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Summary

Combining data collected from multiple studies is becoming common and is advantageous to

researchers to increase the reproducibility of scientific discoveries. However, at the same time,

unwanted “batch effects” are commonly observed across neuroimaging data collected from multi-

ple study sites or scanners, rendering difficulties in combining such data to obtain reliable findings.

While methods for handling such unwanted variations have been proposed recently, most of them

use univariate approaches which would be too simple to capture all sources of batch effects which

could be represented by the batch-specific latent patterns. In this paper, we propose a novel
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multivariate harmonization method, called UNIFAC harmonization, for estimating and removing

both explicit and latent batch effects. Our approach is based on the simultaneous dimension

reduction and factorization of interlinked matrices through a penalized objective, which provides

a new direction in neuroimaging research for harmonizing multivariate features across batches.

Using the Social Processes Initiative in Neurobiology of the Schizophrenia (SPINS) dataset and

extensive simulation studies, we show that UNIFAC harmonization performed better than the

existing methods in entirely removing batch effects as well as retaining associations of interest to

increase statistical power. The proposed method is publicly available as a R package.

Key words: Batch effects; Covariance heterogeneity; Dimension reduction; Genomics; Neuroimaging; UNI-

FAC harmonization

1. Introduction

1.1 Overview

It is increasingly common in neuroimaging and genomics to combine data collected from multiple

studies to increase the power and the reproducibility of scientific discoveries. However, combin-

ing such data comes with unwanted variations, termed batch effects, that must be removed for

successful data integration. For example, in neuroimaging studies, study sites often use scanners

with different optimization protocols (Fortin and others , 2017, 2018; Yu and others , 2018). Sim-

ilarly, genome-wide RNA expression studies involve different sample preparation and sequencing

methods (Johnson and others, 2007). These heterogeneous data preparation pipelines can lead to

batch effects and incorrect conclusions. In this paper, we will use scanner effects to denote batch

effects in neuroimaging data.

In the last two decades, there have been numerous efforts in statistics to capture and remove

these unwanted variations and increase the signal-to-noise ratio. It is exemplified by the ComBat
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Removal of latent batch effects 3

method, which has been applied to many data types in genomics (microarray and RNA-Seq)

(Johnson and others , 2007; Zhang and others, 2020) and neuroimaging (functional, structural,

and diffusion magnetic resonance imaging) (Fortin and others , 2017, 2018; Yu and others , 2018).

However, most of the methods, including ComBat are univariate approaches that would be limited

to capturing all sources of batch effects which could be represented by the batch-specific latent

patterns. (Chen and others, 2022)

We hypothesize that a principled and fully multivariate approach in this paper can further im-

prove the data quality and reproducibility of findings by capturing latent patterns of batch effects,

and this novel batch-correction method is based on the dimension reduction and factorization of

interlinked matrices.

1.2 Existing methods

ComBat (Johnson and others, 2007) is an empirical Bayes method, where batch effects are char-

acterized by additive batch effects (locations) and multiplicative batch effects (scales). ComBat

has been shown to be more robust to outliers in the case of small within-batch sample sizes (John-

son and others, 2007; Yu and others, 2018). However, ComBat is limited by the assumption that

additive batch effects can be explained by only an intercept for each scanner and feature. This

oversimplified assumption may ignore the unknown or partially known latent pattern batch ef-

fects and may include unwanted batch-specific latent patterns in the harmonized data, further

resulting in the potential loss of power. CovBat (Chen and others, 2022), a recent multivariate

batch-correction extending ComBat, takes the covariance of multivariate features into considera-

tion for these latent batch effects. It applies ComBat twice: first to the original data, then to the

principal components from the residual matrix. CovBat assumes the principal components from

the residuals follow a ComBat model, which might not be a sufficient assumption to characterize

all existing batch-specific patterns.
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SVA (Surrogate Variable Analysis) is another method that was originally developed for ge-

nomic studies (Leek and Storey, 2007) then adapted to neuroimaging studies (Fortin and others,

2016). It includes latent factors of unwanted variation as surrogate variables, which are not as-

sociated with the biological covariates of interest. Instead of using explicit variables to denote

batch effects, SVA identifies and estimates unwanted variations, possibly including batch and

other artifacts, through permutation testing then removes them as surrogate variables. RAVEL

(Fortin and others, 2016) is a batch effect correction method for neuroimaging data inspired by

RUV (Gagnon-Bartsch and others, 2013). It estimates and removes unwanted variation factors by

using negative controls, which are features (e.g. genes, voxels, etc.) that are known a priori to be

unassociated with the variables of interest (Fortin and others, 2017, 2016). This method applies

singular value decomposition (SVD) to obtain latent factors of unwanted variations in the control

regions then removes the latent factors and corresponding effects in the test regions. Although

many studies show the discussed methods are applicable to different data types, some are built

on univariate linear regression framework (i.e., ComBat, CovBat, RAVEL) (Fortin and others,

2017; Chen and others, 2022). In addition, methods such as SVA (Leek and Storey, 2007) and

RAVEL (Fortin and others, 2016) are confined to capturing all unwanted variations or artifacts,

not only batch-specific variations, and require external data for formulations.

