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Abstract

Single-cell RNA sequencing (scRNA-seq) has revolutionised our ability to profile gene expression.
However, short-read (SR) scRNAseq methodologies such as 10x are restricted to sequencing the
3’ or 5’ ends of transcripts, providing accurate gene expression but little information on the RNA
isoforms expressed in each cell. Newly developed long-read (LR) scRNA-seq enables the
quantification of RNA isoforms in individual cells but LR scRNA-seq using the Oxford Nanopore
platform has largely relied upon matched short-read data to identify cell barcodes and allow single
cell analysis. Here we introduce BLAZE (Barcode identification from long-reads for AnalyZing
single-cell gene Expression), which accurately and efficiently identifies 10x cell barcodes using
only nanopore LR scRNA-seq data. We compared BLAZE to existing tools, including cell
barcodes identified from matched SR scRNA-seq, on differentiating stem cells and 5 cancer cell
lines. BLAZE outperforms existing tools and provides a more accurate representation of the cells
present in LR scRNA-seq than using matched short-reads. BLAZE provides accurate cell
barcodes over a wide range of experimental read depths and sequencing accuracies, while other
methodologies commonly identify false-positive barcodes and cell clusters, disrupting biological
interpretation of LR scRNA-seq results. In conclusion, BLAZE eliminates the requirement for
matched SR scRNA-seq to interpret LR scRNA-seq, simplifying procedures and decreasing costs
while also improving LR scRNA-seq results. BLAZE is compatible with downstream tools
accepting a cell barcode whitelist file and is available at https://github.com/shimlab/BLAZE.

Background
Single-cell transcriptomics has become a widely accessible and popular means of profiling gene

expression at single-cell resolution. The applications of single-cell RNA sequencing (scRNA-seq)
are broad, ranging from identification of cell and tissue types, tracking developmental trajectories,
and assessing system heterogeneity [1]. However, short-read (SR) scRNA-seq methodologies
lack the ability to accurately identify RNA isoforms. Droplet based platforms such as the popular
10x platform [2] are restricted to sequencing the 3’ or 5" ends of transcripts, providing accurate
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gene counts but little information on RNA splicing or the RNA isoforms expressed in each cell [3].
Alternative methods, such as Smart-seq3, sequence all parts of transcripts but are still
constrained by short sequencing read lengths, which largely prevents the accurate reconstruction
of RNA isoforms longer than 1 kb [4].

The recent development of long-read (LR) single-cell sequencing methods has laid the foundation
for a more in-depth analysis of isoforms for single cells [5]. LR scRNA-seq methods have been
developed using both the PacBio and Oxford Nanopore Technologies (ONT) platforms, allowing
for the discovery and quantification of full-length RNA isoforms in single cells [6-19].

Two key steps in enabling scRNA-seq analysis are the identification of cell barcodes, which
denote which cell a read is from, and unique molecular identifiers (UMIs), which allow removal of
PCR duplicates and more accurate counting of gene and isoform expression. A limitation of most
LR scRNA-seq methodologies is that they require matched SR scRNA-seq for the identification
of cell barcodes and/or UMls, particularly those using nanopore sequencing due to its higher error
rate [8, 9, 12, 14-17, 19]. The addition of matched SR data adds technical complications for library
construction and significantly increases both the time and cost needed to produce these data sets.
Furthermore, the requirement for matched SR data can also greatly decrease the proportion of
usable long-reads [9]. Other methods for nanopore LR scRNA-seq have been reported that do
not require the addition of matched short-reads. However, these methods are either very low
throughput [10], require bespoke reagents and are incompatible with existing 10x workflows [13],
or trade higher accuracy for lower read depth [18]. Therefore, a method which requires only
nanopore LRs and is compatible with existing workflows is required [15]. Recently, ONT released
the Sockeye pipeline (https://github.com/nanoporetech/Sockeye) to perform LR-only scRNA-seq
analysis, including barcode and UMI identification. However, the performance of Sockeye is yet
to be determined.

Here we introduce BLAZE (Barcode identification from Long-reads for AnalyZing single-cell gene
Expression), which accurately identifies 10x cell barcodes using only nanopore LR scRNA-seq
data. In combination with the existing FLAMES pipeline [15], BLAZE eliminates the requirement
for matched SR scRNA-seq, simplifying LR scRNA-seq workflows, reducing sequencing costs
and producing improved results. We show that BLAZE performs well across different sample
types, sequencing depths and sequencing accuracies and outperforms other barcode
identification tools such as Sockeye. We designed BLAZE to seamlessly integrate with the
existing FLT-seq - FLAMES pipeline to enable identification and quantification of RNA isoforms
and their expression profiles across individual cells and cell-types. Taken together, BLAZE
provides a cheaper, simpler and more accurate means to profile transcript-level changes in LR
scRNA-seq data sets.

