for simplicity in the imputation.
Specific caution should also be taken for per-variant QC in the MHC region, due to (i) highly
variable allele frequency (AF) of variants within MHC across populations and (ii) expected HWE
deviation in the MHC variants due to natural selection. For example, we usually align target
genotype alleles to the forward strand. For non-palindromic SNPs (i.e., SNPs without A/T or
G/C allele combinations), it is easy to do so by looking up the alleles with the same position in
the reference human genome sequence on forward strand. If the alleles between the target and
the reference genome are different (e.g., A/C in the reference but T/G in the target), we flip the
alleles in the target dataset (swap alleles from T to A and from G to C in the target). On the
other hand, in handling palindromic SNPs (i.e., SNPs with A/T or G/C alleles), we usually
compare population-derived AF and the AF in the target dataset to eliminate allele ambiguity. If

the AFs between them are largely different (e.g., A: 20% and T: 80% in the population reference
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but A: 78% and T: 22% in the target), we can flip the alleles to be consistent with the
population-derived AF (swap alleles from A to T and from T to A in the target). However, this
strategy might be ineffective within the MHC since reference AF for those SNPs might be
different from the target samples when the study population is different, when there are large
AF differences between cases and controls in case-control studies, or when the study sample
size is too small to estimate AF accurately. Therefore, when the strand information of those
palindromic SNPs is ambiguous in the target genotyping array or the genotyped data, it may be
preferable to exclude all the palindromic SNPs. Second, we may compare AF of the variants
after QC in the target data with AF in the population-frequency database (e.g., 1000 Genomes
Project* and gnomAD*) or AF in the reference panel as a sanity check. When the AFs are very
different between the two, those variants could be subject to genotyping error and should
probably be removed. However, when the population does not exactly match between the
target and the database or the reference, this strategy might be ineffective within the MHC.
Thus, we could consider using a liberal threshold when removing variants based on the AF
differences. Third, the extreme deviation from HWE is usually indicative of a genotyping or

genotype-calling error that results in poor clustering®*°

and is used as a metric to exclude poor
guality variants. However, the deviation from HWE is to some extent expected in the MHC
region due to natural selection*” or due to the difference in allele frequency between cases and
controls. The expected deviation will be greater when we study a cohort from multiple

populations or of admixed ancestry, or when the effect size of HLA on the disease is large.

Therefore, for the purpose of per-variant QC, we could consider (1) calculating HWE P values
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only within control individuals (as is generally recommended in GWAS), (2) calculating HWE P
values within individuals from a representative single-ancestry, or (3) using liberal threshold
such as HWE P < 1x10™° when removing the variants suspected of poor clustering while
retaining the important markers for HLA imputation. When we are unsure about the threshold,

an appropriate value can be identified by visually inspecting the genotype cluster plots.

Tools for genotype phasing and HLA imputation

Once we QC the target genotype data and prepare the optimal HLA reference panel, we start
HLA imputation for the target data using existing tools. Table 2 summarizes the main software
programs for HLA imputation and the available HLA reference panels. Of note, some imputation
programs take as input the genotype files directly after the QC as described above, while others

require users to pre-phase the genotypes to obtain haplotypes'"?! before imputation (Figure 3).
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Imputation Input file Amino acid
software Pre-phasing format Local Output imputation
SNP2HLA™ Unnecessary plink Yes VCF Yes
SNP2HLA+Minimac Necessary phased VCF  Yes VCF Yes
Recommended
MIS (Minimac) when Nis small VCF No VCF Yes
R

HIBAG® Unnecessary plink Yes object  No

phased

Oxford
HLA*IMP# Necessary haps/sample  No CSV No

Table 2. Representative software programs for HLA imputation and their requirements.

