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Abstract

Background: Recent advances in long-read callers and assembly methods have greatly facilitated
structural variants (SV) detection via read-based and assembly-based detection strategies.
However, the lack of comparison studies, especially for SVs at complex genomic regions,

complicates the selection of proper detection strategy for ever-increasing demand of SV analysis.

Results: In this study, we compared the two most widely-used strategies with six long-read
datasets of HG002 genome and benchmarked them with well curated SVs at genomic regions of
different complexity. First of all, our results suggest that SVs detected by assembly-based strategy
are slightly affected by assemblers on HiFi datasets, especially for its breakpoint identity.
Comparably, though read-based strategy is more versatile to different sequencing settings, aligners
greatly affect SV breakpoints and type. Furthermore, our comparison reveals that 70% of the
assembly-based calls are also detectable by read-based strategy and it even reaches 90% for SVs
at high confident regions. While 60% of the assembly-based calls that are totally missed by read-
based callers is largely due to the challenges of clustering ambiguous SV signature reads. Lastly,
benchmarking with SVs at complex genomic regions, our results show that assembly-based
approach outperforms read-based calling with at least 20X coverage, while read-based strategy

could achieve 90% recall even with 5X coverage.

Conclusions: Taken together, with sufficient sequencing coverage, assembly-based strategy is
able to detect SVs more consistently than read-based strategy under different settings. However,
read-based strategy could detect SVs at complex regions with high sensitivity and specificity but

low coverage, thereby suggesting its great potential in clinical application.
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Background

Structural variants (SVs) comprise different subclasses, such as deletions, insertions, etc, are
playing important roles in both healthy and disease genomes. To date, researchers have made great
progress in discovering and genotyping SVs in diverse populations with short-read data, but SVs
at repetitive regions remain challenging due to limited read length [1]. Even in non-repetitive
regions, SVs such as insertions are missed by approaches relying solely on short-reads [2]. Single-
molecule sequencing (SMS) technologies, such as Pacific Bioscience (PacBio) and Oxford
Nanopore Technology (ONT), have emerged as superior to short-read sequencing for SV detection
and thus revealing a number of novel functional impact of SVs missed by short-read data [3, 4].
Long reads also improved SV detection in genetic diseases [5-7] and cancers [8-14] where SVs
are usually undetectable or misinterpreted by short-read, such as the ONT data reveals 10,000bp
Alzheimer’s disease associated ABCA7 Variable Number Tandem Repeats (VNTR) expansion that
are missed by short-read data [15]. The outstanding detection performance and the great demand
of long-read based applications raises a problem of selecting proper strategy for SV detection. For
example, the Chinese [16] and Icelander [17] cohort studies detect SVs directly from reads
alignment. Another clinical study showed a likely pathogenic SV can be identified from reads
eight hours after enrollment, while similar results were received two weeks using traditional
diagnose approaches [18]. Instead of detecting directly from reads, the advances in assembly
methods promote SV detection from haplotype-aware assemblies, such as the study conducted by
Human Genome Structural Variation (HGSV) consortia, revealed 107,590 SVs with HiFi

assemblies, of which 68% are not discovered by short-read sequencing [3, 19].

Currently, almost all long-read based studies use either read-based strategy (i.e., detecting directly
from read alignment) or assembly-based strategy (i.e., detecting from alignments of de novo
assemblies) for SV detection. The assembly-based strategy requires an extra step for haplotype-
aware assembly, but the following steps of the two strategies are similar and usually contains two
parts. Firstly, the variant signatures are identified and gathered from two types of aberrant
alignments: intra-read and inter-read. Intra-read alignments are derived from reads spanning the
entire SV locus, resulting deletion and insertion signatures. Inter-read alignments are usually
obtained from the supplementary alignments and SV signatures could be identified from

inconsistencies in orientation, location and size during mapping, from which translocation as well
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70  as large deletion, duplication and inversion signatures are identified. Secondly, callers typically
71  cluster and merge similar signatures from multiple aberrant alignments, delineating proximal
72 signatures that support putative SV. Nearly all read-based callers developed in the past five years,
73  such as Sniffles [20], pbsv, cuteSV [21], SVIM [22], NanoVar [23], NanoSV [24], and Picky [9],
74  detect SVs through combinations of signatures obtained from inter-read and intra-read alignments
75  but differ in their signature clustering heuristics. While different from the above methods, SVision
76  applied a deep-learning approach to directly recognize different SV types from the variant
77  signature sequences. As for assembly-based callers, such as Phased Assembly Variant (PAV) and
78  SVIM-ASM [22] use the alignment of whole genome assembly as input, from which aberrant
79  inter-contig and intra-contig alignments are collected and used for SV detection. Most importantly,
80 accumulating studies have claimed that the assembly-based detection strategy is able to
81  comprehensive detect SVs and characterize non-templated insertions [1, 3, 19]. Though a number
82  of studies have demonstrated the advances of using long-read toward short-read data, it lacks
83  systematic comparison of read-based and assembly-based strategy. Therefore, to help users, it is
84  important to quantitatively assess and compare the stability and usability of the two strategies,
85 especially for SVs at complex genomic regions. Moreover, the potential weakness of different
86  strategies needs to be investigated, so that new developments in the field could focus on improving

87  current methods.

