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Abstract 
 
Single-cell RNA sequencing (scRNA-seq) has revolutionised our ability to profile gene expression. 
However, short-read (SR) scRNAseq methodologies such as 10x are restricted to sequencing the 
39 or 59 ends of transcripts, providing accurate gene expression but little information on the RNA 
isoforms expressed in each cell. Newly developed long-read (LR) scRNA-seq enables the 
quantification of RNA isoforms in individual cells but LR scRNA-seq using the Oxford Nanopore 
platform has largely relied upon matched short-read data to identify cell barcodes and allow single 
cell analysis. Here we introduce BLAZE (Barcode identification from long-reads for AnalyZing 
single-cell gene Expression), which accurately and efficiently identifies 10x cell barcodes using 
only nanopore LR scRNA-seq data. We compared BLAZE to existing tools, including cell 
barcodes identified from matched SR scRNA-seq, on differentiating stem cells and 5 cancer cell 
lines. BLAZE outperforms existing tools and provides a more accurate representation of the cells 
present in LR scRNA-seq than using matched short-reads. BLAZE provides accurate cell 
barcodes over a wide range of experimental read depths and sequencing accuracies, while other 
methodologies commonly identify false-positive barcodes and cell clusters, disrupting biological 
interpretation of LR scRNA-seq results. In conclusion, BLAZE eliminates the requirement for 
matched SR scRNA-seq to interpret LR scRNA-seq, simplifying procedures and decreasing costs 
while also improving LR scRNA-seq results. BLAZE is compatible with downstream tools 
accepting a cell barcode whitelist file and is available at https://github.com/shimlab/BLAZE.  
 
Background 
Single-cell transcriptomics has become a widely accessible and popular means of profiling gene 
expression at single-cell resolution. The applications of single-cell RNA sequencing (scRNA-seq) 
are broad, ranging from identification of cell and tissue types, tracking developmental trajectories, 
and assessing system heterogeneity [1]. However, short-read (SR) scRNA-seq methodologies 
lack the ability to accurately identify RNA isoforms. Droplet based platforms such as the popular 
10x platform [2] are restricted to sequencing the 39 or 59 ends of transcripts, providing accurate 
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gene counts but little information on RNA splicing or the RNA isoforms expressed in each cell [3]. 
Alternative methods, such as Smart-seq3, sequence all parts of transcripts but are still 
constrained by short sequencing read lengths, which largely prevents the accurate reconstruction 
of RNA isoforms longer than 1 kb [4]. 
 
The recent development of long-read (LR) single-cell sequencing methods has laid the foundation 
for a more in-depth analysis of isoforms for single cells [5]. LR scRNA-seq methods have been 
developed using both the PacBio and Oxford Nanopore Technologies (ONT) platforms, allowing 
for the discovery and quantification of full-length RNA isoforms in single cells [6-19]. 
 
Two key steps in enabling scRNA-seq analysis are the identification of cell barcodes, which 
denote which cell a read is from, and unique molecular identifiers (UMIs), which allow removal of 
PCR duplicates and more accurate counting of gene and isoform expression. A limitation of most 
LR scRNA-seq methodologies is that they require matched SR scRNA-seq for the identification 
of cell barcodes and/or UMIs, particularly those using nanopore sequencing due to its higher error 
rate [8, 9, 12, 14-17, 19]. The addition of matched SR data adds technical complications for library 
construction and significantly increases both the time and cost needed to produce these data sets. 
Furthermore, the requirement for matched SR data can also greatly decrease the proportion of 
usable long-reads [9]. Other methods for nanopore LR scRNA-seq have been reported that do 
not require the addition of matched short-reads. However, these methods are either very low 
throughput [10], require bespoke reagents and are incompatible with existing 10x workflows [13], 
or trade higher accuracy for lower read depth [18]. Therefore, a method which requires only 
nanopore LRs and is compatible with existing workflows is required [15]. Recently, ONT released 
the Sockeye pipeline (https://github.com/nanoporetech/Sockeye) to perform LR-only scRNA-seq 
analysis, including barcode and UMI identification. However, the performance of Sockeye is yet 
to be determined. 

Here we introduce BLAZE (Barcode identification from Long-reads for AnalyZing single-cell gene 
Expression), which accurately identifies 10x cell barcodes using only nanopore LR scRNA-seq 
data. In combination with the existing FLAMES pipeline [15], BLAZE eliminates the requirement 
for matched SR scRNA-seq, simplifying LR scRNA-seq workflows, reducing sequencing costs 
and producing improved results. We show that BLAZE performs well across different sample 
types, sequencing depths and sequencing accuracies and outperforms other barcode 
identification tools such as Sockeye. We designed BLAZE to seamlessly integrate with the 
existing FLT-seq - FLAMES pipeline to enable identification and quantification of RNA isoforms 
and their expression profiles across individual cells and cell-types. Taken together, BLAZE 
provides a cheaper, simpler and more accurate means to profile transcript-level changes in LR 
scRNA-seq data sets. 
 

