

1 **Comparison and benchmark of long-read based structural variant**

2 **detection strategies**

3 Jiadong Lin^{1,2,3,4}, Peng Jia^{1,2}, Songbo Wang^{1,2}, Kai Ye^{1,2,3,5,6*}

4 ¹MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and
5 Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.

6 ²School of Automation Science and Engineering, Faculty of Electronic and Information
7 Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.

8 ³Genome Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 China.

9 ⁴Leiden Institute of Advanced Computer Science, Faculty of Science, Leiden University, Leiden,
10 2311 EZ, The Netherlands.

11 ⁵The School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.

12 ⁶Faculty of Science, Leiden University, Leiden, 2311 EZ, The Netherlands.

13

14 *To whom correspondence should be addressed. E-mail: kaiye@xjtu.edu.cn (Ye K).

15

16

17 **Abstract**

18 **Background:** Recent advances in long-read callers and assembly methods have greatly facilitated
19 structural variants (SV) detection via read-based and assembly-based detection strategies.
20 However, the lack of comparison studies, especially for SVs at complex genomic regions,
21 complicates the selection of proper detection strategy for ever-increasing demand of SV analysis.

22 **Results:** In this study, we compared the two most widely-used strategies with six long-read
23 datasets of HG002 genome and benchmarked them with well curated SVs at genomic regions of
24 different complexity. First of all, our results suggest that SVs detected by assembly-based strategy
25 are slightly affected by assemblers on HiFi datasets, especially for its breakpoint identity.
26 Comparably, though read-based strategy is more versatile to different sequencing settings, aligners
27 greatly affect SV breakpoints and type. Furthermore, our comparison reveals that 70% of the
28 assembly-based calls are also detectable by read-based strategy and it even reaches 90% for SVs
29 at high confident regions. While 60% of the assembly-based calls that are totally missed by read-
30 based callers is largely due to the challenges of clustering ambiguous SV signature reads. Lastly,
31 benchmarking with SVs at complex genomic regions, our results show that assembly-based
32 approach outperforms read-based calling with at least 20X coverage, while read-based strategy
33 could achieve 90% recall even with 5X coverage.

34 **Conclusions:** Taken together, with sufficient sequencing coverage, assembly-based strategy is
35 able to detect SVs more consistently than read-based strategy under different settings. However,
36 read-based strategy could detect SVs at complex regions with high sensitivity and specificity but
37 low coverage, thereby suggesting its great potential in clinical application.

38

39

40 **Background**

41 Structural variants (SVs) comprise different subclasses, such as deletions, insertions, etc, are
42 playing important roles in both healthy and disease genomes. To date, researchers have made great
43 progress in discovering and genotyping SVs in diverse populations with short-read data, but SVs
44 at repetitive regions remain challenging due to limited read length [1]. Even in non-repetitive
45 regions, SVs such as insertions are missed by approaches relying solely on short-reads [2]. Single-
46 molecule sequencing (SMS) technologies, such as Pacific Bioscience (PacBio) and Oxford
47 Nanopore Technology (ONT), have emerged as superior to short-read sequencing for SV detection
48 and thus revealing a number of novel functional impact of SVs missed by short-read data [3, 4].
49 Long reads also improved SV detection in genetic diseases [5-7] and cancers [8-14] where SVs
50 are usually undetectable or misinterpreted by short-read, such as the ONT data reveals 10,000bp
51 Alzheimer's disease associated *ABCA7* Variable Number Tandem Repeats (VNTR) expansion that
52 are missed by short-read data [15]. The outstanding detection performance and the great demand
53 of long-read based applications raises a problem of selecting proper strategy for SV detection. For
54 example, the Chinese [16] and Icelander [17] cohort studies detect SVs directly from reads
55 alignment. Another clinical study showed a likely pathogenic SV can be identified from reads
56 eight hours after enrollment, while similar results were received two weeks using traditional
57 diagnose approaches [18]. Instead of detecting directly from reads, the advances in assembly
58 methods promote SV detection from haplotype-aware assemblies, such as the study conducted by
59 Human Genome Structural Variation (HGSV) consortia, revealed 107,590 SVs with HiFi
60 assemblies, of which 68% are not discovered by short-read sequencing [3, 19].

61 Currently, almost all long-read based studies use either read-based strategy (i.e., detecting directly
62 from read alignment) or assembly-based strategy (i.e., detecting from alignments of de novo
63 assemblies) for SV detection. The assembly-based strategy requires an extra step for haplotype-
64 aware assembly, but the following steps of the two strategies are similar and usually contains two
65 parts. Firstly, the variant signatures are identified and gathered from two types of aberrant
66 alignments: intra-read and inter-read. Intra-read alignments are derived from reads spanning the
67 entire SV locus, resulting deletion and insertion signatures. Inter-read alignments are usually
68 obtained from the supplementary alignments and SV signatures could be identified from
69 inconsistencies in orientation, location and size during mapping, from which translocation as well

70 as large deletion, duplication and inversion signatures are identified. Secondly, callers typically
71 cluster and merge similar signatures from multiple aberrant alignments, delineating proximal
72 signatures that support putative SV. Nearly all read-based callers developed in the past five years,
73 such as Sniffles [20], pbsv, cuteSV [21], SVIM [22], NanoVar [23], NanoSV [24], and Picky [9],
74 detect SVs through combinations of signatures obtained from inter-read and intra-read alignments
75 but differ in their signature clustering heuristics. While different from the above methods, SVision
76 applied a deep-learning approach to directly recognize different SV types from the variant
77 signature sequences. As for assembly-based callers, such as Phased Assembly Variant (PAV) and
78 SVIM-ASM [22] use the alignment of whole genome assembly as input, from which aberrant
79 inter-contig and intra-contig alignments are collected and used for SV detection. Most importantly,
80 accumulating studies have claimed that the assembly-based detection strategy is able to
81 comprehensively detect SVs and characterize non-templated insertions [1, 3, 19]. Though a number
82 of studies have demonstrated the advances of using long-read toward short-read data, it lacks
83 systematic comparison of read-based and assembly-based strategy. Therefore, to help users, it is
84 important to quantitatively assess and compare the stability and usability of the two strategies,
85 especially for SVs at complex genomic regions. Moreover, the potential weakness of different
86 strategies needs to be investigated, so that new developments in the field could focus on improving
87 current methods.

88 In this study, a widely-used benchmark material, HG002 genome, was selected to compare and
89 benchmark the two strategies. Moreover, according to methods reviewed by a recent study [25],
90 we selected four read aligners, two assemblers for HiFi datasets, two assemblers for ONT datasets,
91 one contig aligner, one phasing algorithm, five read-based callers and two assembly-based callers
(Methods). We then evaluated the impact of detection settings (i.e., aligners and assemblers) and
93 sequencing settings (i.e., read length, sequencer and coverage) on both strategies. Briefly, the
94 impact of sequencing settings was first assessed for each strategy across all datasets based on
95 datasets concordant and unique SVs, and the detection and sequencing settings affected strategy
96 concordant SVs were further assessed (**Fig. 1a**). Additionally, the impact of detection settings on
97 each strategy were examined on each dataset based on aligner concordant and assembler
98 concordant SVs (**Fig. 1b**). For concordant SVs, we also assessed their breakpoint difference, where
99 the breakpoint standard deviation (BSD) smaller than 10bp were classified as breakpoint
100 accurately reproduced concordant SVs (**Fig. 1c**). Furthermore, for both strategies, their recall and

101 precision of detecting well curated SVs, especially those at challenging medically relevant
102 autosomal genes (CMRG), were assessed and cross-compared under different sequencing settings.

103 **Results**

104 **Impact of sequencing settings on each strategy**

105 We totally generated 120 read-based callsets and 24 assembly-based callsets, while SVs at
106 centromere and low mapping quality regions were excluded in the analysis (**Method**). Overall,
107 assembly-based and read-based strategy detected a median of 20,827 and 23,611 SVs from HiFi
108 datasets, respectively, while more SVs were detected from ONT datasets, i.e., a median of 22,009
109 for read-based and 29,162 for assembly-based (**Fig. 2a**). As expected, the SV size peaks for both
110 strategies were observed at 300bp and 6,000bp, indicating SINE and LINE, respectively
111 (**Supplementary Fig. 1a**). Moreover, the majority of the SVs (75%) were located at repetitive
112 regions without sequencing platform bias, while two strategies differed at Simple Repeats regions
113 consisted of either VNTR or short tandem repeats (STR) (**Fig. 2b**). As for SV types, assembly-
114 based strategy detected more insertions than read-based callers due to longer sequence length (**Fig.**
115 **2c**). While read-based caller SVision detected comparable percentage of insertions as assembly-
116 based strategy when detected from minimap2 or winnowmap aligned ONT reads (**Fig. 2c**). On the
117 contrary, pbsv paired with ngmlr resulted in the fewest percentage of insertions among all six
118 datasets (**Fig. 2c**). Additionally, different from assembly-based strategy, read-based callers also
119 identified other SV types, such as duplication and even complex types (**Supplementary Fig. 1b**).

120 For each strategy, we further assessed the number and breakpoint of dataset concordant SVs. On
121 average, detecting from HiFi reads, 75% and 80% of the dataset concordant SVs were identified
122 for read-based and assembly-based strategy, respectively. However, the average dataset
123 concordant SV rate of read-based strategy was higher than assembly-based strategy on ONT
124 datasets, suggesting that read-based strategy was more versatile to different datasets (**Fig. 2d**,
125 **Supplementary Fig. 1c**). Moreover, large variance of concordant SVs rate observed in ONT
126 datasets suggested a great assembler bias, i.e., the average dataset concordant SV rate was 26%
127 for shasta and it was 45% lower than detecting from assemblies created by flye (**Fig. 2e**).
128 Comparably, as a critical setting for read-based strategy, the percentage of reproducible SVs
129 detected from ONT reads was less affected by aligners when compared to assemblers did on
130 assembly-based callers, i.e., the average dataset concordant SV rate for each aligner ranged from

131 50% to 75% (**Fig. 2e**). Furthermore, the average percentage of breakpoint accurately reproduced
132 SV (i.e., BSD smaller than 10bp, BSD-10) on HiFi datasets was around 20% higher than that of
133 ONT datasets (**Fig. 2f, Supplementary Fig. 1d**). For breakpoint inaccurately reproduced SVs, 65%
134 (HiFi datasets) and 50% (ONT datasets) of them overlapped with simple repeat regions, while 5%
135 of these SVs detected from ONT reads were found at segment duplication regions for both
136 strategies (**Supplementary Fig. 1e**). We further investigated the impact of genomic regions on
137 breakpoint accuracy and found that assembly-based strategy was able to detect more BSD-0 (i.e.,
138 BSD equals 0bp) SVs than read-based strategy, especially at simple repeat regions
139 (**Supplementary Fig. 2**). The above results showed that both strategies might overcall on ONT
140 datasets and large variance of SVs at simple repeat regions was observed in read-based callsets.
141 Though both strategies were able to detect SVs consistently from HiFi reads in terms of the
142 concordant SV rate and their breakpoint consistency, the breakpoint of assembly-based calls were
143 more accurate than read-based ones.

