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ABSTRACT 

 
Animal studies of neurodevelopmental plasticity have shown that intrinsic brain activity evolves 
from high amplitude and globally synchronized to suppressed and sparse as plasticity declines 
and the cortex matures. Leveraging resting-state functional MRI data from 1033 individuals (8-
23 years), we reveal that this stereotyped refinement of intrinsic activity occurs during human 
development and provides evidence for a cortical gradient of neurodevelopmental plasticity 
during childhood and adolescence. Specifically, we demonstrate that declines in the amplitude of 
intrinsic activity are initiated heterochronously across regions, coupled to the maturation of a 
plasticity-restricting structural feature, and temporally staggered along a hierarchical 
sensorimotor-association axis from ages 8 to 18. Youth from disadvantaged environments exhibit 
reduced intrinsic activity in regions further up the sensorimotor-association axis, suggestive of a 
reduced level of plasticity in late-maturing cortices. Our results uncover a hierarchical axis of 
neurodevelopment and offer insight into the temporal sequence of protracted 
neurodevelopmental plasticity in humans.  
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INTRODUCTION 
 

Elucidating the spatiotemporal progression of developmental plasticity across the human 
cortex has implications for understanding healthy brain development as well as windows of 
developmental vulnerability and opportunity. Specifically, characterizing the temporal sequence 
of cortical plasticity is requisite for identifying biological mechanisms underlying normative 
developmental plasticity and the potential role of disrupted plasticity in youth-onset 
psychopathology1. Moreover, demarcating regionally-specific periods of enhanced and 
diminished malleability can reveal windows where both developmental insults and interventions 
may have a maximal impact on the brain2. Prior studies have therefore aimed to uncover the 
temporal sequence of neurodevelopmental change across the cortical mantle. 

These studies have consistently shown that postnatal neurodevelopment is 
heterochronous, with sensory and motor cortices maturating earlier than association cortices; this  
temporal trend has been shown for cortical volume, thickness, connectivity, myelination, and 
cellular properties3312. Critically, beyond this coarse division there exists marked temporal 
developmental variability that remains under-characterized. We recently proposed a unifying 
framework on the chronology of cortical development that contextualizes past reports of 
asynchronous maturation between sensorimotor and association cortices2,13316 as two ends of a 
continuous axis of neurodevelopmental plasticity1. This framework posits that during childhood 
and adolescence, cortical plasticity progresses along the sensorimotor-association (S-A) axis: a 
dominant, hierarchical axis of human brain organization along which diverse neurobiological 
properties are patterned1,17320. 

In the present study, we aimed to empirically evaluate our hypothesis that plasticity 
unfolds along the S-A axis by studying the developmental refinement of intrinsically-generated 
(i.e., spontaneous or non-evoked) activity, a putative functional marker of local plasticity 
described in animal models. Studies of the developing murine sensory cortex have provided 
evidence that a potentiation of high amplitude, synchronized intrinsic activity characterizes early 
periods of heightened plasticity15,21,22. As plasticity is reduced and the cortex matures, intrinsic 
activity then evolves from strong and globally synchronized to suppressed and sparse, becoming 
more heterogeneously distributed in space and time in adult cortex22326. This stereotyped 
refinement of intrinsic activity has been linked to maturational increases in inhibitory 
neurotransmission and cortical myelination4two plasticity-regulating processes that refine 
cortical circuit dynamics21,26330. Accordingly, this stereotyped refinement of intrinsic activity 
provides an ongoing readout of local circuit plasticity, with more widespread and correlated high 
amplitude activity serving as a functional hallmark of immature, plastic cortices15,21,31,32. 
Importantly, intrinsic cortical activity can be studied non-invasively with resting-state functional 
MRI (fMRI), which provides an opportunity to characterize the temporal maturation of a 
plasticity signature in the human brain.  

Simultaneous fMRI and electrophysiology or calcium recordings have demonstrated how 
low frequency fluctuations in the resting fMRI blood oxygen level dependent (BOLD) signal are 
coupled with changes in intrinsic neural activity patterns33338. A greater level of intrinsic activity 
and more synchronized activity4activity characteristic of immature, plastic cortices4increases 
the amplitude of low frequency BOLD fluctuations. It has therefore been hypothesized that the 
amplitude of low frequency fluctuations39, or BOLD <fluctuation amplitude=, will be higher 
when cortical plasticity is enhanced31,40. Indeed, a recent landmark study found that casting of 
the upper extremity in non-injured humans4a deprivation intervention designed to induce 
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somatosensory and motor cortex plasticity4increased BOLD fluctuation amplitude selectively 
within the corresponding topographic region of primary somatomotor cortex41. 

Here we harness BOLD fluctuation amplitude to index spatially-localized, age-dependent 
changes in intrinsic cortical activity and test the overarching framework that developmental 
plasticity cascades hierarchically along the S-A axis in youth. Given evidence that intrinsic 
activity declines and desynchronizes as developmental plasticity is reduced, we predicted that the 
development of fluctuation amplitude would be characterized by heterochronous declines along 
the cortex’s S-A axis and would be linked to the maturation of plasticity-regulating biological 
features. Furthermore, in light of recent theories that cortical maturation is accelerated by 
environmental adversity42344, we predicted that youth from disadvantaged neighborhoods would 
exhibit functional markers suggestive of lower cortical plasticity. As described below, our in 
vivo analysis of a signature of neurodevelopment plasticity illuminated by animal models reveals 
that the S-A axis captures not only the hierarchical layout of diverse cortical properties, but also 
the temporal patterning of human developmental programs. 
 

RESULTS  
 

We studied how intrinsic activity is refined across the developing cortex in a sample of 
1033 youth aged 8-23 years. Fluctuation amplitude, computed as the average power of low 
frequency (0.01-0.08 Hz) fluctuations in the time-varying fMRI signal, was used to index the 
overall level and coherence of intrinsic cortical activity. Greater and more synchronized neural 
activity increases the power of low frequency neural recordings34,35,37,38 and is understood to 
increase BOLD fluctuation amplitude34,35. To delineate maturational changes in BOLD 
fluctuation amplitude in individual cortical regions, we fit region-specific generalized additive 
models (GAMs) in which age was treated as a smooth term and modeled with thin plate 
regression splines; sex and in-scanner head motion were included as covariates. Each regional 
GAM estimates a smooth function (the model age fit) that describes the relationship between 
fluctuation amplitude and age; the first derivative of this smooth function, estimated with finite 
differences, represents the rate of change in fluctuation amplitude at a given developmental 
timepoint. We tested whether GAM-derived developmental effects provide support for our 
hierarchical neurodevelopmental plasticity framework; we also validated that effects were robust 
to controls for in-scanner motion, medication use, vascular effects, T2* signal strength, and 
cortical atlas. All code used to calculate fluctuation amplitude, fit regional GAMs, contextualize 
developmental effects, and perform sensitivity analyses is available along with detailed 
documentation for code implementation at https://pennlinc.github.io/spatiotemp_dev_plasticity.  