88 In this study, a widely-used benchmark material, HG002 genome, was selected to compare and
89  benchmark the two strategies. Moreover, according to methods reviewed by a recent study [25],
90 we selected four read aligners, two assemblers for HiFi datasets, two assemblers for ONT datasets,
91 one contig aligner, one phasing algorithm, five read-based callers and two assembly-based callers
92  (Methods). We then evaluated the impact of detection settings (i.e., aligners and assemblers) and
93 sequencing settings (i.e., read length, sequencer and coverage) on both strategies. Briefly, the
94  impact of sequencing settings was first assessed for each strategy across all datasets based on
95  datasets concordant and unique SVs, and the detection and sequencing settings affected strategy
96 concordant SVs were further assessed (Fig. 1a). Additionally, the impact of detection settings on
97 each strategy were examined on each dataset based on aligner concordant and assembler
98 concordant SVs (Fig. 1b). For concordant SVs, we also assessed their breakpoint difference, where
99 the breakpoint standard deviation (BSD) smaller than 10bp were classified as breakpoint

100  accurately reproduced concordant SVs (Fig. 1¢). Furthermore, for both strategies, their recall and


https://doi.org/10.1101/2022.08.09.503274
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.09.503274; this version posted August 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

101  precision of detecting well curated SVs, especially those at challenging medically relevant

102  autosomal genes (CMRG), were assessed and cross-compared under different sequencing settings.
103  Results

104 Impact of sequencing settings on each strategy

105 We totally generated 120 read-based callsets and 24 assembly-based callsets, while SVs at
106  centromere and low mapping quality regions were excluded in the analysis (Method). Overall,
107 assembly-based and read-based strategy detected a median of 20,827 and 23,611 SVs from HiFi
108  datasets, respectively, while more SVs were detected from ONT datasets, i.e., a median of 22,009
109 for read-based and 29,162 for assembly-based (Fig. 2a). As expected, the SV size peaks for both
110  strategies were observed at 300bp and 6,000bp, indicating SINE and LINE, respectively
111 (Supplementary Fig. 1a). Moreover, the majority of the SVs (75%) were located at repetitive
112  regions without sequencing platform bias, while two strategies differed at Simple Repeats regions
113  consisted of either VNTR or short tandem repeats (STR) (Fig. 2b). As for SV types, assembly-
114  based strategy detected more insertions than read-based callers due to longer sequence length (Fig.
115  2c¢). While read-based caller SVision detected comparable percentage of insertions as assembly-
116  based strategy when detected from minimap2 or winnowmap aligned ONT reads (Fig. 2¢). On the
117  contrary, pbsv paired with ngmlr resulted in the fewest percentage of insertions among all six
118  datasets (Fig. 2¢). Additionally, different from assembly-based strategy, read-based callers also
119  identified other SV types, such as duplication and even complex types (Supplementary Fig. 1b).

120  For each strategy, we further assessed the number and breakpoint of dataset concordant SVs. On
121  average, detecting from HiFi reads, 75% and 80% of the dataset concordant SVs were identified
122 for read-based and assembly-based strategy, respectively. However, the average dataset
123 concordant SV rate of read-based strategy was higher than assembly-based strategy on ONT
124  datasets, suggesting that read-based strategy was more versatile to different datasets (Fig. 2d,
125  Supplementary Fig. 1c¢). Moreover, large variance of concordant SVs rate observed in ONT
126  datasets suggested a great assembler bias, i.e., the average dataset concordant SV rate was 26%
127  for shasta and it was 45% lower than detecting from assemblies created by flye (Fig. 2e).
128 Comparably, as a critical setting for read-based strategy, the percentage of reproducible SVs
129  detected from ONT reads was less affected by aligners when compared to assemblers did on

130  assembly-based callers, i.e., the average dataset concordant SV rate for each aligner ranged from
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131 50% to 75% (Fig. 2e). Furthermore, the average percentage of breakpoint accurately reproduced
132 SV (i.e., BSD smaller than 10bp, BSD-10) on HiFi datasets was around 20% higher than that of
133 ONT datasets (Fig. 2f, Supplementary Fig. 1d). For breakpoint inaccurately reproduced SVs, 65%
134  (HiFi datasets) and 50% (ONT datasets) of them overlapped with simple repeat regions, while 5%
135  of these SVs detected from ONT reads were found at segment duplication regions for both
136  strategies (Supplementary Fig. 1e). We further investigated the impact of genomic regions on
137  breakpoint accuracy and found that assembly-based strategy was able to detect more BSD-O0 (i.e.,
138 BSD equals Obp) SVs than read-based strategy, especially at simple repeat regions
139  (Supplementary Fig. 2). The above results showed that both strategies might overcall on ONT
140  datasets and large variance of SVs at simple repeat regions was observed in read-based callsets.
141  Though both strategies were able to detect SVs consistently from HiFi reads in terms of the
142  concordant SV rate and their breakpoint consistency, the breakpoint of assembly-based calls were

143 more accurate than read-based ones.
144  Impact of aligners and assemblers on reproducible SVs for each strategy

145  Next, we examined the impact of detection settings (i.e., aligner for read-based and assembler for
146  assembly-based) on each strategy (Method). For read-based strategy, around 50% of the SVs were
147  detectable from all four aligners mapped reads, referring to as aligner concordant calls, while 30%
148  ofthe SVs were only detected from one of the aligners and considered as aligner unique calls (Fig.
149  3a, Supplementary Fig. 3-4). The majority (80%) of the aligner concordant calls were found to
150 be BSD-10 on both HiFi and ONT datasets (Fig. 3b). Notably, for pbsv, 75% of the aligner
151  concordant calls’ breakpoints were BSD-0, which was 60% higher than other read-based callers,
152  indicating that pbsv detected SV breakpoints were less affected by aligners than others, especially
153  on HiFi datasets (Fig. 3b). As for assembly-based callers, 75% and 50% of the SVs were detectable
154  from HiFi and ONT assemblies generated by two assemblers, respectively, and we termed these
155  SVs as assembler concordant SVs (Fig. 3¢, Supplementary Fig. 5). Remarkably, calling from
156  HiFi reads, BSD-0 SVs took 98% of the assembler concordant SVs (Fig. 3d), which was 13%
157  higher than pbsv and much higher than other read-base callers (Fig. 3b). Though the percentage
158 of BSD-0 SVs detected from ONT assemblies was not comparable to HiFi assemblies, i.e., 60%
159  for ONT and 98% for HiFi, assembly-based strategy was less affected by assemblers than that of

160  aligners on read-based strategy. Moreover, we noticed that the percentage of BSD-0 aligner and
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161  assembler concordant SVs increased as the read length increasing (Fig. 3b, Fig. 3d). This might
162  due to the Guppy version used for ONT base calling (Supplementary Table S1).

