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Abstract 17 

Background: Recent advances in long-read callers and assembly methods have greatly facilitated 18 

structural variants (SV) detection via read-based and assembly-based detection strategies. 19 

However, the lack of comparison studies, especially for SVs at complex genomic regions, 20 

complicates the selection of proper detection strategy for ever-increasing demand of SV analysis. 21 

Results: In this study, we compared the two most widely-used strategies with six long-read 22 

datasets of HG002 genome and benchmarked them with well curated SVs at genomic regions of 23 

different complexity. First of all, our results suggest that SVs detected by assembly-based strategy 24 

are slightly affected by assemblers on HiFi datasets, especially for its breakpoint identity. 25 

Comparably, though read-based strategy is more versatile to different sequencing settings, aligners 26 

greatly affect SV breakpoints and type. Furthermore, our comparison reveals that 70% of the 27 

assembly-based calls are also detectable by read-based strategy and it even reaches 90% for SVs 28 

at high confident regions. While 60% of the assembly-based calls that are totally missed by read-29 

based callers is largely due to the challenges of clustering ambiguous SV signature reads. Lastly, 30 

benchmarking with SVs at complex genomic regions, our results show that assembly-based 31 

approach outperforms read-based calling with at least 20X coverage, while read-based strategy 32 

could achieve 90% recall even with 5X coverage. 33 

Conclusions: Taken together, with sufficient sequencing coverage, assembly-based strategy is 34 

able to detect SVs more consistently than read-based strategy under different settings. However, 35 

read-based strategy could detect SVs at complex regions with high sensitivity and specificity but 36 

low coverage, thereby suggesting its great potential in clinical application.  37 

 38 
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Background 40 

Structural variants (SVs) comprise different subclasses, such as deletions, insertions, etc, are 41 

playing important roles in both healthy and disease genomes. To date, researchers have made great 42 

progress in discovering and genotyping SVs in diverse populations with short-read data, but SVs 43 

at repetitive regions remain challenging due to limited read length [1]. Even in non-repetitive 44 

regions, SVs such as insertions are missed by approaches relying solely on short-reads [2]. Single-45 

molecule sequencing (SMS) technologies, such as Pacific Bioscience (PacBio) and Oxford 46 

Nanopore Technology (ONT), have emerged as superior to short-read sequencing for SV detection 47 

and thus revealing a number of novel functional impact of SVs missed by short-read data [3, 4]. 48 

Long reads also improved SV detection in genetic diseases [5-7] and cancers [8-14] where SVs 49 

are usually undetectable or misinterpreted by short-read, such as the ONT data reveals 10,000bp 50 

Alzheimer9s disease associated ABCA7 Variable Number Tandem Repeats (VNTR) expansion that 51 

are missed by short-read data [15]. The outstanding detection performance and the great demand 52 

of long-read based applications raises a problem of selecting proper strategy for SV detection. For 53 

example, the Chinese [16] and Icelander [17] cohort studies detect SVs directly from reads 54 

alignment. Another clinical study showed a likely pathogenic SV can be identified from reads 55 

eight hours after enrollment, while similar results were received two weeks using traditional 56 

diagnose approaches [18]. Instead of detecting directly from reads, the advances in assembly 57 

methods promote SV detection from haplotype-aware assemblies, such as the study conducted by 58 

Human Genome Structural Variation (HGSV) consortia, revealed 107,590 SVs with HiFi 59 

assemblies, of which 68% are not discovered by short-read sequencing [3, 19].  60 

Currently, almost all long-read based studies use either read-based strategy (i.e., detecting directly 61 

from read alignment) or assembly-based strategy (i.e., detecting from alignments of de novo 62 

assemblies) for SV detection. The assembly-based strategy requires an extra step for haplotype-63 

aware assembly, but the following steps of the two strategies are similar and usually contains two 64 

parts. Firstly, the variant signatures are identified and gathered from two types of aberrant 65 

alignments: intra-read and inter-read. Intra-read alignments are derived from reads spanning the 66 

entire SV locus, resulting deletion and insertion signatures. Inter-read alignments are usually 67 

obtained from the supplementary alignments and SV signatures could be identified from 68 

inconsistencies in orientation, location and size during mapping, from which translocation as well 69 
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as large deletion, duplication and inversion signatures are identified. Secondly, callers typically 70 

cluster and merge similar signatures from multiple aberrant alignments, delineating proximal 71 

signatures that support putative SV. Nearly all read-based callers developed in the past five years, 72 

such as Sniffles [20], pbsv, cuteSV [21], SVIM [22], NanoVar [23], NanoSV [24], and Picky [9], 73 

detect SVs through combinations of signatures obtained from inter-read and intra-read alignments 74 

but differ in their signature clustering heuristics. While different from the above methods, SVision 75 

applied a deep-learning approach to directly recognize different SV types from the variant 76 

signature sequences. As for assembly-based callers, such as Phased Assembly Variant (PAV) and 77 

SVIM-ASM [22] use the alignment of whole genome assembly as input, from which aberrant 78 

inter-contig and intra-contig alignments are collected and used for SV detection. Most importantly, 79 

accumulating studies have claimed that the assembly-based detection strategy is able to 80 

comprehensive detect SVs and characterize non-templated insertions [1, 3, 19]. Though a number 81 

of studies have demonstrated the advances of using long-read toward short-read data, it lacks 82 

systematic comparison of read-based and assembly-based strategy. Therefore, to help users, it is 83 

important to quantitatively assess and compare the stability and usability of the two strategies, 84 

especially for SVs at complex genomic regions. Moreover, the potential weakness of different 85 

strategies needs to be investigated, so that new developments in the field could focus on improving 86 

current methods. 87 

In this study, a widely-used benchmark material, HG002 genome, was selected to compare and 88 

benchmark the two strategies. Moreover, according to methods reviewed by a recent study [25], 89 

we selected four read aligners, two assemblers for HiFi datasets, two assemblers for ONT datasets, 90 

one contig aligner, one phasing algorithm, five read-based callers and two assembly-based callers  91 

