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ABSTRACT 

The applicability domain of machine learning models trained on structural fingerprints for the predic-

tion of biological endpoints is often limited by the diversity of chemical space of the training data. In 

this work, we developed “similarity-based merger models” which combined the output of individual 

models trained on cell morphology (based on Cell Painting) and chemical structure (based on chemical 

fingerprints). Using a combination of a decision tree and logistic regression models on the structural 

versus morphological feature space of the training data, which leveraged the similarity of test com-

pounds to training compounds, the similarity-based merger models used logistic equations to weigh in-

dividual model outputs. We applied these models to predict assay hit calls of 92 assays from ChEMBL 

and PubChem and 89 anonymised assays released by the Broad Institute, where the required Cell Paint-

ing annotations were available. We found that for the 181 assays used in this study the similarity-based 

merger model improved AUC in relative terms by 16.3% compared to the models using chemical struc-

ture alone (mean AUC of 0.75 vs. 0.64), and by 21.3% compared to the models using Cell Painting data 

alone (mean AUC of 0.62). Our results demonstrate that similarity-based merger models combining 

structure and cell morphology models can more accurately predict a wide range of biological assay out-

comes and expand the applicability domain by better extrapolating to new structural and morphology 

spaces. 
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MAIN 
 

The prediction of bioactivity, mechanism of action (MOA) of compounds1 as well as safety and toxic-

ity2 using only chemical structure data is challenging given that such models are limited in the diversity 

of the chemical space of the training data.3 The chemical space of this data on which the model is 

trained is used to define the applicability domain of the model.4 Among the various ways to calculate a 

model’s applicability domain, Tanimoto similarity for chemical structure is commonly used as a 

benchmark similarity measure for compounds.5 Tanimoto distance-based Boolean applicability has been 

previously used to improve the performance of classification models.6 Expanding the applicability do-

main of structural models will improve the reliability of a model to predict endpoints for new com-

pounds and one way to achieve this would be to incorporate hypothesis-free high-throughput data, such 

as cell morphology7, bioactivity data8 or predicted bioactivities9,10 in addition to structural models which 

then has the potential to improve predictions for compounds structurally distant from the training data. 

This is because compounds having similar biological activity may not always have a similar structure; 

however, they may show similarities in biological response space.11 

In recent years, relatively standardized hypothesis-free cell morphology data can now be obtained 

from the Cell Painting assay.12 The Cell Painting assay uses six fluorescent dyes to capture morphologi-

cal changes on eight cellular organelles imaged in five-channel microscopic images. The microscopic 

images are typically further processed using an image analysis software, such as Cell Profiler13, which 

results in a set of circa 1700 morphological numerical features per cell. These numerical features repre-

senting morphological properties such as shape, size, area, intensity, granularity, and correlation, among 

many others, are considered versatile biological descriptors of a system.7 Previous studies have shown 

Cell Painting data to be predictive of a wide range of bioactivity and drug safety-related endpoints such 

as the mechanism of action14, cytotoxicity24, microtubule-binding activity15, and mitochondrial toxic-

ity25, and has been used to identify phenotypic signatures of PROteolysis TArgeting Chimeras (PRO-

TACs)16 as well as determining the impact of lung cancer variants17. Thus Cell Painting data can be ex-

pected to contain a signal about the biological activity of the compound perturbation,7 and in this work, 
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we explored how best to combine Cell Painting and chemical structural models for the prediction of a 

wide range of biological assay outcomes. 

From the modeling perspective, several ensemble modeling techniques have been proposed to com-

bine predictions from individual models.18 One way to achieve this is an ensembling method shown in 

Figure 1a, referred to as a soft-voting ensemble in this work. This method computes the mean of pre-

dicted probabilities from individual models and thus provides equal weightage to individual model pre-

dictions. However, soft-voting ensemble models when combining two individual models give equal im-

portance to each model.18 This implies that if a model predicts a higher probability for a compound to be 

active and another model predicts the same compound to be inactive but with a lower probability, the 

first model prediction is considered final without considering the individual model’s reliability. As 

shown in Figures 1b, another way to achieve this is via model stacking where the predictions of the in-

dividual models are used as features to build a second-level model (referred to as a hierarchical model in 

this work). Hierarchical models have previously been used by integrating classification and regression 

tasks in predicting acute oral systematic toxicity in rats.19 The applicability domain of predictions can be 

estimated both by the Random Forest predicted class estimates20 (referred to as predicted probabilities in 

this study) and using the similarity of the test compound to training compounds (which in turn approxi-

mates the reliability of the prediction).21  The hypothesis of the current work is hence that using the 

similarity of the test compound to training compounds to weigh the predicted probabilities of an indi-

vidual model can improve the model performance. 