 

Age-dependent changes in intrinsic fMRI fluctuations vary across the cortex 

Fluctuation amplitude significantly changed with age in the developmental window 
studied in nearly all cortical regions (pFDR < 0.05 in 95% of regions), providing evidence that 
intrinsic cortical activity is refined from childhood to early adulthood. To provide insight into the 
overall magnitude and direction of regional age effects, we calculated the variance explained by 
age (partial R2; i.e., the effect magnitude) and the sign of the average derivative of the age fit 
(i.e., the effect direction). The magnitude and direction of age effects differed across the cortex 
(Fig. 1A), signifying there is variability in the maturation of fluctuation amplitude across the 
developing brain. Indeed, by visualizing age fits across regions we observed a cortical continuum 
of developmental trajectories ranging from large and prolonged decreases (light yellow fits in 
Fig. 1B) to inverted U-shaped curves (dark purple fits). Nearly all sensory regions showed 
continuous declines in fluctuation amplitude from early childhood through adolescence, as 
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illustrated by the model fit for area V1 (Fig. 1C, top panel) which significantly decreased until 
age 18 years. This age fit is potentially indicative of a progressive reduction, sparsification, or 
decorrelation of non-evoked cortical activity with age. In contrast, in select cortical regions such 
as the midcingulate gyrus (Fig. 1C, middle panel), fluctuation amplitude only began to decline in 
later childhood or early adolescence. Finally, many regions in transmodal association cortex 
(e.g., the dorsolateral prefrontal cortex; Fig. 1C, bottom panel) displayed significant increases in 
fluctuation amplitude until early to mid-adolescence, followed by amplitude decreases. This 
inverted U-shaped trajectory suggests there is heightened, synchronized activity in transmodal 
cortices at the start of adolescence. The trajectories of regional age fits did not significantly differ 
between males and females, indicating that the timing of developmental change did not vary by 
sex in this age range (pFDR > 0.05 for all age-by-sex interactions). These results establish that 
there is heterogeneity in the maturation of intrinsic fMRI fluctuations, with maturational trends 
broadly diverging between sensory and association cortices. 

 

 
 
Fig. 1. Age-related refinement of fluctuation amplitude varies across the cortex. A) The patterning of 
fluctuation amplitude age effects is displayed across the cortical surface. B) Fluctuation amplitude 
developmental trajectories (zero-centered) are shown for all left hemisphere cortical regions. Trajectories 
are colored by each region’s age effect using the color bar in panel A. C) Fluctuation amplitude 
developmental trajectories are shown overlaid on data from all participants for the primary visual cortex 
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(area V1, yellow), the midcingulate gyrus (area p24pr, pink), and the dorsolateral prefrontal cortex (area 
IFSa, purple). The color bars below each regional plot depict the age window(s) wherein fluctuation 
amplitude significantly changed in that region, shaded by the rate of change. 
 
 
The development of intrinsic fMRI fluctuations is linked to the maturation of a key 

regulator of plasticity 

Prior work in animal models has shown that intrinsic cortical activity develops from 
widespread, high amplitude, and synchronized to sparse and decorrelated as the cortex 
progresses from plastic to mature, signifying that age-dependent changes in the amplitude of 
BOLD fluctuations could, in part, reflect changes in cortical plasticity31,41. We therefore 
endeavored to understand whether the development of fluctuation amplitude is related to the 
maturation of intracortical myelination3a key regulator of cortical plasticity. In developing 
neural circuits, myelination constrains further axonal and dendritic plasticity and thus serves as a 
circuit stabilizer and plasticity-limiting factor30,45. Here, we tested whether fluctuation amplitude 
maturation was related to maturation of the T1w/T2w ratio, a structural MRI measure sensitive 
to cortical myelin content46. 

To do so, we leveraged the recent work of Baum et al. (2022), who studied the 
development of T1w/T2w-indexed myelination in a large, independent sample of youth ages 8-
21 years. These authors quantified myelination age effects (as partial R2) and demarcated the age 
of peak myelin growth within individual cortical regions. In comparing T1w/T2w ratio and 
fluctuation amplitude neurodevelopmental features, we unveiled substantial spatial and temporal 
correspondence between the refinement of these measures with age. Age-related changes 
(indexed by the signed partial R2) in these two putative in vivo indicators of plasticity were 
strongly inversely correlated across cortical regions (r = -0.67, pspin < 0.001), with regions 
showing larger increases in myelin content from childhood to early adulthood also showing 
larger decreases in BOLD signal amplitude (Fig. 2A-B). This finding accords with ample 
evidence of causal, bidirectional relationships between changes in neural activity patterns and 
changes in myelination47349 and suggests a possible mechanistic link between microstructural 
refinement and reductions in intrinsic activity during brain development.  

To further explore this link, we investigated whether there was a temporal relationship 
between increases in the T1w/T2w ratio and decreases in fluctuation amplitude during youth. We 
first quantified the age at which fluctuation amplitude began to significantly decrease in each 
region and found that initial decreases in fluctuation amplitude were staggered heterochronously 
across the cortex. Nearly half of regions (46%) showed a significant decrease in fluctuation 
amplitude at age 8, implying that BOLD amplitude within these regions likely begins to decline 
prior to the youngest age studied in our dataset. Across the rest of the cortex, however, 
fluctuation amplitude began to decline later in youth; in these cortices, a greater delay in the 
onset of fluctuation amplitude decline was associated with a later peak in the rate of T1w/T2w-
indexed cortical myelination (r = 0.64, pspin = 0.016; Fig. 2C-D). This association suggests that 
cortices that undergo maximal myelin growth at a later developmental stage also experience a 
temporally delayed decline in the amplitude of spontaneous fMRI activity. Notably, ages of 
fluctuation amplitude decrease onset and maximal T1w/T2w increase were not simply correlated 
but also showed a minimal temporal offset in years, indicating that they were closely coupled in 
time (average offset = 0.7 years; see also the best fit line for Fig. 2D). Across regions, it was 
more common for the age of maximal T1w/T2w ratio increase to precede the age of fluctuation 
amplitude decline. Taken together, these results link age-related refinement of fluctuation 
amplitude to maturation of a main regulator of developmental plasticity. 
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Fig. 2. Development of fluctuation amplitude spatially and temporally parallels cortical myelin 

development. A) The cortical distribution of fluctuation amplitude age effects closely resembles the 
distribution of T1w/T2w ratio age effects, suggesting interdependent refinement of cortical function and 
microstructure in youth. Age effects are signed by the sign of the average derivative of the age smooth 
function. B) Regions that experienced larger declines in fluctuation amplitude during childhood and 
adolescence additionally underwent greater increases in intracortical T1w/T2w ratio in this developmental 
period. C) Maps depicting the age at which fluctuation amplitude began to decrease (earliest significant 
negative derivative of the age function) and the age of maximal T1w/T2w-indexed myelin growth (largest 
significant derivative of the age function) reveal temporal similarity in the development of these two 
measures in youth. D) Across regions, the age at which fluctuation amplitude began to significantly 
decrease is closely coupled to the age at which the T1w/T2w ratio showed a maximal rate of increase, 
providing evidence for temporal coordination between reductions in intrinsic activity and the development 
of cortical myeloarchitecture.  
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Spatiotemporal variability in developmental trajectories is captured by the sensorimotor-

association axis 

A primary goal of this work was to systematically assess whether the sequence of 
neurodevelopmental plasticity progresses hierarchically across the cortical mantle. Having 
observed that fluctuation amplitude development tightly paralleled development of a plasticity 
regulator and broadly diverged between sensorimotor and association cortices, we next sought to 
determine whether developmental patterns spatially conformed to the S-A axis1. The S-A axis is 
a prominent axis of cortical variation that is ordered from primary sensory and motor cortices, to 
modality-selective and multimodal cortices, then progressing to transmodal heteromodal and 
paralimbic cortices. This axis captures the concerted patterning of heterogeneous 
macrostructural, metabolic, cellular, molecular, transcriptomic, and electrophysiological 
properties across the cortical mantle1,17320,50. Moreover, the S-A axis spatially coheres with the 
brain’s anatomical50, functional20, and evolutionary51 hierarchies, thus each cortical region’s rank 
in the axis reflects its relative position in a global cortical hierarchy.  

We first examined whether inter-regional differences in the development of fluctuation 
amplitude reflected inter-regional differences in S-A axis rank. Region-wise age effects and S-A 
axis ranks were highly correlated (r = 0.54, pspin = 0.002), with large negative age effects 
characterizing the S-A axis’s sensorimotor pole and smaller positive age effects distinguishing its 
association pole. We additionally observed continuous variation in the age at which fluctuation 
amplitude began to significantly decrease along this dominant organizational axis. When 
considering regions that showed an initial onset of decline within the age range studied as above, 
we found that fluctuation amplitude began to decline at a progressively later age in regions 
ranked higher in the S-A axis (r = 0.68, pspin = 0.001). Hence, cortices at the top of the cortical 
hierarchy exhibit the smallest and latest-onset declines in the amplitude of intrinsic fMRI 
fluctuations during childhood and adolescence. 

