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SUMMARY
Combining data collected from multiple studies is becoming common and is advantageous to
researchers to increase the reproducibility of scientific discoveries. However, at the same time,
unwanted “batch effects” are commonly observed across neuroimaging data collected from multi-
ple study sites or scanners, rendering difficulties in combining such data to obtain reliable findings.
While methods for handling such unwanted variations have been proposed recently, most of them
use univariate approaches which would be too simple to capture all sources of batch effects which

could be represented by the batch-specific latent patterns. In this paper, we propose a novel
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2 R. ZHANG AND OTHERS

multivariate harmonization method, called UNIFAC harmonization, for estimating and removing
both explicit and latent batch effects. Our approach is based on the simultaneous dimension
reduction and factorization of interlinked matrices through a penalized objective, which provides
a new direction in neuroimaging research for harmonizing multivariate features across batches.
Using the Social Processes Initiative in Neurobiology of the Schizophrenia (SPINS) dataset and
extensive simulation studies, we show that UNIFAC harmonization performed better than the
existing methods in entirely removing batch effects as well as retaining associations of interest to

increase statistical power. The proposed method is publicly available as a R package.

Key words: Batch effects; Covariance heterogeneity; Dimension reduction; Genomics; Neuroimaging; UNI-

FAC harmonization

1. INTRODUCTION
1.1  Owerview

It is increasingly common in neuroimaging and genomics to combine data collected from multiple
studies to increase the power and the reproducibility of scientific discoveries. However, combin-
ing such data comes with unwanted variations, termed batch effects, that must be removed for
successful data integration. For example, in neuroimaging studies, study sites often use scanners
with different optimization protocols (Fortin and others, 2017, 2018; Yu and others, 2018). Sim-
ilarly, genome-wide RNA expression studies involve different sample preparation and sequencing
methods (Johnson and others, 2007). These heterogeneous data preparation pipelines can lead to
batch effects and incorrect conclusions. In this paper, we will use scanner effects to denote batch
effects in neuroimaging data.

In the last two decades, there have been numerous efforts in statistics to capture and remove

these unwanted variations and increase the signal-to-noise ratio. It is exemplified by the ComBat
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Removwal of latent batch effects 3

method, which has been applied to many data types in genomics (microarray and RNA-Seq)
(Johnson and others, 2007; Zhang and others, 2020) and neuroimaging (functional, structural,
and diffusion magnetic resonance imaging) (Fortin and others, 2017, 2018; Yu and others, 2018).
However, most of the methods, including ComBat are univariate approaches that would be limited
to capturing all sources of batch effects which could be represented by the batch-specific latent
patterns. (Chen and others, 2022)

We hypothesize that a principled and fully multivariate approach in this paper can further im-
prove the data quality and reproducibility of findings by capturing latent patterns of batch effects,
and this novel batch-correction method is based on the dimension reduction and factorization of

interlinked matrices.

1.2 Existing methods

ComBat (Johnson and others, 2007) is an empirical Bayes method, where batch effects are char-
acterized by additive batch effects (locations) and multiplicative batch effects (scales). ComBat
has been shown to be more robust to outliers in the case of small within-batch sample sizes (John-
son and others, 2007; Yu and others, 2018). However, ComBat is limited by the assumption that
additive batch effects can be explained by only an intercept for each scanner and feature. This
oversimplified assumption may ignore the unknown or partially known latent pattern batch ef-
fects and may include unwanted batch-specific latent patterns in the harmonized data, further
resulting in the potential loss of power. CovBat (Chen and others, 2022), a recent multivariate
batch-correction extending ComBat, takes the covariance of multivariate features into considera-
tion for these latent batch effects. It applies ComBat twice: first to the original data, then to the
principal components from the residual matrix. CovBat assumes the principal components from
the residuals follow a ComBat model, which might not be a sufficient assumption to characterize

all existing batch-specific patterns.
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4 R. ZHANG AND OTHERS