The various ways of fusing structural models with models trained on cell morphology were recently 

exploited by Moshkov et al.26 who used both chemical structures and cell morphology data (from the 

Cell Painting assay) to predict the compound activity of 270 anonymised bioactivity assays from aca-

demic screenings in the Broad Institute. They used a late data fusion (by using a majority rule on the 

prediction scores similar to soft-voting ensembles) to merge predictions for individual models. The late 

data fusion models were able to predict 31 out of 270 assays with AUC>0.9, compared to 16 out of 270 

assays for models using only structural features. This showed that fusing models built on two different 
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feature spaces that provide complementary information was able to improve the prediction of bioactivity 

endpoints. Previous work has also shown that combinations of descriptors can significantly improve 

prediction for MOA classification22,23,14 (using gene expression and cell morphology data), cytotoxic-

ity24, mitochondria toxicity25 and anonymised assay activity26 (using chemical, gene expression, cell 

morphology and predicted bioactivity data), prediction of sigma 1 (σ1) receptor antagonist27 (using cell 

morphology data and thermal proteome profiling), and even organism-level toxicity28 (using chemical, 

protein target and cytotoxicity qHTS data). Thus, the combination of models built from complementary 

feature spaces can expand a model’s applicability domain by allowing predictions in new structural 

space.29 

In this work, we explored merging predictions of assay hit calls from chemical structural models with 

predictions from another model using Cell Painting data for 92 assays from public datasets from Pub-

Chem and ChEMBL (henceforth referred to as public dataset released as Supplementary Data 1) and 89 

anonymised assays from the Broad Institute26 (henceforth referred to as Broad Institute dataset released 

as Supplementary Data 2). As shown in Figure 1c, we merged predictions by weighting the model that 

had the most-similar profile by leveraging the knowledge of a test compound’s similarity to the training 

data of the individual models in the respective feature space, that is, by providing more weightage to the 

Cell Painting models when the test compound is morphologically similar to the training set but more 

weightage to the structural model when the structural similarity is high. Here we emphasise using simi-

larity-based merger models to improve the applicability domain of individual models (predicting com-

pounds that are distant to training data in respective feature spaces) and the ability to predict a wider 

range of assays with the combined knowledge from the chemical structure and biological descriptors 

from Cell Painting assay.  
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RESULTS AND DISCUSSIONS 

We trained individual Cell Painting and structural models for both the public dataset collection compris-

ing 92 assays, and the Broad Institute dataset comprising 89 assays. We used two baseline models for 

comparison, namely a soft-voting ensemble and a hierarchical model and compared the results from the 

individual models and baseline ensemble models to the similarity-based merger models .  

As shown in Figure 2, we found that similarity-based merger models performed with significantly im-

proved AUC-ROC (mean AUC 0.71 using similarity-based merger models) compared to individual 

models (mean AUC 0.57 using Cell Painting models; mean AUC 0.58 using structural models) in the 

public dataset as well as the Broad Institute dataset (mean AUC 0.67 using Cell Painting models; mean 

AUC 0.71 using structural models; mean AUC 0.79 using similarity-based merger models). Figure S1 

shows similarity-based merger models significantly improved Balanced Accuracy and F1 scores com-

pared to individual models. Results are presented separately from the PubChem dataset comprising 92 

assays (as shown in Supplementary Data 3) and the Broad Institute dataset comprising 89 assays (as 

shown in Supplementary Data 4) as the Broad Institute dataset is not annotated with complete biological 

metadata, which renders some of the more detailed analysis downstream not viable.  

 

(A) Results from the Public dataset collection  

 We next analysed results from the public dataset comprising 92 assays (with at least 100 compounds 

for which Cell Painting annotations were available) collected from Hofmarcher et al33 and Vollmers et 

al35 (see Supplementary Data 1 for assay descriptions). As shown in Figure 3, 51 out of 92 assays 

achieved AUC>0.70 with the similarity-based merger model, followed by hierarchical models for 24 out 

of 92 assays. Structural models achieved AUC>0.70 in only 17 out of 92 assays while for the Cell Paint-

ing models this was the case in only 13 out of 92 assays. Only 3 assays out of 92 were predicted with 

AUC>0.70 with all methods while only 6 out of 92 assays did not achieve AUC>0.70 with similarity-

based merger models but did with the other models. When considering balanced accuracy, 30 out of 92 

assays achieved a balanced accuracy > 0.70 with similarity-based merger models compared to 9 out of 
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92 assays for hierarchical models as shown in Figure S2. Comparing performance for the Cell Painting 

and structural models by AUC individually (Figure S3) we observed that structural models and Cell 

Painting models were complementary in their predictive performance; while 48 out of 92 assays achieve 

a higher AUC with structural information alone, 42 out of 92 assays achieve a higher AUC using mor-

phology alone as shown in Figure S3a. Hierarchical models outperform soft-voting ensembles for 59 out 

of 92 assays as shown in Figure S3b. Finally, the similarity-based merger model achieved a higher AUC 

score for 83 out of 92 assays compared to 8 out of 92 with soft-voting ensembles and 78 out of 92 as-

says compared to 13 out of 92 with hierarchical models as shown in Figures S3c and S3d. This shows 

that the similarity-based merger model was able to leverage information from both Cell Painting and 

structural models to achieve better predictions in assays where no individual models were found to be 

predictive thus indicating synergistic effect. 