A list of HLA imputation software programs and their specifications and details about the input

and output. MIS: Michigan Imputation Server.
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Since our group has developed one of the most widely-used algorithms, SNP2HLA, and its

extensions!?4®

, we will focus on the HLA imputation by using the SNP2HLA algorithm along
with cloud based implementation at the MIS (URL:

https://imputationserver.sph.umich.edu/index.html).
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Figure 3. A flow chart of suggested analytical steps for genotype QC and HLA imputation

A best-practice guideline to impute HLA alleles by using SNP2HLA algorithm, depending on the

characteristics of the target genotype data.
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SNP2HLA

The SNP2HLA?'® program can phase and impute HLA alleles, amino acids and intragenic SNPs
with HMM implemented in BEAGLE® by taking the QCed target genotype file in the PLINK
format as an input. The input file is internally processed to extract variants within the MHC (29
Mb to 34 Mb), and then to correct or remove strand errors when possible based on genotype
and AF of palindromic SNPs. In addition to the original bash scripts (URL:
http://software.broadinstitute.org/mpg/snp2hla/), there are several extensions to the SNP2HLA
algorithm such as HLA-TAPAS™® and CookHLA®. We also provide a step-by-step explanation
of the SNP2HLA implementation, along with a script that allows users to specify all the QC
thresholds as option parameters to handle various target cohorts (e.g., the target populations,
the number of samples, etc.) in our tutorial website
(https://github.com/immunogenomics/HLA analyses_tutorial).

We note that the original implementation using BEAGLE does not scale to a large number of
samples in the target dataset, especially N > 10,000. To address this, we also provide a pipeline
using the other representative imputation software, Minimac™*, which can scale to hundreds of
thousands to millions of individuals
(https://github.com/immunogenomics/HLA analyses_tutorial). To use Minimac for imputation,
we first pre-phase the genotype by using methods such as SHAPEIT*®® or EAGLE>!. EAGLE
has an advantage of accurate and fast phasing when the number of samples is large (e.g., N >
10,000). The pre-phased output file must be converted into the VCF format, and then used as

an input to the Minimac software.
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Michigan Imputation Server

While HLA imputation using the SNP2HLA algorithm can be conducted locally using publicly
available HLA reference panels, not all the HLA reference panels are available due to data
sharing and privacy restrictions. Our latest multi-ancestry HLA reference panel is one such
restricted-access panel'®. To enable widespread access, we implemented HLA imputation on
the Michigan Imputation Server (MIS; https://imputationserver.sph.umich.edu/index.html),
which is a cloud-based imputation server with a user-friendly interface (Supplementary Figure
2). We host the multi-ancestry HLA reference panel at the MIS and implement the HLA
imputation using Minimac as described above. In brief, the user first creates an account online,
and securely uploads either a phased or unphased VCF-format genotype file. If the uploaded
genotypes are unphased, the uploaded genotype file will be phased within the MIS using the
EAGLE algorithm. As noted above, we recommend to pre-phase the genotype (with the
reference haplotype when possible) using SHAPEIT or other software when the sample size is
small (e.g., N < 5,000) to achieve accurate phasing before imputation. The MIS automatically
performs basic QC of the input VCF file for the strand orientation and alleles in accordance with
the reference. If the input passes the QC steps, the MIS seamlessly performs the HLA
imputation. The user will be notified with a download link for the imputed VCF file encrypted with
a one-time password via an email once the imputation is completed. The MIS has been used to
impute more than 6 million genomes since we started the web-based HLA imputation service in

2021. We benchmarked the performance of HLA imputation on the MIS using individuals with
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both SNPs and (masked) gold-standard HLA alleles from the 1000 Genomes Project. We
confirmed that the imputation accuracy measured by dosage correlation with true HLA alleles
was very high across populations (mean dosage correlation r = 0.981 for two-field alleles with

MAF > 0.05; Figure 4).
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HLA-DOB1
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a-e. Dosage correlation r (y-axis) between the Michigan Imputation Server imputed dosage and

true genotypes of all two-field alleles in 1KG samples as a function of allele frequency (x-axis),

colored by HLA gene, for all 1KG individuals (a) as well as per-ancestry (b-e). f. The accuracy

(concordance) of the imputed dosage of all two-field alleles in1KG samples in Michigan

Imputation Server and the true genotype of those per HLA gene and per ancestry. The

accuracy metric was calculated as previously described™®.
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Post-imputation QC