(Methods). We then evaluated the impact of detection settings (i.e., aligners and assemblers) and 92 

sequencing settings (i.e., read length, sequencer and coverage) on both strategies. Briefly, the 93 

impact of sequencing settings was first assessed for each strategy across all datasets based on 94 

datasets concordant and unique SVs, and the detection and sequencing settings affected strategy 95 

concordant SVs were further assessed (Fig. 1a). Additionally, the impact of detection settings on 96 

each strategy were examined on each dataset based on aligner concordant and assembler 97 

concordant SVs (Fig. 1b). For concordant SVs, we also assessed their breakpoint difference, where 98 

the breakpoint standard deviation (BSD) smaller than 10bp were classified as breakpoint 99 

accurately reproduced concordant SVs (Fig. 1c). Furthermore, for both strategies, their recall and 100 
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precision of detecting well curated SVs, especially those at challenging medically relevant 101 

autosomal genes (CMRG), were assessed and cross-compared under different sequencing settings.  102 

Results 103 

Impact of sequencing settings on each strategy 104 

We totally generated 120 read-based callsets and 24 assembly-based callsets, while SVs at 105 

centromere and low mapping quality regions were excluded in the analysis (Method). Overall, 106 

assembly-based and read-based strategy detected a median of 20,827 and 23,611 SVs from HiFi 107 

datasets, respectively, while more SVs were detected from ONT datasets, i.e., a median of 22,009 108 

for read-based and 29,162 for assembly-based (Fig. 2a). As expected, the SV size peaks for both 109 

strategies were observed at 300bp and 6,000bp, indicating SINE and LINE, respectively 110 

(Supplementary Fig. 1a). Moreover, the majority of the SVs (75%) were located at repetitive 111 

regions without sequencing platform bias, while two strategies differed at Simple Repeats regions 112 

consisted of either VNTR or short tandem repeats (STR) (Fig. 2b). As for SV types, assembly-113 

based strategy detected more insertions than read-based callers due to longer sequence length (Fig. 114 

2c). While read-based caller SVision detected comparable percentage of insertions as assembly-115 

based strategy when detected from minimap2 or winnowmap aligned ONT reads (Fig. 2c). On the 116 

contrary, pbsv paired with ngmlr resulted in the fewest percentage of insertions among all six 117 

datasets (Fig. 2c). Additionally, different from assembly-based strategy, read-based callers also 118 

identified other SV types, such as duplication and even complex types (Supplementary Fig. 1b).  119 

For each strategy, we further assessed the number and breakpoint of dataset concordant SVs. On 120 

average, detecting from HiFi reads, 75% and 80% of the dataset concordant SVs were identified 121 

for read-based and assembly-based strategy, respectively. However, the average dataset 122 

concordant SV rate of read-based strategy was higher than assembly-based strategy on ONT 123 

datasets, suggesting that read-based strategy was more versatile to different datasets (Fig. 2d, 124 

Supplementary Fig. 1c). Moreover, large variance of concordant SVs rate observed in ONT 125 

datasets suggested a great assembler bias, i.e., the average dataset concordant SV rate was 26% 126 

for shasta and it was 45% lower than detecting from assemblies created by flye (Fig. 2e). 127 

Comparably, as a critical setting for read-based strategy, the percentage of reproducible SVs 128 

detected from ONT reads was less affected by aligners when compared to assemblers did on 129 

assembly-based callers, i.e., the average dataset concordant SV rate for each aligner ranged from 130 
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50% to 75% (Fig. 2e). Furthermore, the average percentage of breakpoint accurately reproduced 131 

SV (i.e., BSD smaller than 10bp, BSD-10) on HiFi datasets was around 20% higher than that of 132 

ONT datasets (Fig. 2f, Supplementary Fig. 1d). For breakpoint inaccurately reproduced SVs, 65% 133 

(HiFi datasets) and 50% (ONT datasets) of them overlapped with simple repeat regions, while 5% 134 

of these SVs detected from ONT reads were found at segment duplication regions for both 135 

strategies (Supplementary Fig. 1e). We further investigated the impact of genomic regions on 136 

breakpoint accuracy and found that assembly-based strategy was able to detect more BSD-0 (i.e., 137 

BSD equals 0bp) SVs than read-based strategy, especially at simple repeat regions 138 

(Supplementary Fig. 2). The above results showed that both strategies might overcall on ONT 139 

datasets and large variance of SVs at simple repeat regions was observed in read-based callsets. 140 

Though both strategies were able to detect SVs consistently from HiFi reads in terms of the 141 

concordant SV rate and their breakpoint consistency, the breakpoint of assembly-based calls were 142 

more accurate than read-based ones. 143 

Impact of aligners and assemblers on reproducible SVs for each strategy 144 

Next, we examined the impact of detection settings (i.e., aligner for read-based and assembler for 145 

assembly-based) on each strategy (Method). For read-based strategy, around 50% of the SVs were 146 

detectable from all four aligners mapped reads, referring to as aligner concordant calls, while 30% 147 

of the SVs were only detected from one of the aligners and considered as aligner unique calls (Fig. 148 

3a, Supplementary Fig. 3-4). The majority (80%) of the aligner concordant calls were found to 149 

be BSD-10 on both HiFi and ONT datasets (Fig. 3b). Notably, for pbsv, 75% of the aligner 150 

concordant calls9 breakpoints were BSD-0, which was 60% higher than other read-based callers, 151 

indicating that pbsv detected SV breakpoints were less affected by aligners than others, especially 152 

on HiFi datasets (Fig. 3b). As for assembly-based callers, 75% and 50% of the SVs were detectable 153 

from HiFi and ONT assemblies generated by two assemblers, respectively, and we termed these 154 

SVs as assembler concordant SVs (Fig. 3c, Supplementary Fig. 5). Remarkably, calling from 155 