144 **Impact of aligners and assemblers on reproducible SVs for each strategy**

145 Next, we examined the impact of detection settings (i.e., aligner for read-based and assembler for
146 assembly-based) on each strategy (**Method**). For read-based strategy, around 50% of the SVs were
147 detectable from all four aligners mapped reads, referring to as aligner concordant calls, while 30%
148 of the SVs were only detected from one of the aligners and considered as aligner unique calls (**Fig.**
149 **3a, Supplementary Fig. 3-4**). The majority (80%) of the aligner concordant calls were found to
150 be BSD-10 on both HiFi and ONT datasets (**Fig. 3b**). Notably, for pbsv, 75% of the aligner
151 concordant calls' breakpoints were BSD-0, which was 60% higher than other read-based callers,
152 indicating that pbsv detected SV breakpoints were less affected by aligners than others, especially
153 on HiFi datasets (**Fig. 3b**). As for assembly-based callers, 75% and 50% of the SVs were detectable
154 from HiFi and ONT assemblies generated by two assemblers, respectively, and we termed these
155 SVs as assembler concordant SVs (**Fig. 3c, Supplementary Fig. 5**). Remarkably, calling from
156 HiFi reads, BSD-0 SVs took 98% of the assembler concordant SVs (**Fig. 3d**), which was 13%
157 higher than pbsv and much higher than other read-base callers (**Fig. 3b**). Though the percentage
158 of BSD-0 SVs detected from ONT assemblies was not comparable to HiFi assemblies, i.e., 60%
159 for ONT and 98% for HiFi, assembly-based strategy was less affected by assemblers than that of
160 aligners on read-based strategy. Moreover, we noticed that the percentage of BSD-0 aligner and

161 assembler concordant SVs increased as the read length increasing (**Fig. 3b, Fig. 3d**). This might
162 due to the Guppy version used for ONT base calling (**Supplementary Table S1**).
163 In addition, most of aligner or assembler unique SVs were located at Simple Repeat regions
164 (**Supplementary Fig. 6a**). Using these uniquely detected SVs, we were able to investigate the
165 impact of aligners and assemblers on the SV size and types. For aligner unique SVs, a median of
166 2,151 SVs and 2,677 SVs were found in HiFi and ONT datasets, respectively (**Supplementary**
167 **Fig. 6b**). However, 2.5 times more SVs, ranging from 100bp to 1,000bp, were uniquely detected
168 from ngmlr aligned reads without platform bias (**Fig. 3e**). Moreover, a significant peak at 300bp
169 was only observed for SVs detected from ngmlr aligned reads (**Fig. 3e**). In terms of SV types,
170 around 17%, 39%, 38% and 33% of the unique calls were deletions detected from ngmlr, minimap2,
171 lra and winnowmap alignments, respectively (**Fig. 3f**). Besides the bias for deletions, 37% of the
172 ngmlr unique calls were duplications and it was around 30% higher than the average of other
173 aligners. Additionally, the percentage of ngmlr unique insertions was 23%, but the average
174 percentage was 46% for other aligners, suggesting that ngmlr preferred to generate duplication like
175 alignment signature for read-based callers (**Fig. 3f**). We reasoned that this aligner bias was largely
176 due to the mapping strategy adopted by ngmlr, where it splits read into non-overlapping 256bp
177 sub-reads and maps them independently of each other [20]. Thus, a size peak was observed close
178 to 300bp and insertions could be aligned as duplications where two sub-reads overlapped on
179 reference genome. For assembly-based strategy, a median of 2,482 SVs and 7,976 SVs were
180 identified from HiFi and ONT assemblies, respectively (**Supplementary Fig. 6c**). The size of SVs
181 detected from hifiasm assembled HiFi contigs was enriched at 300bp, and most of SVs detected
182 from shasta created ONT assemblies ranged from 50bp to 300bp (**Supplementary Fig. 6d**). We
183 only observed the insertion bias among the assembler unique SVs, where around 78% of shasta
184 unique SVs were insertions and most of these insertions were smaller than 300bp (**Supplementary**
185 **Fig. 6e**). Taken together, the above results suggested that read-based calls, including their
186 breakpoints, types and sizes, were greatly affected by aligners, while up to 80% of the SVs,
187 consisting of 98% BSD-0 SVs, were detectable from HiFi assemblies created by different
188 assemblers.

189 **Impact of different settings on the reproducible SVs between strategies**

190 The above analysis on each strategy suggested that read-based strategy was more versatile to
191 different sequencing settings when reads mapped by the same aligner, while assembly-based
192 strategy was less affected by assembler and its breakpoint was more accurate than read-based
193 strategy on HiFi datasets. We then want to examine the impact of detection and sequencing settings
194 on the reproducible SVs between strategies. In general, SVs were compared at whole genome scale
195 and at 12,745 true insertions/deletions (INS/DEL) regions identified by GIAB [26]. Considering
196 the number of used aligners, assemblers and callers, we obtained 128 merged sets of nonredundant
197 SVs between strategies among six datasets. For the merged SV callsets, a median of 28,630 and
198 35,701 SVs at whole genome scale were identified, and a median of 14,141 and 15,840 SVs at true
199 INS/DEL regions were identified from HiFi and ONT datasets, respectively (**Fig. 4a**). The
200 unexpected large number of nonredundant SVs from ONT datasets were mainly contributed by
201 merging PAV's and SVision's callsets (**Fig. 4b**).

202 Based on the nonredundant SV sets, we first assessed the impact of pairs of aligner and assembler
203 on the number of concordant SVs between strategies, referring to as strategy concordant SVs. On
204 average, 55% and 45% of the SVs at whole genome scale were strategy concordant SVs when
205 detected with HiFi and ONT reads, respectively, and strategy concordant SVs took around 80%
206 (HiFi datasets) and 70% (ONT datasets) of the SVs at true INS/DEL regions (**Fig. 4c**,
207 **Supplementary Fig. 7a**). Remarkably, the highest concordant rate was 89% for SVs at true
208 INS/DEL regions and 72% for SVs at whole genome scale, which was around 20% higher than
209 SVs detected from ONT datasets (**Fig. 4c**). Moreover, using HiFi reads, we observed minor effect
210 of assemblers on the average concordant SV rate but large variance caused by aligners. In
211 particular, the concordant rate from highest to lowest was achieved by pairing with minimap2,
212 winnowmap, lra and ngmlr without assembler bias (**Fig. 4c**), indicating the sequence alignment
213 strategies of ngmlr and minimap2 were significantly different. Additionally, at whole genome
214 scale, we observed a positive correlation between read length and strategy concordant SV rate on
215 both HiFi and ONT datasets (**Fig. 4d**), and this correlation was expected because assemblers
216 essentially created longer DNA sequences which equals to the usage of longer reads for SV
217 detection. Afterwards, we examined the breakpoint consistency of strategy concordant insertions
218 and deletions (INS/DEL), which dominated the discoveries of both strategies. On average, 77%
219 and 74% of the concordant insertions and deletions were BSD-10 events when detected from HiFi
220 and ONT dataset, respectively (**Fig. 4e**). However, we observed great platform bias for BSD-0

221 INS/DEL, where 38% of the insertions and 45% of the deletions were BSD-0 in HiFi callsets and
222 it was around 20% higher than the percentage of BSD-0 INS/DEL detected with ONT reads (**Fig.**
223 **4e**). Furthermore, for breakpoint inaccurately reproduced SVs, 50% of the insertions and 83% of
224 the deletions were found at simple repeat regions (**Supplementary Fig. 7b**).

225 To further understand the impact of assembler and aligner on the BSD-10 INS/DEL, we used BSD-
226 10 INS/DEL detected from HiFi-18kb dataset because the highest concordant SV rate was
227 observed on this dataset (**Fig. 4d**). Overall, detecting from minimap2 aligned reads, two strategies
228 were able to detect the highest percentage of BSD-10 INS/DEL without assembler bias, and similar
229 results were observed on winnowmap but significantly differed from ngmlr and lra (**Fig. 4f**).
230 Especially for ngmlr, the highest percentage of BSD-10 INS/DEL was found between pbsv and
231 any assembly-based callers without affecting by assembler (**Fig. 4f**). This was also consistent with
232 our observation of BSD-10 INS/DEL among all datasets, where minimap2 and winnowmap
233 performed similar but outliers were found among conordant SVs detected from ngmlr aligned
234 reads (**Supplementary Fig. 7c**). Therefore, we reasoned that though 70% of the SVs were
235 reproducible by both strategies and it was even 20% higher for SVs at true INS/DEL regions,
236 further optimization of detecting SVs at complex genomic regions, especially tandem repeats, was
237 required for future methods development.

238 **Examining SVs only detected by assembly-based strategy**

239 Recently, several studies had claimed that assembly-based strategy is able to comprehensively
240 detect SVs from an individual genome [3, 19]. Thus, we examined whether assembly only SVs
241 (i.e., SVs only detected by assembly-based strategy but missed by all read-based callers) were also
242 detectable by read-based strategy. Since the above analysis suggested that using longer reads
243 mapped with minimap2 resulted in the fewest number of strategy unique SVs (**Fig. 4d**,
244 **Supplementary Fig. 8a**), HiFi-18kb and ONT-30kb were used to assess the assembly only SVs
245 (**Fig. 5a**). As a result, 4,265 assembly only SVs (1,630 and 2,635 SVs from HiFi and ONT datasets,
246 respectively), consisting of 2,800 insertions and 1,465 deletions, were identified from HiFi-18kb
247 and ONT-30kb datasets and most of them were heterozygous SVs (**Supplementary Fig. 8b**).
248 Moreover, 77% of the assembly only SVs (74% on ONT and 81% on HiFi) overlapped with Simple
249 Repeats, but around 25% of the SVs detected from ONT assemblies were found at Segment Dup
250 regions (**Supplementary Fig. 8c**).