The output from the HLA imputation software is accompanied by a quality metric conveying the
confidence or estimated accuracy of imputation per allele. A thorough review of these
imputation metrics and their correspondence to imputation accuracy is described in Marchini
and Howie®. We typically QC the imputed HLA alleles, amino acids, and intragenic SNPs
based on imputation metrics before association testing. SNP2HLA, Minimac, and MIS all
include Rsq as a quality metric. The appropriate Rsq threshold for QC may depend on the study
design; for example, we commonly use Rsq > 0.7 in single cohort studies and Rsq > 0.5 in
multi-cohort meta-analyses. By removing imputed alleles that are below this Rsq threshold,
some individuals might end up having an HLA gene for which the total number of two-field
alleles does not sum up to exactly 2. Those individuals might bias the fine-mapping of
disease-causing alleles, which we will explain in the subsequent sections. Thus, we
recommend removing any individuals that do not have two two-field alleles for a given gene
when conducting conditional haplotype tests using two-field alleles.

We recommend calculating true imputation accuracy from classical HLA typing if it is
available for a subset of study individuals. While the estimated imputation accuracy generally
corelates well with the true accuracy, having the ability to internally benchmark with classical
typing for a subset of the cohort is useful for evaluating the true imputation performance,
especially if the reference panel imperfectly represents the genetic ancestry of the imputed

cohort.
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HLA association and fine-mapping

Single-marker tests

Single-marker genetic association tests are used to investigate whether a specific HLA allele,
amino acid or SNP is statistically associated with a risk of a disease or a trait of interest, such as
risk for a given disease. Similar to the approach used in GWAS, we perform a logistic
regression (for case-control traits) or a linear regression (for quantitative traits) for the imputed
binary makers that indicate the presence (coded as T in the imputed VCF file) or absence
(coded as A in the imputed VCF file) of the selected HLA allele, an amino acid, or an intragenic
SNP. For the markers, we typically use the imputed probabilistic dosage genotypes to account
for any imputation uncertainty. We include study-specific covariates that could independently
explain the trait of interest, such as sex, age, and genotype batches, as well as genotype
principal components (PCs) to account for population stratification and an indicator variable of
cohorts when combining multiple cohorts.

The logistic regression can be formulated as:
log(odds;) = By + fagai + Z BirXk: + 2 BiPCy;
k l

where log(odds;) is the logged odds ratio for case-control status in individual i, a indicates
the specific allele being tested, and g,; is the imputed dosage of allele a in individual i. The
allele a could be either HLA alleles, amino acid polymorphisms or SNPs. The S, parameter
represents the additive effect per allele. For all covariates k, x;; and g, are the covariate k's

value in individual i and the effect size for the covariate k, respectively. Similarly, PC;; and
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are the first [th genotype PC value in individual i and the effect size for the first [th genotype
PC, respectively, to control for genetic ancestry. The [, is the logistic regression intercept.
Quantitative traits that follow continuous distributions (e.g., antibody levels, blood cell counts

etc.) can be analyzed by using linear regression similarly:
Yy =PBo+ Babai + z BrXy, + 2 BiPCy;
k l

where y is a quantitative trait of interest, and normalized by Z score or inverse-normal
transformation when necessary.

These association tests can be conducted using conventional GWAS software, such as
PLINK®?, SAIGE™?, BOLT™, etc. by directly using the output VCF files from either the SNP2HLA
or the MIS. We use the dosage values designated as “DS” in the imputed VCF files to conduct
dosage-based association tests. We provide example command-line scripts to perform single
marker tests by using PLINK2 software at our website.

To interpret the results from such an association analysis, we ensure that the “effect allele”
(i.e., the allele to which the effect estimate refers) is the presence (coded as P or T in
SNP2HLA) of the allele. Also, we note that the association of rare alleles might be spurious due
to both the limited accuracy in imputation and the noise in the estimate in the regression. Thus,
we might QC the association statistics by MAF to exclude rare alleles (e.g., MAF < 1%). The
odds ratio (OR) calculated from the beta (e#) is the estimated risk explained by having one copy
of the HLA allele of interest, and the P value indicates its significance. Given the strength of LD

in the MHC region, trait associations to multiple HLA alleles, amino acid polymorphisms or
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intragenic SNPs may yield significant results. Further analysis is then required to identify which

allele(s) most significantly explains the disease risk within the HLA region.