Results
Single-cell barcode identification with BLAZE
We designed BLAZE for the accurate identification of cell barcodes from Oxford Nanopore long-

read libraries generated using the 10x single-cell 3’ gene expression profiling procedure. To
enable cell barcode identification from nanopore reads despite their higher error rate, BLAZE
performs a three-step procedure (Fig. 1A, see methods for further details). First, BLAZE identifies
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the likely position of the cell barcode and extracts the putative barcode sequence. The 16 nt
barcode and 10-12 nt UMI are located between the adapter and polyT sequences. BLAZE locates
the cell barcode in each read by identifying the probable adaptor and polyT regions. The 16 nt
sequence immediately downstream of the adaptor is defined as the “putative barcode”. BLAZE
discards putative barcodes that do not appear in the list of all possible 10x barcodes because
these cannot represent true barcodes. Next, BLAZE selects high-quality putative barcodes whose
sequences are less likely to contain basecalling errors. Specifically, BLAZE filters out barcodes
with a minimum quality score (denoted as “minQ”) of less than 15 across the 16 bases that
comprise the putative barcode (Additional File 1: Fig. S1). Finally, BLAZE counts the occurrence
of each unique high-quality barcode, ranks them based on those counts, and selects the top-
ranked ones as barcodes likely associated with cells using a quantile-based threshold.

A significant proportion of putative barcodes are expected to be error-free, despite the ~4-5%, (or
~2% with higher-accuracy Q20 protocols) median error rate for nanopore reads (Table 1). With
sufficient per-cell sequencing depth, this means each cell should be supported by large number
of high-quality putative barcodes. Therefore, highly-supported barcodes likely represent true cells
while poorly-supported barcodes likely represent sequencing errors and/or barcodes associated
with empty droplets (Fig. 1A). The output of BLAZE is a list of unique cell-associated barcodes
(referred to as barcode whitelist), that is input into downstream gene and isoform quantification
software in place of a whitelist generated from matched SR sequencing.

Table 1: Summary statistics for long-read single-cell data sets

Sequencing Sequencing Total aclt\:n:g:; of Useable® Useable Useable
Dataset ID latform Kit Reads Pass reads ass reads reads with reads with reads with
P P (%) Cell Ranger BLAZE Sockeye
43,063,370
PromethlON PromethlON SQK-LSK110 100,941,015 61,967,455 95.1 43’(‘%:2/'1)50 43'(%%10}1)88 k69°} )
(] 0 (]
5,461,630 5,430,433
GridlION GridlION SQK-LSK110 10,371,632 7,521,667 96.0 (73%) (72%) 5"(1;5155/?)16
(] (]
2,501,260 2,484,366 2,511,016
Q20 GridION SQK-Q20EA 4,479,225 3,423,062 97.9 ’(730'/ ) ’(730’/ ) 1(73°’/ )
(] (] (]
scmixology2 18,347,232 18,099,553 17,818,239
(Tian et al. PromethlON SQK-LSK109 36,927,546 25,164,948 95.7 ’730/’ ’720/’ ’710/’
2021) (73%) (72%) (71%)

*Pass reads that have a valid 10x barcode, a UMI and can be assigned to a barcode in whitelist.

Experimental workflow to assess the performance of BLAZE

We tested the performance of BLAZE by carrying out matched short and long-read scRNA-seq
on ~1000 human induced pluripotent stem cell (iPSC)-derived neural progenitors undergoing
differentiation to the cortical lineage (Fig. 1B, see methods). Short-reads were sequenced on an
lllumina NOVA-seq to a high median depth of 96,000 reads per cell. SR data were analysed with
the Cell Ranger pipeline (10x Genomics) to generate a barcode whitelist that can be directly
compared to a whitelist generated from long-reads only. We performed LR scRNA-seq using the
FLT-seq protocol [15] and sequenced the sample on a PromethlON flowcell.
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Fig. 1: Experimental overview and comparison of identified cell barcodes. A: BLAZE Workflow. Step 1: locate
putative barcodes by first locating the adaptor in each read. Putative barcodes include those originating from different
cells and empty droplets. In schematic putative barcodes with the same colour come from the same original cell/droplet.
Black blocks on putative barcodes represent basecalling errors. Step 2: Select high-quality putative barcodes. Bases
representing sequencing errors tend to have low quality scores. Putative barcodes with minQ < 15 are filtered out
(faded in the figure) and the majority of the remaining putative barcodes are expected to have no errors. Step 3: Identify
cell-associated barcodes. BLAZE counts and ranks unique high-quality putative barcodes and outputs a list of cell-
associated barcodes whose counts pass a quantile-based threshold. B: Schematic of experimental design. Human
induced pluripotent stem cells (hiPSC) undergoing cortical neuronal differentiation were dissociated into a single-cell
suspension and processed to generate single-cell full-length cDNA. Full-length cDNA was sequenced using both short
and long read methods and barcode whitelists generated using Cell Ranger, BLAZE and Sockeye followed by gene
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and isoform quantification and clustering. Three nanopore sequencing runs were performed on the same cDNA sample,
a higher depth PromethlON run, a lower depth GridION run and a higher accuracy run using the Q20 protocol on the
GridION. C: Barcode upset plot comparing different whitelists. The bar chart on the left shows the total number of
barcodes found by each tool. The bar chart on the top shows the number of barcodes in the intersection of whitelists
from specific combinations of methods. The dots and lines underneath show the combinations. The colours of the
combinations are used to distinguish barcodes in figure 1D. D: Barcode rank plot. Unique barcodes are ranked based
on the counts output by each method and coloured by which method(s) included each barcode in their barcode
whitelist(s). The colours for different combinations of methods follow those in figure 1C and barcodes not included in
any of the whitelists are in grey. Cell Ranger short-read counts, Sockeye long-read counts and BLAZE long-read counts
shown on left, middle and right knee plots respectively. Sockeye and BLAZE analyse the same dataset. Cell Ranger
analyses counts from a short-read library, deriving from the same original cDNA. Unique barcodes are ranked on the
x-axis based on the number of reads/unique molecules observed for each (y-axis). Shifts on the x-axis are intentionally
added to make the dots with different colours non-overlapping. Note that these three methods generate counts in
different ways so the three plots have different y-axis labels.

