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Abstract

The capacity for nuclear RNA measurements to recapitulate results from whole cells is essential
to the utility of single-nucleus RNA-seq. Early studies argued that nuclear samples could yield
comparable results to single-cell RNA-seq if intronic reads from pre-mRNAs were included in
the analysis of both assays. While pre-mRNA sampling has since been acknowledged to be
subject to sampling bias related to gene length, the impact of this phenomenon across cell types
has been largely ignored. Here, we describe the contrasting effects of mRNA and pre-mRNA
sampling on the concordance of gene expression estimates between cells and nuclei. We also
address the generalizability of a recently published normalization method intended to maximize
assay similarity by removing gene length bias from pre-mRNA sampling. Comparing nuclei to
cells among cell types of the cortex, we show that pre-mRNA (intron) abundances are much
more similar than mRNA (exon) abundances. When comparing overall gene expression, the
magnitude of gene length bias reflects the relative enrichment of pre-mRNAs in nuclei, which
varies considerably among cell types of the cortex. This variability leads to unreliable
performance of the normalization method, which emphasizes mRNA measurements by
downweighting pre-mRNA measurements according to gene length. As a potential alternative,
we demonstrate adaptation of an existing method for removing systematic bias from gene set
enrichment analysis results. Broadly, our analysis provides a mechanistic explanation for
variation in assay similarity across cell types and argues for the application of post hoc
normalization approaches as an avenue to improved biological interpretation.

Background
Single-cell RNA sequencing (scRNA-seq) quantifies gene expression in individual cell types, as
opposed to the tissue-wide measurements obtained from conventional "bulk" RNA-seq.
Applications range from broad <cell atlas'' projects1,2 to studies of specific diseases such as
Alzheimer’s3–5. When dissociation of intact single cells is difficult, as with frozen nervous tissue
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samples, researchers often instead use single-nucleus sequencing (snucRNA-seq), where
nuclei are isolated from cell lysate.

Although nuclei contain only a subset of cellular RNA, they are enriched for pre-mRNAs which
results in a high fraction of intronic read alignments. Initial publications argued that elevated
data sparsity could be mitigated by incorporating these intronic reads, assumed to reflect
unspliced pre-mRNAs, during data preprocessing6–10. Subsequent studies extended this
strategy to whole cells when analyzed alongside nuclei11,12. Most recently, the widely-used
CellRanger software was updated to incorporate intronic reads by default for both cell and
nuclear experiments13. While inclusion of intronic reads has been reported to improve similarity
of scRNA-seq and snucRNA-seq data10, the extent and generality of this improvement across
cell types has not been systematically addressed in the literature.

In principle, assays such as the 10x Genomics system utilize barcoded poly(dT) primers to
assign at most one unique molecular identifier (UMI) to each polyadenylated mRNA, irrespective
of length14. Sequence reads are then generated near the 3’ end of the cDNA, i.e., shortly
upstream of the priming site. This model led some authors to ascribe the preponderance of
intronic reads in nuclei (Figure 1A) to the capture of polyadenylated but incompletely spliced
RNAs6. It is now appreciated that primer hybridization also occurs readily at internal adenosine
homopolymers12,15–17, which primarily reside in introns, i.e., pre-mRNAs18. So-called internal
priming19 introduces a gene length-associated sampling bias when intronic reads are included in
the analysis15,20,21: whereas an mRNA can have only one poly(A) tail, the number of internal
priming sites in a pre-mRNA is approximately a function of its transcribed length (Figure 1B).

Given that the large majority of internal priming sites occur in introns (i.e., not in mRNAs)20,22, the
overall magnitude of gene length bias becomes a function of the proportion of pre-mRNA
captured in the sample. As such, nuclei exhibit stronger gene length bias than cells because
they are enriched for pre-mRNA6. In other words, improved similarity of cell and nuclear data
through incorporation of pre-mRNA signal is achieved despite implicit introduction of a
differential gene length bias. Past studies have occasionally commented on this bias but have
made no attempt to address it15.

Recently, Gupta et al 2022 introduced a normalization scheme designed to account for
discrepant gene length bias in cell-vs-nucleus comparisons21. Specifically, they propose
separating total transcript counts (i.e., observed UMIs per gene per cell) into exon- and
intron-derived components and scaling solely the intron UMI counts by gene length multiplied by
the transcriptome-wide rate of internal priming site occurrence (Figure 1C). In practice, this
equates to dividing the intron UMI counts from a gene by the expected number of internal
priming sites given its length, and then adding the scaled result to the unaltered exon UMI
counts. Gupta et al show that their method minimizes gene length bias and leads to both
improved correlation of gene expression estimates and reduced number of seemingly
differentially-expressed genes between human preadipocyte cells and nuclei. However, the
authors do not evaluate performance in other cell types, which is necessary for understanding
the generalizability of the method, since pre-mRNA content (i.e., intronic read fraction) can vary
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widely20. For example, two early snucRNA-seq studies reported just 16% in mouse heart versus
50% in mouse brain23,24, which suggests that the incentive to account for bias is highly
tissue-specific.