163  In addition, most of aligner or assembler unique SVs were located at Simple Repeat regions
164  (Supplementary Fig. 6a). Using these uniquely detected SVs, we were able to investigate the
165  impact of aligners and assemblers on the SV size and types. For aligner unique SVs, a median of
166 2,151 SVs and 2,677 SVs were found in HiFi and ONT datasets, respectively (Supplementary
167  Fig. 6b). However, 2.5 times more SVs, ranging from 100bp to 1,000bp, were uniquely detected
168  from ngmlr aligned reads without platform bias (Fig. 3e). Moreover, a significant peak at 300bp
169  was only observed for SVs detected from ngmlir aligned reads (Fig. 3e). In terms of SV types,
170  around 17%, 39%, 38% and 33% of the unique calls were deletions detected from ngmlr, minimap2,
171  lra and winnowmap alignments, respectively (Fig. 3f). Besides the bias for deletions, 37% of the
172 ngmlr unique calls were duplications and it was around 30% higher than the average of other
173  aligners. Additionally, the percentage of ngmlr unique insertions was 23%, but the average
174  percentage was 46% for other aligners, suggesting that ngmlr preferred to generate duplication like
175 alignment signature for read-based callers (Fig. 3f). We reasoned that this aligner bias was largely
176  due to the mapping strategy adopted by ngmlr, where it splits read into non-overlapping 256bp
177  sub-reads and maps them independently of each other [20]. Thus, a size peak was observed close
178  to 300bp and insertions could be aligned as duplications where two sub-reads overlapped on
179  reference genome. For assembly-based strategy, a median of 2,482 SVs and 7,976 SVs were
180 identified from HiFi and ONT assemblies, respectively (Supplementary Fig. 6¢). The size of SVs
181  detected from hifiasm assembled HiFi contigs was enriched at 300bp, and most of SVs detected
182  from shasta created ONT assemblies ranged from 50bp to 300bp (Supplementary Fig. 6d). We
183  only observed the insertion bias among the assembler unique SVs, where around 78% of shasta
184  unique SVs were insertions and most of these insertions were smaller than 300bp (Supplementary
185  Fig. 6e). Taken together, the above results suggested that read-based calls, including their
186  breakpoints, types and sizes, were greatly affected by aligners, while up to 80% of the SVs,
187  consisting of 98% BSD-0 SVs, were detectable from HiFi assemblies created by different

188  assemblers.

189  Impact of different settings on the reproducible SVs between strategies
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190 The above analysis on each strategy suggested that read-based strategy was more versatile to
191 different sequencing settings when reads mapped by the same aligner, while assembly-based
192  strategy was less affected by assembler and its breakpoint was more accurate than read-based
193  strategy on HiFi datasets. We then want to examine the impact of detection and sequencing settings
194  onthe reproducible SVs between strategies. In general, SVs were compared at whole genome scale
195 and at 12,745 true insertions/deletions (INS/DEL) regions identified by GIAB [26]. Considering
196  the number of used aligners, assemblers and callers, we obtained 128 merged sets of nonredundant
197  SVs between strategies among six datasets. For the merged SV callsets, a median of 28,630 and
198 35,701 SVs at whole genome scale were identified, and a median of 14,141 and 15,840 SVs at true
199 INS/DEL regions were identified from HiFi and ONT datasets, respectively (Fig. 4a). The
200 unexpected large number of nonredundant SVs from ONT datasets were mainly contributed by

201  merging PAV’s and SVision’s callsets (Fig. 4b).

202  Based on the nonredundant SV sets, we first assessed the impact of pairs of aligner and assembler
203  on the number of concordant SVs between strategies, referring to as strategy concordant SVs. On
204  average, 55% and 45% of the SVs at whole genome scale were strategy concordant SVs when
205 detected with HiFi and ONT reads, respectively, and strategy concordant SVs took around 80%
206 (HiFi datasets) and 70% (ONT datasets) of the SVs at true INS/DEL regions (Fig. 4c,
207  Supplementary Fig. 7a). Remarkably, the highest concordant rate was 89% for SVs at true
208 INS/DEL regions and 72% for SVs at whole genome scale, which was around 20% higher than
209  SVsdetected from ONT datasets (Fig. 4c). Moreover, using HiFi reads, we observed minor effect
210 of assemblers on the average concordant SV rate but large variance caused by aligners. In
211  particular, the concordant rate from highest to lowest was achieved by pairing with minimap2,
212 winnowmap, Ira and ngmlr without assembler bias (Fig. 4¢), indicating the sequence alignment
213 strategies of ngmlr and minimap2 were significantly different. Additionally, at whole genome
214 scale, we observed a positive correlation between read length and strategy concordant SV rate on
215  both HiFi and ONT datasets (Fig. 4d), and this correlation was expected because assemblers
216  essentially created longer DNA sequences which equals to the usage of longer reads for SV
217  detection. Afterwards, we examined the breakpoint consistency of strategy concordant insertions
218  and deletions (INS/DEL), which dominated the discoveries of both strategies. On average, 77%
219  and 74% of the concordant insertions and deletions were BSD-10 events when detected from HiFi

220 and ONT dataset, respectively (Fig. 4e). However, we observed great platform bias for BSD-0
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221  INS/DEL, where 38% of the insertions and 45% of the deletions were BSD-0 in HiFi callsets and
222 it was around 20% higher than the percentage of BSD-0 INS/DEL detected with ONT reads (Fig.
223 4e). Furthermore, for breakpoint inaccurately reproduced SVs, 50% of the insertions and 83% of
224 the deletions were found at simple repeat regions (Supplementary Fig. 7b).