We next looked at the performance at the individual assay level (as shown in Supplementary Data 3)  

as indicated by the AUC scores. We looked at 90 out of 92 assays where either the similarity-based 

merger model or the soft-voting ensemble performed better than a random classifier (��� � 0.50) We 

observed that for 83 out of 90 assays (individual changes in a performance recorded in Figure S4), the 

similarity-based merger models improved performance compared to the soft-voting ensemble (with the 

largest improvement recoded at 212.6%) and a decrease in performance was recorded in 6 out of 90 as-

says (largest decrease recorded at -11.9% in performance). Further comparisons of AUC performance in 

Figure S5 show that similarity-based merger models improved AUC compared to both structural models 

and Cell Painting models. This improvement in AUC was independent of the total number of com-

pounds in the resampled assay as shown in Figure S6(a). Thus, we conclude that the similarity-based 

merger model outperformed individual models by combining the rich information contained in cell 

morphology and structure-based models more efficiently than baseline models. 

 

Comparison of Performance at Gene Ontology Enrichment level 
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We next analysed the assays (and associated biological processes) where the Cell Painting model, 

structural model, and the similarity-based merger model were most predictive and therefore if there was 

complementary information present in both feature spaces. Figure 4a shows a protein-protein network 

(annotated by genes) from the STRING database labelled by the model performance where the respec-

tive individual model was better predictive (or otherwise equally predictive, which includes cases where 

different models are better predictive over multiple assays related to the same protein target). We found 

meaningful models (AUC > 0.50) were achieved when using either the Cell Painting or the structural 

model for 31 out of 35 gene annotations. Of these, the Cell Painting models were better predictive for 9 

out of 31 gene annotations (average AUC= 0.69) compared to the structural models which were better 

predictive for 20 out of 31 gene annotations (average AUC=0.68). We next compared the soft-voting 

ensemble model to the similarity-based merger model for 35 gene annotations where either model 

achieved AUC>0.50. The soft-voting ensemble model performed with higher AUC (average AUC= 

0.60) for only 2 out of 35 gene annotations compared to the similarity-based merger model which was 

better predictive for 32 out of 35 gene annotations (average AUC=0.75). Thus, we observe that similar-

ity-based merger models performed better over a range of assays (over 33 out of 35 gene annotations) 

capturing a wide range of biological pathways.  

In particular, Cell Painting models performed better than structural models for assays associated with 

6 gene annotations, POLK, FEN1, GMNN, VDR, KAT2A and NFE2L2 (with an average AUC = 0.67 

for Cell Painting models compared to AUC = 0.57 for structural models). These gene annotations were 

associated with molecular functions of ‘GO:0003684 Damaged DNA binding’, ‘GO:0140297 DNA-

binding transcription factor binding’, and ‘GO:0008134 Transcription factor binding’, which are proc-

esses resulting in morphological changes induced by compounds that damage or bind the DNA, which 

were captured by Cell Painting. Among gene annotations associated with the assays better predicted by 

structural models are TSHR, GLP1R, DRD1, HCRTR1 and CHRM1 (with average AUC = 0.67 for 

structural models compared to AUC = 0.58 for Cell Painting models). These gene annotations are asso-

ciated with the KEGG pathway of ‘neuroactive ligand-receptor interaction’ and the Reactome pathway 
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of ‘amine ligand-binding receptors’ which were captured better by chemical structure. We can hence see 

that Cell Painting models perform better on assays capturing morphological changes in cell or cellular 

compartments such as the nucleus, while structural models work better for assays associated with a 

ligand-receptor activity. In addition, the KEGG term ‘amine ligand-binding receptors’ is defined on the 

chemical ligand level explicitly, making the classification of compounds falling into this category from 

the structural side easier. The similarity-based merger models hence combined the power of both spaces 

and were better predictive for both assays affecting morphological changes (average AUC= 0.71 for the 

similarity-based merger model) as well as related to the ligand-receptor binding activity (average AUC= 

0.78 for similarity-based merger model). This is further illustrated in Figure 4b which shows enriched 

molecular and functional pathway terms from ClueGO39 for the 35 gene annotations available. We ob-

serve that around 25-33% of gene annotations associated with damaged or DNA binding, transcription 

coregulator binding, and positive regulation of blood vessel endothelial cell migration pathways are bet-

ter predicted with AUC>0.70 with the Cell Painting models. At the same time around 33-50% of gene 

annotations associated with G protein-coupled receptor signalling pathways and transcription coregula-

tor binding were predicted with AUC>0.70 with structure-based models. Similarity-based merger mod-

els predicted 67-100% gene annotations associated with all four pathways with an AUC>0.70, hence 

underlining the utility of such merger models across a range of biological endpoints.  