1.3 Motivating example

The Social Processes Initiative in Neurobiology of the Schizophrenia (SPINS) is a large multi-

site, multi-scanner study examining social cognition in schizophrenia, with data for T1- weighted,

diffusion-weighted, and resting-state functional magnetic resonance imaging (MRI) scans from

both individuals with schizophrenia and healthy controls as well as demographic information.

More detailed information about the study and data will be described in Section 3.1. Study

subjects were recruited from 3 study sites. Initially, subjects were scanned by General Electric
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(i) The first 3 principal components (PCs) of unharmonized data after regressing
out potential covariates

(ii) The first 3 principal components (PCs) of ComBat harmonized data after re-
gressing out potential covariates

Fig. 1: Visualization of scanner effects in the SPINS data before and after the ComBat harmo-
nization, colored by scanner (GE: General Electric, SP: Siemens Prisma).

(750w Discovery or Signa) or Siemens Tim Trio based on the location, but during the study

Siemens Prisma was uniformly used to scan the brain. By applying principal component analysis

(PCA) to the original fractional anisotropy (FA) data from the diffuson tensor imaging (DTI),

we observed that the most variations are clearly explained by the scanner information (Gen-

eral Electric vs. Siemens Prisma) (Figure 1(i)). We then applied ComBat and extracted top 3

principal components from the harmonized data to see if the data reveals any remaining scanner-

specific variations (Figure 1(ii)). Despite an evidence of higher data quality by ComBat than the

original data, the heteroscedasticity of ellipses in top principal components indicates there are

still unremoved latent patterns specific to scanner information. This motivates a need for a new

batch-correction method that successfully removes hidden scanner-specific patterns not captured

by the simple location-scale adjustment.
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1.4 Our contribution

We propose a novel method, called UNIFAC harmonization, for estimating and removing both

explicit and latent batch effects. It extends the work of Park and Lock (2020), a dimension re-

duction method primarily motivated by integrating multiple data types. While their work allows

flexible formulation of wanted and unwanted variations into the low-rank approximations, its

formulations and applications to the batch-correction context as well as comparisons to existing

methods have not been explored yet. We show that the proposed multivariate method simultane-

ously identifies and corrects not only explicit additive batch effects (locations) and multiplicative

batch effects (scales), but also latent batch effects. The latent variable formulation gives a clear

understanding of the method in terms of harmonizing covariances across batches.

The rest of the papers are organized as follows. Section 2 describes our proposed method,

UNIFAC harmonization, and describes the relationship between UNIFAC harmonization and

ComBat. At the same time, we reformulate the existing “joint and individual” factorization

methods into the harmonization context, which provides an intuitive explanation on covariance

heterogeneities. In Section 3, we harmonize the SPINS data with UNIFAC harmonization and

compare it to other harmonization methods using a comprehensive evaluation framework. Section

4 conducts simulations to evaluate performances in terms of Type 1 error rate and statistical

power. We conclude with some points of discussions in Section 5.

2. Methods

2.1 Notation and setup

Let Y be a p×n data matrix of p features for n subjects. Then, consider {Yj : p×nj |j = 1, ..., J}

be a partition of Y, where J is the number of batches and the jth batch has nj subjects (so that

n =
∑J

j=1 nj). The matrices can be concatenated to form a matrix Y = [Y1;Y2; . . . ;YJ ]. We
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will use this notation for a general p× n matrix throughout this article.

We first characterize additive and multiplicative batch effects by using a factorizable multi-

variate model. We assume that the data matrix Y is decomposed into

Y = R+ [I1; . . . ; IJ ] + [δ1E1; . . . ; δJEJ ], (2.1)

where R is a p×n low-rank row-shared structure containing information shared across all batches

horizontally, which should be retained after harmonization. Each Ij is a p × nj low-rank latent

patterns containing batch effects shared only in each batch j, which needs to be removed after

harmonization. Ej is a full-rank noise matrix with a unit variance, and δ2j characterizes the noise

variance for j which is assumed to be heterogeneous.