HiFi reads, BSD-0 SVs took 98% of the assembler concordant SVs (Fig. 3d), which was 13% 156 

higher than pbsv and much higher than other read-base callers (Fig. 3b). Though the percentage 157 

of BSD-0 SVs detected from ONT assemblies was not comparable to HiFi assemblies, i.e., 60% 158 

for ONT and 98% for HiFi, assembly-based strategy was less affected by assemblers than that of 159 

aligners on read-based strategy. Moreover, we noticed that the percentage of BSD-0 aligner and 160 
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assembler concordant SVs increased as the read length increasing (Fig. 3b, Fig. 3d). This might 161 

due to the Guppy version used for ONT base calling (Supplementary Table S1).  162 

In addition, most of aligner or assembler unique SVs were located at Simple Repeat regions 163 

(Supplementary Fig. 6a). Using these uniquely detected SVs, we were able to investigate the 164 

impact of aligners and assemblers on the SV size and types. For aligner unique SVs, a median of 165 

2,151 SVs and 2,677 SVs were found in HiFi and ONT datasets, respectively (Supplementary 166 

Fig. 6b). However, 2.5 times more SVs, ranging from 100bp to 1,000bp, were uniquely detected 167 

from ngmlr aligned reads without platform bias (Fig. 3e). Moreover, a significant peak at 300bp 168 

was only observed for SVs detected from ngmlr aligned reads (Fig. 3e). In terms of SV types, 169 

around 17%, 39%, 38% and 33% of the unique calls were deletions detected from ngmlr, minimap2, 170 

lra and winnowmap alignments, respectively (Fig. 3f). Besides the bias for deletions, 37% of the 171 

ngmlr unique calls were duplications and it was around 30% higher than the average of other 172 

aligners. Additionally, the percentage of ngmlr unique insertions was 23%, but the average 173 

percentage was 46% for other aligners, suggesting that ngmlr preferred to generate duplication like 174 

alignment signature for read-based callers (Fig. 3f). We reasoned that this aligner bias was largely 175 

due to the mapping strategy adopted by ngmlr, where it splits read into non-overlapping 256bp 176 

sub-reads and maps them independently of each other [20]. Thus, a size peak was observed close 177 

to 300bp and insertions could be aligned as duplications where two sub-reads overlapped on 178 

reference genome. For assembly-based strategy, a median of 2,482 SVs and 7,976 SVs were 179 

identified from HiFi and ONT assemblies, respectively (Supplementary Fig. 6c). The size of SVs 180 

detected from hifiasm assembled HiFi contigs was enriched at 300bp, and most of SVs detected 181 

from shasta created ONT assemblies ranged from 50bp to 300bp (Supplementary Fig. 6d). We 182 

only observed the insertion bias among the assembler unique SVs, where around 78% of shasta 183 

unique SVs were insertions and most of these insertions were smaller than 300bp (Supplementary 184 

Fig. 6e). Taken together, the above results suggested that read-based calls, including their 185 

breakpoints, types and sizes, were greatly affected by aligners, while up to 80% of the SVs, 186 

consisting of 98% BSD-0 SVs, were detectable from HiFi assemblies created by different 187 

assemblers. 188 

Impact of different settings on the reproducible SVs between strategies 189 
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The above analysis on each strategy suggested that read-based strategy was more versatile to 190 

different sequencing settings when reads mapped by the same aligner, while assembly-based 191 

strategy was less affected by assembler and its breakpoint was more accurate than read-based 192 

strategy on HiFi datasets. We then want to examine the impact of detection and sequencing settings 193 

on the reproducible SVs between strategies. In general, SVs were compared at whole genome scale 194 

and at 12,745 true insertions/deletions (INS/DEL) regions identified by GIAB [26]. Considering 195 

the number of used aligners, assemblers and callers, we obtained 128 merged sets of nonredundant 196 

SVs between strategies among six datasets. For the merged SV callsets, a median of 28,630 and 197 

35,701 SVs at whole genome scale were identified, and a median of 14,141 and 15,840 SVs at true 198 

INS/DEL regions were identified from HiFi and ONT datasets, respectively (Fig. 4a). The 199 

unexpected large number of nonredundant SVs from ONT datasets were mainly contributed by 200 

merging PAV9s and SVision9s callsets (Fig. 4b).  201 

Based on the nonredundant SV sets, we first assessed the impact of pairs of aligner and assembler 202 

on the number of concordant SVs between strategies, referring to as strategy concordant SVs. On 203 

average, 55% and 45% of the SVs at whole genome scale were strategy concordant SVs when 204 

detected with HiFi and ONT reads, respectively, and strategy concordant SVs took around 80% 205 

(HiFi datasets) and 70% (ONT datasets) of the SVs at true INS/DEL regions (Fig. 4c, 206 

Supplementary Fig. 7a). Remarkably, the highest concordant rate was 89% for SVs at true 207 

INS/DEL regions and 72% for SVs at whole genome scale, which was around 20% higher than 208 

SVs detected from ONT datasets (Fig. 4c). Moreover, using HiFi reads, we observed minor effect 209 

of assemblers on the average concordant SV rate but large variance caused by aligners. In 210 

particular, the concordant rate from highest to lowest was achieved by pairing with minimap2, 211 

winnowmap, lra and ngmlr without assembler bias (Fig. 4c), indicating the sequence alignment 212 

strategies of ngmlr and minimap2 were significantly different. Additionally, at whole genome 213 

scale, we observed a positive correlation between read length and strategy concordant SV rate on 214 

both HiFi and ONT datasets (Fig. 4d), and this correlation was expected because assemblers 215 

essentially created longer DNA sequences which equals to the usage of longer reads for SV 216 

detection. Afterwards, we examined the breakpoint consistency of strategy concordant insertions 217 

and deletions (INS/DEL), which dominated the discoveries of both strategies. On average, 77% 218 

and 74% of the concordant insertions and deletions were BSD-10 events when detected from HiFi 219 

and ONT dataset, respectively (Fig. 4e). However, we observed great platform bias for BSD-0 220 
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INS/DEL, where 38% of the insertions and 45% of the deletions were BSD-0 in HiFi callsets and 221 

it was around 20% higher than the percentage of BSD-0 INS/DEL detected with ONT reads (Fig. 222 