SVA (Surrogate Variable Analysis) is another method that was originally developed for ge-
nomic studies (Leek and Storey, 2007) then adapted to neuroimaging studies (Fortin and others,
2016). It includes latent factors of unwanted variation as surrogate variables, which are not as-
sociated with the biological covariates of interest. Instead of using explicit variables to denote
batch effects, SVA identifies and estimates unwanted variations, possibly including batch and
other artifacts, through permutation testing then removes them as surrogate variables. RAVEL
(Fortin and others, 2016) is a batch effect correction method for neuroimaging data inspired by
RUV (Gagnon-Bartsch and others, 2013). It estimates and removes unwanted variation factors by
using negative controls, which are features (e.g. genes, voxels, etc.) that are known a priori to be
unassociated with the variables of interest (Fortin and others, 2017, 2016). This method applies
singular value decomposition (SVD) to obtain latent factors of unwanted variations in the control
regions then removes the latent factors and corresponding effects in the test regions. Although
many studies show the discussed methods are applicable to different data types, some are built
on univariate linear regression framework (i.e., ComBat, CovBat, RAVEL) (Fortin and others,
2017; Chen and others, 2022). In addition, methods such as SVA (Leek and Storey, 2007) and
RAVEL (Fortin and others, 2016) are confined to capturing all unwanted variations or artifacts,

not only batch-specific variations, and require external data for formulations.

1.3  Motivating example

The Social Processes Initiative in Neurobiology of the Schizophrenia (SPINS) is a large multi-
site, multi-scanner study examining social cognition in schizophrenia, with data for T1- weighted,
diffusion-weighted, and resting-state functional magnetic resonance imaging (MRI) scans from
both individuals with schizophrenia and healthy controls as well as demographic information.
More detailed information about the study and data will be described in Section 3.1. Study

subjects were recruited from 3 study sites. Initially, subjects were scanned by General Electric
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(i) The first 3 principal components (PCs) of unharmonized data after regressing
out potential covariates
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(ii) The first 3 principal components (PCs) of ComBat harmonized data after re-
gressing out potential covariates

Fig. 1: Visualization of scanner effects in the SPINS data before and after the ComBat harmo-
nization, colored by scanner (GE: General Electric, SP: Siemens Prisma).

(750w Discovery or Signa) or Siemens Tim Trio based on the location, but during the study
Siemens Prisma was uniformly used to scan the brain. By applying principal component analysis
(PCA) to the original fractional anisotropy (FA) data from the diffuson tensor imaging (DTT),
we observed that the most variations are clearly explained by the scanner information (Gen-
eral Electric vs. Siemens Prisma) (Figure 1(i)). We then applied ComBat and extracted top 3
principal components from the harmonized data to see if the data reveals any remaining scanner-
specific variations (Figure 1(ii)). Despite an evidence of higher data quality by ComBat than the
original data, the heteroscedasticity of ellipses in top principal components indicates there are
still unremoved latent patterns specific to scanner information. This motivates a need for a new
batch-correction method that successfully removes hidden scanner-specific patterns not captured

by the simple location-scale adjustment.
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6 R. ZHANG AND OTHERS
1.4 Our contribution

We propose a novel method, called UNIFAC harmonization, for estimating and removing both
explicit and latent batch effects. It extends the work of Park and Lock (2020), a dimension re-
duction method primarily motivated by integrating multiple data types. While their work allows
flexible formulation of wanted and unwanted variations into the low-rank approximations, its
formulations and applications to the batch-correction context as well as comparisons to existing
methods have not been explored yet. We show that the proposed multivariate method simultane-
ously identifies and corrects not only explicit additive batch effects (locations) and multiplicative
batch effects (scales), but also latent batch effects. The latent variable formulation gives a clear
understanding of the method in terms of harmonizing covariances across batches.

The rest of the papers are organized as follows. Section 2 describes our proposed method,
UNIFAC harmonization, and describes the relationship between UNIFAC harmonization and
ComBat. At the same time, we reformulate the existing “joint and individual” factorization
methods into the harmonization context, which provides an intuitive explanation on covariance
heterogeneities. In Section 3, we harmonize the SPINS data with UNIFAC harmonization and
compare it to other harmonization methods using a comprehensive evaluation framework. Section
4 conducts simulations to evaluate performances in terms of Type 1 error rate and statistical

power. We conclude with some points of discussions in Section 5.

2. METHODS
2.1 Notation and setup

Let Y be a p x n data matrix of p features for n subjects. Then, consider {Y; : pxn;|j =1,...,J}
be a partition of Y, where J is the number of batches and the jth batch has n; subjects (so that

n = ijl n;). The matrices can be concatenated to form a matrix Y = [Y1;Y5;...;Y ;. We
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will use this notation for a general p x n matrix throughout this article.
We first characterize additive and multiplicative batch effects by using a factorizable multi-

variate model. We assume that the data matrix Y is decomposed into

Y=R+[Ii;...;L;]+ [01E1;...;6,E ], (2.1)

where R is a p x n low-rank row-shared structure containing information shared across all batches
horizontally, which should be retained after harmonization. Each I; is a p X n; low-rank latent
patterns containing batch effects shared only in each batch j, which needs to be removed after
harmonization. E; is a full-rank noise matrix with a unit variance, and 6?. characterizes the noise

variance for j which is assumed to be heterogeneous.