2.2 UNIFAC harmonization

Our approach is summarized by (i) removing batch and feature-specific means first, (ii) stan-

dardizing the data matrix to have homogeneous variance, (iii) decomposing it into batch specific

and batch independent factors, and (iv) reconstructing harmonized data.

Steps (i) and (ii) are achieved through the preprocessing step. We first row-center each Yj

to have zero mean and scale each row of Y to have a unit variance for Y. This step guarantees

that each Yj has zero mean and consists of low-rank signals plus Gaussian noise with variance

δ2j . From here, we scale each data matrix Yj by δ̂j . Following Park and Lock (2020) and Lock

and others (2022), we estimate δ̂j using random matrix theory, specifically, by the median of

the singular values of Yj divided by the square root of the median of the Marcenko-Pastur

distribution (Gavish and Donoho, 2017). We use Y
?
j to denote the result from Step (i) and (ii).

This processing will not affect the estimation of the low-rank structure of the batch independent

components and latent batch effects because they are reserved for Step (iii).
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Fig. 2: Overview of the proposed model, using 3-batch data structure

In Step (iii), provided that δ̂j ≈ δj ,we first note that Y? is represented by

Y
? = R

? + I
? +E (2.2)

where R
? is a row-shared structure containing information shared across all batches, I

? =

[I?1; . . . ; I
?
J ] are individual structures containing information shared only in each individual batch.

Due to low-rank approximations, R? and I
? can be written as a product of row loadings and

column scores. The row-shared structures R? have common loadings across all batches, and the

scores can represent important biological covariates in a study. The individual structure I
? have

different loadings and scores for different batches. The scores for I? can represent non-biological

covariates due to different scanners or sites in a study.

We use a Figure 2 to illustrate the proposed factorized forms. In this three-batch structures, R

explains substantial variations shared by all batches. Thus, the low-rank shared effects R will be

retained in the harmonization. The loadings of the individual structures Ij , include batch effects

that explain variations in only j-th batch. So, these low-rank individual effects Ij (j = 1 . . . , 3)

will be artificial (non-biological) variations that should be removed in the harmonization. The

noise structure δjEj with multiplicative batch effect has been scaled by δ̂j to be a homogeneous

noise in Step (ii).

For estimation, we use a penalized objective function extending the nuclear norm penalization
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for a single matrix. Based on the model (2.2), R̂? and Î
? are obtained by

{R̂?, Î?} = argmin
{R?,I?}



||Y? −R

? − I
?||2F + λ||R?||∗ +

J∑

j=1

λj ||I?j ||∗



 , (2.3)

where || · ||F and || · ||∗ are the Frobenious norm and the nuclear norm, respectively. Its objective

function is an extension of softImpute that extracts low-rank signals from a single data matrix.

The nuclear norm penalties in the object ensure that the resulting R̂
?, Î? are low-rank, thus it

achieves simultaneous dimension reduction and estimation. Due to the convexity of the objective,

the block-wise coordinate descent algorithm can be applied to obtain R̂
? and Î

?
j (Park and Lock,

2020). Because Y
? is a zero mean matrix with low-rank signals and independent Gaussian noise

with the unit variance, we use the recommended values from Park and Lock (2020) by setting

λ =
√
p +

√
n and λj =

√
p +

√
nj as probabilistic upper bounds of the largest singular values

of E and Ej , respectively. Park and Lock (2020) and Lock and others (2022) showed that these

tuning parameters meet necessary conditions for identifiability.

In Step (iv), since we hope to keep the shared effects to the original scale and remove multi-

plicative batch effects only for noise structure, and we standardize all the components including

R in the Step (ii), we need to scale R
? back as δ̂jR̂

?
j . We also hope to keep the noise structures

to the original scale but with homogeneous variance, so we need to scale E back as δ̂Ê, where

δ̂2 = (
∑J

j=1 nj δ̂
2
j )/(

∑J

j=1 nj). Therefore, the final UNIFAC-harmonized results are defined as

Y
UNIFAC =

[
Ỹ1, . . . , ỸJ

]
, where

Ỹj = δ̂jR̂
?
j︸ ︷︷ ︸

original-scale shared effects

+ δ̂ × (Y?
j − R̂

?
j − Î

?
j )︸ ︷︷ ︸

rescaled noise

(2.4)

.
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2.3 Notes on using covariates

Adjusting for baseline covariates is straightforward by regressing out covariate effects first, ob-

taining harmonized “residuals”, and adding covariate effects back. However, if one’s interest is

conducting association testing with covariates, including covariates of interests in UNIFAC har-

monization may lead to inflated false positive findings. It is because our objective (2.3) does

not enforce scores of Î? to be independent with covariates of interest. Therefore, we suggest not

including variables of interest when applying UNIFAC harmonization and use it for testing. In

practice, we found that even not including any covariates does not result in a noticeable differ-

ence. It is because the covariate effects are actually a low-rank (with rank equal to the number

of covariates) batch-independent patterns and are captured by R (in high signal-to-noise ratio

(SNR)) or by E (in low SNR), provided that covariates are indepedent to batch information.