Following this initial analysis, we further probed the extent to which maturational 
trajectories differed as a function of S-A axis rank by mapping the principal spatial axis of 
fluctuation amplitude development. To accomplish this mapping, we performed a principal 
component analysis (PCA) on the age fits estimated by regional GAMs (Fig. 1B); this approach 
considers the entire fluctuation amplitude developmental trajectory rather than only one property 
of the age fit (e.g., the age at which it starts to decline). The first principal component from this 
PCA explained 87% of the variance in developmental profiles and can therefore be 
conceptualized as the principal axis of intrinsic activity development. This principal 
developmental axis closely resembled the S-A axis (Fig. 3A). Accordingly, regional loadings 
onto the principal developmental axis were very highly correlated with regional S-A axis ranks (r 

= 0.70, pspin <  0.001; Fig. 3B), demonstrating that the vast majority of spatiotemporal variance 
in developmental profiles was explained by the S-A axis.  

Our PCA of developmental fits suggests that the spatiotemporal maturation of intrinsic 
cortical activity conforms to the hierarchical organization of the cortex. In support of this 
conclusion, we confirmed that principal developmental axis loadings additionally correlated with 
cortex-wide anatomical (r = -0.61), functional (r = 0.60), and evolutionary hierarchies (r = 0.32). 
However, the principal developmental axis was significantly more correlated with the S-A axis 
than with these three hierarchies, which were defined using unimodal data  (p < 0.001 for all 
three statistical tests comparing the magnitude of two dependent, overlapping corrections). 
Neurodevelopmental trajectories were therefore most parsimoniously captured by the S-A axis, 
which combines information from all three cortical hierarchies and multiple additional data 
types. To further illustrate the manner in which developmental trajectories for fluctuation 
amplitude evolve from the sensorimotor to the association end of the S-A axis, we divided the 
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axis into 10 bins and averaged age fits across all regions in a bin. The continuous spectrum of 
developmental trajectories visible at the regional level (Fig. 1B) was recapitulated by S-A axis 
deciles (Fig. 3C), underscoring the extent to which developmental variability was captured by 
this axis. 

 
 

Fig. 3. The principal axis of fluctuation 

amplitude development exhibits convergent 

embedding with the sensorimotor-association 

axis. A) The principal axis of fluctuation 
amplitude development closely resembles the 
sensorimotor-association (S-A) axis, illustrating 
that the spatiotemporal maturation of intrinsic 
cortical fMRI activity aligns to the brain’s global 
cortical hierarchy. The S-A axis, derived in 
Sydnor et al. (2021)1, is a dominant axis of 
cortical feature organization that spans from 
primary sensory and motor cortices 
(sensorimotor pole; dark yellow), to modality-
selective and multimodal cortices, and then to 
transmodal association cortices (association pole; 
dark purple). The principal developmental axis is 
the first component from a PCA conducted on 
regional fluctuation amplitude maturational 
trajectories. This component quantitatively 
captures cortex-wide differences in maturational 
patterns along a unidimensional spatial gradient. 
B) Across the cortex, principal developmental 
axis loadings strongly correlated with S-A axis 
ranks. C) Average model fits depicting the 
association between fluctuation amplitude and 
age are shown for deciles of the S-A axis. To 
generate average decile fits, the axis was divided 
into 10 bins each consisting of 33-34 regions, 
and age smooth functions were averaged across 
all regions in a bin. The first decile (darkest 
yellow; linear decline) represents the 
sensorimotor pole of the axis, the tenth (darkest 
purple; inverted U) represents the association 
pole of the axis. Maturational patterns diverged 
most between S-A axis poles and varied 
continuously between them. 
 

 
Development is hierarchical through adolescence  

The above results highlight that between the ages of 8 and 23 years, age-related changes 
in fMRI-indexed intrinsic activity are governed by the brain’s S-A axis. We next aimed to 
elucidate whether this neurodevelopmental pattern was most pronounced during a specific age 
range, or if it was equally present across the different ages studied. To explore these possibilities, 
we first calculated each cortical region’s rate of change in fluctuation amplitude at 1 month 
intervals between 8 and 23 years. Notably, visualizing regional rates of change across the S-A 
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axis (Fig. 4A) confirmed that pre-adolescent increases in fluctuation amplitude were uniquely 
confined to higher-order association cortices. Using these data, we next performed an age 
resolved analysis where, for each month, we calculated the correlation between regional rates of 
change and regional S-A axis ranks. This procedure generates age-specific correlations that 
quantify the extent to which maturational change is spatially ordered along the hierarchy of the 
S-A axis at a given developmental timepoint. This analysis revealed a robust correlation between 
developmental change and S-A axis rank from age 8 to 17 years (Fig. 4B-C). A maximal 
correlation value of r = 0.68 (95% credible interval: 0.66 to 0.70) was observed at age 15.0 years 
(95% credible interval: 14.7 to 15.3 years), indicating peak alignment between 
neurodevelopment and the S-A axis in mid-adolescence. However, following this peak, the 
correlation between regional age effects and S-A axis position rapidly declined, dropping to 0 by 
age 19.3 years (95% credible interval: 18.7 to 20.2 years). These findings reveal that the brain’s 
developmental program is hierarchical through late adolescence. Following adolescence, 
however, there may be a programmed switch in the spatial patterning of subsequent age-related 
change.  
 

 
 
Fig. 4. Neurodevelopment progresses along the sensorimotor-association axis until late adolescence. 
A) The rate and direction of developmental change in fluctuation amplitude is displayed from ages 8 to 23 
years for each cortical region. Regions are ordered along the y-axis by S-A axis rank. Fluctuation amplitude 
rate of change, expressed as the change in amplitude per year, was estimated from the first derivative of the 
GAM smooth function for age. Cortical regions near the association pole of the S-A axis exhibited unique 
increases in fluctuation amplitude through childhood that culminated in adolescent BOLD amplitude peaks. 
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B) Maturational changes in intrinsic BOLD activity align with the S-A axis from childhood until late 
adolescence. The line plot displays age-specific correlation values (r) between regional rates of fluctuation 
amplitude change and regional S-A axis ranks from ages 8 to 23 years. To obtain reliable estimates of this 
correlation value at each age, we sampled 10,000 draws from the posterior derivative of each region’s GAM 
smooth function. We then quantified age-specific correlations between regional derivatives and S-A axis 
ranks for all 10,000 draws. The median correlation value obtained across all draws is depicted by the black 
line and the 95% credible interval around this value is represented by the gray band. We additionally 
determined the age of maximal alignment between fluctuation amplitude change and S-A axis rank for all 
10,000 draws. The 95% credible interval for the age of maximal alignment is depicted on the line plot by 
the pink band, and the full distribution of ages obtained from all draws is portrayed in the inset histogram. 
C) Age-specific developmental effects (first derivative maps) are shown on the cortical surface at age 10 
years, 15 years, and 20 years above scatterplots that display the relationship between regional S-A axis 
ranks (x-axis) and regional age-specific rates of change (y-axis). Scatterplot points are colored by age-
specific rates of change. Developmental refinement of fluctuation amplitude was governed by the S-A axis 
at ages 10 and 15 years. By age 20, further refinement of fluctuation amplitude was unrelated to the S-A 
axis.  
 