4e). Furthermore, for breakpoint inaccurately reproduced SVs, 50% of the insertions and 83% of 223 

the deletions were found at simple repeat regions (Supplementary Fig. 7b). 224 

To further understand the impact of assembler and aligner on the BSD-10 INS/DEL, we used BSD-225 

10 INS/DEL detected from HiFi-18kb dataset because the highest concordant SV rate was 226 

observed on this dataset (Fig. 4d). Overall, detecting from minimap2 aligned reads, two strategies 227 

were able to detect the highest percentage of BSD-10 INS/DEL without assembler bias, and similar 228 

results were observed on winnowmap but significantly differed from ngmlr and lra (Fig. 4f). 229 

Especially for ngmlr, the highest percentage of BSD-10 INS/DEL was found between pbsv and 230 

any assembly-based callers without affecting by assembler (Fig. 4f). This was also consistent with 231 

our observation of BSD-10 INS/DEL among all datasets, where minimap2 and winnowmap 232 

performed similar but outliers were found among conordant SVs detected from ngmlr aligned 233 

reads (Supplementary Fig. 7c). Therefore, we reasoned that though 70% of the SVs were 234 

reproducible by both strategies and it was even 20% higher for SVs at true INS/DEL regions, 235 

further optimization of detecting SVs at complex genomic regions, especially tandem repeats, was 236 

required for future methods development. 237 

Examining SVs only detected by assembly-based strategy 238 

Recently, several studies had claimed that assembly-based strategy is able to comprehensively 239 

detect SVs from an individual genome [3, 19]. Thus, we examined whether assembly only SVs 240 

(i.e., SVs only detected by assembly-based strategy but missed by all read-based callers) were also 241 

detectable by read-based strategy. Since the above analysis suggested that using longer reads 242 

mapped with minimap2 resulted in the fewest number of strategy unique SVs (Fig. 4d, 243 

Supplementary Fig. 8a), HiFi-18kb and ONT-30kb were used to assess the assembly only SVs 244 

(Fig. 5a). As a result, 4,265 assembly only SVs (1,630 and 2,635 SVs from HiFi and ONT datasets, 245 

respectively), consisting of 2,800 insertions and 1,465 deletions, were identified from HiFi-18kb 246 

and ONT-30kb datasets and most of them were heterozygous SVs (Supplementary Fig. 8b). 247 

Moreover, 77% of the assembly only SVs (74% on ONT and 81% on HiFi) overlapped with Simple 248 

Repeats, but around 25% of the SVs detected from ONT assemblies were found at Segment Dup 249 

regions (Supplementary Fig. 8c).  250 
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To examine whether 4,265 assembly only SVs were detectable from read alignments, we first 251 

noticed that most of these SVs were located at high mapping quality regions (average read mapping 252 

quality >= 20) (Fig. 5b, Supplementary Fig. 8d). Afterwards, we found that 64% (1,056 out of 253 

1,630) and 51% (1,345 out of 2,635) of the assembly only SVs contain at least five HiFi and ONT 254 

SV signature reads identified from minimap2 alignments, respectively (Fig. 5b). These loci 255 

contain SV signature reads but missed by read-callers was mainly due to the large signature start 256 

position standard deviation, making them difficult to cluster for a valid call (Fig. 5c). Moreover, 257 

most of the average signature SV size ranged from 100bp to 1,000bp, which was not consistent 258 

with the size distribution of assembly only SVs at high mapping quality regions, especially for 259 

SVs smaller than 100bp (Fig. 5c). Therefore, even these assembly only SVs were reported by read-260 

based callers, they were hard to match one event in assembly only SVs due to the breakpoint 261 

difference and size similarity. For those SV loci without enough SV signature reads, 65% (HiFi 262 

dataset) and 48% (ONT dataset) of the assembly unique calls overlapped with Simple Repeats (Fig. 263 

5d). Additionally, on ONT dataset, 41% of the SVs without signature reads, consisting of 261 264 

insertions and 182 deletions, overlapped with segmental duplications, which was six times than 265 

that on HiFi dataset (Fig. 5d). For example, an insertion of length 2,474bp (chr4:144,924,382-266 

144,926,856) was detected from ONT assemblies at gene GYPB but no SV signatures found in 267 

HiFi read alignment and HiFi assembly alignment (Fig. 5e). Further investigation shows that gene 268 

GYPB had 97% sequence homology with GYPA, thereby leading to false discovery originated from 269 

assembly error (Fig. 5f). We also found an incorrect deletion of length 981bp at gene SMPD4 270 

without evident SV signature observed in HiFi reads and assemblies (Supplementary Fig. 8e). 271 

This gene was usually activated by DNA damage, cellular stress and tumor necrosis factor[27], 272 

and SVs associated with this gene had been identified in developmental disorder [28]. Therefore, 273 

we reasoned that read-based orthogonal validation is important and necessary to screen potential 274 

false discoveries from assembly-based calls, especially for clinical applications. 275 

Benchmarking strategies with SVs at complex genomic regions 276 

The above analysis revealed that complex genomic regions, especially tandem repeat regions were 277 

hotspots for discordant SVs. To further assess SV detection performance, we used well curated 278 

HG002 SV at true INS/DEL regions and 203 SVs on CMRGs to evaluate two strategies, where 279 

SVs at true INS/DEL regions and CMRGs enabled the evaluation of SV detection at simple and 280 

complex genomic regions, respectively.  281 
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For the true INS/DEL regions, the highest recall was 97%, achieving by assembly-based strategy 282 

on both HiFi and ONT datasets, while the highest precision was achieved by read-based callers 283 