251 To examine whether 4,265 assembly only SVs were detectable from read alignments, we first
252 noticed that most of these SVs were located at high mapping quality regions (average read mapping
253 quality ≥ 20) (**Fig. 5b**, **Supplementary Fig. 8d**). Afterwards, we found that 64% (1,056 out of
254 1,630) and 51% (1,345 out of 2,635) of the assembly only SVs contain at least five HiFi and ONT
255 SV signature reads identified from minimap2 alignments, respectively (**Fig. 5b**). These loci
256 contain SV signature reads but missed by read-callers was mainly due to the large signature start
257 position standard deviation, making them difficult to cluster for a valid call (**Fig. 5c**). Moreover,
258 most of the average signature SV size ranged from 100bp to 1,000bp, which was not consistent
259 with the size distribution of assembly only SVs at high mapping quality regions, especially for
260 SVs smaller than 100bp (**Fig. 5c**). Therefore, even these assembly only SVs were reported by read-
261 based callers, they were hard to match one event in assembly only SVs due to the breakpoint
262 difference and size similarity. For those SV loci without enough SV signature reads, 65% (HiFi
263 dataset) and 48% (ONT dataset) of the assembly unique calls overlapped with Simple Repeats (**Fig.**
264 **5d**). Additionally, on ONT dataset, 41% of the SVs without signature reads, consisting of 261
265 insertions and 182 deletions, overlapped with segmental duplications, which was six times than
266 that on HiFi dataset (**Fig. 5d**). For example, an insertion of length 2,474bp (chr4:144,924,382-
267 144,926,856) was detected from ONT assemblies at gene *GYPB* but no SV signatures found in
268 HiFi read alignment and HiFi assembly alignment (**Fig. 5e**). Further investigation shows that gene
269 *GYPB* had 97% sequence homology with *GYPA*, thereby leading to false discovery originated from
270 assembly error (**Fig. 5f**). We also found an incorrect deletion of length 981bp at gene *SMPD4*
271 without evident SV signature observed in HiFi reads and assemblies (**Supplementary Fig. 8e**).
272 This gene was usually activated by DNA damage, cellular stress and tumor necrosis factor[27],
273 and SVs associated with this gene had been identified in developmental disorder [28]. Therefore,
274 we reasoned that read-based orthogonal validation is important and necessary to screen potential
275 false discoveries from assembly-based calls, especially for clinical applications.

276 **Benchmarking strategies with SVs at complex genomic regions**

277 The above analysis revealed that complex genomic regions, especially tandem repeat regions were
278 hotspots for discordant SVs. To further assess SV detection performance, we used well curated
279 HG002 SV at true INS/DEL regions and 203 SVs on CMRGs to evaluate two strategies, where
280 SVs at true INS/DEL regions and CMRGs enabled the evaluation of SV detection at simple and
281 complex genomic regions, respectively.

282 For the true INS/DEL regions, the highest recall was 97%, achieving by assembly-based strategy
283 on both HiFi and ONT datasets, while the highest precision was achieved by read-based callers
284 (**Fig. 6a**). Moreover, we noticed that the recall was positively correlated with read length for both
285 strategies on HiFi and ONT datasets, but both strategies showed large precision variance on ONT
286 datasets, especially for assembly-based strategy (**Fig. 6a**). As for SVs on CMRGs, assembly-based
287 strategy outperformed the read-based strategy (**Fig. 6b**). Specifically, the highest recall of
288 assembly-based strategy was 96%, and it was 7% higher than the highest one achieved by read-
289 based strategy (**Fig. 6b**). Most importantly, we only noticed the positive correlation between recall
290 and read length for assembly-based strategy without dataset preference (**Fig. 6b**). Furthermore, we
291 investigated the false negative discoveries (i.e., missed benchmark SV) that affect recall of each
292 strategy. As a result, 71% (54/76, HiFi) and 58% of (56/96, ONT) SVs detected by read-based
293 strategy were false negative in three datasets, and these SVs were termed as datasets negatives,
294 while the percentage of dataset negatives was 53% (26/49, HiFi) and 32% (25/77, ONT) for
295 assembly-based strategy (**Fig. 6c, Supplementary Fig. 9a**). Similar to the above analysis, 63% of
296 the false positive SVs (i.e., novel SVs detected by caller) detected by read-based strategy were
297 concordant SVs among three HiFi datasets, i.e., referring to as datasets positives, which was 40%
298 higher than assembly-based strategy on HiFi datasets (**Fig. 6c, Supplementary Fig. 9b**). The low
299 of assembly-based strategy was due to the large number of false positive SVs detected from ONT-
300 9kb dataset, i.e., 235 false positive SVs that were not found in dataset ONT-19kb and ONT-30kb
301 (**Supplementary Fig. 9b**). We next compared the datasets negative and datasets positive SVs
302 between two strategies, where two strategies tend to detected more concordant false negatives but
303 false positives were often found to be strategy specifics (**Fig. 6d**).

304 Additionally, CMRGs are well documented across multiple diseases but often excluded from
305 standard targeted or whole-genome sequencing analysis [26], enabling the evaluation for potential
306 clinical application. The above analysis used the 35X coverage datasets, requiring around \$7,000
307 and \$3,000 for generating the HiFi and ONT reads, respectively, which was not applicable to
308 clinical settings due to the high sequencing cost. Therefore, we subsampled the 35X coverage
309 datasets to 5X, 10X and 20X coverage and examined the performance of each strategy. Overall,
310 read-based strategy outperformed assembly-based strategy on both HiFi and ONT datasets when
311 the coverage was below 20X (**Fig. 6e**). Remarkably, read-based strategy was sensitive when
312 detected with 5X ultra-low coverage data, i.e., the average recall of read-based strategy was 78%

313 for both datasets, and SVision and cuteSV achieved the highest recall and precision at such low
314 coverage (**Supplementary Fig. 9c**). Moreover, the recall and precision of merged read-based
315 callsets was slightly improved comparing to single caller while using 5X coverage data (**Fig. 6f**),
316 which was consistent with other studies. At such low coverage, the average recall of assembly-
317 based strategy was around 48% and 26% on HiFi-18kb and ONT-30kb dataset, respectively (**Fig.**
318 **6e**). Further investigation revealed that the low recall on ONT-30kb dataset was caused by
319 assemblers, of which, the recall of calling SV from flye and shasta was 52% and 10%, respectively.
320 However, such recall bias caused by assemblers on ONT dataset was not observed when detected
321 from data of sufficient coverage, i.e., more than 20X (**Supplementary Fig. 9d**). The above results
322 suggested that assembly-based strategy required at least 20X coverage data to achieve high recall
323 and precision, but read-based strategy was able to achieve higher recall and precision with ultra-
324 low coverage data, making it applicable to clinical screening.

325 **Discussion**

326 Ongoing significant technology improvements have paved the way to apply long-read sequencing
327 to population-scale sequencing projects and even for rapid genetic diagnoses, while the selection
328 of proper SV detection strategy remains unclear. In this study, we compared and investigated the
329 impact of factors that influenced the most widely-used read-based and assembly-based SV
330 detection strategies. This is an important step towards the in-depth understanding of the usability
331 and stability of each strategy in detecting SVs at genomic regions of different complexity as well
332 as their potential application in clinical diagnosis.

333 For each strategy, we were able to identify the source of variability among different sequencing
334 settings based on six long-read datasets. Our results showed that read-based strategy was versatile
335 to different sequencing platforms once identical aligner was used, but applying assembly-based
336 strategy on ONT datasets was greatly affected by assembler when compared to HiFi datasets.
337 Notably, calling from HiFi assemblies, around 90% of the SVs could be reproduced among
338 different datasets and it was slightly affected by assembler. Though flye was not comparable with
339 hifiasm, it was flexible to both HiFi and ONT datasets and averagely 75% of the SVs were
340 reproduced. Additionally, assembly-based strategy was able to identify more consistent breakpoint
341 than read-based strategy for concordant SVs. We further investigated the impact of aligners and
342 assemblers on each strategy. In terms of the number of reproducible SVs and their breakpoint

343 consistency, SVs detected by assembly-based strategy were less affected by the usage of
344 assemblers on HiFi datasets. On the contrary, concordant SV numbers, breakpoints and types of
345 read-based callers were greatly affected by aligners, especially for ngmlr. Furthermore, we found
346 that 70% of the whole genome scale SVs and 90% of the true INS/DEL region SVs were able to
347 be detected by both strategies when proper assembler and aligner were paired. Most importantly,
348 our results revealed a positive correlation between concordant SV rate and read length,
349 incorporating with the recent achievements in generating reads of 4Mbp and longer [29], the
350 percentage of reproducible is expected to be even higher. Furthermore, once considering assembly-
351 based calls as a comprehensive callset, our analysis revealed that 66% and 52% of the assembly-
352 based strategy uniquely detected SVs were detectable with read-based strategy on HiFi and ONT
353 datasets, respectively, while they were missed because of the clustering issues caused by the
354 signature ambiguity. This observation provided an important hint for future detection algorithm
355 development.

356 The above comparison results provided supportive evidence of the strength and weakness of each
357 strategy as well as the hotspots for discordant SVs. Accordingly, using well curated SVs at
358 genomic regions of different complexity, we assessed the recall and precision of each strategy with
359 different dataset settings. As a result, with sufficient sequencing coverage (at least 20X), assembly-
360 based strategy outperformed read-based strategy for detecting SVs at true INS/DEL regions,
361 especially for SVs at CMRGs. However, 20X coverage long-reads data is still not applicable to
362 clinical applications due to the high sequencing cost. Further analysis with ultra-low coverage data
363 (5X) revealed that read-based strategy is able to robustly detect SVs in challenging genes, where
364 the sensitivity was even 30% higher than assembly-based strategy. Additionally, for low-coverage
365 HiFi and ONT data, merging SVs from different callers slightly increased the sensitivity
366 comparing to single callers, such as SVision and cuteSV, suggesting SV merge was no longer
367 necessary for long-read based SV detection.