2.2 UNIFAC harmonization

Our approach is summarized by (i) removing batch and feature-specific means first, (i) stan-
dardizing the data matrix to have homogeneous variance, (iii) decomposing it into batch specific
and batch independent factors, and (iv) reconstructing harmonized data.

Steps (i) and (ii) are achieved through the preprocessing step. We first row-center each Y
to have zero mean and scale each row of Y to have a unit variance for Y. This step guarantees
that each Y; has zero mean and consists of low-rank signals plus Gaussian noise with variance
5J2». From here, we scale each data matrix Y; by 5j. Following Park and Lock (2020) and Lock
and others (2022), we estimate Sj using random matrix theory, specifically, by the median of
the singular values of Y; divided by the square root of the median of the Marcenko-Pastur
distribution (Gavish and Donoho, 2017). We use Y7 to denote the result from Step (i) and (ii).
This processing will not affect the estimation of the low-rank structure of the batch independent

components and latent batch effects because they are reserved for Step (iii).
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Noise with multiplicative batch effects Rescaled (homogeneous) noise

Fig. 2: Overview of the proposed model, using 3-batch data structure

In Step (iii), provided that Sj ~ 0;,we first note that Y* is represented by
Y*"=R"+T"+E (2.2)

where R* is a row-shared structure containing information shared across all batches, I* =
(I7;...;I%] are individual structures containing information shared only in each individual batch.

Due to low-rank approximations, R* and I* can be written as a product of row loadings and
column scores. The row-shared structures R* have common loadings across all batches, and the
scores can represent important biological covariates in a study. The individual structure I* have
different loadings and scores for different batches. The scores for I* can represent non-biological
covariates due to different scanners or sites in a study.

We use a Figure 2 to illustrate the proposed factorized forms. In this three-batch structures, R
explains substantial variations shared by all batches. Thus, the low-rank shared effects R will be
retained in the harmonization. The loadings of the individual structures I, include batch effects
that explain variations in only j-th batch. So, these low-rank individual effects I; (j =1...,3)
will be artificial (non-biological) variations that should be removed in the harmonization. The
noise structure J;E; with multiplicative batch effect has been scaled by Sj to be a homogeneous
noise in Step (ii).

For estimation, we use a penalized objective function extending the nuclear norm penalization
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for a single matrix. Based on the model (2.2), R* and T* are obtained by

J

{R* T} =argmin < [[Y* —R* = T||3 + A|[R*[|. + DN ¢, (2.3)
{R*,I*} =
where || - || and || - ||« are the Frobenious norm and the nuclear norm, respectively. Its objective

function is an extension of softImpute that extracts low-rank signals from a single data matrix.
The nuclear norm penalties in the object ensure that the resulting f{*,i* are low-rank, thus it
achieves simultaneous dimension reduction and estimation. Due to the convexity of the objective,
the block-wise coordinate descent algorithm can be applied to obtain R* and TJ* (Park and Lock,
2020). Because Y* is a zero mean matrix with low-rank signals and independent Gaussian noise
with the unit variance, we use the recommended values from Park and Lock (2020) by setting
A= p++nand \; = \/p+ \/T; as probabilistic upper bounds of the largest singular values
of E and E;, respectively. Park and Lock (2020) and Lock and others (2022) showed that these
tuning parameters meet necessary conditions for identifiability.

In Step (iv), since we hope to keep the shared effects to the original scale and remove multi-
plicative batch effects only for noise structure, and we standardize all the components including
R in the Step (ii), we need to scale R* back as 3Jﬁ; We also hope to keep the noise structures
to the original scale but with homogeneous variance, so we need to scale E back as SE, where
6% = (Z'jjzl nJSJQ) / (Z}I=1 n;). Therefore, the final UNIFAC-harmonized results are defined as

YUNIFAC _ [?1, . ,?J}, where

Y; = 5, R’ +ox (Y -R;-T)) (2.4)
——
original-scale shared effects rescaled noise
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10 R. ZHANG AND OTHERS
2.3 Notes on using covariates