Developmental results are robust to methodological variation 

To ensure that the developmental effects observed were robust to methodological 
variation and potential confounds, we performed six sensitivity analyses. We evaluated if age-
dependent changes in our in vivo measure of intrinsic cortical activity were driven by in-scanner 
head motion, medication use, local cerebral blood flow, regional mean signal intensity, global 
amplitude differences, or our choice of cortical atlas. In the first two sensitivity analyses, 
regional GAMs were rerun in the two thirds of the sample with the lowest in-scanner head 
motion (low motion sample; n = 690; Fig. 5A) and in a sample that excluded individuals with 
current psychoactive medication use or a history of psychiatric hospitalization (no psychiatric 
treatment; n = 893; Fig. 5B). In the next two sensitivity analyses, regional GAMs were refit 
while additionally controlling for regional cerebral blood flow estimated from arterial spin 
labeling data (vascular control; Fig. 5C) or regional mean T2* signal intensity (T2* signal 
control; Fig. 5D). In the final two sensitivity analyses, regional GAMs were refit with whole 
brain mean-normalized fluctuation amplitude (mean normalization; Fig. 5E) or fluctuation 
amplitude averaged within Schaefer-400 atlas regions as the dependent variables (atlas 
replication; Fig. 5F). 

In each of the six sensitivity analyses, region-specific fluctuation amplitude maturational 
trajectories very closely mirrored the developmental fits from the main analysis, with negative 
age effects observed in most cortices but positive effects seen in select transmodal association 
cortices. Consequently, regardless of the sample used or controls performed, a cortical region’s 
age effect was fundamentally and significantly (all pspin < 0.05) related to its position in the S-A 
axis (main analysis: r = 0.54, low motion sample: r = 0.56, no psychiatric treatment: r = 0.51, 
vascular control: r = 0.51, T2* signal control: r = 0.49, mean normalization: r = 0.66, atlas 
replication: r = 0.43). Furthermore, for all sensitivity analyses, our age resolved analysis 
confirmed a strong correlation between the rate of fluctuation amplitude change and S-A axis 
rank from childhood to late adolescence, with the peak age of neurodevelopmental alignment to 
this axis occurring during early adolescence. These analyses verify that our findings concerning 
the nature and patterning of age-dependent changes in cortical fMRI activity are robust to 
methodological variation. 
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Fig. 5. Region-specific and cortex-wide developmental patterns are robust to methodological 

variation. A-F) Key results are shown for each of the six sensitivity analyses performed. For each analysis, 
the left plot shows fluctuation amplitude developmental trajectories (zero-centered) for left hemisphere 
regions, colored by age effects. The right plot presents the age-dependent analysis of the association 
between developmental change in fluctuation amplitude and S-A axis rank. All six sensitivity analyses 
yielded convergent region-specific and cortex-wide results, confirming that our developmental findings 
were not being driven by head motion in the scanner (A), the use of psychotropic medications (B), age-
related changes in cerebrovascular perfusion (C), inter-scan differences in T2* signal strength (D), global 
effects (E), or the specific atlas used for cortical parcellation (F). 
 

Environmental influences on intrinsic fMRI fluctuations diverge across the sensorimotor-

association axis  

Instrumental work in animal models has shown that environmental exposures can affect 
the development of plasticity-regulating mechanisms, including the maturation of inhibitory 
interneurons52 and intracortical myelination53,54. Given these preclinical findings, we sought to 
investigate the hypothesis that in youth, environmental influences become embedded in the brain 
by affecting cortical plasticity. We tested this theory by examining relationships between inter-
individual variability in children’s environments and individual differences in our in vivo 
measure of activity-indexed plasticity. Multivariate features of each participant’s neighborhood 
environment were summarized using a single previously-published factor score55. Higher factor 
scores indicate that an individual lived in a neighborhood with a higher median family income, 
lower population density, fewer vacant housing lots, a greater percentage of residents who are 
married, employed, and high school educated, and a lower percentage of residents in poverty 
(Fig. 6A). Associations between environment factor scores and regional fluctuation amplitude 
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were modeled with GAMs while controlling for developmental effects and other covariates (in-
scanner motion and sex). 

Forty-two percent of cortical regions showed a significant association between 
fluctuation amplitude and youth’s neighborhood environments (pFDR  < 0.05 in 141 regions). 
Higher environment factor scores were associated with higher fluctuation amplitude across the 
association cortex, but with lower fluctuation amplitude nearly exclusively within primary and 
early sensory and motor cortices (Fig. 6B). This pattern of effects indicates that youth raised in 
neighborhoods with higher income, education, and employment rates and with lower population 
density and poverty tended to have greater amplitude intrinsic fMRI fluctuations in higher-order 
cortices and lower amplitude fluctuations in modality-specific cortices. This divergence in 
environment effects intimated that relationships between the developmental environment and 
cortical intrinsic activity could systematically vary along the brain’s S-A axis. Supporting this 
notion, environment effects and S-A axis rank were significantly correlated (r = 0.48, pspin < 
0.001; Fig. 6C). Overall, our analysis of youth’s neighborhoods suggests that the developmental 
environment may impact cortical intrinsic activity, with the nature of the impact differing across 
a principal axis of brain organization and development. 

 

 
 

Fig. 6. Associations between fluctuation amplitude and the developmental environment vary along 

the sensorimotor-association axis. A) The environment factor score captures multiple features of the 
neighborhood environment each child lived in. Variables listed above the arrow (+) positively loaded onto 
the environment factor score. Variables listed below the arrow (-) negatively loaded onto the factor score. 
Darker and larger text indicates stronger loadings. B) The effects of the environment on regional fluctuation 
amplitude. The cortical map displays the main effect of environment factor score (t-values) from a GAM 
that included age, sex, and in-scanner motion as covariates. Positive values (magenta) designate positive 
associations whereas negative values (orange) indicate negative associations. Lower environment factor 
scores4representing higher poverty, higher population density, and lower high school (HS) education and 
employment rates at the neighborhood level4were associated with lower fluctuation amplitude in 
association cortex but higher fluctuation amplitude in primary sensorimotor cortices. C) The S-A axis 
explains significant variability in the effects of the environment on intrinsic fMRI activity. Data points are 
colored by environment effect t-values; black outlines denote statistically significant effects. 
 

 

DISCUSSION 
 

During embryonic and early postnatal cortical development, developmental programs are 
spatially and temporally governed by major organizing axes. Cortical arealization is controlled 
by transcription factors expressed along anterior-medial to posterior-lateral axes56358 and 
neurogenesis terminates along an anterior-posterior axis59. The alignment of developmental 
programs with neuroaxes is thus a fundamental element of early cortical development. In the 
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current study, we demonstrate that the maturation of intrinsic cortical activity conforms to the 
hierarchical S-A axis from ages 8 to 18 years, thus establishing that this core facet of 
development extends to childhood and adolescence. Specifically, we demonstrate that declines in 
the amplitude of intrinsic fMRI activity occur during childhood and adolescence, are temporally 
coupled to the increasing expression of a plasticity-restricting factor, and are temporally 
staggered along the S-A axis of cortical organization. We additionally show that the S-A axis 
captures not only inter-regional variation in cortical maturational profiles, but also variation in 
the effects of children’s developmental environments on intrinsic activity dynamics. Together, 
these results provide evidence of a hierarchical axis of neurodevelopmental plasticity in youth. 

Intrinsic activity has a profound influence on the immature brain, impacting neuron 
survival, circuit wiring, topographic map formation, synaptic connectivity, and overall cortical 
volume22,60364. Prominent changes in the prevalence and patterning of this activity occur during 
development, engendered by shifts in the maturity of the cortex23325 and in the level of cortical 
plasticity15,21,26. Here, we aimed to characterize developmental changes in intrinsic activity with 
resting-state fMRI and observed prolonged declines in the amplitude of BOLD activity4
potentially reflecting decreases in spontaneous activity-indexed plasticity4throughout the 
protracted course of human neurodevelopment. Notably, declines in activity amplitude occurred 
heterochronously across the cortical mantle, highlighting temporal developmental variability. In 
general, unimodal sensory and motor regions exhibited large and early declines in fluctuation 
amplitude, which began around 8 to 12 years of age. Select association cortices underwent later-
onset amplitude declines beginning typically between 13 to 16 years. In contrast, only 
transmodal association cortices displayed periods of increasing activity amplitude; increases 
lasted until adolescence and were followed by significant declines. These region-specific 
windows of declining fluctuation amplitude occur after peak gray matter volume is obtained3 and 
coincide with regional windows of extensive synaptic pruning7,65. In addition, we demonstrated 
that the onset of decline in fluctuation amplitude in each region was linked to its period of 
maximal intracortical myelin growth. Maturational refinement of this non-invasive measure of 
intrinsic cortical activity thus appears to be temporally coupled to developmental changes in 
multiple markers of circuit plasticity, suggesting the presence of a gradient of 
neurodevelopmental plasticity during childhood and adolescence. 