 

Applicability domain analysis 

We next determined how individual and similarity-based merger model predictions differ with com-

pounds that were structurally or morphologically similar/dissimilar to the training set. We looked at 

predictions for each compound from the Cell Painting and structural models over the 92 assays and 

grouped them based on their morphological and structural similarity to the training set respectively. We 

observed, as shown in Figure S7, that as the morphological similarity of test compounds with respect to 

the training set increased, the Cell Painting models correctly classified a higher proportion of com-

pounds, while the structural model improved performance as the test compound becomes more structur-
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ally similar to the training set. Further, as the structural similarity of test compounds with respect to the 

training set increased, the models using chemical structure correctly classified a higher proportion of 

compounds, while the structural model improved performance as the test compound becomes more 

structurally similar to the training set. For example, out of 1,888 compounds with a low structural simi-

larity between 0.25 to 0.35, models using chemical structure correctly classified 46.8% compounds 

while similarity-based merger models correctly classified a much greater 57.0% compounds. However, 

out of 63 compounds with higher structural similarity between 0.65 to 0.85, models using chemical 

structure correctly classified 85.7% compounds comparable to the similarity-based merger models that 

correctly classified 82.5% compounds. This shows that the similarity-based merger model correctly pre-

dicted a larger proportion of compounds over a wide range of structural and morphological similarities 

to the training set, hence demonstrating an increase in the applicability domain. For clarity of the reader, 

this is further illustrated in Figure S8 as in the case of a particular assay, namely PubChem assay 2686 

which is a qHTS assay for lipid storage modulators in drosophila S3 cells. Here, the structural model 

correctly predicted compound activity when they were structurally similar to the training set. The Cell 

Painting model performed better over a wide range of structural similarities but was often limited when 

morphological similarity was low. This shows that similarity-based merger models learned and adapted 

weights across individual models from local regions in this structural versus morphological similarity 

space in a manner best suited to compounds in that region to correctly classify a wider range of com-

pounds with lowered structural and morphological similarities to the training set. 

 

(B) Results from the Broad Institute dataset  

We next analysed the performance of 89 assays from the Broad Institute dataset in more detail (as 

shown in Supplementary Data 4). As shown in Figure 5, the similarity-based merger models outper-

formed all other models and achieved an AUC>0.70 for 74 out of 89 assays, followed by hierarchical 

models at 52 out of 89 assays. Structural models were able to achieve an AUC>0.70 for 48 out of 89 

assays compared to Cell Painting models in 35 out of 89 assays. For 22 out of 92 assays, all methods 
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achieved an AUC>0.70 while only 4 out of 89 assays did not achieve AUC>0.70 with the similarity-

based merger models but did with the other models. Figure S10 compares the balanced accuracy of all 5 

models which shows that similarity-based merger models achieved a balanced accuracy > 0.70 for 51 

out of 89 assays compared to 35 out of 89 assays for hierarchical models. Hence, the similarity-based 

merger models predicted an additional 18 out of 89 assays with AUC>0.7 that no other method did. 

Similarly, we observed similarity-based merger models predicted an additional 14 out of 89 assays bal-

anced accuracy > 0.70 as shown in Figure S9, once again demonstrating its applicability in predicting a 

wide range of assays. Further, as shown in Figure S10, Cell Painting models and structural models were 

again complementary in the assays they predicted better individually (54 out of 89 assays perform better 

with structural information, 35 out of 89 assays better perform using morphology). Hierarchical models 

outperformed soft-voting ensembles for 81 out of 89. The similarity-based merger model outperformed 

both baseline models (in 85 out of 89 assays compared to 4 out of 89 assays in soft-voting ensembles 

and 69 out of 89 assays compared to 17 out of 89 assays for hierarchical models).  

We next looked at performance at individual assay level (as shown in Supplementary Data 4). All 89 

assays achieved AUC>0.50 (better than a random classifier) using either the similarity-based merger 

model or the soft-voting ensemble. We observed that for 85 out of 92 assays (individual changes in a 

performance recorded in Figure S11), similarity-based merger models improved performance compared 

to the soft-voting ensemble (with the largest improvement recorded at 70.7%) and a decrease in per-

formance was recorded in only 6 out of 90 assays (with the largest decrease in performance recorded at -

37.1%). Further comparisons of AUC achieved by the similarity-based merger model compared to 

structural models and Cell Painting models show a similar improvement in performance as shown in 

Figure S12. Further, the improvement in AUC from using the similarity-based merger model was inde-

pendent of the total number of compounds in an assay as shown in Figure S6(b). Thus, similarity-based 

merger models were able to outperform both baseline ensemble methods and hence can be used to cap-

ture a wide range of assay endpoints.  
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Comparison of Performance by Readout and Assay type 

As the Broad Institute dataset was released with only information about assay type and readout type 

(for details see Supplementary Data 2 and Figure S13), we analysed the Cell Painting, structural and 

similarity-based merger model as a function of those. As shown in Figure 6, Cell Painting models per-

form significantly better with a relative 12.8% increase in AUC with assays measuring luminescence 

(mean AUC = 0.72) compared to assays measuring fluorescence (mean AUC = 0.64) while structural 

and similarity-based merger model show no significant differences in performances. The better predic-

tions in the case of luminescence-based assays, which are readouts specifically designed to answer a 

biological question, and can be related to the use of a reporter cell line and a reagent that based on the 

ATP content of the cell, is converted to a luciferase substrate which leads to a cleaner datapoint. 30  On 

the other hand, Cell Painting is an unbiased high-content imaging assay that takes into consideration the 

inherent heterogeneity in cell cultures where we visualise cells (often even measuring at a single cell 

level), contrary to a luminescence assay where one measures the average signal of a cell population. 