Adjusting for baseline covariates is straightforward by regressing out covariate effects first, ob-
taining harmonized “residuals”, and adding covariate effects back. However, if one’s interest is
conducting association testing with covariates, including covariates of interests in UNIFAC har-
monization may lead to inflated false positive findings. It is because our objective (2.3) does
not enforce scores of I* to be independent with covariates of interest. Therefore, we suggest not
including variables of interest when applying UNIFAC harmonization and use it for testing. In
practice, we found that even not including any covariates does not result in a noticeable differ-
ence. It is because the covariate effects are actually a low-rank (with rank equal to the number
of covariates) batch-independent patterns and are captured by R (in high signal-to-noise ratio
(SNR)) or by E (in low SNR), provided that covariates are indepedent to batch information.
However, we note that ComBat does not suffer from potential inflated false positives provided
that the variables of interest and the indicator variable for additive batch effect are independent

(Nygaard and others, 2016).

2.4 Relationship between UNIFAC harmonization and ComBat

For feature 7 = 1,...,p and subject k = 1,...,n;, ComBat uses ;i = xFB; + Vij + Gij€ijr to
specify additive and multiplicative batch effects. In ComBat, the covariate effects are the only ex-
plicit shared information preserved in harmonized data. Therefore, although ¢;;;, may contain (i)
shared information not explained by linear covariate effects including non-linear covariate effects
or unobserved covariate effects and (ii) batch-specific variations not captured by batch-specific
means, ComBat does not distinguish these and leave (ii) unremoved. While regressing out covari-
ate effects (x1'3;) and additive batch effects (v;;) remains the same in UNIFAC harmonization
in the preprocessing step, it further decomposes ¢;;; in a more interpretable way. Also, while ¢;;

in ComBat and ¢; in UNIFAC harmonization both account for heterogeneous noise variances,
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the “noise” terms are treated differently. UNIFAC harmonization models heterogeneity in “white

noise”, but ComBat models heterogeneity in residuals not explained by covariates.

2.5 Reformulation of other matrix factorization methods in data harmonization context

The key idea of UNIFAC is in line with other “joint and individual” factorization of interlinked
matrices, which were primarily developed for decomposing multiple-omics data collected in a
single cohort into a set of low-rank modules. JIVE (Lock and others, 2013) is a classic method in
multi-omic studies that uses permutation or BIC to choose ranks in both shared and individual
structures. Other methods include AJIVE (Feng and others, 2018), SLIDE (Gaynanova and Li,
2019) and others, which expand JIVE on interpretability, rank selection (e.g. bi-cross validation),
and allowance of “partially-shared” modules.

These can be adapted for harmonizing data collected from multiple studies, as transposing
vertically stacked matrices allows us to formulate multiple cohorts (batches) for a single data
type. In their harmonization, instead of centering by feature for Y in data integration, we remove
batch and feature-specific means. Following standard practices, we then scale each data matrix
by the Frobenius norm of the data matrix to have homogeneous noise. For rank selection, we use
prespecified rank for AJIVE (e.g. scree plots) or the estimated rank from SLIDE (e.g. bi-cross
validation). Finally, we rescale shared components and noise terms analogous to UNIFAC and
construct harmonized data.

UNIFAC harmonization has some advantages over other methods in the data harmonization
context. First, tuning parameters are interpretable in terms of white noise, which aligns well with
the harmonization context. Second, it was shown that the proposed objective is superior to other
methods in various signal-to-noise scenarios (Park and Lock, 2020). Third, the tuning parameter
selection is determined by random matrix theory so it is computationally more efficient than other

methods. In Section 3 and 4, we provide a comprehensive evaluation of UNIFAC in comparison
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to other methods constructed in a harmonization context.

3. REAL DATA ANALYSIS
3.1 Data preparation

We used diffusion tensor imaging (DTI) data from the Social Processes Initiative in Neuro-
biology of the Schizophrenia (SPINS) study to empirically evaluate UNIFAC harmonization’s
performance. Study subjects consisted of 256 individuals with schizophrenia spectrum disorders
(SSDs) and 175 controls. Participants with SSDs met DSM-5 diagnostic criteria for schizophrenia,
schizoaffective disorder, schizophreniform disorder, delusional disorder, or psychotic disorder not
otherwise specified, assessed using the Structured Clinical Interview for DSM (SCID-IV-TR), and
had no change in antipsychotic medication or decrement in functioning/support level in the 30
days prior to enrollment. Controls did not have a current or past Axis I psychiatric disorder, ex-
cepting adjustment disorder, phobic disorder, and past major depressive disorder (over two years
prior; presently unmedicated), or a first degree relative with a history of psychotic mental disor-
der. Additional exclusion criteria included a history of head trauma resulting in unconsciousness,
a substance use disorder (confirmed by urine toxicology screening), intellectual disability, debili-
tating or unstable medical illness, or other neurological diseases. Participants also had normal or
corrected-to-normal vision.