Omnibus tests for fine-mapping amino acid position

To further narrow down the causal position within amino acid sequences within that HLA gene,
we perform an omnibus test. This analysis is particularly useful when we seek to define
mechanisms for the HLA association with the disease, for example by changing the amino-acid
compositions at the peptide binding groove of the HLA molecule. In the omnibus test, we
estimate the total effect on our trait of interest of all amino acid content variation at a given
amino acid position, rather than the separate effects of individual amino acids that appear at
that position, as we did in the single-marker test. For an amino acid position which has M
possible amino acid residues, we assess the significance of the improvement in fit for the full
model which includes M — 1 amino acid dosages as explanatory variables when compared to
a reduced model without including those amino acid dosages. We usually select one amino
acid residue that is most common in the studied cohort as the reference allele, and use all the
other amino acid residues (M — 1) as the explanatory variables. We assess the improvement in
model fit by the delta deviance (sum of squares) using an F-test with M — 1 degrees of
freedom and derive the statistical significance of the improvement.

Full model: log(odds;) = By + Xy Brxri + X1 BiPCi + XN BrAM,,

Reduced model: lOg(OddSi) = ﬁo + Zk ﬁkxk’i + Zl ﬁlPCl,i
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where m is one amino acid residue at this position, M is the total number of observed amino
acid residues at this position, AM,,; and g,, are the amino acid dosage of the residue m in
individual i and the effect size for the residue m, respectively.

We may use the permutation procedure to determine whether the observed association at a
single-marker test is primarily driven by HLA alleles (e.g, HLA-DRB1*04:01) or amino acid
polymorphisms (e.g., HLA-DRB1 positions 11, 71 and 74)'?. To do so, we shuffle the
correspondence between amino acid sequences and each of the two-field HLA alleles which
was originally defined in IMGT database as described above, while preserving the relationship
between the phenotype and the two-field HLA alleles. Then, in each permutation, we select
each amino acid polymorphism and assess the improvement in deviance after including this
amino acid polymorphism into the model. We typically perform > 10,000 permutations. If the
observed improvement using the actual data is significantly larger than the improvements using
these permutations, we can infer that amino acid polymorphism is driving the signal, instead of
observing the “synthetic” association driven by the HLA allele and its linkage with the causal

amino acid(s).

Conditional haplotype tests to define a risk sequence of amino acids

Defining the exact stretches of HLA amino acid sequences driving the association with disease
allows us to understand the mechanism by which amino acid change affects disease risk *2,
Importantly, to model combinations of positions, we must use phased genotyping information,

rather than encoding each position separately. We perform a conditional haplotype test, where
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we utilize and combine the imputation results of both two-field alleles and amino acid
polymorphisms to obtain phased information. Specifically, we start from the most significant
position of amino acid sequence based on the omnibus test we described in the previous
section. If there are M possible amino acid residues at this position, we can group all possible
two-field alleles for this HLA gene into M groups based on the amino acid residue property at
our selected position (Figure 5a). Recall that each two-field allele at a given HLA gene
corresponds to a unigue sequence of amino acids in this gene. In the same way as we did in the

omnibus test based on the M amino acid residues, we can estimate the effect of each of the M

groups using a logistic regression model (including covariates, as described above) and derive
the improvement in model fit over a reduced model without including those M groups.
Full model: log(odds;) = By + Xi BiXi; + XuBiPCri + Yonzi BmGrim;

Reduced model: lOg(OddSi) = ﬁO + Ek ﬁkxk’i + Zl ﬁlPCl,i

where Gr,,; is the sum of the dosage of two-field alleles from a group m, explained by the
m’th amino acid residue. We note that we recommend removing any individuals that do not
have two two-field alleles for a given gene, as we explained in the Post-imputation QC section.
Once we define the most significant individual position at a given HLA gene based on the
significance of improvement, we next seek to identify which amino acid position other than this
significant position best improves the model over the model only including this significant
position (Figure 5b). Let x be the most significant position in the primary analysis, which has
X possible amino acid residues. We sequentially test each amino acid position (z) other than x,

to ask whether haplotypes defined by the amino acid combination of positions x and z (z # x)
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explain the disease risk more than those defined only by the position x. To do so, we
re-categorize all two-field alleles at this HLA gene into Z groups, where Z is the total number
of observed haplotypes defined by the amino acid positions x and z. The value of Z must be
at least X if no new haplotypes are defined. We again assess the significance of the
improvement in model fit of the Full model (covariation at positions x and z) over the Reduced
model (variation at position x alone) by the delta deviance (sum of squares) using an F-test
with Z — X degrees of freedom.