Results  
Single-cell barcode identification with BLAZE   
We designed BLAZE for the accurate identification of cell barcodes from Oxford Nanopore long-
read libraries generated using the 10x single-cell 39 gene expression profiling procedure. To 
enable cell barcode identification from nanopore reads despite their higher error rate, BLAZE 
performs a three-step procedure (Fig. 1A, see methods for further details). First, BLAZE identifies 
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the likely position of the cell barcode and extracts the putative barcode sequence. The 16 nt 
barcode and 10-12 nt UMI are located between the adapter and polyT sequences. BLAZE locates 
the cell barcode in each read by identifying the probable adaptor and polyT regions. The 16 nt 
sequence immediately downstream of the adaptor is defined as the <putative barcode=. BLAZE 
discards putative barcodes that do not appear in the list of all possible 10x barcodes because 
these cannot represent true barcodes. Next, BLAZE selects high-quality putative barcodes whose 
sequences are less likely to contain basecalling errors. Specifically, BLAZE filters out barcodes 
with a minimum quality score (denoted as <minQ=) of less than 15 across the 16 bases that 
comprise the putative barcode (Additional File 1: Fig. S1). Finally, BLAZE counts the occurrence 
of each unique high-quality barcode, ranks them based on those counts, and selects the top-
ranked ones as barcodes likely associated with cells using a quantile-based threshold.  
 
A significant proportion of putative barcodes are expected to be error-free, despite the ~4-5%, (or 
~2% with higher-accuracy Q20 protocols) median error rate for nanopore reads (Table 1). With 
sufficient per-cell sequencing depth, this means each cell should be supported by large number 
of high-quality putative barcodes. Therefore, highly-supported barcodes likely represent true cells 
while poorly-supported barcodes likely represent sequencing errors and/or barcodes associated 
with empty droplets (Fig. 1A). The output of BLAZE is a list of unique cell-associated barcodes 
(referred to as barcode whitelist), that is input into downstream gene and isoform quantification 
software in place of a whitelist generated from matched SR sequencing.  
 
Table 1: Summary statistics for long-read single-cell data sets    

Dataset ID 
Sequencing 

platform 
Sequencing 

Kit 
Total 

Reads 
Pass reads 

Median 
accuracy of 
pass reads 

(%) 

Useable* 
reads with 

Cell Ranger 

Useable 
reads with 

BLAZE 

Useable 
reads with 
Sockeye 

PromethION PromethION SQK-LSK110 100,941,015 61,967,455 95.1 
43,473,150 

(70%) 
43,001,188 

(69%) 

43,063,370 

(69%) 

GridION GridION SQK-LSK110 10,371,632 7,521,667 96.0 
5,461,630 

(73%) 

5,430,433 

(72%) 
5,462,816 

(73%) 

Q20 GridION SQK-Q20EA 4,479,225 3,423,062 97.9 
2,501,260 

(73%) 

2,484,366 

(73%) 

2,511,016 

(73%) 

scmixology2 
(Tian et al. 

2021) 
PromethION SQK-LSK109 36,927,546 25,164,948 95.7 

18,347,232 

(73%) 

18,099,553 

(72%) 

17,818,239 

(71%) 

*Pass reads that have a valid 10x barcode, a UMI and can be assigned to a barcode in whitelist.   

 
Experimental workflow to assess the performance of BLAZE 
We tested the performance of BLAZE by carrying out matched short and long-read scRNA-seq 
on ~1000 human induced pluripotent stem cell (iPSC)-derived neural progenitors undergoing 
differentiation to the cortical lineage (Fig. 1B, see methods). Short-reads were sequenced on an 
Illumina NOVA-seq to a high median depth of 96,000 reads per cell. SR data were analysed with 
the Cell Ranger pipeline (10x Genomics) to generate a barcode whitelist that can be directly 
compared to a whitelist generated from long-reads only. We performed LR scRNA-seq using the 
FLT-seq protocol [15] and sequenced the sample on a PromethION flowcell.  
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Fig. 1: Experimental overview and comparison of identified cell barcodes. A: BLAZE Workflow. Step 1: locate 

putative barcodes by first locating the adaptor in each read. Putative barcodes include those originating from different 

cells and empty droplets. In schematic putative barcodes with the same colour come from the same original cell/droplet. 

Black blocks on putative barcodes represent basecalling errors. Step 2: Select high-quality putative barcodes. Bases 

representing sequencing errors tend to have low quality scores. Putative barcodes with minQ < 15 are filtered out 

(faded in the figure) and the majority of the remaining putative barcodes are expected to have no errors. Step 3: Identify 

cell-associated barcodes. BLAZE counts and ranks unique high-quality putative barcodes and outputs a list of cell-

associated barcodes whose counts pass a quantile-based threshold. B: Schematic of experimental design. Human 

induced pluripotent stem cells (hiPSC) undergoing cortical neuronal differentiation were dissociated into a single-cell 

suspension and processed to generate single-cell full-length cDNA. Full-length cDNA was sequenced using both short 

and long read methods and barcode whitelists generated using Cell Ranger, BLAZE and Sockeye followed by gene 
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and isoform quantification and clustering. Three nanopore sequencing runs were performed on the same cDNA sample, 

a higher depth PromethION run, a lower depth GridION run and a higher accuracy run using the Q20 protocol on the 