Subjects were 18-55 years old, and 268 of the participants were males (163 females). Partici-
pants’ white matter tracts were reconstructed using deterministic unscented Kalman Filter (UKF)
tractography (Malcolm and others, 2010) in 3D Slicer (https://github.com/SlicerDMRI). The
ORG (O’Donnell Research Group) white matter atlas (Zhang and others, 2018) was used to par-
cellate fibers into anatomical tracts. Metrics were included from 56 deep white matter fiber tracts
from the association, cerebellar, commissural and projection tracts (the cortico-ponto-cerebellar

tract was excluded due to parcellation issues), and 16 superficial tract categories according to the


https://doi.org/10.1101/2022.08.01.502396
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.01.502396; this version posted August 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Removwal of latent batch effects 13

brain lobes they connect, resulting in p = 72 features. Mean fractional anisotropy (FA) values
were calculated along each tract. FA measures the degree to which diffusion of water molecules is
restricted by microstructural elements such as cell bodies, axons, myelin, and other constituents
of cytoskeleton (Beaulieu, 2002). Visual quality control was performed after initial tractography,
registration to the ORG atlas, and tract creation. Data from seven participants were excluded
on the basis of missing or poor tractography for > 15 tracts across the whole brain.

The scans were acquired at three different imaging sites, including Center for Addiction and
Mental Health (CAMH), Maryland Psychiatric Research Center (MPRC), and Zucker Hillside
Hospital (ZHH). The MRI scanner used at CAMH and ZHH was a General Electric (750w Discov-
ery and Signa respectively), and the MRI scanner at MPRC was a Siemens Tim Trio. However,
during the middle of the study, all study sites switched to Siemens Prisma for data collection.
Since the number of samples from Siemens Tim Trio are small, we dropped ST and used two
scanner types (GE and SP) in our analysis. Participants without DTI data were excluded from

the study, leaving us with a final dataset of n = 351 subjects.

Table 1: Description of study subjects in the SPINS dataset

Scanner  # subjects # female(%) Age (range) # disease(%)

General Electric (GE) 172 67(39) [18,55] 111(65)
Siemens Prisma (SP) 179 71(40) [18,55] 98(55)
3.2 Results

We fitted the UNIFAC harmonization, ComBat, CovBat, Adjusted Residuals as well as AJIVE
and SLIDE modified in the harmonization context described in Section 2.3. Adjusted Residuals
harmonization only removes additive batch effects by adjusting for biological covariates. We used
age, age?, gender, disease status as covariates, in which we later used an interaction between age

and disease status to evaluate statistical power of the harmonization methods.
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Fig. 3: Heatmaps of the 3 components of UNIFAC harmonization (a) Individual latent pattern

o~

(I). (b) Row-shared structure (R). (c) scaled noise structure (E). For visualizations, subjects in

~

scanner j were reordered by applying hierarchical clustering to I, and imaging features were

~

reordered by applying hierarchical clustering to I.

Figure 3 contains the heatmaps of 3 components of UNIFAC harmonization. The heatmap of
Iin Figure 3 presents clearly distinct variations specific to Siemens Prisma. On the contrary, the
heatmap of R does not show such pattern associated with scanner type, which also supports that
the shared variations are irrelevant with scanner information. In addition, the heatmap of the
rescaled noise does not show any noticeable patterns that could potentially affect homoscedasticity
assumption.

To evaluate if scanner-specific latent patterns are well-removed, we computed the empiri-
cal covariances by scanners as well the difference between two scanner-specific covariances. The
Figure 4 shows that the covariance differences remain notable in Adjusted Residuals, ComBat

and CovBat harmonized data. SLIDE and AJIVE performed slightly better than ComBat and


https://doi.org/10.1101/2022.08.01.502396
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.01.502396; this version posted August 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Removwal of latent batch effects 15

Adjusted

Residuals UNIFAC ComBat CovBat SLIDE AJIVE

General Electric General Electric General Electric General Electric General Electric General Electric

Siemens Prisma Siemens Prisma Siemens Prisma Siemens Prisma Siemens Prisma Siemens Prisma

Difference Difference Difference Difference

Fig. 4: Covariance matrices for harmonized data acquired from two scanners and their difference.
All covariance matrices are estimated after residualizing the data on all potential covariates. The
order of the feature agrees with Figure 3. The third row represents the difference of scanner-
specific covariance matrices (first and second rows).