Further Cell Painting models performed significantly better with a relative 16.2% increase in AUC for 

cell-based assays (mean AUC = 0.72) compared to biochemical assays (mean AUC = 0.62). This might 

be due to also the Cell Painting assay being a cellular assay, hence also implicitly including factors such 

as membrane permeability in measurements. Further, similarity-based merger models outperform indi-

vidual and baseline models over most assay and readout types as shown in Figures S14 and S15. Over-

all, Cell Painting models can hence be considered to provide complementary information to chemical 

structure regarding cell-based assays, which was particularly beneficial for the significant improvement 

in the performance of similarity-based merger models. 

 

Comparison of performance based on the similarity of test compounds to training data 

We next compared the performance of individual and similarity-based merger models across all com-

pounds in all 89 assays from the Broad dataset based on their morphological or structural similarity to 

the respective training data. Here, the results were consistent with the results obtained above for the 
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public dataset. As shown in Figure S16, out of 1,032 compounds with a low structural similarity be-

tween 0.25 to 0.35, models using chemical structure correctly classified 50.8% compounds while simi-

larity-based merger models correctly classified a much greater 59.7% compounds. However, out of 

2,640 compounds with a higher structural similarity between 0.80 to 0.90, models using chemical struc-

ture correctly classified 80.7% of compounds compared to the similarity-based merger models that cor-

rectly classified 84.5% of compounds. Thus, once again, similarity-based merger models were able to 

classify a high percentage of compounds over a wider range of structural and morphological similarities 

to the respective training data and use the complementary information present in both feature spaces to 

extrapolate to novel chemical space where individual models failed. 

 

Limitations of this work 

One limitation of the study is having to balance unequal data classes by undersampling.  Here, the data 

was therefore initially undersampled to a 1:3 ratio of majority to minority class in order to build a simi-

larity-based merger model, which leads to some loss of experimental data. Further, after the splitting of 

the dataset into training and test datasets, the training data need to contain enough samples spread across 

the structural versus morphological similarity map for the logistic regression models to work. This was 

ensured by a random split; other splitting strategies such as scaffold-based splitting may not allow the 

use of the second level logistic regression models as the chemical space of the test data will vary signifi-

cantly from the training data.  Further, from the side of feature spaces, Cell Painting data is derived from 

U2OS cell-based assays which are usually different from the cell lines used in measuring the activity 

endpoint. However previous work has shown that Cell Painting data is similar across different cell lines 

and the versatile information present was universal, that is, the genetic background of the reporter cell 

line does not affect the AUC values for MOA prediction.31 Thus Cell Painting data can be used to model 

different assays with different cell lines. Future studies will also benefit from larger datasets, such as the 

JUMP-CP consortium.32  
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CONCLUSIONS 

Predictive models that use chemical structures as features are often limited in their applicability do-

main to compounds which are structurally similar to the training data. In this work, we developed simi-

larity-based merger models to combine two models built on complementary feature spaces of Cell Paint-

ing and chemical structure and predicted assay hit calls from 92 assays from the public dataset and 89 

assays from a dataset released by the Broad Institute for which Cell Painting data were available.  

We found that Cell Painting and chemical structure contain complementary information and can pre-

dict assays associated with different biological pathways, assay types, and readout types. Cell Painting 

models achieved higher AUC better for cell-based assays and related to biological pathways such as 

damaged DNA binding. Structural models achieved a higher AUC for biochemical and ligand-receptor 

binding assays associated with pathways such as G protein-coupled receptor signalling pathways. The 

similarity-based merger models, combining the two feature spaces, achieved a higher AUC for both 

cell-based (mean AUC=0.83) and biochemical assays (mean AUC=0.77) as well as assays related to 

both biological pathways (mean AUC=0.72) and ligand-receptor based pathways (mean AUC=0.76). 

Further, the similarity-based merger models outperformed all other models with an additional 20-30% 

assays over both datasets with AUC>0.70. We also showed that the similarity-based merger models cor-

rectly predicted a larger proportion of compounds which are comparatively less structurally and mor-

phologically similar to the training data compared to the individual models, thus being able to improve 

the applicability domain of the models.  

In conclusion, the similarity-based merger models improved the prediction of assay outcomes by 

combining high predictivity of fingerprints in areas of structural space close to the training set with bet-

ter generalizability of cell morphology descriptors at greater distances to the training set. Such models 

can hence contribute to overcoming the limitation of chemical space in drug discovery projects. 
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METHODS 

Bioactivity Datasets 

We retrieved drug bioactivity data as binary assay hit calls for 202 assays and 10,570 compounds from 

Hofmarcher et al33 who searched ChEMBL34 for assays for which cell morphology annotations from the 

Cell Painting assay were available as shown in Figure S17. We further added binary assay hit calls from 

another 30 assays not included in the source above from Vollmers et al35 who searched PubChem36 as-

says for overlap with Cell Painting annotations (see Supplementary Data 1 for assay descriptions). 