However, we note that ComBat does not suffer from potential inflated false positives provided

that the variables of interest and the indicator variable for additive batch effect are independent

(Nygaard and others, 2016).

2.4 Relationship between UNIFAC harmonization and ComBat

For feature i = 1, . . . , p and subject k = 1, . . . , nj , ComBat uses yijk = x
T
k βi + γij + φijεijk to

specify additive and multiplicative batch effects. In ComBat, the covariate effects are the only ex-

plicit shared information preserved in harmonized data. Therefore, although εijk may contain (i)

shared information not explained by linear covariate effects including non-linear covariate effects

or unobserved covariate effects and (ii) batch-specific variations not captured by batch-specific

means, ComBat does not distinguish these and leave (ii) unremoved. While regressing out covari-

ate effects (xT
k βi) and additive batch effects (γij) remains the same in UNIFAC harmonization

in the preprocessing step, it further decomposes εijk in a more interpretable way. Also, while φij

in ComBat and δj in UNIFAC harmonization both account for heterogeneous noise variances,
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the “noise” terms are treated differently. UNIFAC harmonization models heterogeneity in “white

noise”, but ComBat models heterogeneity in residuals not explained by covariates.

2.5 Reformulation of other matrix factorization methods in data harmonization context

The key idea of UNIFAC is in line with other “joint and individual” factorization of interlinked

matrices, which were primarily developed for decomposing multiple-omics data collected in a

single cohort into a set of low-rank modules. JIVE (Lock and others , 2013) is a classic method in

multi-omic studies that uses permutation or BIC to choose ranks in both shared and individual

structures. Other methods include AJIVE (Feng and others , 2018), SLIDE (Gaynanova and Li,

2019) and others, which expand JIVE on interpretability, rank selection (e.g. bi-cross validation),

and allowance of “partially-shared” modules.

These can be adapted for harmonizing data collected from multiple studies, as transposing

vertically stacked matrices allows us to formulate multiple cohorts (batches) for a single data

type. In their harmonization, instead of centering by feature for Y in data integration, we remove

batch and feature-specific means. Following standard practices, we then scale each data matrix

by the Frobenius norm of the data matrix to have homogeneous noise. For rank selection, we use

prespecified rank for AJIVE (e.g. scree plots) or the estimated rank from SLIDE (e.g. bi-cross

validation). Finally, we rescale shared components and noise terms analogous to UNIFAC and

construct harmonized data.

UNIFAC harmonization has some advantages over other methods in the data harmonization

context. First, tuning parameters are interpretable in terms of white noise, which aligns well with

the harmonization context. Second, it was shown that the proposed objective is superior to other

methods in various signal-to-noise scenarios (Park and Lock, 2020). Third, the tuning parameter

selection is determined by random matrix theory so it is computationally more efficient than other

methods. In Section 3 and 4, we provide a comprehensive evaluation of UNIFAC in comparison

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.01.502396doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.01.502396
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 R. Zhang and others

to other methods constructed in a harmonization context.

3. Real Data Analysis

3.1 Data preparation

We used diffusion tensor imaging (DTI) data from the Social Processes Initiative in Neuro-

biology of the Schizophrenia (SPINS) study to empirically evaluate UNIFAC harmonization’s

performance. Study subjects consisted of 256 individuals with schizophrenia spectrum disorders

(SSDs) and 175 controls. Participants with SSDs met DSM-5 diagnostic criteria for schizophrenia,

schizoaffective disorder, schizophreniform disorder, delusional disorder, or psychotic disorder not

otherwise specified, assessed using the Structured Clinical Interview for DSM (SCID-IV-TR), and

had no change in antipsychotic medication or decrement in functioning/support level in the 30

days prior to enrollment. Controls did not have a current or past Axis I psychiatric disorder, ex-

cepting adjustment disorder, phobic disorder, and past major depressive disorder (over two years

prior; presently unmedicated), or a first degree relative with a history of psychotic mental disor-

der. Additional exclusion criteria included a history of head trauma resulting in unconsciousness,

a substance use disorder (confirmed by urine toxicology screening), intellectual disability, debili-

tating or unstable medical illness, or other neurological diseases. Participants also had normal or

corrected-to-normal vision.