225  To further understand the impact of assembler and aligner on the BSD-10 INS/DEL, we used BSD-
226 10 INS/DEL detected from HiFi-18kb dataset because the highest concordant SV rate was
227  observed on this dataset (Fig. 4d). Overall, detecting from minimap2 aligned reads, two strategies
228  were able to detect the highest percentage of BSD-10 INS/DEL without assembler bias, and similar
229  results were observed on winnowmap but significantly differed from ngmlr and Ira (Fig. 4f).
230  Especially for ngmlr, the highest percentage of BSD-10 INS/DEL was found between pbsv and
231  any assembly-based callers without affecting by assembler (Fig. 4f). This was also consistent with
232 our observation of BSD-10 INS/DEL among all datasets, where minimap2 and winnowmap
233 performed similar but outliers were found among conordant SVs detected from ngmlr aligned
234  reads (Supplementary Fig. 7¢). Therefore, we reasoned that though 70% of the SVs were
235  reproducible by both strategies and it was even 20% higher for SVs at true INS/DEL regions,
236  further optimization of detecting SVs at complex genomic regions, especially tandem repeats, was

237  required for future methods development.
238 Examining SVs only detected by assembly-based strategy

239  Recently, several studies had claimed that assembly-based strategy is able to comprehensively
240  detect SVs from an individual genome [3, 19]. Thus, we examined whether assembly only SVs
241  (i.e., SVs only detected by assembly-based strategy but missed by all read-based callers) were also
242  detectable by read-based strategy. Since the above analysis suggested that using longer reads
243 mapped with minimap2 resulted in the fewest number of strategy unique SVs (Fig. 4d,
244  Supplementary Fig. 8a), HiFi-18kb and ONT-30kb were used to assess the assembly only SVs
245  (Fig. 5a). As aresult, 4,265 assembly only SVs (1,630 and 2,635 SVs from HiFi and ONT datasets,
246  respectively), consisting of 2,800 insertions and 1,465 deletions, were identified from HiFi-18kb
247  and ONT-30kb datasets and most of them were heterozygous SVs (Supplementary Fig. 8b).
248  Moreover, 77% of the assembly only SVs (74% on ONT and 81% on HiF1) overlapped with Simple
249  Repeats, but around 25% of the SVs detected from ONT assemblies were found at Segment Dup
250 regions (Supplementary Fig. 8c).
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251 To examine whether 4,265 assembly only SVs were detectable from read alignments, we first
252  noticed that most of these SVs were located at high mapping quality regions (average read mapping
253  quality >= 20) (Fig. Sb, Supplementary Fig. 8d). Afterwards, we found that 64% (1,056 out of
254 1,630) and 51% (1,345 out of 2,635) of the assembly only SVs contain at least five HiFi and ONT
255 SV signature reads identified from minimap2 alignments, respectively (Fig. 5b). These loci
256  contain SV signature reads but missed by read-callers was mainly due to the large signature start
257  position standard deviation, making them difficult to cluster for a valid call (Fig. 5¢). Moreover,
258  most of the average signature SV size ranged from 100bp to 1,000bp, which was not consistent
259  with the size distribution of assembly only SVs at high mapping quality regions, especially for
260  SVssmaller than 100bp (Fig. 5¢). Therefore, even these assembly only SVs were reported by read-
261  based callers, they were hard to match one event in assembly only SVs due to the breakpoint
262  difference and size similarity. For those SV loci without enough SV signature reads, 65% (HiFi
263  dataset) and 48% (ONT dataset) of the assembly unique calls overlapped with Simple Repeats (Fig.
264  5d). Additionally, on ONT dataset, 41% of the SVs without signature reads, consisting of 261
265 insertions and 182 deletions, overlapped with segmental duplications, which was six times than
266  that on HiFi dataset (Fig. 5d). For example, an insertion of length 2,474bp (chr4:144,924,382-
267  144,926,856) was detected from ONT assemblies at gene GYPB but no SV signatures found in
268  HiFiread alignment and HiFi assembly alignment (Fig. Se). Further investigation shows that gene
269  GYPBhad 97% sequence homology with GYPA, thereby leading to false discovery originated from
270  assembly error (Fig. 5f). We also found an incorrect deletion of length 981bp at gene SMPD4
271  without evident SV signature observed in HiFi reads and assemblies (Supplementary Fig. 8e).
272  This gene was usually activated by DNA damage, cellular stress and tumor necrosis factor[27],
273  and SVs associated with this gene had been identified in developmental disorder [28]. Therefore,
274  we reasoned that read-based orthogonal validation is important and necessary to screen potential

275  false discoveries from assembly-based calls, especially for clinical applications.
276  Benchmarking strategies with SVs at complex genomic regions

277  The above analysis revealed that complex genomic regions, especially tandem repeat regions were
278  hotspots for discordant SVs. To further assess SV detection performance, we used well curated
279  HGO002 SV at true INS/DEL regions and 203 SVs on CMRGs to evaluate two strategies, where
280  SVs at true INS/DEL regions and CMRGs enabled the evaluation of SV detection at simple and