generating ~62 million pass reads (Table 1). In addition to deep PromethlON sequencing, we
also sequenced the cDNA on the GridlON using standard and higher accuracy (Q20) chemistries
generating ~7.5 and ~3.5 million pass reads respectively (Table 1). This enabled us to assess
the effects of read depth and variation in read accuracy on the performance of BLAZE and is
discussed in greater detail below. We also compared BLAZE to Sockeye
(https://github.com/nanoporetech/Sockeye), the recently released ONT software for LR scRNA-
seq analysis that also generates a cell barcode whitelist from nanopore long-reads.

BLAZE identifies high confidence cell barcodes

Maximising sequencing depth per cell is key to accurately identifying and quantifying isoforms in
single-cell data [3]. Therefore, we first compared the performance of BLAZE to Cell Ranger and
Sockeye in the higher-depth PromethlON data set. Cell Ranger, BLAZE and Sockeye identified
1022, 804 and 1518 cell barcodes respectively (Table 2). A comparison of barcodes showed 99.4%
of barcodes identified by BLAZE were also found by Cell Ranger and Sockeye. However, a
significant proportion of barcodes were unique to Cell Ranger and Sockeye (Fig. 1C). Analysis of
cell barcode rank plots revealed BLAZE cell-associated barcodes had high read support in all
methods (Fig. 1D). In contrast, unique Cell Ranger barcodes were often supported by few long
reads, regardless of the different strategies of counting barcodes in BLAZE and Sockeye,
suggesting that some barcodes identified by SR sequencing were not well represented in the LR
dataset. Similarly, many unique Sockeye barcodes had little or no SR support, suggesting they
are unlikely to be associated with cells. In addition, BLAZE counts for unique Sockeye barcodes
were much lower (median 4.5 fold) than for barcodes found by both methods, suggesting many
of the long reads supporting unique Sockeye barcodes were low quality and the barcodes are
likely to be false positives.

The cell barcodes identified by Cell Ranger, BLAZE and Sockeye enabled the downstream
analysis of a very similar proportion of reads, 70%, 69% and 69% respectively (useable reads,
Table 1), demonstrating that the smaller number of barcodes found by BLAZE does not negatively
affect the overall proportion of reads that can be assigned to a cell. Together these results show
BLAZE provides the most accurate list of LR cell barcodes with little loss of sensitivity.
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Table 2: Number of barcodes detected.

Dataset ID Cell Ranger* BLAZE Sockeye
PromethlON 1022 804 1518
GridION 1022 802 1016
Q20 1022 804 1015
scmixology?2

(Tian et al. 2021) 248 188 522

*From matched short-read data

Cell Ranger and Sockeye identify barcodes that are poorly supported by long-reads

We next asked if the barcode whitelists produced by Cell Ranger, BLAZE and Sockeye would
yield similar results when clustering cells based on gene or isoform expression. We used the
barcode whitelists and the ~62 million long-reads from the PromethlON as input into FLAMES [15]
to produce gene and isoform counts and then generated UMAP plots in Seurat [20]. To facilitate
comparison between the methods we made each UMAP plot separately and then coloured each
cell according to its assigned cluster using the Cell Ranger whitelist. This revealed both Cell
Ranger and Sockeye identify an additional cluster not found by BLAZE. This result was consistent
for analyses using either isoform (Fig. 2A) or gene (Additional File 1: Fig.S2A) counts and was
further confirmed by re-colouring the cells based on the BLAZE clusters (Additional File 1:
Fig.S2B). This cluster contained poorly supported barcodes, as demonstrated by the low UMI
counts and low numbers of genes and isoforms detected in each “cell” (Fig. 2B and Additional
File 1: Fig.S2C, D). In the case of the Cell Ranger whitelist, these cells are likely those that exist
in the matched SR data set, but are poorly represented amongst the long-reads, creating false
positive long-read detections. The additional cluster found when using the Sockeye whitelist
consists of a large number of cells not found with BLAZE or Cell Ranger and are also likely false-
positives detections as they have low UMI and gene/isoform counts.

The ~1000 cells analysed here are in the early stages of cortical neuron differentiation, hence it
was important to confirm BLAZE whitelist-based cell clustering was due to distinct biological
profiles and not as a result of sequencing depth per cell or non-biologically relevant factors.
Marker gene analysis confirmed biologically meaningful gene expression differences between
clusters (Additional file 2: Table S1 and Additional file 3: Table S$2). We identified significant
differences in the expression of hundreds of genes including key transcription factors such as
ELAVL4 and NHLH1 (Fig. 3), which are known to be upregulated during the differentiation of
cortical neurons [21, 22]. Moreover, we find differential gene expression of well-defined neuron
specific genes such as NRN1 [23] and PLPPR1 [24] (Fig. 3). Together these findings confirm that
BLAZE cell clusters are transcriptionally distinct and that the BLAZE-FLAMES long-read pipeline
is capturing the biological signal of neuronal cell differentiation.