Full model: log(odds;) = By + Xi BicXi; + XiBiPCri + X521 BrtrnGlszni

Reduced model: lOg(OddSi) = ﬁo + Zk ﬁkxk’i + Zl ﬁlPCl,i + %_:11 x,mer,m,i

where Gry.,n; IS the sum of the dosages of two-field alleles in a group n by a given
combination of the amino acid residues at positions x and z.

Thus, we define the next most significant amino acid position which additionally and
independently explains the disease risk from the position x. If the model improvement in this
second round is statistically significant, we iterate the same analyses to identify amino acid
position(s) other than the previously identified positions that best improve the model over the
model including those previous positions, until we obtain no further significant improvement

from any of the remaining positions.
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An example illustration of the conditional haplotype test for the HLA-DRB1 gene. In the first
round of the amino acid association test at position +11 (a), we group all two-field alleles (32
alleles in total) into 6 groups based on the amino acid residues at the position +11, and ask
whether those groups significantly explain the disease risk by using omnibus test. In the second
round of conditional haplotype test (b; position +71 as an example), we group the two-field
alleles into 10 groups based on the amino acid residues at the position +11 and +71. Then, we
ask whether those 10 groups explain the disease risk more significantly than the 6 groups that

we defined in the first round.
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Tests for non-additivity

The dosage effect of HLA (having one copy or two copies of a given HLA allele) on disease risk
is not purely additive in infectious diseases and autoimmune diseases> 3. All the analyses we
have described above assume the additive risk model, a model in which the risk (i.e., log Odds
Ratio(OR)) for acquiring a disease due to carrying one copy of the allele (heterozygous state) is
half the risk (log(OR)) conferred by carrying two copies (homozygous state). A non-additive
effect represents a deviation from this linear relationship between the dosage and the risk
(Figure 6a). For instance, a dominant effect might be indicated when the effect of carrying one
copy is more than half the effect of carrying two copies. A biological explanation for such a
dominant effect might be (1) having one copy is enough to express the MHC variant with the
disease-relevant antigen-binding properties on the cell surface, or that (2) there are synergistic

1.5264 showed that such

interactions with another HLA allele at the same locus. Lenz et a
non-additive effects are pervasive in a spectrum of autoimmune diseases.

To test for the non-additive effect, we construct a logistic regression model which captures
both additive and non-additive contribution of the allele to the disease risk (Figure 6b)**%. We
first define the additive term x; ; as either the best guess or the dosage genotype of allele j in
an individual i which we are interested in.

_( the best guess genotype of the allele j in an individual i: {0,1,2}
Xij = {the dosage genotype of the allele j in an individual i: 0 < x;; < 2

We next define the non-additive term §;; as the heterozygous status of the allele j in an

individual i, which should capture any deviation of the effect from the additivity.

5 lif and only if x;; = 1, 0 otherwise : {0,1}
2 1—abs(1—x;;): 0<6;,; <2
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685 Figure 6. Non-additive test and multi-trait analysis
686 a. Schematic illustrations of additive model and non-additive models using the log odds ratio
687 (log(OR)) according to the dosage of the genotype of interest. a denotes the purely additive

688 effect by having one copy of the allele, and d denotes any departure from additivity at
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heterozygous genotype. b. A logistic regression model to assess both the additive and
non-additive effect of the allele j (see main text for details). c. Multi-trait analysis by using
multiple linear regression model (MMLM) to test the association between multi-dimensional

phenotype Y and the amino acid polymorphism.
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Using those two terms x; ; and §; ;, we construct a full model by including both additive and

i,j1
non-additive term with covariates, and a reduced model with by including only additive term with
covariates.