Additionally, we used 270 anonymised assays (with binary endpoints) from the Broad Institute26  as 

shown in Figure S17 (see Supplementary Data 2 for assay descriptions). This dataset, although not an-

notated in with biological metadata, comprises assay screenings performed over 10 years at the Broad 

Institute and is representative of their academic screenings.  

Gene Ontology Enrichment of Bioactivity Assays 

From the public dataset of 92 assays used in this study where detailed assay data was available, 38 out 

of 92 assays where experiments used human-derived cell lines were annotated to 35 protein targets. 

Next, we determined using the STRING database37, we annotated all 35 protein targets with the associ-

ated gene set and further obtained a set of Gene Ontology terms associated with the protein target. We 

used Cytoscape38 v3.9.1 plugin ClueGO39 to condense the protein target set by grouping them into func-

tional groups to obtain the associated significant (using the baseline ClueGO p-value ≤0.05) molecular 

and functional pathway terms. In this manner, we associated individual assays to molecular and func-

tional pathways for further evaluation of model performances.  

Cell Painting Data 

The Cell Painting assay used in this study, from the Broad Institute, contains 30,616 morphological 

profiles of small molecule perturbations.40,41 Following the procedure from Lapins et al, we subtracted 

the average feature value of the neutral DMSO control from the particular compound perturbation aver-

age feature value on a plate-by-plate basis.14 For each compound and drug combination, we calculated a 

median feature value. Where the same compound was replicated for different doses, we used the median 

WITHDRAWN

see manuscript D
OI fo

r details

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.11.503624doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.11.503624
http://creativecommons.org/licenses/by/4.0/


   

17 

feature value across all doses that were within one standard deviation of the mean dose. Finally, after 

SMILES standardisation and removing duplicate compounds using standard InChI calculated using 

RDKit43, we obtained 1783 median Cell Painting features for 30,404 unique compounds (available on 

Zenodo at https://doi.org/10.5281/zenodo.6613741). 

Overlap of Datasets 

For both the public and Broad dataset, as shown in Figure S17 (step 1) we used MolVS42 standardizer 

based on RDKit43 to standardize and canonicalize SMILES for each compound which encompassed 

sanitization, normalisation, greatest fragment chooser, charge neutralisation, and tautomer enumeration 

described in the MolVS documentation42. We further removed duplicate compounds using standardised 

InChI calculated using RDKit43. 

Next, for the public dataset, we obtained the overlap with the Cell Painting dataset using standardised 

InChI Figure S17 (step 2). From this, we removed 148 assays which contained less than 100 compounds 

with Cell Painting datasets (which were difficult to model due to limited data) as shown in Figure S17 

(step 3). Finally, we obtained the public assay data for a sparse matrix of 92 assays and 10,402 unique 

compounds. Similarly, for the Broad dataset, out of 270 assays provided, as shown in Figure S17, we 

removed 181 assays that contained less than 100 compounds resulting in a Broad Institute dataset as a 

sparse matrix of 16170 unique compounds over 89 assays. (Both datasets are publicly available on Ze-

nodo at https://doi.org/10.5281/zenodo.6613741). 

Structural Data 

We generated Morgan Fingerprints of radius 2 and 2048 bits using RDKit43 used as chemical fingerprint 

features in this work. 

Feature Selection  

Firstly, we performed feature selection to obtain morphological features for each compound. From 

1,783 Cell Painting features, we removed 55 blocklist features that were known to be noise from Way et 

al.44 For the compounds in the public assays, we further removed 1,011 features which had a very low 

variance below a 0.005 threshold using the scikit-learn45 variance threshold module. Next, similar to the 
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feature section implemented in pycytominer46, we obtained the list of features such that no two features 

correlate greater than a 0.9 Pearson correlation threshold. For this, we calculated all pairwise correla-

tions between features and removed the 488 features with the highest pairwise correlations. Finally, we 

removed another 45 features if their minimum or the maximum absolute value was greater than 15 (us-

ing the default threshold in pycytominer46). Hence, we obtained 184 Cell Painting features for 10,402 

unique compounds for the dataset comprising public assays. Analogously, for the Broad Institute data-

set, we obtained 192 Cell Painting features for 16,170 unique compounds (both datasets are available on 

Zenodo at https://doi.org/10.5281/zenodo.6613741). 

Next, we performed feature selection for structural features of Morgan fingerprints. For the public as-

says, we removed 1,883 bits that did not pass a near-zero variance (0.05) threshold since they were con-

sidered to have less predictive power. Finally, we obtained Morgan fingerprints of 165 bits for 10,402 

unique compounds. Analogously, for the Broad Institute dataset, we obtained Morgan fingerprints of 

273 bits for 16,170 unique compounds (both datasets are available on Zenodo at 

https://doi.org/10.5281/zenodo.6613741). 

Chemical and Morphological Similarity 

We next defined the structural similarity score of a compound as the median Tanimoto similarity of 

the 5 most similar compounds of the same class.  The morphological similarity score of a compound 

was calculated as the median Pearson correlation to the 5 most positively correlated compounds of the 

same class.  