281  complex genomic regions, respectively.
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282  For the true INS/DEL regions, the highest recall was 97%, achieving by assembly-based strategy
283  on both HiFi and ONT datasets, while the highest precision was achieved by read-based callers
284  (Fig. 6a). Moreover, we noticed that the recall was positively correlated with read length for both
285  strategies on HiFi and ONT datasets, but both strategies showed large precision variance on ONT
286  datasets, especially for assembly-based strategy (Fig. 6a). As for SVs on CMRGs, assembly-based
287  strategy outperformed the read-based strategy (Fig. 6b). Specifically, the highest recall of
288  assembly-based strategy was 96%, and it was 7% higher than the highest one achieved by read-
289  based strategy (Fig. 6b). Most importantly, we only noticed the positive correlation between recall
290  and read length for assembly-based strategy without dataset preference (Fig. 6b). Furthermore, we
291 investigated the false negative discoveries (i.e., missed benchmark SV) that affect recall of each
292  strategy. As a result, 71% (54/76, HiFi) and 58% of (56/96, ONT) SVs detected by read-based
293  strategy were false negative in three datasets, and these SVs were termed as datasets negatives,
294  while the percentage of dataset negatives was 53% (26/49, HiFi) and 32% (25/77, ONT) for
295  assembly-based strategy (Fig. 6¢, Supplementary Fig. 9a). Similar to the above analysis, 63% of
296 the false positive SVs (i.e., novel SVs detected by caller) detected by read-based strategy were
297  concordant SVs among three HiFi datasets, i.e., referring to as datasets positives, which was 40%
298  higher than assembly-based strategy on HiFi datasets (Fig. 6¢, Supplementary Fig. 9b). The low
299  ofassembly-based strategy was due to the large number of false positive SVs detected from ONT-
300 9kb dataset, i.e., 235 false positive SVs that were not found in dataset ONT-19kb and ONT-30kb
301 (Supplementary Fig. 9b). We next compared the datasets negative and datasets positive SVs
302 between two strategies, where two strategies tend to detected more concordant false negatives but

303 false positives were often found to be strategy specifics (Fig. 6d).

304  Additionally, CMRGs are well documented across multiple diseases but often excluded from
305 standard targeted or whole-genome sequencing analysis [26], enabling the evaluation for potential
306 clinical application. The above analysis used the 35X coverage datasets, requiring around $7,000
307 and $3,000 for generating the HiFi and ONT reads, respectively, which was not applicable to
308 clinical settings due to the high sequencing cost. Therefore, we subsampled the 35X coverage
309 datasets to 5X, 10X and 20X coverage and examined the performance of each strategy. Overall,
310 read-based strategy outperformed assembly-based strategy on both HiFi and ONT datasets when
311  the coverage was below 20X (Fig. 6e). Remarkably, read-based strategy was sensitive when

312  detected with 5X ultra-low coverage data, i.e., the average recall of read-based strategy was 78%
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313  for both datasets, and SVision and cuteSV achieved the highest recall and precision at such low
314  coverage (Supplementary Fig. 9c). Moreover, the recall and precision of merged read-based
315  callsets was slightly improved comparing to single caller while using 5X coverage data (Fig. 6f),
316  which was consistent with other studies. At such low coverage, the average recall of assembly-
317  based strategy was around 48% and 26% on HiFi-18kb and ONT-30kb dataset, respectively (Fig.
318  6e). Further investigation revealed that the low recall on ONT-30kb dataset was caused by
319  assemblers, of which, the recall of calling SV from flye and shasta was 52% and 10%, respectively.
320 However, such recall bias caused by assemblers on ONT dataset was not observed when detected
321  from data of sufficient coverage, i.e., more than 20X (Supplementary Fig. 9d). The above results
322 suggested that assembly-based strategy required at least 20X coverage data to achieve high recall
323  and precision, but read-based strategy was able to achieve higher recall and precision with ultra-

324  low coverage data, making it applicable to clinical screening.
325 Discussion

326  Ongoing significant technology improvements have paved the way to apply long-read sequencing
327  to population-scale sequencing projects and even for rapid genetic diagnoses, while the selection
328  of proper SV detection strategy remains unclear. In this study, we compared and investigated the
329 impact of factors that influenced the most widely-used read-based and assembly-based SV
330 detection strategies. This is an important step towards the in-depth understanding of the usability
331 and stability of each strategy in detecting SVs at genomic regions of different complexity as well

332 as their potential application in clinical diagnosis.

333  For each strategy, we were able to identify the source of variability among different sequencing
334  settings based on six long-read datasets. Our results showed that read-based strategy was versatile
335 to different sequencing platforms once identical aligner was used, but applying assembly-based
336  strategy on ONT datasets was greatly affected by assembler when compared to HiFi datasets.
337 Notably, calling from HiFi assemblies, around 90% of the SVs could be reproduced among
338  different datasets and it was slightly affected by assembler. Though flye was not comparable with
339  hifiasm, it was flexible to both HiFi and ONT datasets and averagely 75% of the SVs were
340 reproduced. Additionally, assembly-based strategy was able to identify more consistent breakpoint
341  than read-based strategy for concordant SVs. We further investigated the impact of aligners and

342  assemblers on each strategy. In terms of the number of reproducible SVs and their breakpoint
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343  consistency, SVs detected by assembly-based strategy were less affected by the usage of
344  assemblers on HiFi datasets. On the contrary, concordant SV numbers, breakpoints and types of
345 read-based callers were greatly affected by aligners, especially for ngmlr. Furthermore, we found
346  that 70% of the whole genome scale SVs and 90% of the true INS/DEL region SVs were able to
347  be detected by both strategies when proper assembler and aligner were paired. Most importantly,
348 our results revealed a positive correlation between concordant SV rate and read length,
349  incorporating with the recent achievements in generating reads of 4Mbp and longer [29], the
350 percentage of reproducible is expected to be even higher. Furthermore, once considering assembly-
351  based calls as a comprehensive callset, our analysis revealed that 66% and 52% of the assembly-
352  based strategy uniquely detected SVs were detectable with read-based strategy on HiFi and ONT
353  datasets, respectively, while they were missed because of the clustering issues caused by the
354  signature ambiguity. This observation provided an important hint for future detection algorithm

355  development.