GridION. C: Barcode upset plot comparing different whitelists. The bar chart on the left shows the total number of 

barcodes found by each tool. The bar chart on the top shows the number of barcodes in the intersection of whitelists 

from specific combinations of methods. The dots and lines underneath show the combinations. The colours of the 

combinations are used to distinguish barcodes in figure 1D. D: Barcode rank plot. Unique barcodes are ranked based 

on the counts output by each method and coloured by which method(s) included each barcode in their barcode 

whitelist(s). The colours for different combinations of methods follow those in figure 1C and barcodes not included in 

any of the whitelists are in grey. Cell Ranger short-read counts, Sockeye long-read counts and BLAZE long-read counts 

shown on left, middle and right knee plots respectively. Sockeye and BLAZE analyse the same dataset. Cell Ranger 

analyses counts from a short-read library, deriving from the same original cDNA. Unique barcodes are ranked on the 

x-axis based on the number of reads/unique molecules observed for each (y-axis). Shifts on the x-axis are intentionally 

added to make the dots with different colours non-overlapping. Note that these three methods generate counts in 

different ways so the three plots have different y-axis labels.  
 

generating ~62 million pass reads (Table 1). In addition to deep PromethION sequencing, we 
also sequenced the cDNA on the GridION using standard and higher accuracy (Q20) chemistries 
generating ~7.5 and ~3.5 million pass reads respectively (Table 1). This enabled us to assess 
the effects of read depth and variation in read accuracy on the performance of BLAZE and is 
discussed in greater detail below. We also compared BLAZE to Sockeye 
(https://github.com/nanoporetech/Sockeye), the recently released ONT software for LR scRNA-
seq analysis that also generates a cell barcode whitelist from nanopore long-reads. 
 

BLAZE identifies high confidence cell barcodes 

Maximising sequencing depth per cell is key to accurately identifying and quantifying isoforms in 
single-cell data [3]. Therefore, we first compared the performance of BLAZE to Cell Ranger and 
Sockeye in the higher-depth PromethION data set. Cell Ranger, BLAZE and Sockeye identified 
1022, 804 and 1518 cell barcodes respectively (Table 2). A comparison of barcodes showed 99.4% 
of barcodes identified by BLAZE were also found by Cell Ranger and Sockeye. However, a 
significant proportion of barcodes were unique to Cell Ranger and Sockeye (Fig. 1C). Analysis of 
cell barcode rank plots revealed BLAZE cell-associated barcodes had high read support in all 
methods (Fig. 1D). In contrast, unique Cell Ranger barcodes were often supported by few long 
reads, regardless of the different strategies of counting barcodes in BLAZE and Sockeye, 
suggesting that some barcodes identified by SR sequencing were not well represented in the LR 
dataset. Similarly, many unique Sockeye barcodes had little or no SR support, suggesting they 
are unlikely to be associated with cells. In addition, BLAZE counts for unique Sockeye barcodes 
were much lower (median 4.5 fold) than for barcodes found by both methods, suggesting many 
of the long reads supporting unique Sockeye barcodes were low quality and the barcodes are 
likely to be false positives.  
 
The cell barcodes identified by Cell Ranger, BLAZE and Sockeye enabled the downstream 
analysis of a very similar proportion of reads, 70%, 69% and 69% respectively (useable reads, 
Table 1), demonstrating that the smaller number of barcodes found by BLAZE does not negatively 
affect the overall proportion of reads that can be assigned to a cell. Together these results show 
BLAZE provides the most accurate list of LR cell barcodes with little loss of sensitivity. 
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Table 2: Number of barcodes detected.  

Dataset ID  Cell Ranger* BLAZE Sockeye  

PromethION  1022 804 1518 

GridION 1022 802 1016  

Q20 1022 804 1015 

scmixology2 
(Tian et al. 2021) 

248 188 522 

*From matched short-read data  

 

Cell Ranger and Sockeye identify barcodes that are poorly supported by long-reads   

We next asked if the barcode whitelists produced by Cell Ranger, BLAZE and Sockeye would 
yield similar results when clustering cells based on gene or isoform expression. We used the 
barcode whitelists and the ~62 million long-reads from the PromethION as input into FLAMES [15] 
to produce gene and isoform counts and then generated UMAP plots in Seurat [20]. To facilitate 
comparison between the methods we made each UMAP plot separately and then coloured each 
cell according to its assigned cluster using the Cell Ranger whitelist. This revealed both Cell 
Ranger and Sockeye identify an additional cluster not found by BLAZE. This result was consistent 
for analyses using either isoform (Fig. 2A) or gene (Additional File 1: Fig.S2A) counts and was 
further confirmed by re-colouring the cells based on the BLAZE clusters (Additional File 1: 
Fig.S2B). This cluster contained poorly supported barcodes, as demonstrated by the low UMI 
counts and low numbers of genes and isoforms detected in each <cell= (Fig. 2B and Additional 

File 1: Fig.S2C, D). In the case of the Cell Ranger whitelist, these cells are likely those that exist 
in the matched SR data set, but are poorly represented amongst the long-reads, creating false 
positive long-read detections. The additional cluster found when using the Sockeye whitelist 
consists of a large number of cells not found with BLAZE or Cell Ranger and are also likely false-
positives detections as they have low UMI and gene/isoform counts. 
 