368 Moreover, our analysis showed that SVs at tandem repeat regions are the most challenging ones
369 to detect consistently by two strategies, suggesting the demand of developing novel methods and
370 data structures for resolving these SVs. These SVs are difficult to reproduce because calling from
371 both read and assembly alignment can have systematic issues with misrepresented highly
372 polymorphic loci in the linear reference genome, which only represent one allele and thus, do not
373 incorporate repeat polymorphisms of a population [25]. To solve this issue, pan-genome reference,

374 combing genomes from multiple individuals of a species, has been proposed improve SV detection
375 at polymorphic regions as well as genotyping SVs using short-read data. Though graph methods
376 offer great opportunity to solve bias for SV detection, these methods are still less straight-forward
377 in practice then the use of linear reference genome. Moreover, it lacks evidence of how these
378 graph-based methods generalize to clinical applications.

379 To the best of our knowledge, this was the first study of comparing the two representative long-
380 read based SV detection strategies. Our analysis, from general-purpose detection to specific
381 application, revealed the usability of each strategy, offering insights of selecting proper detection
382 and sequencing settings for long-read projects. However, the evaluation is limited to diploid
383 genomes and autosomal diseases, while the performance of two strategies on cancers, affecting by
384 purity, heterogeneity and aneuploidy, requires further investigation.

385 **Conclusion**

386 SV detection is an essential step for population genetics and clinical diagnosis. While a number of
387 long-read based studies for both healthy and disease genomes had revealed the prominent
388 performance of using read-based strategy and assembly-based strategy for SV detection, their
389 strength and weakness toward different settings is yet to be assessed. In this study, systematic
390 analysis of dataset concordant SV and strategy concordant SV revealed the impact of aligners,
391 assemblers, read length and sequencing platforms on the usability and stability of two strategies,
392 including breakpoint consistency and SV types. Afterwards, we have benchmarked each strategy
393 on detecting SVs at genomic regions of different complexity, especially SVs at CMRGs. We
394 expect this work will help users to select proper SV detection settings for different applications
395 and foster future development of SV detection algorithms at complex genomic regions.

396

397 **Methods**

398 **Read mapping and sequence assembly**

399 The three HiFi datasets (i.e., HiFi-10kb, HiFi-15kb and HiFi-18kb) and the three ONT datasets
400 (i.e., ONT-9kb, ONT-19kb, ONT-30kb) are all publicly available. Based on a recent review by
401 Steve S. Ho et. al. [1], aligners containing minimap2, lra, winnowmap and ngmlr were included in
402 our study, and assemblers including hifiasm, flye and shasta were used.

403 First of all, HiFi and ONT reads were mapped to human reference genome hg19 with minimap2
404 (v2.20), lra (v1.3.2), winnowmap (v2.03) and ngmlr (v0.2.7). Parameters used for each mapper
405 were listed below:

- 406 • minimap2: parameters ‘-a -H -k 19 -O 5,56 -E 4,1 -A 2 -B 5 -z 400,50 -r 2000 -g 5000’
407 were applied to align HiFi reads, and ‘-a -z 600,200 -x map-ont’ were used for ONT reads.
- 408 • ngmlr: parameters ‘-x pacbio’ and ‘-x ont’ were used to align HiFi and ONT reads,
409 respectively.
- 410 • winnowmap: parameters ‘-ax map-ont’ and ‘-ax map-pb’ of winnowmap were used to map
411 ONT and HiFi reads, respectively.
- 412 • lra: ‘-CCS’ and ‘-ONT’ were set to map HiFi and ONT reads, respectively. We then applied
413 each read-based caller with default parameters except the minimum number of SV
414 supporting reads. Since the sequencing coverage was around 35X for all datasets, the
415 minimum SV supporting read for each read-based caller was set to five for the detection of
416 both homozygous and heterozygous SVs. For 5X coverage, the minimum SV supporting
417 read for each read-based caller was set to one.

418 For sequence assembly, we use minimap2 aligned reads and phased SNPs released by GIAB to
419 obtain phased reads via whatshap ‘haplotag’ option. Those unphased reads are randomly assigned
420 as either haplotype 1 and haplotype 2, which are also used in further sequence assembly. Given
421 the phased reads, we apply assemblers with default parameters to create the haplotype-aware
422 assemblies.

423 **SV detection and post-processing**

424 To detect SVs, methods were further excluded from the recent review [25] based on several criteria:
425 (1) lack of detailed user manual; (2) no programming interface; (3) reported bias on aligners; (4)

426 unresolved errors during wrapping. In the end, read-based callers including cuteSV (v1.0.10), pbsv
427 (v2.2.2), SVIM (v1.4.0), Sniffles (v1.0.12) and SVision (v1.3.6) were selected and assembly-based
428 callers including Phased Assembly Variant (PAV) and SVIM-asm were selected.

429 Read-based callers were directly applied to reads aligned by minimap2, ngmlr, lra and winnowmap
430 with default parameters. Note that the minimum SV supporting read is set to five so that both
431 homozygous and heterozygous germline SVs can be effectively detected from the 35X coverage
432 datasets. For assembly-based strategy, the phased assemblies were directly used as input for PAV,
433 and we run PAV with default parameters for SV detection. For SVIM-asm, assemblies were first
434 mapped to reference hg19 with minimap2 parameters '`-x asm20 -m 10000 -z 10000,50 -r 50000 -
-end-bonus=100 --secondary=no -O 5,56 -E 4,1 -B 5 -a`', these parameters were used in minimap2
435 embedded in PAV. Then, we run SVIM-asm with parameters '`svim-asm diploid --
tandem_duplications_as_insertions --interspersed_duplications_as_insertions`' for SV detection.

436 For each callsets, a BED file obtained from a publication [30] was used to exclude SVs located at
437 centromere and other low mapping quality regions. SVs overlapped with regions in the BED file
438 were ignored in the downstream analysis. For the rest of the autosome SVs, we then annotated
439 their associated repetitive elements using Tandem Repeat Finder, RepeatMasker and Segmental
440 Duplication results provided by UCSC Genome Browser. The original files downloaded from the
441 genome browser were first processed based on scripts introduced by CAMPHOR [31]. Repeat
442 element associated with each SV is assigned based on a recent publication [32]. In particular,
443 Variable Number Tandem Repeat (VNTR) was assigned if the length of repeat unit longer than
444 7bp, otherwise, we considered it as Short Tandem Repeat (STR). It should be noted that simple
445 repeat annotated by RepeatMasker was also classified into VNTR and STR. For SVs overlapping
446 repetitive element, we require at least 50% of the entire SV length to be composed of the specific
447 repeat type, and we prioritized the highest percentage of overlaps on the entire length of SV when
448 multiple repeat types are annotated. For example, if 70% of an SV was composed of STR and 50%
449 of the SV overlapped by ALU, then STR was assigned correspondingly. Moreover, according to
450 the repetitive elements, we divided the genome into four different regions, i.e., Simple Repeat,
451 Repeat Masked, Segment Dup and Unique. Simple Repeat represented regions of either VNTR or
452 STR. Repeat Masked were those annotated as SINE, LINE, etc, by RepeatMasker. Segment Dup
453 represented regions overlapping with segmental duplications. The rest of the genomic regions
454 outside of Simple Repeat, Repeat Masked and Segment Dup were considered as Unique regions.

455

456

457 **Identification of concordant and unique SVs**

458 According to different comparison purpose, we first obtained the nonredundant SVs of several
459 callsets by running command '*Jasmine file_list=vcf_list.txt out_file=nonredundant_SVs.vcf
460 max_dist=1000 spec_len=50 spec_reads=1*'. Then, using VCF file generated by Jasmine, we were
461 able to identify concordant and unique calls as well as the breakpoint standard deviation of
462 concordant calls. The breakpoint standard deviation was indicated in 'STARTVARIANCE' and
463 'ENDVARIANCE' in the VCF file. The major steps for analyzing SV reproducibility among
464 datasets and strategies were listed as below:

- 465 • Dataset concordant/unique: Each caller was applied to six datasets for SV detection, and a
466 nonredundant SV set was generated via Jasmine accordingly. SVs reproduced in six
467 datasets were indicated by 'SUPP=6', while dataset unique calls were indicated by
468 'SUPP=1'. Moreover, SVs reproduced by at least two datasets were indicated by 'SUPP=2',
469 'SUPP=3', 'SUPP=4', 'SUPP=5' and 'SUPP=6'.
- 470 • Aligner concordant/unique: On each dataset, the reads were aligned with four aligners and
471 SVs were detected subsequently with each caller. For a caller, we merged its four callsets
472 originated from four aligners, from which, aligner concordant SVs were obtained with
473 'SUPP=4' and aligner unique SVs were labeled by 'SUPP=1'.
- 474 • Assembler concordant/unique: On HiFi dataset, the reads were assembled by two
475 assemblers (i.e., hifiasm, flye) and the assemblies were mapped with minimap2. For a
476 caller, we merged its two callsets originated from two assemblers, from which, assembler
477 concordant SVs were obtained with 'SUPP=2' and assembler unique SVs were labeled by
478 'SUPP=1'. Similar process was applied to ONT dataset, but the assemblies were created
479 by flye and shasta.
- 480 • Strategy concordant/unique: On each dataset, we obtained a nonredundant SV set between
481 a read-based caller and an assembly-based caller via Jasmine. Strategy concordant and
482 strategy unique calls were indicated by 'SUPP=2' and 'SUPP=1', respectively.

483 The breakpoint standard deviation of each SV in the merged set was kept in the
484 'STARTVARIANCE' column, and the values were directly used to analyze the breakpoint
485 consistency of concordant SVs.

486 **Read alignment analysis for strategy unique calls**

487 We applied the following steps to examine whether SVs uniquely detected by assembly-based
488 strategy contain aberrant read alignment, i.e., the abnormal inter-read and intra-read alignments
489 used to detect SVs by read-based callers.