356  The above comparison results provided supportive evidence of the strength and weakness of each
357  strategy as well as the hotspots for discordant SVs. Accordingly, using well curated SVs at
358 genomic regions of different complexity, we assessed the recall and precision of each strategy with
359 different dataset settings. As a result, with sufficient sequencing coverage (at least 20X), assembly-
360 based strategy outperformed read-based strategy for detecting SVs at true INS/DEL regions,
361  especially for SVs at CMRGs. However, 20X coverage long-reads data is still not applicable to
362  clinical applications due to the high sequencing cost. Further analysis with ultra-low coverage data
363  (5X) revealed that read-based strategy is able to robustly detect SVs in challenging genes, where
364  the sensitivity was even 30% higher than assembly-based strategy. Additionally, for low-coverage
365 HiFi and ONT data, merging SVs from different callers slightly increased the sensitivity
366 comparing to single callers, such as SVision and cuteSV, suggesting SV merge was no longer

367 necessary for long-read based SV detection.

368 Moreover, our analysis showed that SVs at tandem repeat regions are the most challenging ones
369 to detect consistently by two strategies, suggesting the demand of developing novel methods and
370  data structures for resolving these SVs. These SVs are difficult to reproduce because calling from
371 both read and assembly alignment can have systematic issues with misrepresented highly
372 polymorphic loci in the linear reference genome, which only represent one allele and thus, do not

373  incorporate repeat polymorphisms of a population [25]. To solve this issue, pan-genome reference,
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374  combing genomes from multiple individuals of a species, has been proposed improve SV detection
375  at polymorphic regions as well as genotyping SVs using short-read data. Though graph methods
376  offer great opportunity to solve bias for SV detection, these methods are still less straight-forward
377  in practice then the use of linear reference genome. Moreover, it lacks evidence of how these

378  graph-based methods generalize to clinical applications.

379  To the best of our knowledge, this was the first study of comparing the two representative long-
380 read based SV detection strategies. Our analysis, from general-purpose detection to specific
381  application, revealed the usability of each strategy, offering insights of selecting proper detection
382 and sequencing settings for long-read projects. However, the evaluation is limited to diploid
383  genomes and autosomal diseases, while the performance of two strategies on cancers, affecting by

384  purity, heterogeneity and aneuploidy, requires further investigation.
385 Conclusion

386 SV detection is an essential step for population genetics and clinical diagnosis. While a number of
387 long-read based studies for both healthy and disease genomes had revealed the prominent
388 performance of using read-based strategy and assembly-based strategy for SV detection, their
389  strength and weakness toward different settings is yet to be assessed. In this study, systematic
390 analysis of dataset concordant SV and strategy concordant SV revealed the impact of aligners,
391 assemblers, read length and sequencing platforms on the usability and stability of two strategies,
392  including breakpoint consistency and SV types. Afterwards, we have benchmarked each strategy
393  on detecting SVs at genomic regions of different complexity, especially SVs at CMRGs. We
394  expect this work will help users to select proper SV detection settings for different applications

395 and foster future development of SV detection algorithms at complex genomic regions.

396
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397 Methods

398 Read mapping and sequence assembly

399  The three HiFi datasets (i.e., HiFi-10kb, HiFi-15kb and HiFi-18kb) and the three ONT datasets
400  (i.e., ONT-9kb, ONT-19kb, ONT-30kb) are all publicly available. Based on a recent review by
401  Steve S. Ho et. al. [1], aligners containing minimap2, Ira, winnowmap and ngmlr were included in

402  our study, and assemblers including hifiasm, flye and shasta were used.

403  First of all, HiFi and ONT reads were mapped to human reference genome hg19 with minimap2
404  (v2.20), Ira (v1.3.2), winnowmap (v2.03) and ngmlr (v0.2.7). Parameters used for each mapper

405  were listed below:

406 e minimap2: parameters ‘-a -H -k 19 -O 5,56 -E 4,1 -A 2 -B 5 -z 400,50 -r 2000 -g 5000°
407 were applied to align HiFi reads, and ‘-a -z 600,200 -x map-ont’ were used for ONT reads.
408 e ngmlr: parameters ‘-x pacbio’ and ‘-x ont’ were used to align HiFi and ONT reads,
409 respectively.

410 e winnowmap: parameters “-ax map-ont’ and ‘-ax map-pb’ of winnowmap were used to map
411 ONT and HiFi reads, respectively.

412 e lIra: “CCS’ and ‘-ONT were set to map HiFi and ONT reads, respectively. We then applied
413 each read-based caller with default parameters except the minimum number of SV
414 supporting reads. Since the sequencing coverage was around 35X for all datasets, the
415 minimum SV supporting read for each read-based caller was set to five for the detection of
416 both homozygous and heterozygous SVs. For 5X coverage, the minimum SV supporting
417 read for each read-based caller was set to one.

418  For sequence assembly, we use minimap?2 aligned reads and phased SNPs released by GIAB to
419  obtain phased reads via whatshap ‘haplotag’ option. Those unphased reads are randomly assigned
420 as either haplotype 1 and haplotype 2, which are also used in further sequence assembly. Given
421  the phased reads, we apply assemblers with default parameters to create the haplotype-aware

422  assemblies.
423 SV detection and post-processing

424  Todetect SVs, methods were further excluded from the recent review [25] based on several criteria:

425 (1) lack of detailed user manual; (2) no programming interface; (3) reported bias on aligners; (4)
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426  unresolved errors during wrapping. In the end, read-based callers including cuteSV (v1.0.10), pbsv
427  (v2.2.2),SVIM (v1.4.0), Sniffles (v1.0.12) and SVision (v1.3.6) were selected and assembly-based
428  callers including Phased Assembly Variant (PAV) and SVIM-asm were selected.