While the use of FLAMES for isoform identification and quantification enables a fair comparison
between whitelists, we wanted to ensure the false-positive detections from Sockeye were not a
result of the FLAMES pipeline. To address this possibility, we implemented the complete Sockeye
pipeline using default parameters and interrogated the UMAP plots generated by Sockeye. The
Sockeye pipeline retained the additional cluster with low UMI counts (Additional File 1: Fig.S3A).
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We also note that Sockeye is currently limited to performing gene-based analyses and does not
perform the isoform-based analyses enabled by LR scRNA-seq. Overall we find the BLAZE
whitelist enabled the most accurate downstream expression and cell-type clustering of LR scRNA-
seq data.

Cell Ranger BLAZE Sockeye
Cell Ranger Cell Ranger Cell Ranger
Cluster Cluster Cluster
o os o o: N ot
£ 4 £ E =
8 o: a8 s 8 o:
-+ =5 B X
®s JES ® °
° 7 ‘e ° 7 e 7
© Cels not found © Cels not found
in Cell Ranger in Cell Ranger
whitelist whitelist
Dim 1
Cell Ranger BLAZE Sockeye
ey ky
A."-'ifv UMI count £Ank, -" UMI count UMI count
.y . o .
g Joag 60000 ¢ ’&é 60000 60000
Loy o % PR o
of R 40000 B4 40000 S 40000
£ ¢ £ > - £ Ror
a ’ a .o r’:. [=} A ""'3~
I 20000 K5l 20000 % o :.'f-_g‘ ‘ 20000
i g
T
o
Dim 1 Dim 1 Dim 1

Fig. 2: Comparison of cell clusters identified with BLAZE, Cell Ranger and Sockeye barcodes. Isoform
expression UMAP plots from PromethlON data. Isoform counts were generated with FLAMES using barcode whitelists
from either Cell Ranger, BLAZE or Sockeye. A: Cells in all three plots are coloured based on clustering with the Cell
Ranger whitelist. Cells not found in Cell Ranger whitelist are coloured in gray. B: Cells coloured based on UMI counts
(sum of all uniqgue UMls across all transcripts) per cell.

Barcode detection with BLAZE is robust to changes in read depth or read accuracy

We investigated the impact of read depth and sequencing accuracy on the results of BLAZE. We
sequenced the same single-cell cDNA sample on the lower-output Nanopore GridlON, using both
the LSK110 and higher accuracy Q20 chemistries. We find that although the LSK110 and Q20
GridlION data produce significantly fewer total and pass reads compared to the PromethlON
(approximately 10% and 5% respectively) (Table 1), the number of barcodes found by BLAZE is
virtually unchanged (Table 2). The Q20 GridlON data is both lower depth and higher accuracy
than the LSK110 data, leading to the possibility that higher read accuracy, (via an increased
proportion of high confidence barcodes) could be maintaining barcode numbers. However,
downsampling the LSK110 GridION data to match the Q20 read depth returned the same number
of barcodes (802), demonstrating BLAZE performs consistently across data sets with variable
read depths and different sequencing accuracies. In addition, we observed a similar proportion of
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usable reads between datasets (Table 1), implying that the improved Q20 accuracy had minimal
effect on the number of reads that can be assigned to a cell.
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Fig. 3: Gene expression UMAP coloured by cluster and expression of marker genes. A: UMAP showing clustering
based on gene counts generated from FLAMES using BLAZE whitelist. B: UMAP coloured by expression of 4 marker
genes known to be associated with differentiation and neuron development. Expression scale is coloured based on
Seurat normalised counts. Colour scales are not comparable between plots.

We also assessed if Sockeye performed consistently across data sets of varying read depths.
Sockeye identified 1016 and 1015 barcodes for LSK110 GridION and Q20 datasets respectively
(Table 2 and Additional File 1: Fig.S4), which was a significant reduction on the 1518 barcodes
from the PromethlON data. UMAP results based on FLAMES quantification for the lower depth
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LSK110 and Q20 datasets revealed similar clustering between methods (Fig. 4). The number of
barcodes detected by Sockeye (and subsequent downstream results) are therefore heavily
dependent on per-cell read depth, leading to inconsistent results, with worse performance at
higher read depths where isoform profiling is enhanced.
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Fig. 4: Isoform expression UMAP plot from Q20 and GridlON data. A: Q20 B: GridION LSK110. Isoform counts
were generated with FLAMES using barcode whitelists from either Cell Ranger, BLAZE or Sockeye. Cells are coloured
as per Figure 2A.

We again tested if the full Sockeye pipeline would provide improved results over using the
Sockeye barcodes in FLAMES. In contrast, we find that irrespective of the sequencing library
used, quantification and UMAP generation using the Sockeye pipeline clusters cells in large part
based on total UMI counts (Additional File 1: Fig.S3). A UMI associated clustering effect could
potentially represent a real biological signal if it related to cells undergoing differentiation and
changing their transcriptional activity. However, using the BLAZE-FLAMES-Seurat pipeline
(instead of the complete Sockeye pipeline), we do not see such strong correlations between
clusters and UMIs (Additional File 1: Fig.S5). These findings confirm the Sockeye pipeline is
impacted by UMI associated confounders which bias UMAP results.