490 • Step1. The assembly-based strategy uniquely detected SVs were classified to three types
491 of regions according to the average read mapping quality (avg_mapq) obtained from
492 minimap2 aligned reads:

- 493 1) No read mapping region (No_reads)
- 494 2) Low mapping quality regions (Low_mapq, avg_mapq < 20)
- 495 3) high confident mapping regions (High_mapq, avg_mapq \geq 20).

496 The average mapping quality threshold 20 was set according to the default minimum read
497 quality used for SV detection.

498 • Step2. The potential SV signature reads of those assembly unique SVs at high confident
499 mapping quality regions were identified. In general, the 'I' and 'D' tags in the CIGAR string,
500 and the primary reads and their supplementary were collected and used to identify deletion
501 (DEL), insertion (INS), inversion (INV) and duplication (DUP) signatures. The total
502 number of reads containing SV signature was referred to signature count. Moreover, we
503 calculated the start position standard deviation and size standard deviation of all signature
504 reads.

505 **Evaluating each strategy with well curated SVs**

506 For 35X coverage datasets HiFi-18kb and ONT-30kb, we down-sample them to 5X, 10X and 20X
507 with SAMtools. Afterwards, each caller is applied to the 5X, 10X and 20X datasets with default
508 parameters except for the number of minimum SV supporting reads, which is set to 1, 2 and 5 for
509 5X, 10X and 20X datasets, respectively. These values are set to enable effective detection of both
510 homozygous and heterozygous germline SVs. The final VCF files are sorted, compressed and
511 indexed for further evaluation. Furthermore, two benchmarks released by GIAB were used to
512 assess both strategies of detecting SVs at true INS/DEL regions and CMRGs. The recall and
513 precision were measured by Truvari with parameters '*-p 0.00 -r 1000 --passonly --giabreport*', but
514 the genotype accuracy was not considered in our evaluation.

515 **Availability of code and data**

516 All related commands, analysis scripts and data download links are available at
517 <https://github.com/jiadong324/CompareStra>.

518 **Ethics approval and consent to participate**

519 Not applicable

520 **Competing interests**

521 The authors declare that they have no competing interests.

522 **Funding**

523 This work is supported by by National Science Foundation of China (32125009 and 3207063)

524 **Author's contributions**

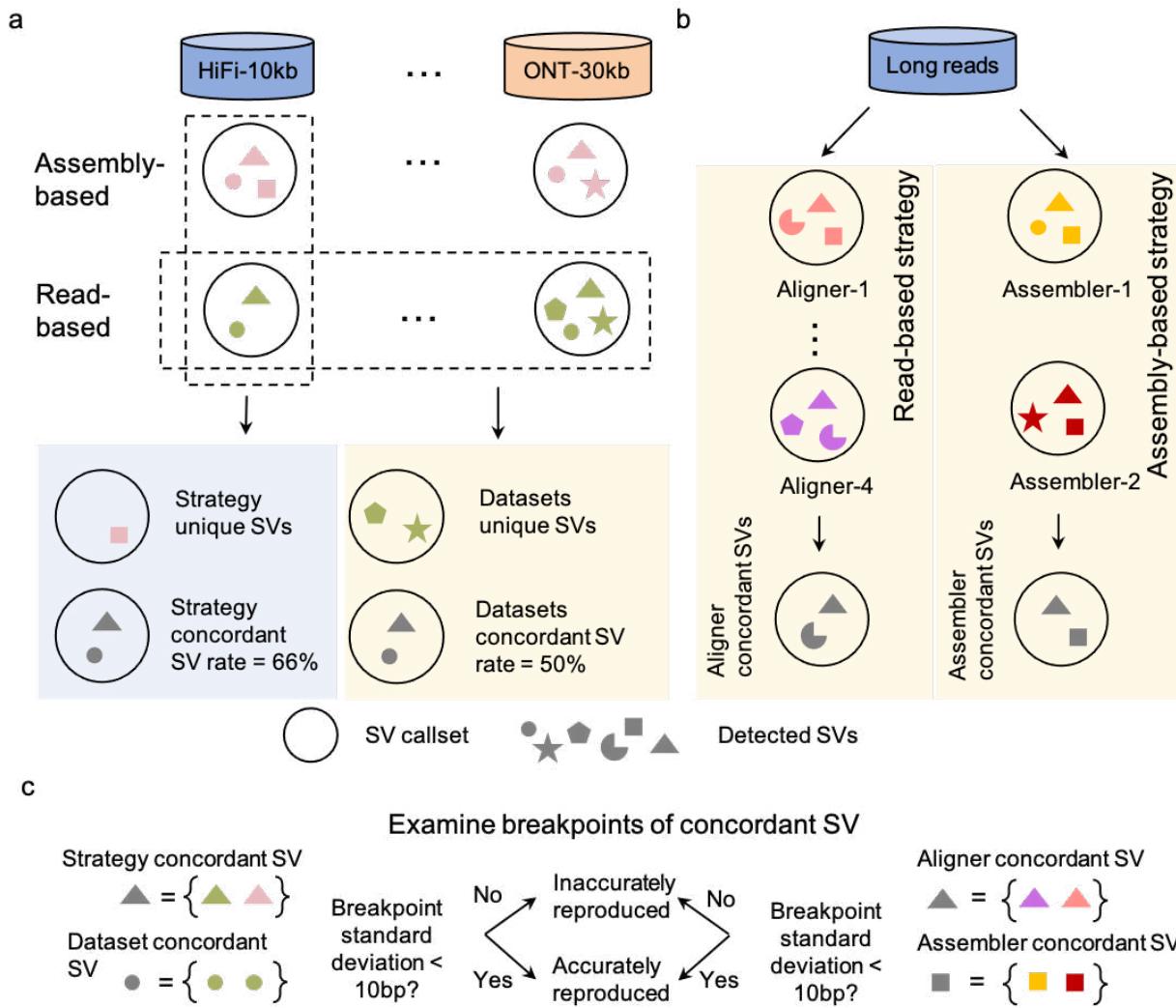
525 KY conceptualized and supervised the study. JL led the data analysis and conducted all
526 performance comparison. SW contributed to structural variant analysis. PJ contributed to the
527 sequence assembly. JL wrote the manuscript with input from all authors. All authors read and
528 approved the final manuscript.

529 **Acknowledgements**

530 The authors thank the comments from colleagues in the lab and those from HGSVC.

531

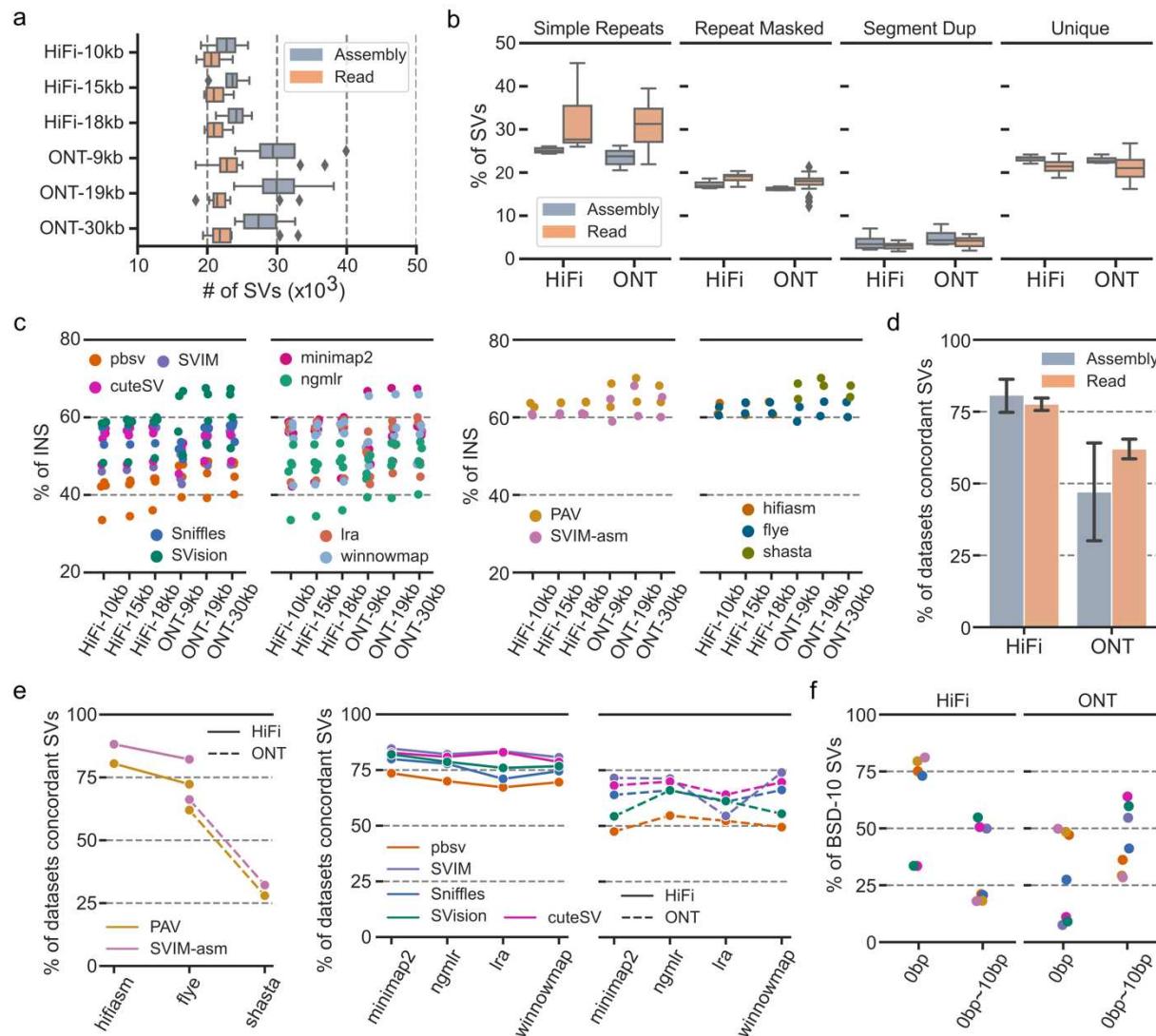
532



533

534 **Fig. 1** Schematic summaries of assessing the impact of different settings on each strategy and
 535 between strategies. **a.** Examining the impact of sequencing settings on each strategy based on
 536 datasets unique and concordant structural variants (SVs). Moreover, the impact of detection
 537 settings on strategy concordant SVs was assessed on each dataset. **b.** For each strategy, the impact
 538 of detection settings, i.e., aligners and assemblers, was assessed on each dataset based on aligner
 539 concordant SVs and assembler concordant SVs. **c.** Examining the breakpoint difference of
 540 concordant SVs, where the breakpoint standard deviation of concordant SVs smaller than 10bp
 541 was classified as breakpoint accurately reproduced SVs, otherwise, it was termed as breakpoint
 542 inaccurately reproduced SVs.