The ~1000 cells analysed here are in the early stages of cortical neuron differentiation, hence it 
was important to confirm BLAZE whitelist-based cell clustering was due to distinct biological 
profiles and not as a result of sequencing depth per cell or non-biologically relevant factors. 
Marker gene analysis confirmed biologically meaningful gene expression differences between 
clusters (Additional file 2: Table S1 and Additional file 3: Table S2). We identified significant 
differences in the expression of hundreds of genes including key transcription factors such as 
ELAVL4 and NHLH1 (Fig. 3), which are known to be upregulated during the differentiation of 
cortical neurons [21, 22]. Moreover, we find differential gene expression of well-defined neuron 
specific genes such as NRN1 [23] and PLPPR1 [24] (Fig. 3). Together these findings confirm that 
BLAZE cell clusters are transcriptionally distinct and that the BLAZE-FLAMES long-read pipeline 
is capturing the biological signal of neuronal cell differentiation.  
 
While the use of FLAMES for isoform identification and quantification enables a fair comparison 
between whitelists, we wanted to ensure the false-positive detections from Sockeye were not a 
result of the FLAMES pipeline. To address this possibility, we implemented the complete Sockeye 
pipeline using default parameters and interrogated the UMAP plots generated by Sockeye. The 
Sockeye pipeline retained the additional cluster with low UMI counts (Additional File 1: Fig.S3A). 
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We also note that Sockeye is currently limited to performing gene-based analyses and does not 
perform the isoform-based analyses enabled by LR scRNA-seq. Overall we find the BLAZE 
whitelist enabled the most accurate downstream expression and cell-type clustering of LR scRNA-
seq data.  
 

  
Fig. 2: Comparison of cell clusters identified with BLAZE, Cell Ranger and Sockeye barcodes. Isoform 

expression UMAP plots from PromethION data. Isoform counts were generated with FLAMES using barcode whitelists 

from either Cell Ranger, BLAZE or Sockeye. A: Cells in all three plots are coloured based on clustering with the Cell 

Ranger whitelist. Cells not found in Cell Ranger whitelist are coloured in gray. B: Cells coloured based on UMI counts 

(sum of all unique UMIs across all transcripts) per cell. 

 

Barcode detection with BLAZE is robust to changes in read depth or read accuracy 

We investigated the impact of read depth and sequencing accuracy on the results of BLAZE. We 
sequenced the same single-cell cDNA sample on the lower-output Nanopore GridION, using both 
the LSK110 and higher accuracy Q20 chemistries. We find that although the LSK110 and Q20 
GridION data produce significantly fewer total and pass reads compared to the PromethION 
(approximately 10% and 5% respectively) (Table 1), the number of barcodes found by BLAZE is 
virtually unchanged (Table 2). The Q20 GridION data is both lower depth and higher accuracy 
than the LSK110 data, leading to the possibility that higher read accuracy, (via an increased 
proportion of high confidence barcodes) could be maintaining barcode numbers. However, 
downsampling the LSK110 GridION data to match the Q20 read depth returned the same number 
of barcodes (802), demonstrating BLAZE performs consistently across data sets with variable 
read depths and different sequencing accuracies. In addition, we observed a similar proportion of 
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usable reads between datasets (Table 1), implying that the improved Q20 accuracy had minimal 
effect on the number of reads that can be assigned to a cell.   
 

 

Fig. 3: Gene expression UMAP coloured by cluster and expression of marker genes. A: UMAP showing clustering 

based on gene counts generated from FLAMES using BLAZE whitelist. B: UMAP coloured by expression of 4 marker 

genes known to be associated with differentiation and neuron development. Expression scale is coloured based on 

Seurat normalised counts. Colour scales are not comparable between plots. 

 
We also assessed if Sockeye performed consistently across data sets of varying read depths. 
Sockeye identified 1016 and 1015 barcodes for LSK110 GridION and Q20 datasets respectively 
(Table 2 and Additional File 1: Fig.S4), which was a significant reduction on the 1518 barcodes 
from the PromethION data. UMAP results based on FLAMES quantification for the lower depth 
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LSK110 and Q20 datasets revealed similar clustering between methods (Fig. 4). The number of 
barcodes detected by Sockeye (and subsequent downstream results) are therefore heavily 
dependent on per-cell read depth, leading to inconsistent results, with worse performance at 
higher read depths where isoform profiling is enhanced. 

 

Fig. 4: Isoform expression UMAP plot from Q20 and GridION data. A: Q20 B: GridION LSK110. Isoform counts 

were generated with FLAMES using barcode whitelists from either Cell Ranger, BLAZE or Sockeye. Cells are coloured 

as per Figure 2A. 

 
We again tested if the full Sockeye pipeline would provide improved results over using the 
Sockeye barcodes in FLAMES. In contrast, we find that irrespective of the sequencing library 
used, quantification and UMAP generation using the Sockeye pipeline clusters cells in large part 
based on total UMI counts (Additional File 1: Fig.S3). A UMI associated clustering effect could 
potentially represent a real biological signal if it related to cells undergoing differentiation and 
changing their transcriptional activity. However, using the BLAZE-FLAMES-Seurat pipeline 
(instead of the complete Sockeye pipeline), we do not see such strong correlations between 
clusters and UMIs (Additional File 1: Fig.S5). These findings confirm the Sockeye pipeline is 
impacted by UMI associated confounders which bias UMAP results. 
 