429  Read-based callers were directly applied to reads aligned by minimap2, ngmlr, Ira and winnowmap
430  with default parameters. Note that the minimum SV supporting read is set to five so that both
431 homozygous and heterozygous germline SVs can be effectively detected from the 35X coverage
432  datasets. For assembly-based strategy, the phased assemblies were directly used as input for PAV,
433  and we run PAV with default parameters for SV detection. For SVIM-asm, assemblies were first
434  mapped to reference hgl9 with minimap2 parameters “~x asm20 -m 10000 -z 10000,50 -r 50000 -
435  -end-bonus=100 --secondary=no -0 5,56 -E 4,1 -B 5 -a’, these parameters were used in minimap2
436 embedded in PAV. Then, we run SVIM-asm with parameters ‘svim-asm diploid --

437  tandem duplications as_insertions --interspersed_duplications as_insertions’ for SV detection.

438  For each callsets, a BED file obtained from a publication [30] was used to exclude SVs located at
439  centromere and other low mapping quality regions. SVs overlapped with regions in the BED file
440  were ignored in the downstream analysis. For the rest of the autosome SVs, we then annotated
441  their associated repetitive elements using Tandem Repeat Finder, RepeatMasker and Segmental
442  Duplication results provided by UCSC Genome Browser. The original files downloaded from the
443  genome browser were first processed based on scripts introduced by CAMPHOR [31]. Repeat
444  element associated with each SV is assigned based on a recent publication [32]. In particular,
445  Variable Number Tandem Repeat (VNTR) was assigned if the length of repeat unit longer than
446  7Tbp, otherwise, we considered it as Short Tandem Repeat (STR). It should be noted that simple
447  repeat annotated by RepeatMasker was also classified into VNTR and STR. For SVs overlapping
448  repetitive element, we require at least 50% of the entire SV length to be composed of the specific
449  repeat type, and we prioritized the highest percentage of overlaps on the entire length of SV when
450 multiple repeat types are annotated. For example, if 70% of an SV was composed of STR and 50%
451  of the SV overlapped by ALU, then STR was assigned correspondingly. Moreover, according to
452  the repetitive elements, we divided the genome into four different regions, i.e., Simple Repeat,
453  Repeat Masked, Segment Dup and Unique. Simple Repeat represented regions of either VNTR or
454  STR. Repeat Masked were those annotated as SINE, LINE, etc, by RepeatMasker. Segment Dup
455  represented regions overlapping with segmental duplications. The rest of the genomic regions

456  outside of Simple Repeat, Repeat Masked and Segment Dup were considered as Unique regions.
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Identification of concordant and unique SVs

According to different comparison purpose, we first obtained the nonredundant SVs of several
callsets by running command ‘Jasmine file list=vcf list.txt out file=nonredundant SVs.vcf
max_dist=1000 spec_len=50 spec_reads=1". Then, using VCF file generated by Jasmine, we were
able to identify concordant and unique calls as well as the breakpoint standard deviation of
concordant calls. The breakpoint standard deviation was indicated in ‘STARTVARIANCE’ and
‘ENDVARIANCE’ in the VCF file. The major steps for analyzing SV reproducibility among

datasets and strategies were listed as below:

e Dataset concordant/unique: Each caller was applied to six datasets for SV detection, and a
nonredundant SV set was generated via Jasmine accordingly. SVs reproduced in six
datasets were indicated by ‘SUPP=6’, while dataset unique calls were indicated by
‘SUPP=1". Moreover, SVs reproduced by at least two datasets were indicated by ‘SUPP=2",
‘SUPP=3", ‘SUPP=4", ‘SUPP=5" and ‘SUPP=6’.

e Aligner concordant/unique: On each dataset, the reads were aligned with four aligners and
SVs were detected subsequently with each caller. For a caller, we merged its four callsets
originated from four aligners, from which, aligner concordant SVs were obtained with
‘SUPP=4’ and aligner unique SVs were labeled by ‘SUPP=1".

e Assembler concordant/unique: On HiFi dataset, the reads were assembled by two
assemblers (i.e., hifiasm, flye) and the assemblies were mapped with minimap2. For a
caller, we merged its two callsets originated from two assemblers, from which, assembler
concordant SVs were obtained with ‘SUPP=2’ and assembler unique SVs were labeled by
‘SUPP=1". Similar process was applied to ONT dataset, but the assemblies were created
by flye and shasta.

e Strategy concordant/unique: On each dataset, we obtained a nonredundant SV set between
a read-based caller and an assembly-based caller via Jasmine. Strategy concordant and

strategy unique calls were indicated by ‘SUPP=2" and ‘SUPP=1", respectively.

The breakpoint standard deviation of each SV in the merged set was kept in the
‘STARTVARIANCE’ column, and the values were directly used to analyze the breakpoint

consistency of concordant SVs.

Read alignment analysis for strategy unique calls
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We applied the following steps to examine whether SVs uniquely detected by assembly-based
strategy contain aberrant read alignment, i.e., the abnormal inter-read and intra-read alignments

used to detect SVs by read-based callers.

e Stepl. The assembly-based strategy uniquely detected SVs were classified to three types
of regions according to the average read mapping quality (avg_mapq) obtained from
minimap?2 aligned reads:

1) No read mapping region (No_reads)
2) Low mapping quality regions (Low_mapq, avg_mapq < 20)
3) high confident mapping regions (High mapq, avg_mapq = 20).