CovBat in mitigating covariance scanner effect. However, these covariance differences are con-
siderably reduced with UNIFAC harmonization. We also assessed the quantitative comparisons
for Frobenius norm of the scanner-specific covariance matrices. The norm for the UNIFAC har-
monization was the lowest (5.09) followed by SLIDE (7.89), CovBat (8.73), AJIVE (8.84), and
ComBat (9.61), which suggests superior performance of UNIFAC harmonization in constructing
homogeneous covariances.

We also used Quadratic Discriminant Analysis (QDA) to evaluate how each harmonized data
predicts scanners. A harmonization method that performs better in removing scanner effects
will result in a lower prediction accuracy. Using machine learning methods to predict scanners
from harmonized data has been used in previous literature (Fortin and others, 2018; Chen and

others, 2022). Among existing classifiers, we chose QDA because the classifier is constructed
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based on the mean vectors and covariance matrices only. Using leave-one-out cross-validation, we
computed the average accuracy for each harmonized data after regressing out covariate effects.
The UNIFAC harmonization method achieved the lowest prediction accuracy (49.6%) close to a
random prediction, followed by CovBat (59.3%), ComBat (66.1%), SLIDE (66.4%) and AJIVE
(68.4%).

Lastly, we investigated whether UNIFAC harmonization preserves the biological variability in
the data. This step is necessary because the multivariate harmonization methods are prone to
potentially overkilling too much variations including signals of interest. Here, we conducted para-
metric bootstrap to evaluate the power of the different harmonization methods. For the bth boot-
strap, the procedure is summarized by (i) estimating all components of UNIFAC harmonization
(f{,i ) ,6) using DTI-FA data, where & is the sample standard deviation vector for residuals from
the regression with covariates, and computing sample covariance matrices of ﬁ, Tl,ig, denoted
by SR, 211, 212; (ii) generating Igb) from MVN (0, ﬁlj) (=1,2); R® from MVN(0, S\JR); and
each element of E®) from A/(0,12); (iii) generating Y® = ¢ x I®) + R®) 4+ 517 o [5, E{": 5, EM],
where 1 is vector of ones and o is the element-wise product. Here, we chose ¢ € {1,2,3} to
evaluate power based on different degrees of scanner-specific latent patterns. We then (iv) apply
each harmonization method and build regression between each DTI-FA feature in each harmo-
nized data and covariates X, conduct t-test to the estimated coeflicient of agexdisease status,
and extract the smallest p-value among all features. We repeat (ii)-(iv) B times to compute the
power.

We evaluated power with respect to different Type 1 error threshold o € (0,0.1), which is
shown in the Figure 5. UNIFAC harmonization gained more power than other methods, which
indicates UNIFAC harmonization can retain more biological associations of interest than them
so that it performed better in detecting true biological effects in the data. In addition, when

we increased c¢, the relative weight of individual latent pattern (I) in the bootstrap samples,
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Fig. 5: Summary of power for five harmonization methods. The plots from left to right are with
increased proportion of individual latent pattern

the performance of UNIFAC harmonization remained similar but the power of other methods
decreased. The oversimplified model assumption for ComBat, that scanner effects only account
for location and scales, could result in scanner effects still remaining in the resulting data. These
effects could overshadow our detection of biological associations. On the contrary, the CovBat’s
performances indicate a loss of power when the heterogeneous covariance assumption set by

CovBat is not met.

4. SIMULATION STUDIES

4.1  Simulation designs

We performed extensive simulation studies to evaluate the performance of UNIFAC harmonization
and to compare it to other methods. We included ComBat, CovBat, SLIDE, AJIVE and Adjusted
Residuals as our competitors and then evaluated whether harmonized data preserves biological
variations through the power analysis of harmonized data. To evaluate the control of false positives
and power, we designed two simulation experiments. We considered J = 2 in this framework,
because it is consistent with our data analysis in Section 3 and allows to consider SLIDE method

in the evaluation framework.
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Simulation 1: We generated data using the sum of low-rank features. We simulated 1,000
null data sets with n; = ng = 50 (so that n = 100), and p = 100 features. Our data generating
model is summarized by:

Y = pBX’ r | Eq,...,0;E;].
BX’ + + R+ ¢ L +[6iEq,...,0,E/]

rank 4 rank2 rank 3 rank 6

We first used 4 nuisance covariates for covariate effects, where each element of 3 was generated
from A(0,12). The covariate vector for each subject was generated from the multivariate normal
distribution with zero mean, and we used AR1(0.2) for the covariance matrix. Second, we gener-
ated R by first generating a p X n matrix whose entries are drawn from N(0, 12), then taking the
first 3 principal components. Similarly, we generated each I; by generating a p x n; matrix using
N(0,12) then taking the top 3 principal components. Lastly, we also generated the additive batch
effect (location) v;; by fixing it be the same for all i and from N (0, 1.5?), and multiplicative batch
effect (scale) 6; from Uniform(1,1.5). Finally, the elements of E were generated from (0, 1?).