BLAZE correctly identifies barcodes in long read single-cell data of known cell lines  

To further validate the performance of BLAZE we compared Cell Ranger, BLAZE and Sockeye 
on an additional LR single-cell data set containing known and distinct cell lines. We utilised the 
scmixology2 data from Tian et al. (2021), which contains equal mixes of five cancer cell lines (~40 
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cells per line) profiled with matched Illumina and Nanopore reads. Cell Ranger (from the matched 
short-reads), BLAZE and Sockeye identified 248, 188 and 522 cell barcodes respectively (Table 

2). Similar to the cortical differentiation dataset we find all barcodes identified by BLAZE were 
also found by Cell Ranger and Sockeye (Fig. 5A). There were 59 barcodes identified by Cell 
Ranger and Sockeye but not by BLAZE and 275 barcodes unique to Sockeye (Fig. 5A). These 
results suggested that Cell Ranger and Sockeye may be consistently identifying false positive 
long-read barcodes. 
 

 
Fig. 5: Barcode identification and clustering of Scmixology2 data. A: Barcode upset plot comparing different 

whitelists. Bar chart on left shows total number of barcodes found by each tool. Bar chart on top shows number of 

barcodes in the intersection of whitelists from specific combinations of methods. The dots and lines underneath show 

the combinations. B-D: Isoform expression UMAP plots: Isoform counts were generated with FLAMES using a 

barcode whitelist from either Cell Ranger (left), BLAZE (middle) or Sockeye (right). Cells are coloured based on: known 

cell types from Tian et al. 2021 (B); Total UMIs per cell (C); Number of isoforms detected in each cell (D). 
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Implementation of the FLAMES pipeline for gene and isoform quantification supported the 
accurate identification of barcodes by BLAZE and confirmed the existence of false-positive 
detections by Cell Ranger and Sockeye (Fig. 5B-D). Scmixology2 contained five distinct cell lines 
and Tian et al. identified the barcodes belonging to each cell line in the LR data (see Tian et al. 
2021 for details). We overlaid this information onto the UMAP plots generated from long-reads 
(Fig. 5B). UMAP plots generated from BLAZE barcodes detected the five expected cell lines. All 
cells found by BLAZE were present in the matched SR data (Fig. 5A), supporting the assertion 
that BLAZE accurately identifies cell barcodes while minimising false-positive detections. In 
contrast, Cell Ranger identified six distinct clusters. Five corresponded to the cancer cell lines in 
this sample (Fig. 5B), while the sixth cluster, (denoted as N.A) largely comprised barcodes with 
no cell line match. These barcodes had very low cellular UMI counts and few unique isoforms 
(Fig. 5C, D) and likely represent cells present in the SR but not the LR data.  
 

Clustering based on the Sockeye whitelist also identified additional cell type clusters, with the 
majority (52%) of cells in clusters not matching one of the known cell lines. These <cells= all have 
low UMI counts and fewer detected isoforms (Fig. 5C, D), highlighting that these barcodes likely 
represent false positives and are not real cells. To ensure these findings were not a consequence 
of the FLAMES pipeline we also ran the entire Sockeye workflow. The Sockeye generated UMAP 
displayed similar results (Fig. S6), further supporting incorrect barcode identification by Sockeye. 
The identification of false positive barcodes and cell clusters when using the Cell Ranger and 
Sockeye whitelist again demonstrate that BLAZE produces a more accurate representation of 
barcodes present in LR datasets.  
 
Overall comparison between BLAZE and Sockeye 

BLAZE is more conservative than Sockeye in calling barcodes and therefore minimises false-
positive detections. However, both BLAZE and Sockeye use barcodes with counts above a 
threshold to generate the whitelist and users have the flexibility to choose the count threshold to 
trade off high precision (i.e. fewer false barcodes) for high recall (i.e. more true barcodes). Using 
all four datasets above (Tables 1 and 2) and defining the cell barcodes identified by Cell Ranger 
as the ground truth, we calculated precision-recall curves across different count thresholds in 
BLAZE and Sockeye. Results demonstrated that BLAZE consistently outperforms Sockeye (Fig. 

6) and outputs a better whitelist regardless of whether users prefer high precision or recall.  
 
BLAZE is easy to install and run (see Additional File 4: Tables S3 for the runtime of BLAZE). 
However, a fair runtime comparison between BLAZE and Sockeye is difficult because Sockeye 
is not designed to solely generate a barcode whitelist but instead runs the whole pipeline for 
single-cell gene expression and therefore requires a longer runtime. In addition, Sockeye cannot 
be utilised as a stand-alone tool to perform single-cell isoform analysis, (for which long-reads are 
significantly more useful than short-reads) as it only performs gene-level quantification. In this 
sense, running BLAZE is quicker and the integration is easier as BLAZE outputs a whitelist using 
the Cell Ranger format that can be input into tools such as FLAMES without modification. 
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Figure 6: Precision-recall curves across different datasets for BLAZE and Sockeye. Precision and recall were 

calculated across different count thresholds by using the barcodes identified from short reads (i.e. whitelist from Cell 

Ranger) as the ground truth. The numbers in the legend show area under the curve (AUC) values. 