Subjects were 18–55 years old, and 268 of the participants were males (163 females). Partici-

pants’ white matter tracts were reconstructed using deterministic unscented Kalman Filter (UKF)

tractography (Malcolm and others, 2010) in 3D Slicer (https://github.com/SlicerDMRI). The

ORG (O’Donnell Research Group) white matter atlas (Zhang and others, 2018) was used to par-

cellate fibers into anatomical tracts. Metrics were included from 56 deep white matter fiber tracts

from the association, cerebellar, commissural and projection tracts (the cortico-ponto-cerebellar

tract was excluded due to parcellation issues), and 16 superficial tract categories according to the
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brain lobes they connect, resulting in p = 72 features. Mean fractional anisotropy (FA) values

were calculated along each tract. FA measures the degree to which diffusion of water molecules is

restricted by microstructural elements such as cell bodies, axons, myelin, and other constituents

of cytoskeleton (Beaulieu, 2002). Visual quality control was performed after initial tractography,

registration to the ORG atlas, and tract creation. Data from seven participants were excluded

on the basis of missing or poor tractography for > 15 tracts across the whole brain.

The scans were acquired at three different imaging sites, including Center for Addiction and

Mental Health (CAMH), Maryland Psychiatric Research Center (MPRC), and Zucker Hillside

Hospital (ZHH). The MRI scanner used at CAMH and ZHH was a General Electric (750w Discov-

ery and Signa respectively), and the MRI scanner at MPRC was a Siemens Tim Trio. However,

during the middle of the study, all study sites switched to Siemens Prisma for data collection.

Since the number of samples from Siemens Tim Trio are small, we dropped ST and used two

scanner types (GE and SP) in our analysis. Participants without DTI data were excluded from

the study, leaving us with a final dataset of n = 351 subjects.

Table 1: Description of study subjects in the SPINS dataset

Scanner # subjects # female(%) Age (range) # disease(%)
General Electric (GE) 172 67(39) [18,55] 111(65)
Siemens Prisma (SP) 179 71(40) [18,55] 98(55)

3.2 Results

We fitted the UNIFAC harmonization, ComBat, CovBat, Adjusted Residuals as well as AJIVE

and SLIDE modified in the harmonization context described in Section 2.3. Adjusted Residuals

harmonization only removes additive batch effects by adjusting for biological covariates. We used

age, age2, gender, disease status as covariates, in which we later used an interaction between age

and disease status to evaluate statistical power of the harmonization methods.
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Fig. 3: Heatmaps of the 3 components of UNIFAC harmonization (a) Individual latent pattern

(̂I). (b) Row-shared structure (R̂). (c) scaled noise structure (E). For visualizations, subjects in

scanner j were reordered by applying hierarchical clustering to Îj , and imaging features were

reordered by applying hierarchical clustering to Î.

Figure 3 contains the heatmaps of 3 components of UNIFAC harmonization. The heatmap of

Î in Figure 3 presents clearly distinct variations specific to Siemens Prisma. On the contrary, the

heatmap of R̂ does not show such pattern associated with scanner type, which also supports that

the shared variations are irrelevant with scanner information. In addition, the heatmap of the

rescaled noise does not show any noticeable patterns that could potentially affect homoscedasticity

assumption.

To evaluate if scanner-specific latent patterns are well-removed, we computed the empiri-

cal covariances by scanners as well the difference between two scanner-specific covariances. The

Figure 4 shows that the covariance differences remain notable in Adjusted Residuals, ComBat

and CovBat harmonized data. SLIDE and AJIVE performed slightly better than ComBat and
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Fig. 4: Covariance matrices for harmonized data acquired from two scanners and their difference.
All covariance matrices are estimated after residualizing the data on all potential covariates. The
order of the feature agrees with Figure 3. The third row represents the difference of scanner-
specific covariance matrices (first and second rows).

CovBat in mitigating covariance scanner effect. However, these covariance differences are con-

siderably reduced with UNIFAC harmonization. We also assessed the quantitative comparisons

for Frobenius norm of the scanner-specific covariance matrices. The norm for the UNIFAC har-

monization was the lowest (5.09) followed by SLIDE (7.89), CovBat (8.73), AJIVE (8.84), and

ComBat (9.61), which suggests superior performance of UNIFAC harmonization in constructing

homogeneous covariances.