We note that, ¢ was chosen between 0, 1,2, 3 to evaluate the impact of scanner-specific latent
patterns on statistical power. Note that we also considered ¢ = 0 to investigate whether it has
comparable performance when data generating model does not include any batch-specific latent
patterns.

Simulation 2: We generated data by modifying the simulation design introduced by Chen
and others (2022). To address potential covariance batch effects, the CovBat model uses principal
component (PC) scores to shift each within-batch covariance to the pooled covariance structure.
Therefore, the design aimed at evaluating whether harmonization methods can approximate the
underlying covariance structure when covariance batch effects are captured by its PC shifts.

We simulated 1,000 null data sets based on SPINS data so that ny = 172,no = 179 (so
that n = 351) and p = 73 features. The data y,;;, was generated by yijx = a; + Vij + 0ij€ijks
where a = (o, .. .,ap)T is the sample mean vector of Scanner General Electric observations
)T

in the SPINS data. The additive scanner effects v; = (v1;,...,7p;)" s are vectors drawn from
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N(0,0.1%). For multiplicative scanner effects, we used ;1 ~ ZG(46,50) and &;2 ~ ZG(51, 50). From
the sample correlation matrix of DTI-FA observations in the SPINS data S with the corresponding
eigen decomposition S = 21731 Xﬂ?:lfb;f, we generated €j; = (€1jk,--.,€pj5)° that contained
scanner-specific shifts in two designs. The first design was introduced by Chen and others (2022)
to investigate how the rank of the covariance effect influences harmonization results, and we
generated error terms by €, ~ MVN(0,S + ¢; leil /A\lﬂfl{bgp), where ¢; = —1 and ¢, = 1.
We considered different K including K = 0,1, 5,10. The second design aimed to investigate how
the severity of the covariance shift influences harmonization results, and we generated €, ~
MYN(0,¢; S5 Ahyiby + X7 oy Aithyby ), where K = 5, ¢ = 0.125,0.25,0.5,0.75 and ¢ =
1.875,1.75,1.5,1.25.

For evaluation of power, we generated our covariate of interest, Z, (k =1,...,n), randomly
from 0 or 1. We then randomly chose 20% (from Simulation 1) and 50% (from Simulation 2) of
features and added 7; - Z; to the null data, where 7; > 0 is the effect size for the ith feature.
For both simulation setups, we used permutation to control family-wise error rate (FWER) and

evaluated the power for the null hypothesis Hy : 7, = 0 for all ¢ = 1,..., p, controlled at the level

of 5%.

4.2  Simulation results

The results for Simulation 1 are summarized in Figure 6(i). UNIFAC harmonization controlled
family-wise error properly, with empirical FWER of 0.044, 0.047, 0.048, and 0.052 regardless
of the choice of c¢. In our simulations, while other methods controlled FWER appropriately in
most scenarios, CovBat was conservative in controlling false positives when the proportion of
individual latent patterns increased. In terms of power, UNIFAC harmonization’s performance
was nearly the same as ComBat or CovBat even when the data generating model is misspecified

(i.e., ¢ = 0), which shows the robustness of the proposed method. Furthermore, as ¢ increased,
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Fig. 6: Summary of power for six harmonization methods. The blue dashed horizontal line is
FWER=0.05