 
Discussion 
Single-cell RNA sequencing (scRNA-seq) has revolutionised the study of transcriptomes, yet is 
limited by the use of SR sequencing methods. With recent advancements in LR scRNA-seq 
methodologies [5, 25] and analysis tools [26], the potential to study the complete array of RNA 
isoforms and quantify isoform expression at single-cell resolution is becoming possible. The use 
of <noisy= long-reads however, presents its own unique set of challenges, primarily the difficulty 
in identifying the cell barcodes needed to assign each transcript to its cell of origin. Consequently, 
the use of matched SR data has been fundamental to the successful implementation of high depth, 
high throughput nanopore LR scRNA-seq. In spite of the higher error rate of nanopore reads, we 
show that BLAZE aids in eliminating the need for matched SR sequencing. This not only simplifies 
the procedure but also reduces overall library construction and sequencing costs and therefore 
increases the accessibility of LR scRNA-seq.  
 
We found BLAZE to be robust in its ability to accurately identify 10x cell barcodes from long-reads. 
BLAZE can be applied to different types of single-cell samples and performs equally well on both 
higher accuracy Q20 data, as well as lower accuracy reads generated from ONT9s LSK110 and 
LSK109 protocols. We find that ONT9s recently published software for long-read only barcode 
identification, Sockeye, appears to be affected by read-depth associated confounders and 
identifies false-positive cell barcodes. An alternate possibility is that Sockeye is more effective 
than BLAZE at identifying cell barcodes and therefore finds larger numbers of cells. However, this 
seems unlikely given Sockeye finds much larger numbers of long-read barcodes than matched 
short-read sequencing; unique Sockeye barcodes don9t match the known cell types present in the 
scmixology2 data; and the unique <cells= have very low numbers of UMIs, genes and unique 
isoforms. In order to accurately identify and quantify isoforms from scRNA-seq it is important to 
sequence cells deeply [3]. BLAZE showed the greatest advantage over other methods in the 
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higher depth PromethION datasets and therefore performs well in the context most relevant to LR 
scRNA-seq. 
 
We designed BLAZE to be simple to install and use and seamlessly integrate into existing isoform 
identification and quantification pipelines such as FLAMES, meaning no modifications to existing 
protocols or pipelines are needed. This provides a further advantage over Sockeye, which 
currently only performs gene level quantification. Most importantly and perhaps unexpectedly, we 
find that BLAZE outperforms barcode whitelists generated from matched SR data using Cell 
Ranger. More than 99% of barcodes identified with BLAZE were present in the SR whitelist 
confirming that false-positive detections with BLAZE are rare. Conversely, >20% of barcodes 
identified by Cell Ranger were not found by BLAZE. These barcodes were supported by few long-
reads and expressed comparatively fewer genes and isoforms. We hypothesise that despite 
sequencing matched samples some cell barcodes found in SR data are poorly represented 
amongst the long-reads. Supporting this, the Cell Ranger knee plot showed the barcodes not 
found by BLAZE had low UMI counts in the SR data. Such barcodes are the most likely not to be 
found in matched LR sequencing due to chance and differences in read depths. Consequently, 
the use of long-read only barcode identification methods should produce whitelists that more 
faithfully represent cells profiled with long-read sequencing.    
 
The accurate identification of single-cell barcodes is crucial to downstream gene and isoform 
quantification. Nearly all single-cell workflows cluster cells based on expression using dimensional 
reduction techniques such as t-SNE [27] and UMAP [28, 29]. These methods enable further 
integration of cell type specific markers and can be used to identify differentially expressed genes 
and isoforms between cell clusters. False-positive cells often cluster together giving a misleading 
impression of additional cell clusters, which could confound differential expression analyses and 
biological interpretation of the results. Furthermore, usable reads can be assigned to false-
positive barcodes, reducing the read depth of real cells and decreasing experimental power for 
isoform identification and quantification. Filtering out cells that have low UMI counts could reduce 
false-positive cells, however deciding on an appropriate UMI filtering threshold can be difficult and 
would depend on sequencing read depth and the transcriptional activity of the cells. It can be 
challenging to distinguish between cells that produce small amounts of RNA (and subsequently 
have few UMIs) and false-positive cells. Tools designed to generate single-cell barcode whitelists 
should therefore prioritise high precision as false-positive barcodes can confound downstream 
workflows. 
 
A limitation with the current study is the use of Cell Ranger as the ground truth to determine the 
precision-recall of BLAZE and Sockeye, since our results suggest some barcodes identified by 
Cell Ranger do not represent genuine cells in the LR data. This acts to decrease the recall of 
BLAZE, while inflating the precision of Sockeye. Even so, we find BLAZE precision-recall 
systematically outperforms Sockeye and we conclude the outperformance would be even greater 
with a perfect ground truth dataset.  
 
Currently BLAZE is limited to identifying 10x single-cell barcodes from nanopore reads. Although 
other LR single-cell methodologies such as scCOLOR-seq [13] and R2C2 [30] have been used 
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to profile single cells with long-reads, the 10x chromium platform is the most widely available and 
popular platform. We therefore designed the initial version of BLAZE to facilitate 10x barcode 
identification. Recent developments in throughput and accuracy for PacBio HiFi sequencing are 
increasing the applicability of PacBio for LR scRNA-seq, while LR nanopore protocols for other 
scRNA-seq modalities such as Split-seq are also now available [14, 31-34]. Although BLAZE is 
currently limited to identification of 10x barcodes from nanopore reads, we see potential to expand 
BLAZE to process both PacBio HiFi reads and reads from other scRNA-seq methods in the future.  
 