Full model: log(odds;) = By + a;jx;; + d;6;; + Yx BrXr: + 21 BiPCy

Reduced model: lOg(OddSi) = ﬁo + a; x; + Zk ﬁk.xk’i + Zl :BZPCl,i

where a; denotes an additive effect and d; denotes a non-additive (dominance if positive)
effect.
We finally assess the significance of the improvement in model fit of the Full model over the

Reduced model in model fit by the delta deviance (sum of squares) using an F-test.

Tests for interactions among HLA alleles

Once we identify an allele harboring a possible non-additive effect, we may also be interested in
understanding whether this is due to an interaction effect between the identified allele and the
other allele at the same HLA locus. In other situations, we may want to assess an interaction
effect between a pair of alleles of functional interest. If the disease risk from a combination of
those two alleles deviates from the expected disease risk by multiplying the disease risk (i.e.,
adding the log(OR)) of each of the two alleles, that combination can be regarded as having an
interaction effect. To test this hypothesis, we construct a reduced model which only includes an
additive term for each of the two alleles, and a full model which includes an interaction term
between the two alleles in addition to the additive term for each of the two alleles. Let x; ; be

the dosage genotype of the allele j in a given individual i nominated by a significant
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non-additive test, and let x;, be the dosage genotype of the other allele h (h # ;) in an
individual i to be tested for an interaction effect with the allele ;.
Full model: log(odds;) = o + a;x;; + anXip + $j nXi jXin + 2k BrXn: + X1 BiPCy;

Reduced model: lOg(OddSi) = ﬁo + ajxi‘j + ahxi’h + Zk ﬁkxk‘i + Zl ﬁlPCl,i

where ¢;, is the effect size of the interaction between the alleles j and h. We again assess
the significance of the improvement in Full model over Reduced model in model fit by the delta
deviance (sum of squares) using an F-test. We note that the observed interaction effects can be
spurious when the frequencies of the tested alleles are relatively low, which results in noisy
effect estimate. We consider conservative QC of the tested alleles based on MAF (e.g., MAF >
0.05 or 0.10), or performing permutation analyses to test whether the observed statistics could

occur by chance, in such cases.

HLA evolutionary allele divergence

A potential source for non-additive interaction effects among HLA alleles is the extent to which
their encoded HLA molecule variants differ functionally (i.e., in their bound antigen repertoires).
Since HLA genes are generally co-dominantly expressed, both HLA variants of a heterozygous
individual are presenting antigens at the cell surface. If two HLA alleles are very similar in their
sequence, their encoded HLA molecules on average will bind similar sets of antigens and thus
exhibit a substantial overlap in their presented antigen repertoires, while the opposite will be
true for two alleles with very divergent sequences®. The concept that carrying two divergent

HLA alleles will allow HLA-presentation of a wider range of antigens, and by extension increase
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the likelihood of pathogen detection by the adaptive immune system, has been termed

divergent allele advantage (DAA), as an extension of the classical heterozygote advantage®”®.

DAA has already been shown to drive HLA allele frequencies and contribute to HIV control®*°®.
but might have broader implications in HLA-mediated complex diseases. For instance, it was
shown that cancer patients whose HLA class | alleles exhibit a higher HLA evolutionary
divergence (HED) respond better to cancer immunotherapy, possibly because more mutated
neoantigens are presented by their HLA®®. The HED score between two HLA alleles at a given
HLA locus is based on the Grantham distance between their amino acid sequences, The HED
is applicable to both HLA class | and class Il alleles. It can be calculated using publicly available
scripts®®, and its effect on a given phenotype can then be estimated by adding it as a

guantitative parameter in a regression model and testing for improvement in model fit with an

F-test.

Multi-trait analysis

Our group recently showed that the amino acid frequencies at complementarity-determining
region 3 (CDR3) of the T cell receptor (TCR) are highly influenced by the HLA alleles and amino
acids, possibly through thymic selection®. This type of analysis is an extension of the analyses
we described in the previous sections. One notable difference is that the response variable
represents not a single trait (e.g., a disease) but multiple traits: in this case the frequencies of

each amino acid residue at the position of interest within CDR3, which we call cdr3-QTL
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analysis. We test which amino acid position has a significant association with those frequencies
overall, using an extended framework of the omnibus test that we described above (Figure 6c¢).
In this case, the response variable is not a vector of one phenotype, but a matrix
(multidimensional vector) of frequency phenotypes where each row represents an individual
and each column represents a frequency of a given amino acid residue at a given position of
CDRa3. Let Y be this frequency matrix with N rows and M — 1 columns, and Y; bethe M —1
frequency phenotypes in an individual i. N denotes the number of individuals, and M denotes
the number of observed amino acid residues at this position. We perform a multivariate multiple
linear regression model (MMLM) to test the association between Y and HLA alleles or amino
acid positions of interest.
Full model: Y; = 0 + Y Brxw: + 21 BiPCri + X521 BnAM,y