Model Training 

For each assay, the majority class (most often the negative class) was randomly sampled to maintain a 

minimum 3:1 ratio with the minority class to ensure that models are fairly balanced (which is henceforth 

referred to as resampled assay in this study). Figure S18 shows the distribution of the total number of 

compounds in the resampled assay for both the public dataset (comprising 92 assays) and the Broad In-

stitute dataset (comprising 89 assays). 
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Then, the data was split into training data (80%) and held out test data (20%) using a stratified splitting 

based on the assay hit call. First, on the training data, we performed 5-fold nested cross-validation keep-

ing aside one of these folds as a test-fold, on the rest of the 4 folds. We trained separate models, as 

shown in Figure 1c step (1) and step (2), using Morgan fingerprints (165 bits for the public dataset; 273 

bits for the Broad Institute dataset) and Cell Painting data (184 features for the public dataset, 192 fea-

tures for the Broad Institute dataset) respectively for each assay. In this inner fold of the nested-cross 

validation, we trained separately, Random Forest models on the rest of the 4 folds with Cell Painting 

and Morgan fingerprints. These models were hyperparameter optimised (with parameter spaces as 

shown in Supplementary Data 5) using cross-validation with shuffled 5-fold stratified splitting. For hy-

perparameter optimisation, we used a randomized search on hyperparameters as implemented in scikit-

learn 1.0.145. This optimisation method iteratively increases resources to select the best candidates, us-

ing the most resources on the candidates that are better at prediction.47 The hyperparameter optimised 

model was used to predict the test-fold. To account for threshold balancing of Random Forest predicted 

probabilities (which is common in an imbalanced prediction problem), we calculated on the 4 folds, the 

Youden's J statistic48 (J = True Positive Rate – False Positive Rate) to detect an optimal threshold. The 

threshold for the highest J statistic value was used such that the model would no longer be biased to-

wards one class and give equal weights to sensitivity and specificity without favouring one of them. 

This optimal threshold was then used for the test-fold predictions, and this was repeated 5 times for both 

models using Morgan fingerprints and Cell Painting features until predictions were attained for the en-

tire training data in the nested cross-validation manner. As the optimal thresholds for each fold were dif-

ferent, the predicted probability values were scaled using a min-max scaling such that this optimal 

threshold was adjusted back to 0.50 on the new scale. Further for each test-fold in the cross-validation, 

as shown in Figure 1c step (3) and step (4), we also calculated the chemical and morphological similar-

ity (as described above in the “Chemical and Morphological Similarity” section) for each compound in 

this test-fold with respect to the compounds in the remaining of the 4 folds. This was repeated 5 times 

until chemical and morphological similarity scores were obtained for the entire training data. 
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Finally, on the entire training data, two Random Forest models were trained with Cell Painting and 

Morgan fingerprints with hyperparameter-optimised (in the same way as above using 5-fold cross-

validation). This was used to predict the held-out data, as shown in Figure 1c step (5) (with threshold 

balancing performed from cross-validated predicted probabilities of the training data). We calculated the 

chemical and morphological similarity of each compound in the held-out data compared to all com-

pounds in the training data and these were recorded as the chemical and morphological similarity scores 

respectively of the particular compound in the held-out dataset as shown in Figure 1c step (6). The pre-

dicted probability values were again adjusted using a min-max scaling such that this optimal threshold 

was 0.50 on the new scale. 

Similarity-based merger model 

The distance-based merger models presented here are a combination of multiple hierarchical models 

trained in different regions on the morphology versus structural similarity space of the test set with re-

spect to the training set. In particular, for each assay, we built the similarity-based merger model on the 

held-out data using information from the training data to avoid any data or model leakage. First, the 

training data was further resampled to have a 1:1 ratio of active to inactive (further reducing the number 

of compounds but essential to make sure we favour the distance boundaries in a balanced manner for 

both majority and minority classes). As shown in Figure 1c step (7), we trained a single decision tree 

classifier with a maximum depth of 2 (using scikit-learn45 DecisionTreeClassifier) on the training data 

using input features of the structural similarity score and morphological similarity scores and endpoints 

as two Boolean variables indicating if the two individual models predicted the assay hit call correctly. 

The decision tree maximum depth was set as 2 to ensure that there was a maximum of 4 end nodes 

formed. We hard-coded this decision tree and used this on the held-out data using structural similarity 

scores and morphological similarity scores (as defined in the Chemical and Morphological Similarity 

Section above) to predict which of the up to 4 end leaf node classes each compound of the held-out test 

set would fall be in. These node classes are effectively decision boundaries in the structural and mor-

phological similarity space that were defined using the training data only. There is no leak of any held-
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out data assay hit call information but only its structural similarity and morphological similarity to the 

training data, which can be easily calculated for any compound with a known structure.  

For each node class where held-out compounds were present, we predict the assay hit call of the com-

pound using a soft-voting ensemble model for the following conditions: (a) if no training compounds 

were present but held-out compounds were, (b) only training compounds of one class were present. In 

these two cases, we cannot use the similarity-based merger model. For all other cases, we used baseline 

logistic regression models (with baseline parameters of L2 penalty and an inverse of regularization 

strength of 5) using the Cell Painting and Morgan fingerprints models’ individual scaled predicted prob-

abilities as features and the endpoint as the assay hit call of the compound, as shown in Figure 1c step 

(8). We used the training compounds of the particular node class to fit a logistic regression model in an 

attempt to determine which model should be given more weightage in which node class. Finally, this 

logistic equation was used to predict the assay hit call of the held-out compounds (which we henceforth 

call the similarity-based merger model prediction) and an associated predicted probability (which we 

henceforth call similarity-based merger model predicted probability), as shown in Figure 1c step (9).  