Indeed, in support of our proposed theory on developmental chronology1, we found that 
regional differences in the development of fluctuation amplitude were systematically explained 
by the asynchronous patterning of cortical change across the S-A axis. Regional developmental 
trajectories diverged in a continuous and graded manner across this axis, with reductions in the 
amplitude and synchrony of intrinsic activity appearing to occur earliest and most extensively in 
regions ranked lowest in the axis. This pattern of results reveals that regional maturational 
profiles are organized by the brain’s global cortical hierarchy, and furthermore suggest that 
cortically plasticity may progressively decline along this hierarchy with age. Our data also reveal 
that a functional signature observed during early periods of plasticity increases in transmodal 
association cortices until the middle of adolescence, indicating there may be a heightened period 
of developmental plasticity in these cortices during late development. This finding reinforces 
theories that adolescence is a sensitive or critical period for the development of association 
cortex during which the environment, experience, and interventions could have a large impact on 
malleable higher-order cortices1,14,66. 

Although non-invasive imaging data cannot establish the mechanisms underlying this S-
A developmental pattern, prior work suggests that it may emerge due to the hierarchical 
maturation of key plasticity-regulating neurobiological events. Developmental plasticity is 
regulated by a host of neurochemical and structural mechanisms16. Key mechanisms include the 
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local strength of cortical inhibition28,67, the patterning of thalamocortical input22,68, and the 
density of both intracortical myelin30 and perineuronal nets21,69. Critically, these mechanisms 
mature earlier in sensory cortices and later in association cortices14,15,70372. Moreover, these 
mechanisms elicit transitions in the patterning of intrinsic cortical activity, impacting the 
duration, strength, or synchronicity of activity21,27,29,49,73,74. Hierarchical maturation of plasticity-
regulating features may therefore be responsible for waves of changing intrinsic activity 
dynamics along the S-A axis. Given that alignment of developmental change with the S-A axis 
was maximal in mid-adolescence and continued until only 18 years of age, these developmental 
plasticity mechanisms may account for changes in intrinsic activity during the first two decades 
of life, but not after. 

Animal studies of cortical plasticity have established that enriched versus deprived 
developmental environments can differentially affect the maturation of the aforementioned 
plasticity-regulating features, including the maturation of inhibitory interneurons52,75, 
intracortical myelination53,54, and perineural nets75. Data from human studies additionally suggest 
that the level of unpredictability, stress, and adversity in children’s environments influences the 
pace of brain development42344, providing convergent support for an effect of the environment on 
the expression of cortical plasticity in youth. The present study complements past work by 
showing that variability in children’s neighborhood environments is associated with differences 
in a proposed functional correlate of ongoing circuit plasticity. Strikingly, the magnitude and 
direction of brain-environment associations observed here were stratified by S-A axis rank, 
signifying that the environment may exert differential effects on cortical regions dependent upon 
each region’s developmental trajectory. In higher-order association cortices, youth that lived in 
neighborhoods with greater poverty, unemployment rates, and population density had a lower 
amplitude of intrinsic fMRI fluctuations. This directional effect is potentially suggestive of a 
reduced potential for plasticity in late-maturing cortices, and thus coheres with leading theories 
that environmental adversity hastens the pace of cortical maturation42,44. Yet, youth from 
neighborhoods with lower social capital and community resources additionally exhibited higher 
fluctuation amplitude in early-maturing sensorimotor cortices4consistent with a more immature 
cortex. We speculate that this series of results could reflect a hastening of developmental timing 
up the hierarchical S-A axis in youth from disadvantaged neighborhoods, putatively resulting in 
higher expression of plasticity-limiting features early in association cortices at the expense of 
limiting plasticity in primary regions. 

Several limitations of this work should be noted. First, this was a cross-sectional 
investigation of neurodevelopment in youth. Future investigations with longitudinal study 
designs could characterize within-individual changes in cortical intrinsic activity as well as the 
effects of the environment on the pace of an individual’s development. Longitudinal studies will 
also be better suited to examine temporal precedence between developmental refinement of 
intrinsic fMRI activity and maturation of plasticity-regulating features. Second, we used resting-
state functional MRI to study intrinsic cortical activity, however the BOLD signal is sensitive to 
neural, vascular, and respiratory factors. While sensitivity analyses aimed at addressing these 
factors provided highly convergent results, future studies using more direct measures of neural 
activity (e.g., electrocorticography) may therefore be helpful for extending the present results. 
Third, this work focused on the cortex only. Assessing whether neurodevelopment proceeds 
hierarchically from subcortical areas supporting sensory and motor functions to those supporting 
cognitive and socioemotional functions is a key avenue for future exploration.  

The present study demonstrates that during childhood and adolescence, the 
spatiotemporal patterning of development in intrinsic cortical fMRI activity coheres with a 
hierarchical axis of cortical organization. This result emphasizes that the S-A axis is both a 
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dominant spatial feature axis and a core neurodevelopmental axis, and intimates that spatial form 
in the adult brain may emerge from coordinated development during youth1,76,77. In addition, the 
observed refinements in fMRI fluctuations suggest that shifts in circuit plasticity temporally 
progress along this axis, calling for studies that can mechanistically establish the neurobiological 
events driving S-A developmental plasticity14. Such events may include the maturation of 
neurochemical and structural plasticity-regulating features as well as successive expression of 
molecules that orchestrate developmental timing, for example circadian clock genes or other 
temporally organized transcription factors15,78,79. Given the relevance of the S-A axis for 
understanding cortical development in childhood and adolescence, future work should explore 
whether major organizing axes play a role in cortical refinement during infancy and early 
childhood. Continued discovery of temporal axes of development across human’s multi-decade 
maturational course will provide evidence of how plasticity is distributed across brain regions at 
different developmental stages. Such insights into the temporal patterning of plasticity may help 
to guide interventions in youth that align with each child’s neurotemporal context. 
 
METHODS 
 

Participants 

Participants were recruited as part of the Philadelphia Neurodevelopmental Cohort80, a 
community study of child and adolescent brain development. Demographic, clinical, 
environmental, and neuroimaging data from 1033 youth were included in the present study. 
Study sample demographics include an age range of 8 to 23 years (mean age = 15.7 ± 3.3 years), 
a sex distribution of 467 males and 566 females, and a race distribution that was 47% White, 
41% Black, 11% identifying with more than one race, 7% Asian, and 0.3% US Indian or Alaskan 
Native. All participants over the age of 18 gave written informed consent prior to study 
participation. Participants under the age of 18 gave informed assent with written parental 
consent. All study procedures were approved by the Institutional Review Boards of the 
University of Pennsylvania and the Children’s Hospital of Philadelphia. 
 