The average mapping quality threshold 20 was set according to the default minimum read

quality used for SV detection.

e Step2. The potential SV signature reads of those assembly unique SVs at high confident
mapping quality regions were identfied. In general, the ‘I’ and ‘D’ tags in the CIGAR string,
and the primary reads and their supplementary were collected and used to identify deletion
(DEL), insertion (INS), inversion (INV) and duplication (DUP) signatures. The total
number of reads containing SV signature was referred to signature count. Moreover, we
calculated the start position standard deviation and size standard deviation of all signature

reads.
Evaluating each strategy with well curated SVs

For 35X coverage datasets HiFi-18kb and ONT-30kb, we down-sample them to 5X, 10X and 20X
with SAMtools. Afterwards, each caller is applied to the 5X, 10X and 20X datasets with default
parameters except for the number of minimum SV supporting reads, which is set to 1, 2 and 5 for
5X, 10X and 20X datasets, respectively. These values are set to enable effective detection of both
homozygous and heterozygous germline SVs. The final VCF files are sorted, compressed and
indexed for further evaluation. Furthermore, two benchmarks released by GIAB were used to
assess both strategies of detecting SVs at true INS/DEL regions and CMRGs. The recall and
precision were measured by Truvari with parameters ‘-p 0.00 -r 1000 --passonly --giabreport’, but

the genotype accuracy was not considered in our evaluation.

Availability of code and data
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533

534  Fig. 1 Schematic summaries of assessing the impact of different settings on each strategy and
535  between strategies. a. Examining the impact of sequencing settings on each strategy based on
536  datasets unique and concordant structural variants (SVs). Moreover, the impact of detection
537  settings on strategy concordant SVs was assessed on each dataset. b. For each strategy, the impact
538  of detection settings, i.e., aligners and assemblers, was assessed on each dataset based on aligner
539 concordant SVs and assembler concordant SVs. c¢. Examining the breakpoint difference of
540 concordant SVs, where the breakpoint standard deviation of concordant SVs smaller than 10bp
541  was classified as breakpoint accurately reproduced SVs, otherwise, it was termed as breakpoint

542  inaccurately reproduced SVs.
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545  Fig. 2 Summaries of the impact of sequencing settings on each strategy. a. The number of
546  structural variants (SVs) detected by each strategy among datasets. b. The distributions of detected
547  SVs among different genomic regions. ¢. The percentage of insertions affected by callers, aligners
548 and assemblers. d. The percentage of dataset concordant SVs detected from HiFi and ONT datasets
549  of each strategy. e. The percentage of dataset concordant SVs affected by callers, aligners and
550 assemblers on HiFi and ONT datasets. f. The percentage of breakpoint accurately reproduced SVs
551  (i.e., BSD-10 SVs) on HiFi and ONT datasets.

552
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554  Fig. 3 Summaries of the impact of detection settings on each strategy. a. The percentage of aligner
555  unique and aligner concordant structural variants (SVs) detected from HiFi (x-axis) and ONT (y-
556  axis) datasets. b. The percentage of breakpoint accurately reproduced SVs (i.e., BSD-10 SVs, right
557  panel) and breakpoint identically reproduced SVs (i.e., BSD-0 SVs, left panel) identified from
558 read-based callsets. ¢. The percentage of assembler unique and concordant SVs detected from HiFi
559 and ONT datasets. d. The percentage of breakpoint accurately reproduced SVs (i.e., BSD-10 SVs,
560 right panel) and breakpoint identically reproduced SVs (i.e., BSD-0 SVs, left panel) identified


https://doi.org/10.1101/2022.08.09.503274
http://creativecommons.org/licenses/by-nc-nd/4.0/

561
562

563

564
565
566
567
568
569
570

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.09.503274; this version posted August 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

from assembly-based callsets. e. The size distribution of aligner unique SVs. f. The SV types

among aligner unique SVs at different genomic regions.
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Fig. 4 Summary of impact of detection and sequencing settings on the strategy concordant
structural variants. a. The number of structural variants (SVs) in the nonredundant callset merged
from read-based calls and assembly-based calls at whole genome scale (WGS) and true INS/DEL
regions. b. The number of structural variants (SVs) in the nonredundant callset merged from read-
based calls and assembly-based calls detected from ONT reads at WGS and true INS/DEL regions.
c. The average percentage of strategy concordant SVs affected by assembler and aligner pairs at

WGS and true INS/DEL regions. d. The average percentage of strategy concordant SVs on each
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dataset. e. The percentage of concordant SVs of different breakpoint standard deviation among

datasets. ‘0’, breakpoint standard deviation equals Obp. ‘0~10’, breakpoint standard deviation large
than Obp but smaller or equal to 10bp. “>10’, breakpoint standard deviation large than 10bp. f. The
percentage of breakpoint accurately reproduced SVs (i.e., BSD-10 SVs) affected by aligner,
assembler and callers evaluated on HiFi-18kb dataset.
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Fig. 5 Examining assembly only structural variants. a. The schematic of obtaining assembly only
structural variants (SVs) from assembly unique SVs. b. The number of all assembly only SVs,
assembly only SVs at high mapping quality regions and assembly only SV loci containing at least
five SV signature reads. ¢. The SV signature reads start position standard deviation (std) and the

average length of identified signatures. d. The genomic region distribution of assembly only SV's
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without enough SV signature reads (smaller than five). e. The IGV alignment view of a 2.4kbp

insertion incorrectly detected from ONT assemblies. f. The sequence Dotplot of local genome
containing the insertional breakpoint shown in (e), suggesting this incorrect detection was due to
assembly error caused by segmental duplication formed by two homology genes, GYPB and GYPA.
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Fig. 6 Summaries of benchmarking two strategies with well curated structural variants. a. The
recall and precision of detecting structural variants (SVs) at true INS/DEL regions. b. The recall
and precision of detecting SVs at challenging medically relevant autosomal genes (CMRGs). c.
For SVs at CMRGs, percentage of false positive and false negative SVs among HiFi and ONT
datasets, i.e., SVs in three, two and one dataset. d. The Venn-diagram of false positive and false

negatives detected by both strategies on HiFi and ONT datasets. e. The impact of sequencing
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coverage on the recall and precision of detecting SVs at CMRGs. f. At 5X coverage, the recall and

precision of each read-based callers as well as the merged callset.
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