Baseline Models 

For baseline models, we used two models, namely a soft-voting ensemble18 and a hierarchical 

model19. The soft-voting ensemble, as shown in Figure 1a, combines predictions from both the Cell 

Painting and Morgan fingerprints models using a majority rule on the predicted probabilities. In particu-

lar, for each compound, we averaged the re-scaled predicted probabilities of two individual models, thus 

in effect creating an ensemble with soft-voting. We applied a threshold of 0.50 (since predicted prob-

abilities from individual models were also scaled to the optimal threshold of 0.50 as described above) to 

obtain the corresponding soft-voting ensemble prediction. 

 For the hierarchical model, as shown in Figure 1b,  we fit a baseline logistic regression model on the 

(with L2 penalty and an inverse of regularization strength of 5), as implemented in scikit-learn, on the 

scaled predicted probabilities both individual the Cell Painting and Morgan fingerprints models for the 

entire training data from cross-validation. We applied this logistic equation to the held-out test set com-
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pounds to predict the assay hit call (and a corresponding model predicted probability) which we hence-

forth call the hierarchical model prediction (and a corresponding hierarchical model predicted probabil-

ity). 

Model evaluation 

We evaluated all models (both individual models, soft-voting ensemble, hierarchical and similarity-

based merger model) based on precision, sensitivity, F1 scores of the minority class, specificity, bal-

anced accuracy, Matthew’s Correlation Coefficient (MCC) and Area Under Curve- Receiver Operating 

Characteristic (AUC) scores. 

Statistics and Reproducibility  

A detailed description of each analysis' steps and statistics is contained in the methods section of the 

paper. Statistical methods were implemented using the pandas Python package.49 Machine learning 

models, hyperparameter optimisation and evaluation metrics were implemented using scikit-learn45, a 

Python-based package. We have released the datasets used in this study which are publicly available at 

Zenodo (https://doi.org/10.5281/zenodo.6613741). We released the python code for the models which 

are publicly available on GitHub (https://github.com/srijitseal/Merging-Predictions-from-Cell-

Morphology-and-Structural-Models-by-Leveraging-Similarity).  
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FIGURES 

 
 
Figure 1: Schematic Representation of workflow in this study to build (a) hierarchical models 

where the predictions of the individual models are used as features to build a second-level logistic 

regression model, and (b) soft-voting ensemble models that compute the mean of predicted prob-

abilities from individual models and (c) the similarity-based merger model. The similarity-based 

merger model combined predictions from individual models by weighting them in proportion to 

their similarity to training data in morphology and structural space. These weights are computed 

by different logistic regression models on the predictions from out-of-fold cross-validation com-

pounds in the training data in different regions of the morphology and structural space. 
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Figure 2: Distribution of AUC of all models, Cell Painting, Morgan Fingerprints, baseline models 

of a soft-voting ensemble, hierarchical model, and the similarity-based merger model, over (a) 

the public dataset comprising 92 assays and (b) Broad Institute dataset comprising 89 assays. 
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Figure 3: (a) Number of assays predicted with an AUC above a given threshold. (b) Distribution of assays with AUC > 0.70 common 

to all models, Cell Painting, Morgan Fingerprint, baseline models of a soft-voting ensemble, hierarchical model, and the similarity-ba

model, over the public dataset comprising 92 assays.  
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Figure 4: (a) STRING gene-gene interaction networks for 35 Genes annotations associated with 

38 assays in the public dataset labelled by the model which was better predictive compared to the 

other models and a random classifier with an AUC>0.50 (b) Molecular and functional pathway 

terms related to the 38 assays using the Cytoscape38 v3.9.1 plugin ClueGO39 labelled by percent-

age of gene annotations where an AUC>0.70 was achieved by the Cell Painting, structural and 

similarity-based merger models. 
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Figure 5: (a) Number of assays predicted with an AUC above a given threshold. (b) Distribution of assays with AUC > 0.70 common 

to all models, Cell Painting, Morgan Fingerprint, baseline models of the soft-voting ensemble, hierarchical model, and the simil

merger model, over the Broad Institute dataset comprising 89 assays. 

36 

 

n and unique 

ilarity-based 

WITHDRAWN

see manuscript D
OI fo

r details

.
C

C
-B

Y
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted A
ugust 15, 2022. 

; 
https://doi.org/10.1101/2022.08.11.503624

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/2022.08.11.503624
http://creativecommons.org/licenses/by/4.0/


 

 

 

Figure 6: AUC performance of models using Cell Painting, structural models, and similarity-

based merger model for 89 assays in the Broad Institute dataset based on readout type (fluores-

cence and luminescence) or the assay type (cell-based and biochemical). Further details are 

shown in Figures S14 and S15. 
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