(Fig. 6a). Moreover, we noticed that the recall was positively correlated with read length for both 284 

strategies on HiFi and ONT datasets, but both strategies showed large precision variance on ONT 285 

datasets, especially for assembly-based strategy (Fig. 6a). As for SVs on CMRGs, assembly-based 286 

strategy outperformed the read-based strategy (Fig. 6b). Specifically, the highest recall of 287 

assembly-based strategy was 96%, and it was 7% higher than the highest one achieved by read-288 

based strategy (Fig. 6b). Most importantly, we only noticed the positive correlation between recall 289 

and read length for assembly-based strategy without dataset preference (Fig. 6b). Furthermore, we 290 

investigated the false negative discoveries (i.e., missed benchmark SV) that affect recall of each 291 

strategy. As a result, 71% (54/76, HiFi) and 58% of (56/96, ONT) SVs detected by read-based 292 

strategy were false negative in three datasets, and these SVs were termed as datasets negatives, 293 

while the percentage of dataset negatives was 53% (26/49, HiFi) and 32% (25/77, ONT) for 294 

assembly-based strategy (Fig. 6c, Supplementary Fig. 9a). Similar to the above analysis, 63% of 295 

the false positive SVs (i.e., novel SVs detected by caller) detected by read-based strategy were 296 

concordant SVs among three HiFi datasets, i.e., referring to as datasets positives, which was 40% 297 

higher than assembly-based strategy on HiFi datasets (Fig. 6c, Supplementary Fig. 9b). The low 298 

of assembly-based strategy was due to the large number of false positive SVs detected from ONT-299 

9kb dataset, i.e., 235 false positive SVs that were not found in dataset ONT-19kb and ONT-30kb 300 

(Supplementary Fig. 9b). We next compared the datasets negative and datasets positive SVs 301 

between two strategies, where two strategies tend to detected more concordant false negatives but 302 

false positives were often found to be strategy specifics (Fig. 6d).  303 

Additionally, CMRGs are well documented across multiple diseases but often excluded from 304 

standard targeted or whole-genome sequencing analysis [26], enabling the evaluation for potential 305 

clinical application. The above analysis used the 35X coverage datasets, requiring around $7,000 306 

and $3,000 for generating the HiFi and ONT reads, respectively, which was not applicable to 307 

clinical settings due to the high sequencing cost. Therefore, we subsampled the 35X coverage 308 

datasets to 5X, 10X and 20X coverage and examined the performance of each strategy. Overall, 309 

read-based strategy outperformed assembly-based strategy on both HiFi and ONT datasets when 310 

the coverage was below 20X (Fig. 6e). Remarkably, read-based strategy was sensitive when 311 

detected with 5X ultra-low coverage data, i.e., the average recall of read-based strategy was 78% 312 
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for both datasets, and SVision and cuteSV achieved the highest recall and precision at such low 313 

coverage (Supplementary Fig. 9c). Moreover, the recall and precision of merged read-based 314 

callsets was slightly improved comparing to single caller while using 5X coverage data (Fig. 6f), 315 

which was consistent with other studies. At such low coverage, the average recall of assembly-316 

based strategy was around 48% and 26% on HiFi-18kb and ONT-30kb dataset, respectively (Fig. 317 

6e). Further investigation revealed that the low recall on ONT-30kb dataset was caused by 318 

assemblers, of which, the recall of calling SV from flye and shasta was 52% and 10%, respectively. 319 

However, such recall bias caused by assemblers on ONT dataset was not observed when detected 320 

from data of sufficient coverage, i.e., more than 20X (Supplementary Fig. 9d). The above results 321 

suggested that assembly-based strategy required at least 20X coverage data to achieve high recall 322 

and precision, but read-based strategy was able to achieve higher recall and precision with ultra-323 

low coverage data, making it applicable to clinical screening.  324 

Discussion 325 

Ongoing significant technology improvements have paved the way to apply long-read sequencing 326 

to population-scale sequencing projects and even for rapid genetic diagnoses, while the selection 327 

of proper SV detection strategy remains unclear. In this study, we compared and investigated the 328 

impact of factors that influenced the most widely-used read-based and assembly-based SV 329 

detection strategies. This is an important step towards the in-depth understanding of the usability 330 

and stability of each strategy in detecting SVs at genomic regions of different complexity as well 331 

as their potential application in clinical diagnosis.  332 

For each strategy, we were able to identify the source of variability among different sequencing 333 

settings based on six long-read datasets. Our results showed that read-based strategy was versatile 334 

to different sequencing platforms once identical aligner was used, but applying assembly-based 335 

strategy on ONT datasets was greatly affected by assembler when compared to HiFi datasets. 336 

Notably, calling from HiFi assemblies, around 90% of the SVs could be reproduced among 337 

different datasets and it was slightly affected by assembler. Though flye was not comparable with 338 

hifiasm, it was flexible to both HiFi and ONT datasets and averagely 75% of the SVs were 339 

reproduced. Additionally, assembly-based strategy was able to identify more consistent breakpoint 340 

than read-based strategy for concordant SVs. We further investigated the impact of aligners and 341 

assemblers on each strategy. In terms of the number of reproducible SVs and their breakpoint 342 
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consistency, SVs detected by assembly-based strategy were less affected by the usage of 343 

assemblers on HiFi datasets. On the contrary, concordant SV numbers, breakpoints and types of 344 

read-based callers were greatly affected by aligners, especially for ngmlr. Furthermore, we found 345 

that 70% of the whole genome scale SVs and 90% of the true INS/DEL region SVs were able to 346 

be detected by both strategies when proper assembler and aligner were paired. Most importantly, 347 

our results revealed a positive correlation between concordant SV rate and read length, 348 

incorporating with the recent achievements in generating reads of 4Mbp and longer [29], the 349 

percentage of reproducible is expected to be even higher. Furthermore, once considering assembly-350 

based calls as a comprehensive callset, our analysis revealed that 66% and 52% of the assembly-351 

based strategy uniquely detected SVs were detectable with read-based strategy on HiFi and ONT 352 

datasets, respectively, while they were missed because of the clustering issues caused by the 353 

signature ambiguity. This observation provided an important hint for future detection algorithm 354 

development. 355 

The above comparison results provided supportive evidence of the strength and weakness of each 356 

strategy as well as the hotspots for discordant SVs. Accordingly, using well curated SVs at 357 

genomic regions of different complexity, we assessed the recall and precision of each strategy with 358 

different dataset settings. As a result, with sufficient sequencing coverage (at least 20X), assembly-359 

based strategy outperformed read-based strategy for detecting SVs at true INS/DEL regions, 360 

especially for SVs at CMRGs. However, 20X coverage long-reads data is still not applicable to 361 

clinical applications due to the high sequencing cost. Further analysis with ultra-low coverage data 362 