BLAZE correctly identifies barcodes in long read single-cell data of known cell lines

To further validate the performance of BLAZE we compared Cell Ranger, BLAZE and Sockeye
on an additional LR single-cell data set containing known and distinct cell lines. We utilised the
scmixology?2 data from Tian et al. (2021), which contains equal mixes of five cancer cell lines (~40
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cells per line) profiled with matched lllumina and Nanopore reads. Cell Ranger (from the matched
short-reads), BLAZE and Sockeye identified 248, 188 and 522 cell barcodes respectively (Table
2). Similar to the cortical differentiation dataset we find all barcodes identified by BLAZE were
also found by Cell Ranger and Sockeye (Fig. 5A). There were 59 barcodes identified by Cell
Ranger and Sockeye but not by BLAZE and 275 barcodes unique to Sockeye (Fig. 5A). These
results suggested that Cell Ranger and Sockeye may be consistently identifying false positive
long-read barcodes.
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Fig. 5: Barcode identification and clustering of Scmixology2 data. A: Barcode upset plot comparing different
whitelists. Bar chart on left shows total number of barcodes found by each tool. Bar chart on top shows number of
barcodes in the intersection of whitelists from specific combinations of methods. The dots and lines underneath show
the combinations. B-D: Isoform expression UMAP plots: Isoform counts were generated with FLAMES using a
barcode whitelist from either Cell Ranger (left), BLAZE (middle) or Sockeye (right). Cells are coloured based on: known
cell types from Tian et al. 2021 (B); Total UMIs per cell (C); Number of isoforms detected in each cell (D).
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Implementation of the FLAMES pipeline for gene and isoform quantification supported the
accurate identification of barcodes by BLAZE and confirmed the existence of false-positive
detections by Cell Ranger and Sockeye (Fig. 5B-D). Scmixology2 contained five distinct cell lines
and Tian et al. identified the barcodes belonging to each cell line in the LR data (see Tian et al.
2021 for details). We overlaid this information onto the UMAP plots generated from long-reads
(Fig. 5B). UMAP plots generated from BLAZE barcodes detected the five expected cell lines. All
cells found by BLAZE were present in the matched SR data (Fig. 5A), supporting the assertion
that BLAZE accurately identifies cell barcodes while minimising false-positive detections. In
contrast, Cell Ranger identified six distinct clusters. Five corresponded to the cancer cell lines in
this sample (Fig. 5B), while the sixth cluster, (denoted as N.A) largely comprised barcodes with
no cell line match. These barcodes had very low cellular UMI counts and few unique isoforms
(Fig. 5C, D) and likely represent cells present in the SR but not the LR data.

Clustering based on the Sockeye whitelist also identified additional cell type clusters, with the
maijority (52%) of cells in clusters not matching one of the known cell lines. These “cells” all have
low UMI counts and fewer detected isoforms (Fig. 5C, D), highlighting that these barcodes likely
represent false positives and are not real cells. To ensure these findings were not a consequence
of the FLAMES pipeline we also ran the entire Sockeye workflow. The Sockeye generated UMAP
displayed similar results (Fig. S6), further supporting incorrect barcode identification by Sockeye.
The identification of false positive barcodes and cell clusters when using the Cell Ranger and
Sockeye whitelist again demonstrate that BLAZE produces a more accurate representation of
barcodes present in LR datasets.

Overall comparison between BLAZE and Sockeye

BLAZE is more conservative than Sockeye in calling barcodes and therefore minimises false-
positive detections. However, both BLAZE and Sockeye use barcodes with counts above a
threshold to generate the whitelist and users have the flexibility to choose the count threshold to
trade off high precision (i.e. fewer false barcodes) for high recall (i.e. more true barcodes). Using
all four datasets above (Tables 1 and 2) and defining the cell barcodes identified by Cell Ranger
as the ground truth, we calculated precision-recall curves across different count thresholds in
BLAZE and Sockeye. Results demonstrated that BLAZE consistently outperforms Sockeye (Fig.
6) and outputs a better whitelist regardless of whether users prefer high precision or recall.

BLAZE is easy to install and run (see Additional File 4: Tables S3 for the runtime of BLAZE).
However, a fair runtime comparison between BLAZE and Sockeye is difficult because Sockeye
is not designed to solely generate a barcode whitelist but instead runs the whole pipeline for
single-cell gene expression and therefore requires a longer runtime. In addition, Sockeye cannot
be utilised as a stand-alone tool to perform single-cell isoform analysis, (for which long-reads are
significantly more useful than short-reads) as it only performs gene-level quantification. In this
sense, running BLAZE is quicker and the integration is easier as BLAZE outputs a whitelist using
the Cell Ranger format that can be input into tools such as FLAMES without modification.
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Figure 6: Precision-recall curves across different datasets for BLAZE and Sockeye. Precision and recall were
calculated across different count thresholds by using the barcodes identified from short reads (i.e. whitelist from Cell
Ranger) as the ground truth. The numbers in the legend show area under the curve (AUC) values.