We also used Quadratic Discriminant Analysis (QDA) to evaluate how each harmonized data

predicts scanners. A harmonization method that performs better in removing scanner effects

will result in a lower prediction accuracy. Using machine learning methods to predict scanners

from harmonized data has been used in previous literature (Fortin and others, 2018; Chen and

others, 2022). Among existing classifiers, we chose QDA because the classifier is constructed

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.01.502396doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.01.502396
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 R. Zhang and others

based on the mean vectors and covariance matrices only. Using leave-one-out cross-validation, we

computed the average accuracy for each harmonized data after regressing out covariate effects.

The UNIFAC harmonization method achieved the lowest prediction accuracy (49.6%) close to a

random prediction, followed by CovBat (59.3%), ComBat (66.1%), SLIDE (66.4%) and AJIVE

(68.4%).

Lastly, we investigated whether UNIFAC harmonization preserves the biological variability in

the data. This step is necessary because the multivariate harmonization methods are prone to

potentially overkilling too much variations including signals of interest. Here, we conducted para-

metric bootstrap to evaluate the power of the different harmonization methods. For the bth boot-

strap, the procedure is summarized by (i) estimating all components of UNIFAC harmonization

(R̂, Î, δ̂, σ̂) using DTI-FA data, where σ̂ is the sample standard deviation vector for residuals from

the regression with covariates, and computing sample covariance matrices of R̂, Î1, Î2, denoted

by Σ̂R, Σ̂I1
, Σ̂I2

; (ii) generating I
(b)
j from MVN (0, Σ̂Ij

) (j = 1, 2); R(b) from MVN (0, Σ̂R); and

each element of E(b) from N (0, 12); (iii) generating Y
(b) = c× I

(b)+R
(b)+ σ̂1T ◦ [δ̂1E(b)

1 ; δ̂2E
(b)
2 ],

where 1 is vector of ones and ◦ is the element-wise product. Here, we chose c ∈ {1, 2, 3} to

evaluate power based on different degrees of scanner-specific latent patterns. We then (iv) apply

each harmonization method and build regression between each DTI-FA feature in each harmo-

nized data and covariates X, conduct t-test to the estimated coefficient of age×disease status,

and extract the smallest p-value among all features. We repeat (ii)-(iv) B times to compute the

power.

We evaluated power with respect to different Type 1 error threshold α ∈ (0, 0.1), which is

shown in the Figure 5. UNIFAC harmonization gained more power than other methods, which

indicates UNIFAC harmonization can retain more biological associations of interest than them

so that it performed better in detecting true biological effects in the data. In addition, when

we increased c, the relative weight of individual latent pattern (I) in the bootstrap samples,
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Fig. 5: Summary of power for five harmonization methods. The plots from left to right are with
increased proportion of individual latent pattern

the performance of UNIFAC harmonization remained similar but the power of other methods

decreased. The oversimplified model assumption for ComBat, that scanner effects only account

for location and scales, could result in scanner effects still remaining in the resulting data. These

effects could overshadow our detection of biological associations. On the contrary, the CovBat’s

performances indicate a loss of power when the heterogeneous covariance assumption set by

CovBat is not met.

4. Simulation Studies

4.1 Simulation designs

We performed extensive simulation studies to evaluate the performance of UNIFAC harmonization

and to compare it to other methods. We included ComBat, CovBat, SLIDE, AJIVE and Adjusted

Residuals as our competitors and then evaluated whether harmonized data preserves biological

variations through the power analysis of harmonized data. To evaluate the control of false positives

and power, we designed two simulation experiments. We considered J = 2 in this framework,

because it is consistent with our data analysis in Section 3 and allows to consider SLIDE method

in the evaluation framework.
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Simulation 1: We generated data using the sum of low-rank features. We simulated 1,000

null data sets with n1 = n2 = 50 (so that n = 100), and p = 100 features. Our data generating

model is summarized by:

Y = βX′

︸︷︷︸
rank 4

+ Γ︸︷︷︸
rank2

+ R︸︷︷︸
rank 3

+ c · I︸︷︷︸
rank 6

+[δ1E1, . . . , δJEJ ].

We first used 4 nuisance covariates for covariate effects, where each element of β was generated

from N (0, 12). The covariate vector for each subject was generated from the multivariate normal

distribution with zero mean, and we used AR1(0.2) for the covariance matrix. Second, we gener-

ated R by first generating a p×n matrix whose entries are drawn from N (0, 12), then taking the

first 3 principal components. Similarly, we generated each Ij by generating a p×nj matrix using

N (0, 12) then taking the top 3 principal components. Lastly, we also generated the additive batch

effect (location) γij by fixing it be the same for all i and from N (0, 1.52), and multiplicative batch

effect (scale) δj from Uniform(1, 1.5). Finally, the elements of E were generated from N (0, 12).