(5X) revealed that read-based strategy is able to robustly detect SVs in challenging genes, where 363 

the sensitivity was even 30% higher than assembly-based strategy. Additionally, for low-coverage 364 

HiFi and ONT data, merging SVs from different callers slightly increased the sensitivity 365 

comparing to single callers, such as SVision and cuteSV, suggesting SV merge was no longer 366 

necessary for long-read based SV detection. 367 

Moreover, our analysis showed that SVs at tandem repeat regions are the most challenging ones 368 

to detect consistently by two strategies, suggesting the demand of developing novel methods and 369 

data structures for resolving these SVs. These SVs are difficult to reproduce because calling from 370 

both read and assembly alignment can have systematic issues with misrepresented highly 371 

polymorphic loci in the linear reference genome, which only represent one allele and thus, do not 372 

incorporate repeat polymorphisms of a population [25]. To solve this issue, pan-genome reference, 373 
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combing genomes from multiple individuals of a species, has been proposed improve SV detection 374 

at polymorphic regions as well as genotyping SVs using short-read data. Though graph methods 375 

offer great opportunity to solve bias for SV detection, these methods are still less straight-forward 376 

in practice then the use of linear reference genome. Moreover, it lacks evidence of how these 377 

graph-based methods generalize to clinical applications.  378 

To the best of our knowledge, this was the first study of comparing the two representative long-379 

read based SV detection strategies. Our analysis, from general-purpose detection to specific 380 

application, revealed the usability of each strategy, offering insights of selecting proper detection 381 

and sequencing settings for long-read projects. However, the evaluation is limited to diploid 382 

genomes and autosomal diseases, while the performance of two strategies on cancers, affecting by 383 

purity, heterogeneity and aneuploidy, requires further investigation. 384 

Conclusion 385 

SV detection is an essential step for population genetics and clinical diagnosis. While a number of 386 

long-read based studies for both healthy and disease genomes had revealed the prominent 387 

performance of using read-based strategy and assembly-based strategy for SV detection, their 388 

strength and weakness toward different settings is yet to be assessed. In this study, systematic 389 

analysis of dataset concordant SV and strategy concordant SV revealed the impact of aligners, 390 

assemblers, read length and sequencing platforms on the usability and stability of two strategies, 391 

including breakpoint consistency and SV types. Afterwards, we have benchmarked each strategy 392 

on detecting SVs at genomic regions of different complexity, especially SVs at CMRGs. We 393 

expect this work will help users to select proper SV detection settings for different applications 394 

and foster future development of SV detection algorithms at complex genomic regions.  395 

  396 
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Methods 397 

Read mapping and sequence assembly 398 

The three HiFi datasets (i.e., HiFi-10kb, HiFi-15kb and HiFi-18kb) and the three ONT datasets 399 

(i.e., ONT-9kb, ONT-19kb, ONT-30kb) are all publicly available. Based on a recent review by 400 

Steve S. Ho et. al. [1], aligners containing minimap2, lra, winnowmap and ngmlr were included in 401 

our study, and assemblers including hifiasm, flye and shasta were used. 402 

First of all, HiFi and ONT reads were mapped to human reference genome hg19 with minimap2 403 

(v2.20), lra (v1.3.2), winnowmap (v2.03) and ngmlr (v0.2.7). Parameters used for each mapper 404 

were listed below: 405 

• minimap2: parameters 8-a -H -k 19 -O 5,56 -E 4,1 -A 2 -B 5 -z 400,50 -r 2000 -g 50009 406 

were applied to align HiFi reads, and 8-a -z 600,200 -x map-ont9 were used for ONT reads. 407 

• ngmlr: parameters 8-x pacbio9 and 8-x ont9 were used to align HiFi and ONT reads, 408 

respectively.  409 

• winnowmap: parameters 8-ax map-ont9 and 8-ax map-pb9 of winnowmap were used to map 410 

ONT and HiFi reads, respectively.  411 

• lra: 8-CCS9 and 8-ONT9 were set to map HiFi and ONT reads, respectively. We then applied 412 

each read-based caller with default parameters except the minimum number of SV 413 

supporting reads. Since the sequencing coverage was around 35X for all datasets, the 414 

minimum SV supporting read for each read-based caller was set to five for the detection of 415 

both homozygous and heterozygous SVs. For 5X coverage, the minimum SV supporting 416 

read for each read-based caller was set to one. 417 

For sequence assembly, we use minimap2 aligned reads and phased SNPs released by GIAB to 418 

obtain phased reads via whatshap 8haplotag9 option. Those unphased reads are randomly assigned 419 

as either haplotype 1 and haplotype 2, which are also used in further sequence assembly. Given 420 

the phased reads, we apply assemblers with default parameters to create the haplotype-aware 421 

assemblies. 422 

SV detection and post-processing 423 

To detect SVs, methods were further excluded from the recent review [25] based on several criteria: 424 

(1) lack of detailed user manual; (2) no programming interface; (3) reported bias on aligners; (4) 425 
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unresolved errors during wrapping. In the end, read-based callers including cuteSV (v1.0.10), pbsv 426 

(v2.2.2), SVIM (v1.4.0), Sniffles (v1.0.12) and SVision (v1.3.6) were selected and assembly-based 427 

callers including Phased Assembly Variant (PAV) and SVIM-asm were selected.  428 

Read-based callers were directly applied to reads aligned by minimap2, ngmlr, lra and winnowmap 429 

with default parameters. Note that the minimum SV supporting read is set to five so that both 430 

homozygous and heterozygous germline SVs can be effectively detected from the 35X coverage 431 

datasets. For assembly-based strategy, the phased assemblies were directly used as input for PAV, 432 

and we run PAV with default parameters for SV detection. For SVIM-asm, assemblies were first 433 

mapped to reference hg19 with minimap2 parameters 8-x asm20 -m 10000 -z 10000,50 -r 50000 -434 