MRI data acquisition 

T1-weighted structural MRI and resting-state functional MRI data were used in the 
present study. All MRI scans were acquired on the same 3T Siemens Tim Trio scanner at the 
University of Pennsylvania with a 32-channel head coil. T1-weighted structural images were 
acquired with a magnetization-prepared rapid acquisition gradient-echo (MPRAGE) sequence 
with the following parameters: repetition time = 1810 ms, echo time = 3.51 ms, inversion time = 
1100 ms, flip angle = 9 degrees, field of view = 180 x 240 mm, matrix = 192 x 256, slice number 
= 160 , voxel resolution = 0.94 x 0.94 x 1 mm). Resting-state functional images were acquired 
with a single-shot, interleaved multi-slice gradient-echo echo planar imaging (GE-EPI) sequence 
with the following parameters: repetition time = 3 s, echo time = 32 ms, flip angle = 90 degrees, 
field of view = 192 x 192 mm, matrix = 64 x 64, slice number = 46, voxel resolution = 3 mm3, 
volumes = 124. To enable susceptibility distortion correction of resting-state functional images, a 
map of the main magnetic field (i.e., a B0 field map) was additionally collected using a dual-
echo, gradient-recalled echo (GRE) sequence with the following parameters: repetition time = 
1000 ms, echo time 1 = 2.69 ms, echo time 2 = 5.27 ms, flip angle = 60 degrees, field of view = 
240 x 240 mm, matrix = 64 x 64, slice number = 44, voxel resolution = 3.8 x 3.8 x 4 mm. 
 
MRI data processing 
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T1-weighted images and resting-state functional MRI timeseries were processed with 
fMRIPrep 20.2.381. The T1-weighted image was corrected for intensity non-uniformity with 
Advanced Normalization Tools’ (ANTs 2.3.3) N4BiasFieldCorrection82, skull stripped with a 
Nipype implementation of the ANTs brain extraction workflow, tissue segmented with FSL fast 
5.0.9, and used for cortical surface reconstruction with FreeSurfer 6.0.. The T1-weighted image 
was additionally non-linearly registered to the MNI152 T1 template (volume-based spatial 
normalization) with ANTs.  

To preprocess functional scans, a skull-stripped reference BOLD volume was first 
generated and a B0 fieldmap was co-registered to this reference volume. The B0 field map was 
estimated based on the phase-difference map calculated with the dual-echo GRE sequence, 
converted to a displacements field map with FSL’s fugue and SDCflow tools, and used for 
susceptibility distortion correction of the reference BOLD volume. The susceptibility corrected 
BOLD reference was then rigidly co-registered (6 degrees of freedom) to the T1 reference using 
boundary-based registration implemented with FreeSurfer’s bbregister83. The functional MRI 
timeseries were slice-time corrected using 3dTshift from AFNI 20160207 and then resampled 
onto their original, native space by applying a single, composite transform to correct for 
susceptibility distortions and for in-scanner head motion. Head motion parameters were 
calculated with respect to the reference BOLD volume prior to any spatiotemporal filtering using 
FSL mcflirt; six rotation and translation parameters were calculated. BOLD timeseries were 
additionally resampled into standard space, generating preprocessed timeseries in the MNI152 
T1 template, and onto the fsaverage surface. Finally, to project functional timeseries onto the 
fsLR cortical surface for study analyses, grayordinates files containing 32k vertices per 
hemisphere were generated using the highest-resolution fsaverage as an intermediate 
standardized surface space. Volumetric resampling was performed using antsApplyTransforms, 
configured with Lanczos interpolation to minimize the smoothing effects of other kernels. 
Surface resampling was performed using FreeSurfer mri_vol2surf.  

fMRIPrep was additionally used to estimate the following 36 confounds from the 
preprocessed timeseries: six head motion parameters; three region-wise global signals (mean 
cerebrospinal fluid, white matter, and whole brain signals); temporal derivatives of the six head 
motion parameters and the three global signal estimates; and quadratic terms for the motion 
parameters, tissue signals, and their temporal derivatives84386. These confound matrices were 
utilized within xcp_abcd 0.0.4, which is an extension of the top-performing eXtensible 
Connectivity Pipeline (XCP) Engine84,85 specifically developed to mitigate motion-related 
artifacts and noise in resting-state functional MRI data from developmental samples. With 
xcp_abcd, preprocessed functional timeseries on the fsLR cortical surface underwent nuisance 
regression using the 36 confounds listed above. Confounds were regressed using linear 
regression as implemented in Scikit-Learn 0.24.2.  
 
Fluctuation amplitude quantification  

To measure the relative level and synchronization of spontaneous fMRI activity, we 
quantified fluctuation amplitude, defined as the power of low frequency BOLD fluctuations. To 
calculate fluctuation amplitude, processed fsLR surface BOLD timeseries were first transformed 
from the time domain to the frequency domain and a power spectrum was generated in the 0.01-
0.08 Hz range. The mean square root of the power spectrum was then calculated; the mean 
square root represents the average amplitude (intensity) of time-varying resting-state BOLD 
fluctuations within this low frequency band39. Simultaneous BOLD and electrophysiological or 
calcium recordings have revealed that slow fluctuations in BOLD signal are coupled to 
fluctuations in intra-cortically measured neural signals, including both local field potentials and 
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infra-slow calcium signals33338. Of note, the fluctuation amplitude measure used here is 
analogous to other commonly used spectral- or variability-based BOLD measures, including the 
amplitude of low frequency fluctuations (ALFF) and resting-state functional amplitude (RSFA). 

Fluctuation amplitude was quantified at the vertex-level and then parcellated with fsLR 
surface atlases to provide mean fluctuation amplitude within individual cortical regions. The 
HCP multimodal atlas87 was used for all primary analyses and the Schaefer-400 atlas88 was used 
for a sensitivity analysis. Parcellation was conducted in R with the ciftiTools package89 utilizing 
Connectome Workbench 1.5.090. Fluctuation amplitude was not analyzed within cortical regions 
that exhibited low signal to noise ratio (SNR) in >= 25% of their assigned vertices. Low SNR 
vertices were defined identically to our prior work91 as vertices with an average (across-
participant) BOLD signal < 670 after normalizing signal to a mode of 1000. Twenty-four parcels 
located within the orbitofrontal cortex and the ventral temporal lobe were excluded from both the 
HCP multimodal atlas and the Schaefer-400 atlas. 
 
MRI sample construction 

1374 individuals in the Philadelphia Neurodevelopmental Cohort had T1-weighted 
images, B0 field maps, and identical parameter92 resting-state functional MRI scans available. 
From this original sample of n = 1374, 120 individuals were excluded from the study due to 
medical problems that could impact brain function or incidentally encountered abnormalities of 
brain structure93,94. Data from 202 additional participants were excluded due to low quality T1-
weighted images and FreeSurfer reconstructions (n = 23) or high in-scanner head motion (n = 
179). As in prior work, high in-scanner head motion was defined as a mean relative root mean 
squared framewise displacement > 0.2 mm during the functional scan (Satterthwaite et al., 2012). 
Using data from the remaining sample (n = 1052), we identified fluctuation amplitude outliers at 
the regional level based on a cut off of ± 4 standard deviations from the mean. Individuals with 
outlier data in more than 5% of cortical regions (n = 19) were excluded, producing the final study 
sample of 1033 individuals. 
 
Characterizing developmental effects 

Generalized additive models 

All statistics were carried out in R 4.0.2. In order to flexibly model linear and non-linear 
relationships between fluctuation amplitude and age, we implemented GAMs using the mgcv 
package in R95. GAMs were fit with regional fluctuation amplitude as the dependent variable, 
age as a smooth term, and sex and in-scanner motion as linear covariates. Models were fit 
separately for each parcellated cortical region using thin plate regression splines as the smooth 
term basis set and the restricted maximal likelihood approach for smoothing parameter selection. 
The GAM smooth term for age produces a spline, or a smooth function generated from a linear 
combination of weighted basis functions, that represents a region’s developmental trajectory. To 
prevent overfitting of the spline, we set the maximum basis complexity (k) to 3 to limit the 
number of basis functions that could be used to estimate the overall model fit. A value of k = 3 
was chosen over higher values (i.e., k = 4-6) given that this basis complexity resulted in the 
lowest model Akaike information criterion (AIC) for the vast majority of cortical regions. 
Statistical tests of the k-index95, which estimate the degree of unaccounted for pattern in the 
residuals, confirmed that this basis dimension was sufficient.  