We note that, c was chosen between 0, 1, 2, 3 to evaluate the impact of scanner-specific latent

patterns on statistical power. Note that we also considered c = 0 to investigate whether it has

comparable performance when data generating model does not include any batch-specific latent

patterns.

Simulation 2: We generated data by modifying the simulation design introduced by Chen

and others (2022). To address potential covariance batch effects, the CovBat model uses principal

component (PC) scores to shift each within-batch covariance to the pooled covariance structure.

Therefore, the design aimed at evaluating whether harmonization methods can approximate the

underlying covariance structure when covariance batch effects are captured by its PC shifts.

We simulated 1,000 null data sets based on SPINS data so that n1 = 172, n2 = 179 (so

that n = 351) and p = 73 features. The data yijk was generated by yijk = αi + γij + δijεijk,

where α = (α1, . . . , αp)
T is the sample mean vector of Scanner General Electric observations

in the SPINS data. The additive scanner effects γj = (γ1j , . . . , γpj)
T ’s are vectors drawn from
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N (0, 0.12). For multiplicative scanner effects, we used δi1 ∼ IG(46, 50) and δi2 ∼ IG(51, 50). From

the sample correlation matrix of DTI-FA observations in the SPINS data S with the corresponding

eigen decomposition S =
∑73

l=1 λ̂lψ̂lψ̂
T

l , we generated εjk = (ε1jk, . . . , εpjk)
T that contained

scanner-specific shifts in two designs. The first design was introduced by Chen and others (2022)

to investigate how the rank of the covariance effect influences harmonization results, and we

generated error terms by εjk ∼ MVN (0,S + cj
∑K

l=1 λ̂lψ̂lψ̂
T

l ), where c1 = − 1
2 and c2 = 1

2 .

We considered different K including K = 0, 1, 5, 10. The second design aimed to investigate how

the severity of the covariance shift influences harmonization results, and we generated εjk ∼

MVN (0, cj
∑K

l=1 λ̂lψ̂lψ̂
T

l +
∑73

l=K+1 λ̂lψ̂lψ̂
T

l ), where K = 5, c1 = 0.125, 0.25, 0.5, 0.75 and c2 =

1.875, 1.75, 1.5, 1.25.

For evaluation of power, we generated our covariate of interest, Zk (k = 1, . . . , n), randomly

from 0 or 1. We then randomly chose 20% (from Simulation 1) and 50% (from Simulation 2) of

features and added τi · Zk to the null data, where τi > 0 is the effect size for the ith feature.

For both simulation setups, we used permutation to control family-wise error rate (FWER) and

evaluated the power for the null hypothesis H0 : τi = 0 for all i = 1, . . . , p, controlled at the level

of 5%.

4.2 Simulation results

The results for Simulation 1 are summarized in Figure 6(i). UNIFAC harmonization controlled

family-wise error properly, with empirical FWER of 0.044, 0.047, 0.048, and 0.052 regardless

of the choice of c. In our simulations, while other methods controlled FWER appropriately in

most scenarios, CovBat was conservative in controlling false positives when the proportion of

individual latent patterns increased. In terms of power, UNIFAC harmonization’s performance

was nearly the same as ComBat or CovBat even when the data generating model is misspecified

(i.e., c = 0), which shows the robustness of the proposed method. Furthermore, as c increased,
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(i) The plots from left to right are with increased proportion of individual latent
pattern.

(ii) The plots from left to right are with increased rank of the covariance effect.

(iii) The plots from left to right are with decreased severity of the covariance shift.

Fig. 6: Summary of power for six harmonization methods. The blue dashed horizontal line is
FWER=0.05

UNIFAC harmonization showed substantial power gain compared to others, partially because it

correctly identified and removed the batch-specific latent patterns in the data. The lower power

of ComBat and Adjusted Residuals are expected as they do not consider these latent patterns in

their model, and the lower power of CovBat is also expected because the data generating model

is different from the CovBat’s assumption on PC shifts. Although AJIVE and SLIDE take these

latent patterns into consideration, their power was lower than UNIFAC harmonization when c

is large. It might be because UNIFAC’s objective function was superior in signal reconstructions

with various degrees of signal-to-noise ratios (Park and Lock, 2020).
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The results for Simulation 2 are summarized in Figure 6(ii) and 6(iii). In Design 1, UNIFAC

harmonization’s empirical FWER are 0.04, 0.044, 0.06, 0.053 for K = 0, 1, 5, 10, while ComBat,