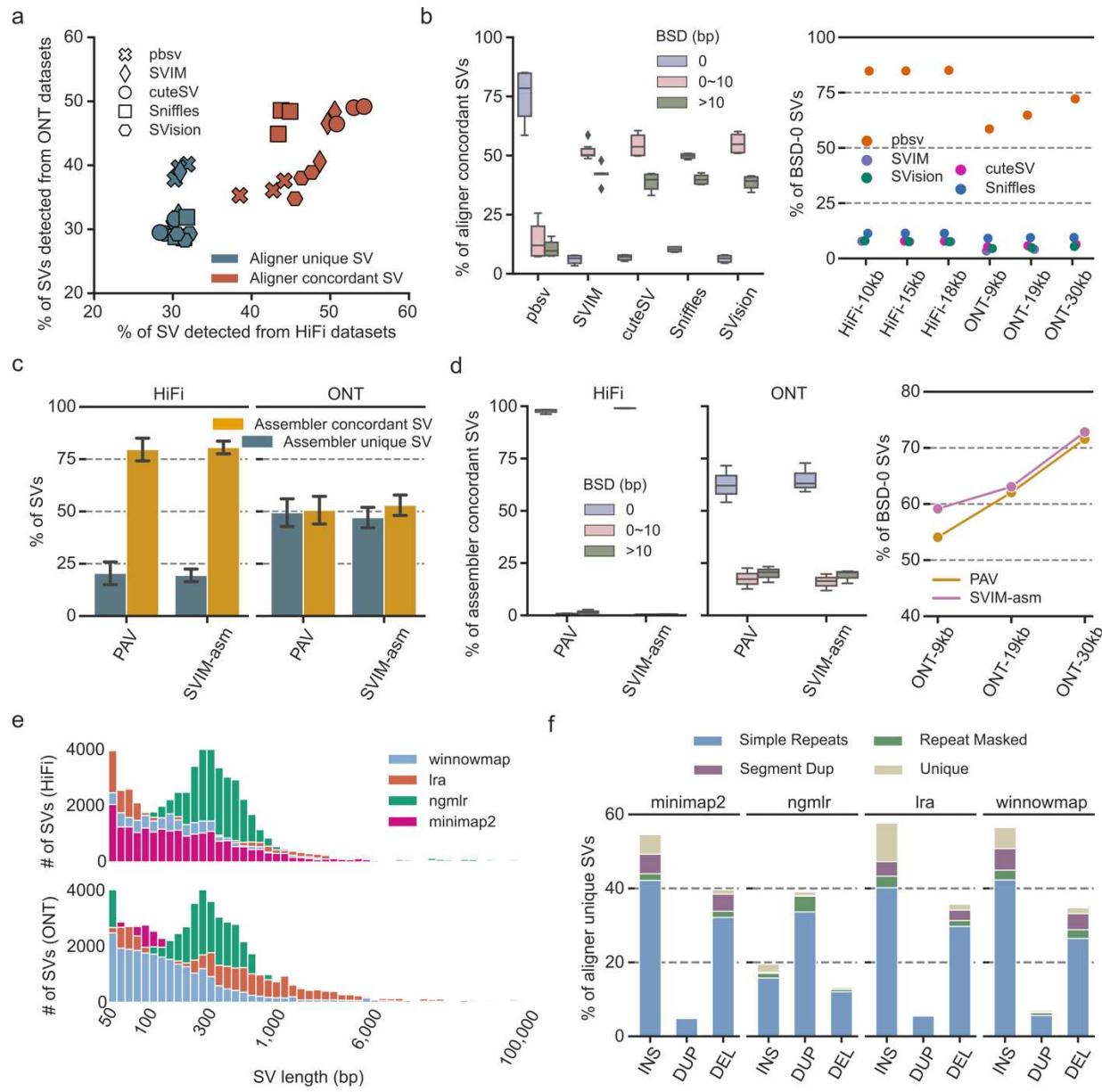
543



544

545 **Fig. 2** Summaries of the impact of sequencing settings on each strategy. **a**. The number of
546 structural variants (SVs) detected by each strategy among datasets. **b**. The distributions of detected
547 SVs among different genomic regions. **c**. The percentage of insertions affected by callers, aligners
548 and assemblers. **d**. The percentage of dataset concordant SVs detected from HiFi and ONT datasets
549 of each strategy. **e**. The percentage of dataset concordant SVs affected by callers, aligners and
550 assemblers on HiFi and ONT datasets. **f**. The percentage of breakpoint accurately reproduced SVs
551 (i.e., BSD-10 SVs) on HiFi and ONT datasets.