Conclusion 

We show that BLAZE is a highly accurate single-cell barcode identification tool for Nanopore long-
reads. We demonstrate that BLAZE works well across different data sets, read depths and read 
accuracies and can seamlessly integrate into existing tools for downstream gene and isoform 
identification and quantification. Crucially, BLAZE eliminates the requirement for additional 
matched SR data and therefore simplifies LR scRNA-seq protocols while significantly reducing 
cost. BLAZE has been designed to be widely accessible and easy to use and is available at 
https://github.com/shimlab/BLAZE. 
 

MATERIALS AND METHODS 

Cell lines and Stem Cell Differentiation 

RM3.5 human induced pluripotent stem cells (hiPSC) [35] were cultured under xenogeneic conditions in 

accordance with the protocol described in Niclis et.al [36]. PSCs were differentiated into cortical neuron 

lineage using the protocol described by Gantner et.al. [37].   

 

Preparation of single-cell suspension 
At day 26 post neural induction RM3.5 cells undergoing cortical differentiation were harvested for 

analysis. Cells were washed twice in 300 mL of DPBS -/- and exposed to Accutase (Innovative Cell 

Technologies, Inc. San Diego, CA, http://www.accutase.com) for 12 min at 37ÚC. Following incubation, 

cells were moved to a 15 mL falcon tube and were gently triturated to help generate a single-cell 

suspension. DPBS was added at 1:1 ratio to inactivate the Accutase and the sample gently centrifuged at 

1500 rpm for 3 min at 4 °C and supernatant removed. Cells were resuspended in 2 mL DBPS and Rock 

inhibitor Y-27632 (diluted 1:1000) (Tocris Bioscience) to prevent cell death. The cell suspension was 

passed through a Flowmi# strainer (Flowmi; Cat. No. 64709-60) to remove remaining cell debris. Finally, 

cells were counted using a hemocytometer and viability assessed with trypan blue stain (ThermoFisher 

scientific Cat. No. 15250061) prior to final resuspension in DPBS with 0.04% BSA and Rock inhibitor. 

 

FLT-seq 10x single-cell processing and cDNA amplification  

FLT-seq was performed in accordance with the published protocol ([15], 

https://www.protocols.io/view/massively-parallel-long-read-sequencing-of-single-81wgbpp1nvpk/v1). 

Briefly, the cell suspension was prepared for target recovery of 5000 cells, with 20% for matched short and 

long-read sequencing. Single-cell processing and cDNA amplification was performed in accordance with 

the 10x Genomics Chromium Single-cell 39 gene expression protocol (v3.1), except that to generate full-

length cDNA reverse transcription the extension time was extended to 2 hours. GEMs were split 80%:20%, 

with the cDNA from the 20% (~1000 cells) processed to create matched short and long-read libraries. We 

used FLT-seq as this protocol generates a high proportion of full-length (39 adaptor to 59 TSO) reads and 

an almost negligible proportion of TSO artifacts (TSO-TSO reads without a valid cell barcode). 

 

Short-read Illumina sequencing 
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The Illumina short-read library was sequenced on the Novaseq6000 to a depth of 100 M reads. Base calling 

and quality scoring were determined using Real-Time Analysis on board software RTA3, while the FASTQ 

file generation and de-multiplexing utilised bclConver v3.9.3. 

 

Nanopore single-cell library preparation and sequencing 

Full length cDNA generated from the FLT-seq protocol was prepared using the SQK-LSK110 Ligation 

Sequencing Kit (ONT) with the following modifications: incubation times for end-preparation and A-tailing 

were lengthened by 15 min and all AMPureXP cleaning steps were performed at x1.8. Libraries were 

sequenced on both the GridION (FLO-MIN106 flow cell) and PromethION (FLO-PRO002 flow cell) loading 

~45 fmol with an additional flow cell top up with any remaining library at 24 hrs. Fast5 files were generated 

using MinKnow v21.02.5 on the GridION and v22.03.4 on the PromethION and basecalled with guppy 

v6.0.7 with the super high accuracy configuration file. 

 

We prepared an additional long-read library with the SQK-Q20EA Genomic DNA by ligation Q20+ early 

access kit (ONT) with the same modifications stated above. We sequenced the Q20 library on the GridION 

(FLO-MIN112 flow cell), loading 10 fmol with an additional 10 fmol top up at 24 hrs. Fast5 files were 

generated using MinKnow v21.05.25 and basecalled with guppy v6.0.7 with the dna_r10.4_e8.1_sup.cfg 

configuration file.  
 
Median sequencing accuracy was calculated by first mapping pass FASTQ files to the transcriptome with 

Minimap2 [38] using the command minimap2 -ax map-ont $REF $FASTQ > trans_mapping.sam. Median 

accuracy was calculated using a custom R script found at https://github.com/josiegleeson/BamSlam [39]. 

In short, the cigar strings from primary alignments were extracted and the total number of mismatches and 

insertions and deletions per alignment were calculated.       