CovBat and SLIDE are conservative in controlling false positives when K was small. For power,

we note that when the null hypothesis was not true, all harmonization methods increased statisti-

cal power and performed similarly when K is small. When K was large, UNIFAC harmonization

still showed superior performance to other methods which supports the efficiency of UNIFAC

harmonization even when the data generating model did not follow the assumption of UNIFAC

harmonization. In Design 2, UNIFAC harmonization controlled family-wise error properly, with

empirical FWER of 0.05, 0.052, 0.041, 0.047. On the contrary, empirical FWER of ComBat were

0.018, 0.029, 0.037, 0.044, and of CovBat were 0.003, 0.016, 0.028, 0.045, making them very

conservative in controlling false positives when the severity of covariance shift was high (i.e.,

c1 = 0.125, c2 = 1.875). When the severity of covariance shift was high, all harmonization meth-

ods showed similar performance in increasing statistical power in the hypothesis test. However,

when the severity of covariance shift was low/moderate, UNIFAC harmonization showed superior

performance over other methods.

5. Discussion

We proposed a novel harmonization method, called UNIFAC harmonization, that estimates and

removes both explicit (additive and multiplicative) and latent batch effects. We also provided a

framework to reformulate existing joint and individual factorization methods in the data harmo-

nization context and compared their performances. While multivariate harmonization itself has

been proposed in the literature, our approach that models batch-specific latent patterns provides

an intuitive and interpretable way to view the problem as heterogeneous covariances when the

low-rank assumption is satisfied. This novel method provides a new direction in neuroimaging

and genomics that satisfies the growing need of correcting batch effects for multi-site/scanner
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studies.

We showed in analysis of SPINS data and simulations that UNIFAC harmonization is superior

to other methods in harmonizing covariances across batch effects while retaining (biological) vari-

ations unnrelated to batches and improving reproducibility. In SPINS data analysis, we compared

these methods for harmonizing mean fractional anisotropy (FA) measurements of DTI images.

Our data analysis showed that UNIFAC harmonization performed better in entirely removing

batch effects as well as retaining associations of interest to increase statistical power than other

methods. In simulation studies, we showed UNIFAC harmonization maintained FWER control for

multiple comparisons properly and had superior performance in increasing statistical power com-

pared to other methods. The difference in the statistical power between UNIFAC harmonization

and other methods was notable as the proportion of latent batch effects increased.

We describe some limitations of UNIFAC harmonization. Our current approach is evaluated

with a moderate number of features and samples, and its performance in high dimensional features

(p � n) has not been explored. Also, UNIFAC harmonization assumes that the original data ma-

trix consists of low rank signals (including latent batch effects) plus full rank noises to scale data

and choose tuning parameters. Its performance can be affected if this assumption does not hold.

For example, vertex-wise cortical thickness data has at most 160,000 features in each hemishpere

of the brain and reveals a high degree of spatial autocorrelation that low-rank assumption is not

reasonable. Also, we currently use random matrix theory to select tuning parameter. Even if low-

rank assumption holds, empirical approaches (e.g., cross-validation) may also be used to select

tuning parameters at the expense of computational cost, which may potentially improve the qual-

ity of harmonized data (Owen and Perry, 2009). In addition, confounding between batches and

biological covariates poses additional challenges for all harmonization methods, since removing

unwanted variations associated batches may overkill biological associations. (Fortin and others ,

2017; Nygaard and others, 2016). It may be a problem for UNIFAC harmonization as well, and
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we leave the evaluation for it as future work. Lastly, we assumed normality of the data, which is

well-justified in neuroimaging data or log-transformed microarray data, but other data types in

genomics (e.g. RNA-Seq) that reveal excessive zero counts will require a different probabilistic

model for latent batch effects. We leave it as future work.

The UNIFAC haromonization has room for improvement. First, UNIFAC harmonization is

applied to general multivariate data, and it might also be extended to accommodate different data

types’ needs, i.e., structural, functional, and other imaging modalities. It would be interesting to

explore if latent batch effects are shared across data modalities. Also, it would be interesting to

explore whether the non-biological variations we detected (i.e., I) can be explained by existing

non-biological information (e.g, scanner information), which, if it exists, would be helpful in

validation of the harmonization method.

The proposed method is publicly available as a R package at https://github.com/junjypark/

UNIFACharmonization.
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