For each regional GAM, the significance of the association between fluctuation 
amplitude and age was assessed through an analysis of variance (ANOVA) that compared the 
full GAM model to a nested, reduced model with no age term. A significant result indicates that 
the residual deviance was significantly lower when a smooth term for age was included in the 
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model, as assessed with the chi-square test statistic. We corrected ANOVA p-values across all 
region-wise GAMs using the false discovery rate (FDR) correction and set statistical significance 
at pFDR < 0.05. For each regional GAM with a significant age smooth term, we furthermore 
identified the specific age range(s) wherein fluctuation amplitude was significantly changing 
through the gratia package in R. Age windows of significant change were identified by 
quantifying the first derivative of the age smooth function (Δ fluctuation amplitude / Δ age) 
using finite differences and determining when the simultaneous 95% confidence interval of this 
derivative did not include 096. To establish the overall magnitude and direction of the association 
between fluctuation amplitude and age, which we refer to throughout as a region’s overall age 
effect, we calculated the partial R2 between the full GAM model and the reduced model (effect 
magnitude) and signed the partial R2 by the sign of the average first derivative of the smooth 
function (effect direction). Finally, for each cortical region, we also explored whether fluctuation 
amplitude developmental trajectories significantly differed between males and females by adding 
a factor-smooth interaction term to the main GAM model. Following FDR correction for 
multiple comparisons across all region-wise GAMs, no significant interaction terms were 
observed; sex effects were therefore not evaluated further. 
 
Associations with cortical myelin development 

We formally assessed whether the development of intrinsic fMRI activity amplitude was 
spatially and temporally related to the development of intracortical myelination. Cortical myelin 
development was previously comprehensively characterized by Baum et al. (2022)70 using 
T1w/T2w surface-based myelin mapping46,97 in a sample of 628 youth ages 8 to 21 years who 
had data collected as part of the Human Connectome Project in Development. Using high 
resolution (0.8 mm3) T1-weighted and T2-weighted images, HCP processing pipelines, and state 
of the art methods for B1+ transmit field bias correction, partial volume reduction, and CSF 
correction97, Baum et al. (2022)70 investigated the maturational trajectory of increases in the 
T1w/T2w ratio in each region. In this investigation, the authors fit region-specific GAMs with a 
smooth term for age using thin plate regression splines as the smoothing basis, paralleling the 
present work. GAMs included covariates for sex, scanner, and B1+ transmit field correction-
related variables, following current best practices97 for statistically comparing the T1w/T2w ratio 
across individuals. 

To test if the extent to which fluctuation amplitude changed with age was related to the 
degree to which cortical myelin content changed with age, we calculated the correlation 
coefficient between the two distinct age effects: those calculated from regional fluctuation 
amplitude GAMs and those calculated from regional T1w/T2w ratio GAMs reported by Baum et 
al. (2022)70. As in the present work, T1w/T2w ratio age effects were determined by a partial R2  

derived by comparing the full GAM model to a reduced model with no smooth term for age. The 
association between fluctuation amplitude age effects and T1w/T2w ratio age effects was 
quantified with a Spearman’s correlation coefficient. A Spearman’s correlation was also used to 
assess whether there was temporal correspondence between the development of fluctuation 
amplitude and the T1w/T2w ratio across the cortex. Specifically, we calculated the correlation 
coefficient between the age at which fluctuation amplitude began to significantly decrease in 
each region and the age at which the T1w/T2w ratio maximally increased. The age at which 
fluctuation amplitude began to significantly decrease was the first age at which the derivative of 
the age smooth function was significantly negative. The age at which the T1w/T1w ratio 
maximally increased was the age at which the derivative of the age smooth function was 
maximal. 
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Alignment with the sensorimotor-association axis 

This work set out to test the overarching hypothesis that neurodevelopmental patterns are 
related to the S-A axis during childhood and adolescence. We therefore examined whether 
patterns of fluctuation amplitude maturation aligned with the S-A axis developed in our prior 
work1. The S-A axis was derived by averaging rank orderings of ten cortical feature maps that 
exhibit systematic variation between lower-order sensorimotor cortices, middle-order unimodal 
and multimodal cortices, and higher-order heteromodal and paralimbic association cortices1. 
These maps include the functional hierarchy delineated by the principal gradient of functional 
connectivity20, the evolutionary hierarchy defined by macaque-to-human cortical areal 
expansion51, the anatomical hierarchy as quantified by the T1w/T2w ratio50, allometric scaling 
calculated as local areal scaling with scaling of total brain size98, aerobic glycolysis measures of 
brain metabolism99, cerebral blood flow measures of brain perfusion100, gene expression 
patterning indexed by the principal component of brain expressed genes50, a primary mode of 
brain function characterized by the principal component of NeuroSynth meta-analytic 
decodings101, a histological gradient of cytoarchitectural similarity developed using the BigBrain 
atlas102, and cortical thickness measured by structural MRI. The resulting S-A axis represents a 
dominant, large-scale motif of cortical organization that captures the stereotyped patterning of 
cortical heterogeneity from primary visual, auditory, and somatosensory regions (lowest ranks in 
the S-A axis) to transmodal frontal, temporal, and parietal association regions (highest ranks in 
the S-A axis).  

We performed the following analyses to ascertain whether the development of fluctuation 
amplitude may indeed be governed by the hierarchical S-A axis. Using Spearman’s correlations, 
we evaluated associations between cortical regions’ S-A axis ranks and both 1) their magnitude 
of fluctuation amplitude development (GAM age effect) and 2) the age at which their fluctuation 
amplitude began significantly decreasing (first significant negative derivative). We next 
conducted a PCA on regional developmental trajectories. The goal of this PCA was to visualize 
the spatial axis that explained the greatest variance in how an in vivo measure of cortical intrinsic 
activity changed with age. The input to the PCA was region-wise age fits (zero-averaged smooth 
function estimates). The first principal component generated by this PCA contained regional 
loadings that capture differences in maturational patterns across one low-dimension embedding. 
We quantified the similarity between the first principal component (loadings) and the cortex’s S-
A axis1, anatomical hierarchy50, functional hierarchy20, and evolutionary hierarchy51 with 
independent Spearman’s correlations. We additionally assessed whether the correlation with the 
S-A axis was significantly greater in magnitude than correlations with the three hierarchies using 
a statistical test for comparing two dependent, overlapping correlations that utilizes a back-
transformed average Fisher’s Z procedure 103,104. 

Finally, we implemented an age resolved analysis to evaluate if the development of 
fluctuation amplitude aligned with the S-A axis throughout the entire developmental window 
studied. For this analysis, we computed across-region Spearman’s correlations between S-A axis 
rank and the first derivative of the GAM age spline at 200 ages between 8 and 23 years. Hence, 
we quantified the relationship between a region’s fluctuation amplitude change per year and its 
position in the S-A axis at 200 age increments4allowing us to study changes in the extent of S-
A axis alignment over the course of development. We determined a correlation coefficient point 
estimate as well as a 95% credible interval for these age-specific correlation values. To do so, we 
sampled from the posterior distribution of each region’s fitted GAM 10,000 times, generating 
10,000 simulated age smooth functions and corresponding derivatives. We then repeated the 
process of correlating S-A axis rank with the first derivative of the age smooth function at each 
of the 200 ages for all 10,000 posterior draws, generating a sampling distribution of possible 
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correlation values at each age increment. This distribution was used to calculate the median 
correlation value and the 95% credible interval of correlation values at each age. In addition, the 
sampling distribution of age-specific S-A axis correlation values was used to identify the age at 
which fluctuation amplitude development maximally aligned with the S-A axis and the youngest 
age at which no alignment to the axis was observed. To discover ages of maximal and null 
alignment, we calculated the age at which the axis correlation was largest as well as the first age 
at which the correlation equaled 0 for all 10,000 draws. For both measures, the median age 
across all draws and a 95% credible interval was calculated.  
 