         

Identification putative barcode sequence in each read 
BLAZE identifies the likely position of the cell barcode (referred to as <putative barcode=) by first identifying 

the position of the adaptor. Similar to [9], in each nanopore read, BLAZE searches for the last 10 nt 

sequence of the adaptor (i.e. <CTTCCGATCT=) in the first 200 nt of the read. Specifically, BLAZE aligns the 

<CTTCCGATCT= to the first 200 nt of the read using Biopython [40] and allows up to 2 mismatches, 

insertions or deletions. This procedure ensures a high sensitivity in identifying the adaptor location but will 

potentially find multiple locations. Thus, BLAZE also requires a downstream polyT sequence for accurate 

identification of the adaptor location. Specifically, BLAZE conducts a lenient search that looks for 4 

consecutive 8T9s 20~50 nt downstream of the adaptor, as the polyT tail in nanopore reads is often truncated 

due to limitations in basecalling of homopolymers [12]. The corresponding adaptor is considered to be valid 

only if the polyT is found. BLAZE then repeats the same procedure for the reverse complement sequence. 

Reads with exactly 1 valid adaptor were kept for the downstream steps. The 16 nt sequence immediately 

downstream of the adaptor is defined as the <putative barcode=. 
 

Selection of high-quality putative barcodes 

To accurately identify the sequences of barcodes, BLAZE selects high-quality putative barcodes that are 

less likely to contain basecalling errors. Basecalling outputs provide a (Phred) quality score for each base, 

which indicates the probability of the base being correctly basecalled. Incorrectly basecalled bases 

generally have a low quality score, so putative barcodes with error(s) are more likely to have at least one 

base with a low quality score. Therefore, for each putative barcode, BLAZE calculates the minimum of 

quality scores across the 16 bases in the putative barcode, denoted as <minQ=, and selects putative 

barcodes with minQ g15 as high-quality putative barcodes. See Figure S1 for our choice of 15 as a 

threshold. 
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Identification of cell-associated barcodes from high-quality putative barcodes 

BLAZE lists unique high-quality putative barcodes, counts their occurrences, and ranks them based on 

those counts. Next, similar to Zheng et al 2017, BLAZE selects those barcodes whose counts are larger 

than a stringent count threshold � as cell-associated barcodes (i.e., barcodes likely associated with cells), 

and outputs them in a whitelist. The threshold � has been chosen as follows. For a given expected number 

of recovered cells, denoted by	�, we obtain c, the count of a unique high-quality barcode whose rank is 

0.95 × �. Then, we use 0.05 × �	as the threshold �. In practice, the targeted number of cells can be a 

plausible number for	�. We use � = 500 in the analysis in this manuscript. The number of barcodes in a 

final whitelist is robust to the choice of � (Figure S7) as long as N is set within a reasonable range that is 

not too divergent from the true number (e.g., the number of barcodes change from 186 to 193 when N is 

increased from 50 to 1500 in the analysis of the scmixology2 dataset with ~200 cells).  

 

Barcode whitelist generation and gene and isoform qualification with FLAMES 

We produced barcode whitelists using three software packages. Cell Ranger v6.0.2, Sockeye v0.2.1 (ONT) 

(https://github.com/nanoporetech/Sockeye) and BLAZE v1.0.0 (https://github.com/shimlab/BLAZE). First, 

we processed fastq files generated from the matched Illumina sequencing using the Cell Ranger pipeline 

to generate the barcode whitelist. Next, we ran the Sockeye pipeline and BLAZE on each long-read data 

set using default parameters to generate barcode whitelists from long-reads only. We performed gene and 

isoform level qualification using FLAMES [15] (https://github.com/OliverVoogd/FLAMES) using an edit 

distance of 2, hg38 reference genome and GENCODE v31 comprehensive transcriptome. We used isoform 

count matrices generated by FLAMES to produce gene level counts using a custom python script (available 

at https://github.com/youyupei/bc_whitelist_analysis/).  

  

UMAP generation and single-cell data processing 

Gene and isoform count matrices were analysed with the R package Seurat v4.1.1 [20]. We applied a 

minimum filtering threshold of 200 features (genes or isoforms) to remove cells with very low UMI counts 

in accordance with Seurat pipeline recommendations. Clustering was performed on all data sets with a 

resolution value of 0.7. Marker genes/isoforms that distinguish clusters were found using 

Seurat::FindMarkers using default parameters, full workflow available at 

https://github.com/youyupei/bc_whitelist_analysis/blob/main/script/SC_Marker_gene.Rmd. Seurat 

analysis scripts and output files can be found at https://github.com/youyupei/bc_whitelist_analysis. 

  

Scmixology 2 data set  
Fast5 files from the scmixology 2 data set published in Tian et al. (2021) were rebasecalled with guppy 

v5.1.13 to generate fastq files. We generated long-read barcode whitelists using BLAZE and Sockeye as 

stated above. The Cell Ranger generated whitelist was obtained from matched Illumina short-read 

sequencing published in Tian et al. (2021). These three whitelists were inputs into FLAMES for gene and 

isoform quantification and downstream processing with Seurat is as stated above.  

 
Ethics approval and consent to participate 
All research activities involving iPSC lines were performed under institutional ethics approval from The 
University of Melbourne Ethics ID 1239208. 
 
Consent for publication 
Not applicable. 
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