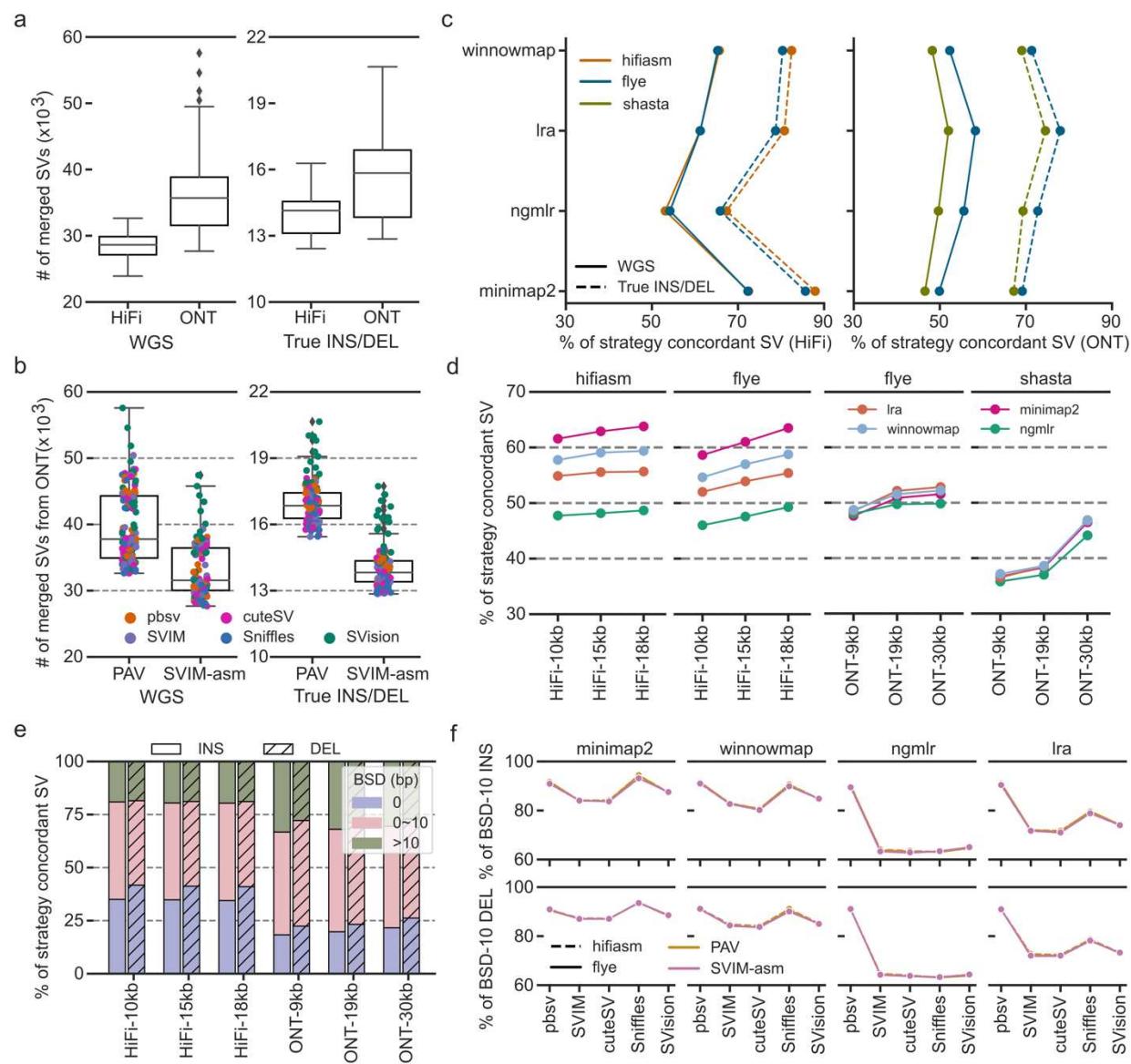
552



553

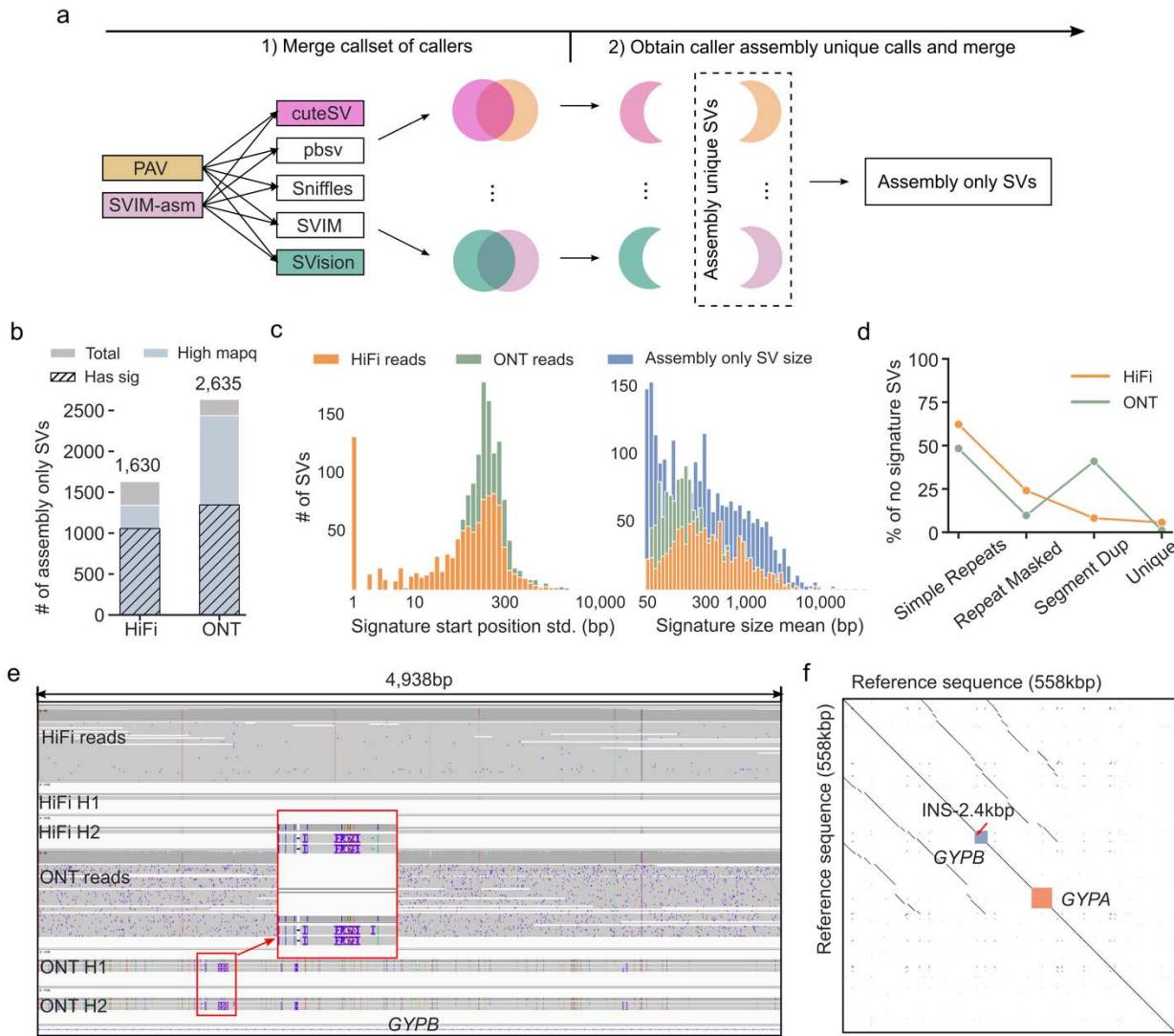
554 **Fig. 3** Summaries of the impact of detection settings on each strategy. **a**. The percentage of aligner
 555 unique and aligner concordant structural variants (SVs) detected from HiFi (x-axis) and ONT (y-
 556 axis) datasets. **b**. The percentage of breakpoint accurately reproduced SVs (i.e., BSD-10 SVs, right
 557 panel) and breakpoint identically reproduced SVs (i.e., BSD-0 SVs, left panel) identified from
 558 read-based callsets. **c**. The percentage of assembler unique and concordant SVs detected from HiFi
 559 and ONT datasets. **d**. The percentage of breakpoint accurately reproduced SVs (i.e., BSD-10 SVs, right panel) and breakpoint identically reproduced SVs (i.e., BSD-0 SVs, left panel) identified
 560 from read-based callsets. **e**. The distribution of SV lengths (bp) for HiFi (top) and ONT (bottom) datasets
 561 detected by four tools: winnowmap, Ira, ngmlr, and minimap2. **f**. The percentage of aligner unique SVs
 562 for different assembly types (Simple Repeats, Segment Dup, Unique, Repeat Masked) across four tools
 563 (minimap2, ngmlr, Ira, winnowmap) for three SV types (INS, DUP, DEL).

561 from assembly-based callsets. **e**. The size distribution of aligner unique SVs. **f**. The SV types
 562 among aligner unique SVs at different genomic regions.



563
 564 **Fig. 4** Summary of impact of detection and sequencing settings on the strategy concordant
 565 structural variants. **a**. The number of structural variants (SVs) in the nonredundant callset merged
 566 from read-based calls and assembly-based calls at whole genome scale (WGS) and true INS/DEL
 567 regions. **b**. The number of structural variants (SVs) in the nonredundant callset merged from read-
 568 based calls and assembly-based calls detected from ONT reads at WGS and true INS/DEL regions.
 569 **c**. The average percentage of strategy concordant SVs affected by assembler and aligner pairs at
 570 WGS and true INS/DEL regions. **d**. The average percentage of strategy concordant SVs on each

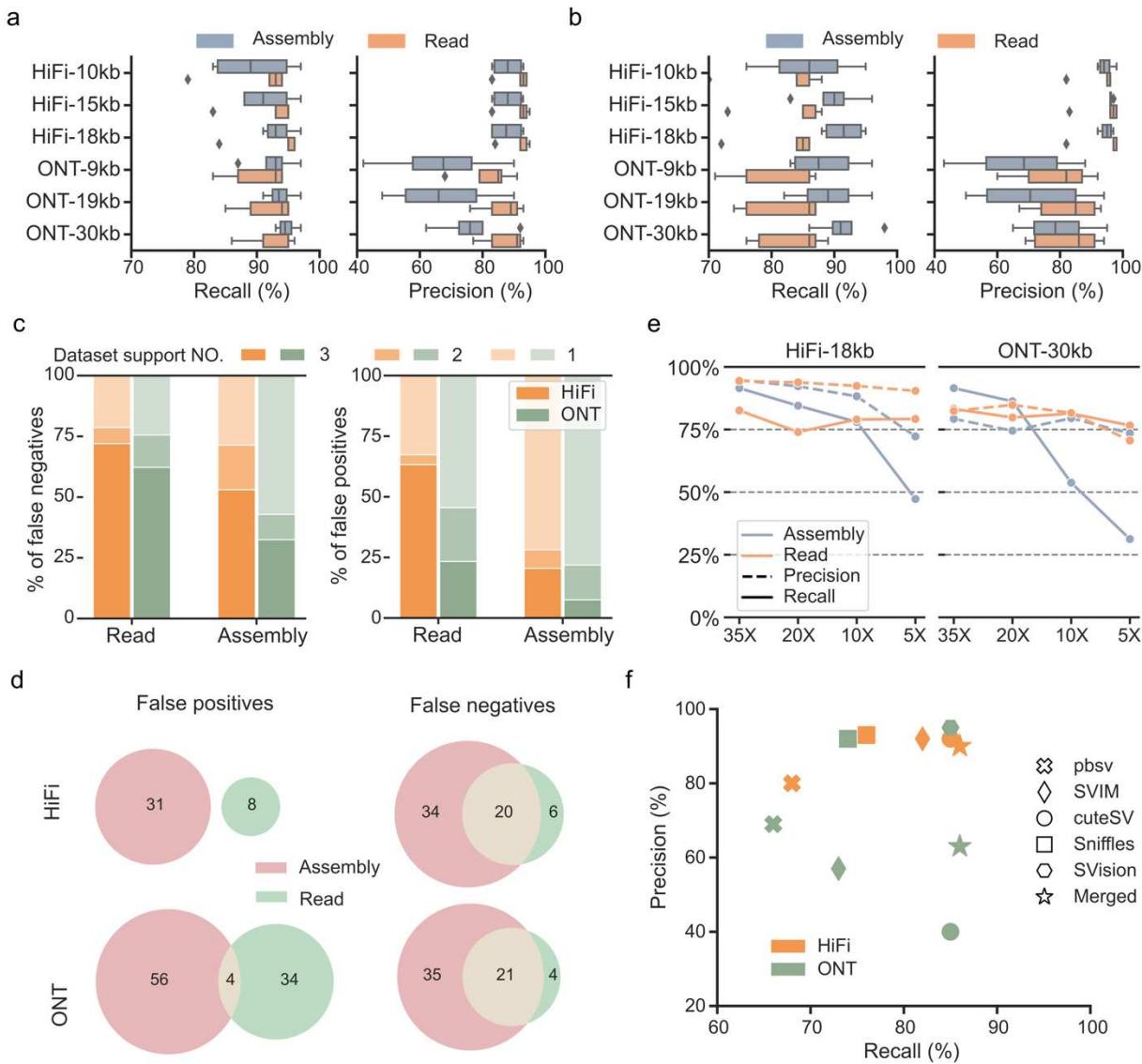
571 dataset. **e**. The percentage of concordant SVs of different breakpoint standard deviation among
 572 datasets. ‘0’, breakpoint standard deviation equals 0bp. ‘0~10’, breakpoint standard deviation large
 573 than 0bp but smaller or equal to 10bp. ‘>10’, breakpoint standard deviation large than 10bp. **f**. The
 574 percentage of breakpoint accurately reproduced SVs (i.e., BSD-10 SVs) affected by aligner,
 575 assembler and callers evaluated on HiFi-18kb dataset.



576

577 **Fig. 5** Examining assembly only structural variants. **a**. The schematic of obtaining assembly only
 578 structural variants (SVs) from assembly unique SVs. **b**. The number of all assembly only SVs,
 579 assembly only SVs at high mapping quality regions and assembly only SV loci containing at least
 580 five SV signature reads. **c**. The SV signature reads start position standard deviation (std) and the
 581 average length of identified signatures. **d**. The genomic region distribution of assembly only SVs

582 without enough SV signature reads (smaller than five). **e**. The IGV alignment view of a 2.4kbp
 583 insertion incorrectly detected from ONT assemblies. **f**. The sequence Dotplot of local genome
 584 containing the insertional breakpoint shown in (e), suggesting this incorrect detection was due to
 585 assembly error caused by segmental duplication formed by two homology genes, *GYPB* and *GYPA*.



586

587 **Fig. 6** Summaries of benchmarking two strategies with well curated structural variants. **a**. The
 588 recall and precision of detecting structural variants (SVs) at true INS/DEL regions. **b**. The recall
 589 and precision of detecting SVs at challenging medically relevant autosomal genes (CMRGs). **c**.
 590 For SVs at CMRGs, percentage of false positive and false negative SVs among HiFi and ONT
 591 datasets, i.e., SVs in three, two and one dataset. **d**. The Venn-diagram of false positive and false
 592 negatives detected by both strategies on HiFi and ONT datasets. **e**. The impact of sequencing

593 coverage on the recall and precision of detecting SVs at CMRGs. **f.** At 5X coverage, the recall and
594 precision of each read-based callers as well as the merged callset.