-end-bonus=100 --secondary=no -O 5,56 -E 4,1 -B 5 -a9, these parameters were used in minimap2 435 

embedded in PAV. Then, we run SVIM-asm with parameters 8svim-asm diploid --436 

tandem_duplications_as_insertions --interspersed_duplications_as_insertions9 for SV detection.  437 

For each callsets, a BED file obtained from a publication [30] was used to exclude SVs located at 438 

centromere and other low mapping quality regions. SVs overlapped with regions in the BED file 439 

were ignored in the downstream analysis. For the rest of the autosome SVs, we then annotated 440 

their associated repetitive elements using Tandem Repeat Finder, RepeatMasker and Segmental 441 

Duplication results provided by UCSC Genome Browser. The original files downloaded from the 442 

genome browser were first processed based on scripts introduced by CAMPHOR [31]. Repeat 443 

element associated with each SV is assigned based on a recent publication [32]. In particular, 444 

Variable Number Tandem Repeat (VNTR) was assigned if the length of repeat unit longer than 445 

7bp, otherwise, we considered it as Short Tandem Repeat (STR). It should be noted that simple 446 

repeat annotated by RepeatMasker was also classified into VNTR and STR. For SVs overlapping 447 

repetitive element, we require at least 50% of the entire SV length to be composed of the specific 448 

repeat type, and we prioritized the highest percentage of overlaps on the entire length of SV when 449 

multiple repeat types are annotated. For example, if 70% of an SV was composed of STR and 50% 450 

of the SV overlapped by ALU, then STR was assigned correspondingly. Moreover, according to 451 

the repetitive elements, we divided the genome into four different regions, i.e., Simple Repeat, 452 

Repeat Masked, Segment Dup and Unique. Simple Repeat represented regions of either VNTR or 453 

STR. Repeat Masked were those annotated as SINE, LINE, etc, by RepeatMasker. Segment Dup 454 

represented regions overlapping with segmental duplications. The rest of the genomic regions 455 

outside of Simple Repeat, Repeat Masked and Segment Dup were considered as Unique regions.  456 
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Identification of concordant and unique SVs 457 

According to different comparison purpose, we first obtained the nonredundant SVs of several 458 

callsets by running command 8Jasmine file_list=vcf_list.txt out_file=nonredundant_SVs.vcf 459 

max_dist=1000 spec_len=50 spec_reads=19. Then, using VCF file generated by Jasmine, we were 460 

able to identify concordant and unique calls as well as the breakpoint standard deviation of 461 

concordant calls. The breakpoint standard deviation was indicated in 8STARTVARIANCE9 and 462 

8ENDVARIANCE9 in the VCF file. The major steps for analyzing SV reproducibility among 463 

datasets and strategies were listed as below: 464 

• Dataset concordant/unique: Each caller was applied to six datasets for SV detection, and a 465 

nonredundant SV set was generated via Jasmine accordingly. SVs reproduced in six 466 

datasets were indicated by 8SUPP=69, while dataset unique calls were indicated by 467 

8SUPP=19. Moreover, SVs reproduced by at least two datasets were indicated by 8SUPP=29, 468 

8SUPP=39, 8SUPP=49, 8SUPP=59 and 8SUPP=69.  469 

• Aligner concordant/unique: On each dataset, the reads were aligned with four aligners and 470 

SVs were detected subsequently with each caller. For a caller, we merged its four callsets 471 

originated from four aligners, from which, aligner concordant SVs were obtained with 472 

8SUPP=49 and aligner unique SVs were labeled by 8SUPP=19. 473 

• Assembler concordant/unique: On HiFi dataset, the reads were assembled by two 474 

assemblers (i.e., hifiasm, flye) and the assemblies were mapped with minimap2. For a 475 

caller, we merged its two callsets originated from two assemblers, from which, assembler 476 

concordant SVs were obtained with 8SUPP=29 and assembler unique SVs were labeled by 477 

8SUPP=19. Similar process was applied to ONT dataset, but the assemblies were created 478 

by flye and shasta. 479 

• Strategy concordant/unique: On each dataset, we obtained a nonredundant SV set between 480 

a read-based caller and an assembly-based caller via Jasmine. Strategy concordant and 481 

strategy unique calls were indicated by 8SUPP=29 and 8SUPP=19, respectively. 482 

The breakpoint standard deviation of each SV in the merged set was kept in the 483 

8STARTVARIANCE9 column, and the values were directly used to analyze the breakpoint 484 

consistency of concordant SVs. 485 

Read alignment analysis for strategy unique calls 486 
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We applied the following steps to examine whether SVs uniquely detected by assembly-based 487 

strategy contain aberrant read alignment, i.e., the abnormal inter-read and intra-read alignments 488 

used to detect SVs by read-based callers.  489 

• Step1. The assembly-based strategy uniquely detected SVs were classified to three types 490 

of regions according to the average read mapping quality (avg_mapq) obtained from 491 

minimap2 aligned reads:  492 

1) No read mapping region (No_reads) 493 

2) Low mapping quality regions (Low_mapq, avg_mapq < 20) 494 

3)  high confident mapping regions (High_mapq, avg_mapq g 20).  495 

The average mapping quality threshold 20 was set according to the default minimum read 496 

quality used for SV detection.  497 

• Step2. The potential SV signature reads of those assembly unique SVs at high confident 498 

mapping quality regions were identfied. In general, the 8I9 and 8D9 tags in the CIGAR string, 499 

and the primary reads and their supplementary were collected and used to identify deletion 500 