UNIFAC harmonization showed substantial power gain compared to others, partially because it
correctly identified and removed the batch-specific latent patterns in the data. The lower power
of ComBat and Adjusted Residuals are expected as they do not consider these latent patterns in
their model, and the lower power of CovBat is also expected because the data generating model
is different from the CovBat’s assumption on PC shifts. Although AJIVE and SLIDE take these
latent patterns into consideration, their power was lower than UNIFAC harmonization when ¢
is large. It might be because UNIFAC’s objective function was superior in signal reconstructions

with various degrees of signal-to-noise ratios (Park and Lock, 2020).
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The results for Simulation 2 are summarized in Figure 6(ii) and 6(iii). In Design 1, UNIFAC
harmonization’s empirical FWER are 0.04, 0.044, 0.06, 0.053 for K = 0, 1,5, 10, while ComBat,
CovBat and SLIDE are conservative in controlling false positives when K was small. For power,
we note that when the null hypothesis was not true, all harmonization methods increased statisti-
cal power and performed similarly when K is small. When K was large, UNIFAC harmonization
still showed superior performance to other methods which supports the efficiency of UNIFAC
harmonization even when the data generating model did not follow the assumption of UNIFAC
harmonization. In Design 2, UNIFAC harmonization controlled family-wise error properly, with
empirical FWER of 0.05, 0.052, 0.041, 0.047. On the contrary, empirical FWER of ComBat were
0.018, 0.029, 0.037, 0.044, and of CovBat were 0.003, 0.016, 0.028, 0.045, making them very
conservative in controlling false positives when the severity of covariance shift was high (i.e.,
c1 = 0.125,co = 1.875). When the severity of covariance shift was high, all harmonization meth-
ods showed similar performance in increasing statistical power in the hypothesis test. However,
when the severity of covariance shift was low/moderate, UNIFAC harmonization showed superior

performance over other methods.

5. DISCUSSION

We proposed a novel harmonization method, called UNIFAC harmonization, that estimates and
removes both explicit (additive and multiplicative) and latent batch effects. We also provided a
framework to reformulate existing joint and individual factorization methods in the data harmo-
nization context and compared their performances. While multivariate harmonization itself has
been proposed in the literature, our approach that models batch-specific latent patterns provides
an intuitive and interpretable way to view the problem as heterogeneous covariances when the
low-rank assumption is satisfied. This novel method provides a new direction in neuroimaging

and genomics that satisfies the growing need of correcting batch effects for multi-site/scanner
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studies.

We showed in analysis of SPINS data and simulations that UNIFAC harmonization is superior
to other methods in harmonizing covariances across batch effects while retaining (biological) vari-
ations unnrelated to batches and improving reproducibility. In SPINS data analysis, we compared
these methods for harmonizing mean fractional anisotropy (FA) measurements of DTI images.
Our data analysis showed that UNIFAC harmonization performed better in entirely removing
batch effects as well as retaining associations of interest to increase statistical power than other
methods. In simulation studies, we showed UNIFAC harmonization maintained FWER, control for
multiple comparisons properly and had superior performance in increasing statistical power com-
pared to other methods. The difference in the statistical power between UNIFAC harmonization
and other methods was notable as the proportion of latent batch effects increased.

We describe some limitations of UNIFAC harmonization. Our current approach is evaluated
with a moderate number of features and samples, and its performance in high dimensional features
(p > n) has not been explored. Also, UNIFAC harmonization assumes that the original data ma-
trix consists of low rank signals (including latent batch effects) plus full rank noises to scale data
and choose tuning parameters. Its performance can be affected if this assumption does not hold.
For example, vertex-wise cortical thickness data has at most 160,000 features in each hemishpere
of the brain and reveals a high degree of spatial autocorrelation that low-rank assumption is not
reasonable. Also, we currently use random matrix theory to select tuning parameter. Even if low-
rank assumption holds, empirical approaches (e.g., cross-validation) may also be used to select
tuning parameters at the expense of computational cost, which may potentially improve the qual-
ity of harmonized data (Owen and Perry, 2009). In addition, confounding between batches and
biological covariates poses additional challenges for all harmonization methods, since removing
unwanted variations associated batches may overkill biological associations. (Fortin and others,

2017; Nygaard and others, 2016). It may be a problem for UNIFAC harmonization as well, and
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we leave the evaluation for it as future work. Lastly, we assumed normality of the data, which is
well-justified in neuroimaging data or log-transformed microarray data, but other data types in
genomics (e.g. RNA-Seq) that reveal excessive zero counts will require a different probabilistic
model for latent batch effects. We leave it as future work.

The UNIFAC haromonization has room for improvement. First, UNIFAC harmonization is
applied to general multivariate data, and it might also be extended to accommodate different data
types’ needs, i.e., structural, functional, and other imaging modalities. It would be interesting to
explore if latent batch effects are shared across data modalities. Also, it would be interesting to
explore whether the non-biological variations we detected (i.e., I) can be explained by existing
non-biological information (e.g, scanner information), which, if it exists, would be helpful in
validation of the harmonization method.

The proposed method is publicly available as a R package at https://github.com/junjypark/

UNIFACharmonization.
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