Sensitivity analyses 

We performed a series of sensitivity analyses to confirm that the developmental effects 
observed were not being driven by potentially confounding factors including in-scanner head 
motion, psychiatric medication use, cerebrovascular perfusion, BOLD signal intensity, global 
amplitude effects, or the atlas used for cortical parcellation. For each sensitivity analysis, 
regional GAMs were refit either in a reduced sample (head motion and psychiatric medication 
analyses), in the full sample but with an additional model covariate (vascular and BOLD signal 
intensity analyses), or in the full sample with a modified dependent variable (global amplitude 
normalization and cortical atlas analyses). GAM-derived fluctuation amplitude trajectories were 
then visualized and developmental alignment with the S-A axis was confirmed. 

The first sensitivity analysis was conducted with a low motion sample to mitigate the 
potential confounding effect of in-scanner head motion on fluctuation amplitude86. From the 
main study sample of 1033 individuals, we excluded 343 individuals with a mean relative root 
mean squared framewise displacement > 0.075, retaining a low motion sample of n = 690 (ages 
8-23 years; mean age = 16.1 years; 395 female). The second sensitivity analysis was carried out 
to ensure that psychotropic medication use, which was more frequent among older study 
participants, did not explain the age-related changes in fluctuation amplitude. GAMs were refit 
after removing all participants (n = 140) from the original sample of 1033 individuals that 
reported current psychoactive medication use or a history of psychiatric hospitalization 
(remaining n = 893; ages 8-23 years; mean age = 15.6 years; 507 female).  

The third sensitivity analysis aimed to address the fact that the hemodynamic BOLD 
signal has both neuronal and vascular contributors. Prior work has demonstrated that measures of 
BOLD fluctuation amplitude contain substantial physiological information not attributable to 
vascular properties such cerebrovascular reactivity, rigidity, and blood flow105. Nonetheless, we 
still evaluated whether changes in vascular reactivity or cerebral perfusion with age could 
potentially be contributing to our developmental findings concerning fluctuation amplitude. We 
approached this evaluation by directly controlling for each participant’s regional cerebral blood 
flow, a measure of local blood perfusion, in region-wise GAMs. Cerebral blood flow was 
estimated from arterial spin labeling (ASL) data collected from participants with a pseudo-
continuous ASL (pCASL) sequence with the following acquisition parameters: repetition time = 
4000 ms, echo time = 2.9 ms, voxel resolution = 2.29 x 2.29 x 6 mm, label duration = 1500 ms, 
post label delay = 1250 ms, 40 paired label and control acquisition volumes. Data were 
processed using ASLPrep version 0.2.6 as in Adebimpe et al. (2022)106. Standard cerebral blood 
flow maps were generated and parcellated with the HCP multimodal atlas. Thirty-one 
participants included in the main study sample did not have ASL data available thus this vascular 
control analysis was performed using data from the remaining 1002 participants. 

The fourth sensitivity analysis was undertaken to rule out the possibility that inter-
individual differences in regional mean BOLD signal intensity, rather than BOLD fluctuations 
per se, could account for our findings. In the full study sample (n = 1033), region-specific GAMs 
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were refit while adding regional mean BOLD signal (i.e., the average T2* signal from minimally 
preprocessed functional timeseries) as an additional control covariate. Regional mean BOLD 
signal was calculated from parcellated fsLR surface BOLD timeseries generated with fMRIPrep 
by averaging the BOLD signal intensity in each parcellated cortical region across all volumes; 
this measure was calculated prior to regression of confounding signals. 

The fifth sensitivity analysis used mean normalized fluctuation amplitude as the 
dependent variable in all regional GAMs to examine the extent to which region-specific changes 
in fluctuation amplitude with age occurred above and beyond changes in global mean fluctuation 
amplitude. This sensitivity analysis was motivated by prior work that normalized local brain 
measures by a whole-brain mean to reduce inter-individual differences in global values39,50. It 
furthermore accounts for potential global differences in the scale of the BOLD signal across 
scans. Mean normalized fluctuation amplitude was quantified for all participants (n = 1033) by 
dividing an individual’s fluctuation amplitude in each parcellated cortical region by the average 
fluctuation amplitude computed across all cortical regions. Notably, because whole-brain mean 
fluctuation amplitude declined across the age range studied, regional trajectories in this 
sensitivity analysis represent regional age-related decreases or increases relative to this global 
change. 

The sixth and final sensitivity analysis was implemented to verify that the hierarchical 
sequence of fluctuation amplitude maturation would be observed when using a different atlas for 
cortical parcellation. As described above, vertex-wise fluctuation amplitude data in fsLR surface 
space was parcellated with the Schaefer-400 atlas. GAMs were fit using data from the main 
study sample of 1033 individuals for each Schaefer atlas region. 
 
Characterizing environmental effects 

Neighborhood-level environment factor scores 

Prior work suggests that social, economic, and physical features of children’s 
neighborhood environments can influence brain maturation and plasticity. To ascertain whether 
the developmental environment may specifically influence cortical activity dynamics, we studied 
associations between spontaneous BOLD fluctuations and neighborhood-level environment 
factor scores; the derivation of these factor scores has been previously explained in detail55. 
Briefly, geocoded information about each individual’s neighborhood environment was extracted 
using their home address and the census-based American Community Survey. The first factor 
from an exploratory factor analysis conducted on census variables by Moore et al. (2016)55 is 
used in the present study. This neighborhood-level environment factor score had positive 
loadings for the percent of residents who are married (loading = 0.85), median family income 
(0.82), the percent of residents with a high school education (0.74), the percent of residents who 
are employed (0.68), and median age (0.61) as well as negative loadings for the percent of 
residents in poverty (-0.86), population density (-0.71), and the percent of houses that are vacant 
(-0.60), and a weak loading for the percent of residents who are female (-0.26).  
 
Generalized additive models 

GAMs were used to investigate whether variability in neighborhood environments was 
associated with variability in regional fluctuation amplitude. For each region in the HCP 
multimodal atlas, a GAM was fit with fluctuation amplitude as the dependent variable, age as a 
smooth term, and sex, in-scanner motion, and the environment factor score as covariates. The t-
value associated with the factor score term in each GAM represents the magnitude and direction 
of the fluctuation amplitude-environment relationship.  
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Alignment with the sensorimotor-association axis  

Variability in youth’s neighborhood-level environments may differentially affect intrinsic 
activity in areas of the brain with different cortical properties and developmental trajectories. To 
assess whether environment effects were systematically related to cortical organization and 
development, we tested for an association between environment factor score t-values and S-A 
axis ranks using a Spearman’s correlation. 
 

Spin-based spatial permutation testing  

Cortical data often exhibit distance-dependent spatial autocorrelation that can inflate the 
significance of correlations between two cortical feature maps. To mitigate this issue, we 
assessed the significance of each Spearman’s correlation that compared two whole-brain cortical 
feature maps with spin-based spatial rotation tests, or <spin tests=107,108. Spin tests compute a p-
value (denoted pspin) by comparing the empirically observed correlation to a null distribution of 
correlations obtained by randomly spatially iterating one of the two cortical feature maps. In 
particular, spin tests generate a null by rotating spherical projections of one feature map while 
maintaining its spatial covariance structure. Here, we generated a null distribution based on 
10,000 spherical rotations. Spin tests were implemented using the rotate_parcellation algorithm 
in R109. 
 
Data and code availability statement 

This paper analyzes existing, publicly available data from the Philadelphia 
Neurodevelopmental Cohort, accessible from the Database of Genotypes and Phenotypes 
(phs000607.v3.p2) at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000607.v3.p2. All original code has been deposited at Zenodo and is 
available at https://doi.org/10.5281/zenodo.6959989. A detailed description of the code and 
guide to code implementation is additionally provided at 
https://pennlinc.github.io/spatiotemp_dev_plasticity/. Any additional information required to 
reanalyze the data reported in this paper is available from the lead contact upon request. 
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