Discussion
Single-cell RNA sequencing (scRNA-seq) has revolutionised the study of transcriptomes, yet is

limited by the use of SR sequencing methods. With recent advancements in LR scRNA-seq
methodologies [5, 25] and analysis tools [26], the potential to study the complete array of RNA
isoforms and quantify isoform expression at single-cell resolution is becoming possible. The use
of “noisy” long-reads however, presents its own unique set of challenges, primarily the difficulty
in identifying the cell barcodes needed to assign each transcript to its cell of origin. Consequently,
the use of matched SR data has been fundamental to the successful implementation of high depth,
high throughput nanopore LR scRNA-seq. In spite of the higher error rate of nanopore reads, we
show that BLAZE aids in eliminating the need for matched SR sequencing. This not only simplifies
the procedure but also reduces overall library construction and sequencing costs and therefore
increases the accessibility of LR scRNA-seq.

We found BLAZE to be robust in its ability to accurately identify 10x cell barcodes from long-reads.
BLAZE can be applied to different types of single-cell samples and performs equally well on both
higher accuracy Q20 data, as well as lower accuracy reads generated from ONT’s LSK110 and
LSK109 protocols. We find that ONT’s recently published software for long-read only barcode
identification, Sockeye, appears to be affected by read-depth associated confounders and
identifies false-positive cell barcodes. An alternate possibility is that Sockeye is more effective
than BLAZE at identifying cell barcodes and therefore finds larger numbers of cells. However, this
seems unlikely given Sockeye finds much larger numbers of long-read barcodes than matched
short-read sequencing; unique Sockeye barcodes don’t match the known cell types present in the
scmixology2 data; and the unique “cells” have very low numbers of UMIs, genes and unique
isoforms. In order to accurately identify and quantify isoforms from scRNA-seq it is important to
sequence cells deeply [3]. BLAZE showed the greatest advantage over other methods in the
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higher depth PromethlON datasets and therefore performs well in the context most relevant to LR
scRNA-seq.

We designed BLAZE to be simple to install and use and seamlessly integrate into existing isoform
identification and quantification pipelines such as FLAMES, meaning no modifications to existing
protocols or pipelines are needed. This provides a further advantage over Sockeye, which
currently only performs gene level quantification. Most importantly and perhaps unexpectedly, we
find that BLAZE outperforms barcode whitelists generated from matched SR data using Cell
Ranger. More than 99% of barcodes identified with BLAZE were present in the SR whitelist
confirming that false-positive detections with BLAZE are rare. Conversely, >20% of barcodes
identified by Cell Ranger were not found by BLAZE. These barcodes were supported by few long-
reads and expressed comparatively fewer genes and isoforms. We hypothesise that despite
sequencing matched samples some cell barcodes found in SR data are poorly represented
amongst the long-reads. Supporting this, the Cell Ranger knee plot showed the barcodes not
found by BLAZE had low UMI counts in the SR data. Such barcodes are the most likely not to be
found in matched LR sequencing due to chance and differences in read depths. Consequently,
the use of long-read only barcode identification methods should produce whitelists that more
faithfully represent cells profiled with long-read sequencing.

The accurate identification of single-cell barcodes is crucial to downstream gene and isoform
quantification. Nearly all single-cell workflows cluster cells based on expression using dimensional
reduction techniques such as t-SNE [27] and UMAP [28, 29]. These methods enable further
integration of cell type specific markers and can be used to identify differentially expressed genes
and isoforms between cell clusters. False-positive cells often cluster together giving a misleading
impression of additional cell clusters, which could confound differential expression analyses and
biological interpretation of the results. Furthermore, usable reads can be assigned to false-
positive barcodes, reducing the read depth of real cells and decreasing experimental power for
isoform identification and quantification. Filtering out cells that have low UMI counts could reduce
false-positive cells, however deciding on an appropriate UMI filtering threshold can be difficult and
would depend on sequencing read depth and the transcriptional activity of the cells. It can be
challenging to distinguish between cells that produce small amounts of RNA (and subsequently
have few UMIs) and false-positive cells. Tools designed to generate single-cell barcode whitelists
should therefore prioritise high precision as false-positive barcodes can confound downstream
workflows.

A limitation with the current study is the use of Cell Ranger as the ground truth to determine the
precision-recall of BLAZE and Sockeye, since our results suggest some barcodes identified by
Cell Ranger do not represent genuine cells in the LR data. This acts to decrease the recall of
BLAZE, while inflating the precision of Sockeye. Even so, we find BLAZE precision-recall
systematically outperforms Sockeye and we conclude the outperformance would be even greater
with a perfect ground truth dataset.

Currently BLAZE is limited to identifying 10x single-cell barcodes from nanopore reads. Although
other LR single-cell methodologies such as scCOLOR-seq [13] and R2C2 [30] have been used
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to profile single cells with long-reads, the 10x chromium platform is the most widely available and
popular platform. We therefore designed the initial version of BLAZE to facilitate 10x barcode
identification. Recent developments in throughput and accuracy for PacBio HiFi sequencing are
increasing the applicability of PacBio for LR scRNA-seq, while LR nanopore protocols for other
scRNA-seq modalities such as Split-seq are also now available [14, 31-34]. Although BLAZE is
currently limited to identification of 10x barcodes from nanopore reads, we see potential to expand
BLAZE to process both PacBio HiFi reads and reads from other scRNA-seq methods in the future.