595

596

597 **References**

- 598 1. Ho SS, Urban AE, Mills RE: **Structural variation in the sequencing era.** *Nat Rev Genet*
599 2020, **21**:171-189.
- 600 2. Zhao X, Collins RL, Lee WP, Weber AM, Jun Y, Zhu Q, Weisburd B, Huang Y, Audano
601 PA, Wang H, et al: **Expectations and blind spots for structural variation detection from**
602 **long-read assemblies and short-read genome sequencing technologies.** *Am J Hum*
603 *Genet* 2021, **108**:919-928.
- 604 3. Chaisson MJP, Sanders AD, Zhao X, Malhotra A, Porubsky D, Rausch T, Gardner EJ,
605 Rodriguez OL, Guo L, Collins RL, et al: **Multi-platform discovery of haplotype-
606 resolved structural variation in human genomes.** *Nat Commun* 2019, **10**:1784.
- 607 4. Kosugi S, Momozawa Y, Liu X, Terao C, Kubo M, Kamatani Y: **Comprehensive
608 evaluation of structural variation detection algorithms for whole genome sequencing.**
609 *Genome Biol* 2019, **20**:117.
- 610 5. Sone J, Mitsuhashi S, Fujita A, Mizuguchi T, Hamanaka K, Mori K, Koike H, Hashiguchi
611 A, Takashima H, Sugiyama H, et al: **Long-read sequencing identifies GGC repeat
612 expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease.**
613 *Nat Genet* 2019, **51**:1215-1221.
- 614 6. Hiatt SM, Lawlor JMJ, Handley LH, Ramaker RC, Rogers BB, Partridge EC, Boston LB,
615 Williams M, Plott CB, Jenkins J, et al: **Long-read genome sequencing for the molecular
616 diagnosis of neurodevelopmental disorders.** *HGG Adv* 2021, **2**.
- 617 7. Pauper M, Kucuk E, Wenger AM, Chakraborty S, Baybayan P, Kwint M, van der Sanden
618 B, Nelen MR, Derkx R, Brunner HG, et al: **Long-read trio sequencing of individuals
619 with unsolved intellectual disability.** *Eur J Hum Genet* 2021, **29**:637-648.
- 620 8. Aganezov S, Goodwin S, Sherman RM, Sedlazeck FJ, Arun G, Bhatia S, Lee I, Kirsche M,
621 Wappel R, Kramer M, et al: **Comprehensive analysis of structural variants in breast
622 cancer genomes using single-molecule sequencing.** *Genome Res* 2020, **30**:1258-1273.

623 9. Gong L, Wong CH, Cheng WC, Tjong H, Menghi F, Ngan CY, Liu ET, Wei CL: **Picky**
624 **comprehensively detects high-resolution structural variants in nanopore long reads.**
625 *Nat Methods* 2018, **15**:455-460.

626 10. Nattestad M, Goodwin S, Ng K, Baslan T, Sedlazeck FJ, Rescheneder P, Garvin T, Fang
627 H, Gurtowski J, Hutton E, et al: **Complex rearrangements and oncogene amplifications**
628 **revealed by long-read DNA and RNA sequencing of a breast cancer cell line.** *Genome*
629 *Res* 2018, **28**:1126-1135.

630 11. Zhou B, Ho SS, Greer SU, Zhu X, Bell JM, Arthur JG, Spies N, Zhang X, Byeon S, Pattni
631 R, et al: **Comprehensive, integrated, and phased whole-genome analysis of the**
632 **primary ENCODE cell line K562.** *Genome Res* 2019, **29**:472-484.

633 12. Sakamoto Y, Xu L, Seki M, Yokoyama TT, Kasahara M, Kashima Y, Ohashi A, Shimada
634 Y, Motoi N, Tsuchihara K, et al: **Long-read sequencing for non-small-cell lung cancer**
635 **genomes.** *Genome Res* 2020, **30**:1243-1257.

636 13. Zhou B, Ho SS, Greer SU, Spies N, Bell JM, Zhang X, Zhu X, Arthur JG, Byeon S, Pattni
637 R, et al: **Haplotype-resolved and integrated genome analysis of the cancer cell line**
638 **HepG2.** *Nucleic Acids Res* 2019, **47**:3846-3861.

639 14. Peneau C, Imbeaud S, La Bella T, Hirsch TZ, Caruso S, Calderaro J, Paradis V, Blanc JF,
640 Letouze E, Nault JC, et al: **Hepatitis B virus integrations promote local and distant**
641 **oncogenic driver alterations in hepatocellular carcinoma.** *Gut* 2021.

642 15. De Roeck A, De Coster W, Bossaerts L, Cacace R, De Pooter T, Van Dongen J, D'Hert S,
643 De Rijk P, Strazisar M, Van Broeckhoven C, Sleegers K: **NanoSatellite: accurate**
644 **characterization of expanded tandem repeat length and sequence through whole**
645 **genome long-read sequencing on PromethION.** *Genome Biol* 2019, **20**:239.

646 16. Wu Z, Jiang Z, Li T, Xie C, Zhao L, Yang J, Ouyang S, Liu Y, Li T, Xie Z: **Structural**
647 **variants in the Chinese population and their impact on phenotypes, diseases and**
648 **population adaptation.** *Nat Commun* 2021, **12**:6501.

649 17. Beyter D, Ingimundardottir H, Oddsson A, Eggertsson HP, Bjornsson E, Jonsson H,
650 Atlason BA, Kristmundsdottir S, Mehringer S, Hardarson MT, et al: **Long-read**

651 **sequencing of 3,622 Icelanders provides insight into the role of structural variants in**
652 **human diseases and other traits.** *Nat Genet* 2021, **53**:779-786.

653 18. Goenka SD, Gorzynski JE, Shafin K, Fisk DG, Pesout T, Jensen TD, Monlong J, Chang
654 PC, Baid G, Bernstein JA, et al: **Accelerated identification of disease-causing variants**
655 **with ultra-rapid nanopore genome sequencing.** *Nat Biotechnol* 2022.

656 19. Ebert P, Audano PA, Zhu Q, Rodriguez-Martin B, Porubsky D, Bonder MJ, Sulovari A,
657 Ebler J, Zhou W, Serra Mari R, et al: **Haplotype-resolved diverse human genomes and**
658 **integrated analysis of structural variation.** *Science* 2021, **372**.

659 20. Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler A, Schatz
660 MC: **Accurate detection of complex structural variations using single-molecule**
661 **sequencing.** *Nat Methods* 2018, **15**:461-468.

662 21. Jiang T, Liu Y, Jiang Y, Li J, Gao Y, Cui Z, Liu Y, Liu B, Wang Y: **Long-read-based**
663 **human genomic structural variation detection with cuteSV.** *Genome Biol* 2020, **21**:189.

664 22. Heller D, Vingron M: **SVIM: structural variant identification using mapped long reads.**
665 *Bioinformatics* 2019, **35**:2907-2915.

666 23. Tham CY, Tirado-Magallanes R, Goh Y, Fullwood MJ, Koh BTH, Wang W, Ng CH, Chng
667 WJ, Thiery A, Tenen DG, Benoukraf T: **NanoVar: accurate characterization of**
668 **patients' genomic structural variants using low-depth nanopore sequencing.** *Genome*
669 *Biol* 2020, **21**:56.

670 24. Cretu Stancu M, van Roosmalen MJ, Renkens I, Nieboer MM, Middelkamp S, de Ligt J,
671 Pregno G, Giachino D, Mandrile G, Espejo Valle-Inclan J, et al: **Mapping and phasing of**
672 **structural variation in patient genomes using nanopore sequencing.** *Nat Commun* 2017,
673 **8**:1326.

674 25. De Coster W, Weissensteiner MH, Sedlazeck FJ: **Towards population-scale long-read**
675 **sequencing.** *Nat Rev Genet* 2021, **22**:572-587.

676 26. Wagner J, Olson ND, Harris L, McDaniel J, Cheng H, Fungtammasan A, Hwang YC,
677 Gupta R, Wenger AM, Rowell WJ, et al: **Curated variation benchmarks for challenging**
678 **medically relevant autosomal genes.** *Nat Biotechnol* 2022, **40**:672-680.

679 27. Corcoran CA, He Q, Ponnusamy S, Ogretmen B, Huang Y, Sheikh MS: **Neutral**
680 **sphingomyelinase-3 is a DNA damage and nongenotoxic stress-regulated gene that is**
681 **deregulated in human malignancies.** *Mol Cancer Res* 2008, **6**:795-807.

682 28. Magini P, Smits DJ, Vandervore L, Schot R, Columbaro M, Kasteleijn E, van der Ent M,
683 Palombo F, Lequin MH, Dremmen M, et al: **Loss of SMPD4 Causes a Developmental**
684 **Disorder Characterized by Microcephaly and Congenital Arthrogryposis.** *Am J Hum*
685 *Genet* 2019, **105**:689-705.

686 29. Payne A, Holmes N, Rakyan V, Loose M: **BulkVis: a graphical viewer for Oxford**
687 **nanopore bulk FAST5 files.** *Bioinformatics* 2019, **35**:2193-2198.

688 30. Zhao X, Emery SB, Myers B, Kidd JM, Mills RE: **Resolving complex structural genomic**
689 **rearrangements using a randomized approach.** *Genome Biol* 2016, **17**:126.

690 31. Fujimoto A, Wong JH, Yoshii Y, Akiyama S, Tanaka A, Yagi H, Shigemizu D, Nakagawa
691 H, Mizokami M, Shimada M: **Whole-genome sequencing with long reads reveals**
692 **complex structure and origin of structural variation in human genetic variations and**
693 **somatic mutations in cancer.** *Genome Med* 2021, **13**:65.

694 32. Audano PA, Sulovari A, Graves-Lindsay TA, Cantsilieris S, Sorensen M, Welch AE,
695 Dougherty ML, Nelson BJ, Shah A, Dutcher SK, et al: **Characterizing the Major**
696 **Structural Variant Alleles of the Human Genome.** *Cell* 2019, **176**:663-675 e619.

697