Reduced mOdeI Yl =0+ Zkﬁkxk,i + Zl ﬁlPCl,i

where 6 is an M-dimensional parameter that represents the intercept, L is the total number of
observed amino acid polymorphisms at this position, AM,,; and g, are the amino acid
dosage of the residue m in an individual i and the M-dimensional effect sizes for the residue
m on Y, respectively.

We assess the significance of the improvement in model fit between Full model and
Reduced model with the multivariate analysis of variance (MANOVA) test for quantitative traits.
As spurious associations again arise when the frequencies of the tested alleles are relatively
low ®, we recommend performing permutation analyses to confirm the calibration of the test

statistics.
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By using this multi-trait framework, we can assess any combination of multiple phenotypes.
One potential application is to investigate disease phenotypes by using deep phenotype record
in biobanks. This framework could disentangle pleiotropic HLA alleles that simultaneously affect
a spectrum of diseases of interest. Another interesting application might be multiple molecular
phenotypes such as expression or protein abundance of multiple genes, and a combination of
multiple modalities (e.g., expression and chromatin accessibility). We can also assess those
phenotypes across multiple cell types (e.g., expression of a gene in T cells, B cells, Monocytes

etc.).

Concluding remarks

Given the increasing number of associations between the HLA region and human complex
traits that have been identified through large-scale GWAS, accurate imputation and
fine-mapping of the causal HLA alleles and amino acids will continue to be important as the
data size continues to grow. We present a strategy that can lead investigators to fine-mapped
alleles. Leveraging HLA fine-mapped alleles with the variants outside of MHC region, it may be
possible to construct an efficient genetic risk score to stratify people based on the genetic risk
for those diseases. We have publicized this imputation pipeline through the user-friendly MIS,
which hosts the HLA reference panel representing multiple populations and enables web-based
automatic HLA imputation for global cohorts. Another advantage of this implementation is the
computational efficiency: HLA imputation of a cohort of millions of individuals is computationally

scalable (for example, for a cohort of size 20,000, HLA imputation runs within 1 hour). We hope
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this protocol will empower the field of statistical genetics to more comprehensively define the
effect of HLA variation on a spectrum of human diseases.

Despite the well-established performance of our approach, we can still improve our HLA
imputation reference panel further. First, we continue to expand the reference panel to better
represent global populations that are currently missing (e.g., Africans and South Asians).
Similarly, the scope of genes included in the panel can be expanded to include, for example,
non-classical HLA genes and C4 copy number. Second, the imputation accuracy is currently
satisfactory in association testing but not yet as high as the gold-standard HLA typing. We aim
to further improve the accuracy by updating the HLA calls and scaffold variants used in the
reference panel as well as improving the imputation algorithms.

While fine-mapping of HLA alleles has provided deeper insights into disease pathogenesis,
we need more mechanistic or structural understanding of how these alleles contribute to
disease biology. Why do certain HLA alleles cause a diverse spectrum of diseases? How do
those alleles characterize our inherited composition of T cell repertoires? What are
auto-antigens that are being presented by those alleles? Recent advances in experimental and

70,71

computational modeling of protein structures and its complex can offer promise. We need

both experimental and computational approaches to answer all these important questions.

Data Availability
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We provided the availability of HLA imputation reference panel at Table 1. We made our HLA
imputation pipeline using multi-ancestry HLA reference panel publicly available at Michigan

Imputation Server (https://imputationserver.sph.umich.edu/index.html).

Code Availability
The computational scripts and their usage related to this tutorial are available at

https://github.com/immunogenomics/HLA _analyses_tutorial.
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