Conclusion

We show that BLAZE is a highly accurate single-cell barcode identification tool for Nanopore long-
reads. We demonstrate that BLAZE works well across different data sets, read depths and read
accuracies and can seamlessly integrate into existing tools for downstream gene and isoform
identification and quantification. Crucially, BLAZE eliminates the requirement for additional
matched SR data and therefore simplifies LR scRNA-seq protocols while significantly reducing
cost. BLAZE has been designed to be widely accessible and easy to use and is available at
https://github.com/shimlab/BLAZE.

MATERIALS AND METHODS

Cell lines and Stem Cell Differentiation

RM3.5 human induced pluripotent stem cells (hiPSC) [35] were cultured under xenogeneic conditions in
accordance with the protocol described in Niclis et.al [36]. PSCs were differentiated into cortical neuron
lineage using the protocol described by Gantner et.al. [37].

Preparation of single-cell suspension

At day 26 post neural induction RM3.5 cells undergoing cortical differentiation were harvested for
analysis. Cells were washed twice in 300 mL of DPBS -/- and exposed to Accutase (Innovative Cell
Technologies, Inc. San Diego, CA, http://www.accutase.com) for 12 min at 37°C. Following incubation,
cells were moved to a 15 mL falcon tube and were gently triturated to help generate a single-cell
suspension. DPBS was added at 1:1 ratio to inactivate the Accutase and the sample gently centrifuged at
1500 rpm for 3 min at 4 °C and supernatant removed. Cells were resuspended in 2 mL DBPS and Rock
inhibitor Y-27632 (diluted 1:1000) (Tocris Bioscience) to prevent cell death. The cell suspension was
passed through a Flowmi™ strainer (Flowmi; Cat. No. 64709-60) to remove remaining cell debris. Finally,
cells were counted using a hemocytometer and viability assessed with trypan blue stain (ThermoFisher
scientific Cat. No. 15250061) prior to final resuspension in DPBS with 0.04% BSA and Rock inhibitor.

FLT-seq 10x single-cell processing and cDNA amplification

FLT-seq was performed in accordance with the published protocol ([15],
https://www.protocols.io/view/massively-parallel-long-read-sequencing-of-single-8 wgbpp1nvpk/v1).
Briefly, the cell suspension was prepared for target recovery of 5000 cells, with 20% for matched short and
long-read sequencing. Single-cell processing and cDNA amplification was performed in accordance with
the 10x Genomics Chromium Single-cell 3' gene expression protocol (v3.1), except that to generate full-
length cDNA reverse transcription the extension time was extended to 2 hours. GEMs were split 80%:20%,
with the cDNA from the 20% (~1000 cells) processed to create matched short and long-read libraries. We
used FLT-seq as this protocol generates a high proportion of full-length (3’ adaptor to 5° TSO) reads and
an almost negligible proportion of TSO artifacts (TSO-TSO reads without a valid cell barcode).

Short-read lllumina sequencing
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The lllumina short-read library was sequenced on the Novaseq6000 to a depth of 100 M reads. Base calling
and quality scoring were determined using Real-Time Analysis on board software RTA3, while the FASTQ
file generation and de-multiplexing utilised bclConver v3.9.3.

Nanopore single-cell library preparation and sequencing

Full length cDNA generated from the FLT-seq protocol was prepared using the SQK-LSK110 Ligation
Sequencing Kit (ONT) with the following modifications: incubation times for end-preparation and A-tailing
were lengthened by 15 min and all AMPureXP cleaning steps were performed at x1.8. Libraries were
sequenced on both the GridION (FLO-MIN106 flow cell) and PromethlON (FLO-PROO002 flow cell) loading
~45 fmol with an additional flow cell top up with any remaining library at 24 hrs. Fast5 files were generated
using MinKnow v21.02.5 on the GridlION and v22.03.4 on the PromethlON and basecalled with guppy
v6.0.7 with the super high accuracy configuration file.

We prepared an additional long-read library with the SQK-Q20EA Genomic DNA by ligation Q20+ early
access kit (ONT) with the same modifications stated above. We sequenced the Q20 library on the GridION
(FLO-MIN112 flow cell), loading 10 fmol with an additional 10 fmol top up at 24 hrs. Fast5 files were
generated using MinKnow v21.05.25 and basecalled with guppy v6.0.7 with the dna_r10.4_e8.1_sup.cfg
configuration file.

Median sequencing accuracy was calculated by first mapping pass FASTQ files to the transcriptome with
Minimap2 [38] using the command minimap2 -ax map-ont $REF $FASTQ > trans_mapping.sam. Median
accuracy was calculated using a custom R script found at https://github.com/josiegleeson/BamSlam [39].
In short, the cigar strings from primary alignments were extracted and the total number of mismatches and
insertions and deletions per alignment were calculated.