(DEL), insertion (INS), inversion (INV) and duplication (DUP) signatures. The total 501 

number of reads containing SV signature was referred to signature count. Moreover, we 502 

calculated the start position standard deviation and size standard deviation of all signature 503 

reads. 504 

Evaluating each strategy with well curated SVs 505 

For 35X coverage datasets HiFi-18kb and ONT-30kb, we down-sample them to 5X, 10X and 20X 506 

with SAMtools. Afterwards, each caller is applied to the 5X, 10X and 20X datasets with default 507 

parameters except for the number of minimum SV supporting reads, which is set to 1, 2 and 5 for 508 

5X, 10X and 20X datasets, respectively. These values are set to enable effective detection of both 509 

homozygous and heterozygous germline SVs. The final VCF files are sorted, compressed and 510 

indexed for further evaluation. Furthermore, two benchmarks released by GIAB were used to 511 

assess both strategies of detecting SVs at true INS/DEL regions and CMRGs. The recall and 512 

precision were measured by Truvari with parameters 8-p 0.00 -r 1000 --passonly --giabreport9, but 513 

the genotype accuracy was not considered in our evaluation.  514 

Availability of code and data 515 
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 533 

Fig. 1 Schematic summaries of assessing the impact of different settings on each strategy and 534 

between strategies. a. Examining the impact of sequencing settings on each strategy based on 535 

datasets unique and concordant structural variants (SVs). Moreover, the impact of detection 536 

settings on strategy concordant SVs was assessed on each dataset. b. For each strategy, the impact 537 

of detection settings, i.e., aligners and assemblers, was assessed on each dataset based on aligner 538 

concordant SVs and assembler concordant SVs. c. Examining the breakpoint difference of 539 

concordant SVs, where the breakpoint standard deviation of concordant SVs smaller than 10bp 540 

was classified as breakpoint accurately reproduced SVs, otherwise, it was termed as breakpoint 541 

inaccurately reproduced SVs. 542 

  543 
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 544 

Fig. 2 Summaries of the impact of sequencing settings on each strategy. a. The number of 545 

structural variants (SVs) detected by each strategy among datasets. b. The distributions of detected 546 

SVs among different genomic regions. c. The percentage of insertions affected by callers, aligners 547 

and assemblers. d. The percentage of dataset concordant SVs detected from HiFi and ONT datasets 548 

of each strategy. e. The percentage of dataset concordant SVs affected by callers, aligners and 549 

assemblers on HiFi and ONT datasets. f. The percentage of breakpoint accurately reproduced SVs 550 

(i.e., BSD-10 SVs) on HiFi and ONT datasets. 551 

  552 
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 553 

Fig. 3 Summaries of the impact of detection settings on each strategy. a. The percentage of aligner 554 

unique and aligner concordant structural variants (SVs) detected from HiFi (x-axis) and ONT (y-555 

axis) datasets. b. The percentage of breakpoint accurately reproduced SVs (i.e., BSD-10 SVs, right 556 

panel) and breakpoint identically reproduced SVs (i.e., BSD-0 SVs, left panel) identified from 557 

read-based callsets. c. The percentage of assembler unique and concordant SVs detected from HiFi 558 

and ONT datasets. d. The percentage of breakpoint accurately reproduced SVs (i.e., BSD-10 SVs, 559 

right panel) and breakpoint identically reproduced SVs (i.e., BSD-0 SVs, left panel) identified 560 
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from assembly-based callsets. e. The size distribution of aligner unique SVs. f. The SV types 561 

among aligner unique SVs at different genomic regions.  562 

 563 

Fig. 4 Summary of impact of detection and sequencing settings on the strategy concordant 564 

structural variants. a. The number of structural variants (SVs) in the nonredundant callset merged 565 

from read-based calls and assembly-based calls at whole genome scale (WGS) and true INS/DEL 566 

regions. b. The number of structural variants (SVs) in the nonredundant callset merged from read-567 

based calls and assembly-based calls detected from ONT reads at WGS and true INS/DEL regions. 568 

c. The average percentage of strategy concordant SVs affected by assembler and aligner pairs at 569 

WGS and true INS/DEL regions. d. The average percentage of strategy concordant SVs on each 570 
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dataset. e. The percentage of concordant SVs of different breakpoint standard deviation among 571 

datasets. 809, breakpoint standard deviation equals 0bp. 80~109, breakpoint standard deviation large 572 

than 0bp but smaller or equal to 10bp. 8>109, breakpoint standard deviation large than 10bp. f. The 573 

percentage of breakpoint accurately reproduced SVs (i.e., BSD-10 SVs) affected by aligner, 574 

assembler and callers evaluated on HiFi-18kb dataset.  575 

 576 

Fig. 5 Examining assembly only structural variants. a. The schematic of obtaining assembly only 577 

structural variants (SVs) from assembly unique SVs. b. The number of all assembly only SVs, 578 

assembly only SVs at high mapping quality regions and assembly only SV loci containing at least 579 

five SV signature reads. c. The SV signature reads start position standard deviation (std) and the 580 

average length of identified signatures. d. The genomic region distribution of assembly only SVs 581 
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without enough SV signature reads (smaller than five). e. The IGV alignment view of a 2.4kbp 582 

insertion incorrectly detected from ONT assemblies. f. The sequence Dotplot of local genome 583 

containing the insertional breakpoint shown in (e), suggesting this incorrect detection was due to 584 

assembly error caused by segmental duplication formed by two homology genes, GYPB and GYPA.  585 

 586 

Fig. 6 Summaries of benchmarking two strategies with well curated structural variants. a. The 587 

recall and precision of detecting structural variants (SVs) at true INS/DEL regions. b. The recall 588 

and precision of detecting SVs at challenging medically relevant autosomal genes (CMRGs). c. 589 

For SVs at CMRGs, percentage of false positive and false negative SVs among HiFi and ONT 590 

datasets, i.e., SVs in three, two and one dataset. d. The Venn-diagram of false positive and false 591 

negatives detected by both strategies on HiFi and ONT datasets. e. The impact of sequencing 592 
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coverage on the recall and precision of detecting SVs at CMRGs. f. At 5X coverage, the recall and 593 

precision of each read-based callers as well as the merged callset.  594 

 595 

  596 
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