Identification putative barcode sequence in each read
BLAZE identifies the likely position of the cell barcode (referred to as “putative barcode”) by first identifying

the position of the adaptor. Similar to [9], in each nanopore read, BLAZE searches for the last 10 nt
sequence of the adaptor (i.e. “CTTCCGATCT”) in the first 200 nt of the read. Specifically, BLAZE aligns the
“‘CTTCCGATCT” to the first 200 nt of the read using Biopython [40] and allows up to 2 mismatches,
insertions or deletions. This procedure ensures a high sensitivity in identifying the adaptor location but will
potentially find multiple locations. Thus, BLAZE also requires a downstream polyT sequence for accurate
identification of the adaptor location. Specifically, BLAZE conducts a lenient search that looks for 4
consecutive ‘T's 20~50 nt downstream of the adaptor, as the polyT tail in nanopore reads is often truncated
due to limitations in basecalling of homopolymers [12]. The corresponding adaptor is considered to be valid
only if the polyT is found. BLAZE then repeats the same procedure for the reverse complement sequence.
Reads with exactly 1 valid adaptor were kept for the downstream steps. The 16 nt sequence immediately
downstream of the adaptor is defined as the “putative barcode”.

Selection of high-quality putative barcodes

To accurately identify the sequences of barcodes, BLAZE selects high-quality putative barcodes that are
less likely to contain basecalling errors. Basecalling outputs provide a (Phred) quality score for each base,
which indicates the probability of the base being correctly basecalled. Incorrectly basecalled bases
generally have a low quality score, so putative barcodes with error(s) are more likely to have at least one
base with a low quality score. Therefore, for each putative barcode, BLAZE calculates the minimum of
quality scores across the 16 bases in the putative barcode, denoted as “minQ”, and selects putative
barcodes with minQ =15 as high-quality putative barcodes. See Figure S1 for our choice of 15 as a
threshold.
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Identification of cell-associated barcodes from high-quality putative barcodes

BLAZE lists unique high-quality putative barcodes, counts their occurrences, and ranks them based on
those counts. Next, similar to Zheng et al 2017, BLAZE selects those barcodes whose counts are larger
than a stringent count threshold T as cell-associated barcodes (i.e., barcodes likely associated with cells),
and outputs them in a whitelist. The threshold T has been chosen as follows. For a given expected number
of recovered cells, denoted by N, we obtain ¢, the count of a unique high-quality barcode whose rank is
0.95 x N. Then, we use 0.05 X c as the threshold T. In practice, the targeted number of cells can be a
plausible number for N. We use N = 500 in the analysis in this manuscript. The number of barcodes in a
final whitelist is robust to the choice of N (Figure S7) as long as N is set within a reasonable range that is
not too divergent from the true number (e.g., the number of barcodes change from 186 to 193 when N is
increased from 50 to 1500 in the analysis of the scmixology2 dataset with ~200 cells).

Barcode whitelist generation and gene and isoform qualification with FLAMES

We produced barcode whitelists using three software packages. Cell Ranger v6.0.2, Sockeye v0.2.1 (ONT)
(https://github.com/nanoporetech/Sockeye) and BLAZE v1.0.0 (https://qgithub.com/shimlab/BLAZE). First,
we processed fastq files generated from the matched lllumina sequencing using the Cell Ranger pipeline
to generate the barcode whitelist. Next, we ran the Sockeye pipeline and BLAZE on each long-read data
set using default parameters to generate barcode whitelists from long-reads only. We performed gene and
isoform level qualification using FLAMES [15]_(https://github.com/OliverVoogd/FLAMES) using an edit
distance of 2, hg38 reference genome and GENCODE v31 comprehensive transcriptome. We used isoform
count matrices generated by FLAMES to produce gene level counts using a custom python script (available
at https://github.com/youyupei/bc_whitelist_analysis/).

UMAP generation and single-cell data processing

Gene and isoform count matrices were analysed with the R package Seurat v4.1.1 [20]. We applied a
minimum filtering threshold of 200 features (genes or isoforms) to remove cells with very low UMI counts
in accordance with Seurat pipeline recommendations. Clustering was performed on all data sets with a
resolution value of 0.7. Marker genes/isoforms that distinguish clusters were found using
Seurat::FindMarkers using default parameters, full workflow available at
https://github.com/youyupei/bc_whitelist_analysis/blob/main/script/SC_Marker_gene.Rmd. Seurat
analysis scripts and output files can be found at https://github.com/youyupei/bc_whitelist_analysis.

Scmixology 2 data set

Fast5 files from the scmixology 2 data set published in Tian et al. (2021) were rebasecalled with guppy
v5.1.13 to generate fastq files. We generated long-read barcode whitelists using BLAZE and Sockeye as
stated above. The Cell Ranger generated whitelist was obtained from matched lllumina short-read
sequencing published in Tian et al. (2021). These three whitelists were inputs into FLAMES for gene and
isoform quantification and downstream processing with Seurat is as stated above.
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All research activities involving iPSC lines were performed under institutional ethics approval from The
University of Melbourne Ethics ID 1239208.
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Availability of data and materials

Fast5 and fastq files are available from ENA under accession PRJEB54718. The processed data and
scripts used in this study are available at https://github.com/youyupei/bc_whitelist_analysis/. BLAZE is
implemented in Python and available on github at https://github.com/shimlab/BLAZE under GNU General
Public License v3.0.
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