Here, we address this gap by re-analyzing a comprehensive dataset from the mouse motor
cortex25. The cortex is a useful case study because nervous tissues are commonly subjected to
snucRNA-seq and tend to exhibit high intronic read fraction, which suggests that it is a priority
candidate for the application of gene length normalization methods.

Figure 1: (A) Nuclei contain less total RNA but are enriched for pre-mRNA compared to cells (B)
Theoretical ideals of RNA sampling: pre-mRNA tends to generate intronic reads via internal priming in a
gene-length associated matter. mRNA generates exonic reads from priming at the poly(A) tail,
irrespective of length. (C) Outline of Gupta et al normalization approach. Total UMIs in both cells and
nuclei are separated into intron and exon-derived components, and intron counts are divided by a factor
of gene length. Exon and adjusted intron counts are then summed. Because intron counts are reduced,
the relative contribution of exon counts increases.
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Results and Discussion

With respect to this analysis, we note that typical studies do not generate matched single-cell
and nucleus RNA-seq datasets, are narrow in scope, or are otherwise unsuitable for a
systematic evaluation. As such, we first confirmed the expected relationship between intronic
read fraction and gene length bias (Supplementary Figure 1) using metadata from a
multi-organ snucRNA-seq atlas of human fetuses26. We then centered our primary analysis on a
well-annotated dataset from the mouse motor cortex which includes matched cell- and nuclear-
data generated with the popular 10x Genomics V3 assay25. We used STARsolo27 to compute
gene abundance estimates with and without intronic regions. Quantification scheme
nomenclature are not standardized in the literature; herein we use the terms exon (UMI counts
from exonic alignments), intron (UMI counts not from exonic alignments), and intron&exon (UMI
counts from genic alignments). The de facto standard intron&exon workflow does not allow the
user to distinguish between the two components - intron counts must be inferred by separately
generating and then subtracting exon counts. We refer to the result of the Gupta et al
normalization scheme as scaled counts to avoid confusion with the ubiquitous practice of log
normalization of gene abundances. Scaled counts were generated by dividing intron counts for
each gene by a factor based on the rate of internal priming sites, defined as 15 or more
consecutive adenosines (0.27 sites per kilobase of gene in mouse) and adding them back to
exon counts.

We began by analyzing L5 IT neurons, the most abundant (42% of cells, 29% of nuclei)
annotated cell type in the cortex dataset. As expected, intron content was higher (67% vs 41%
of UMIs), intron&exon gene abundances were more positively correlated with gene length in
nuclei than in cells (Figure 2A), and genes enriched in nuclei were significantly longer than
those in cells (Figure 2B). Intron gene length bias was similarly strong between the two assays,
indicating that pre-mRNA sampling patterns are comparable. While the overall level of intronic
reads was higher in cortex than in preadipocytes, we found the inter-assay ratio to be
comparatively low. Specifically, introns contributed 67% and 41% of counts in L5 IT nuclei and
cells, respectively, while Gupta et al reported intronic read fractions of 40% in nuclei vs just 9%
in cells. The relative enrichment values (1.5-fold in neurons, 4.4 in preadipocytes) suggest that
gene length bias has a weaker effect on between-assay differences in L5 IT neurons than in
preadipocytes despite stronger bias within either assay individually.
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Figure 2. (A) Intron&exon gene length bias is stronger in nuclei (orange) than in cells (gray), but intron
bias is similar. Units are log10 of average counts per million (CPM). (B) Log10 length of genes which differ
in intron&exon abundance between cells and nuclei (log2FC > 1, FDR < .05). Genes enriched in nuclei
are significantly longer (C) Total number of differentially abundant genes per counting scheme (log2FC >
1, FDR < .05). The scaling approach worsens the apparent similarity with respect to intron&exon. (D)
Correlation of intron&exon abundances for genes above 1 CPM. (E) Scaled abundances are no better
correlated than the baseline result, and are less well-correlated among highly expressed genes. (F)
Correlation of intron abundances is very high. (G) Correlation of exon abundances is less strong,
particularly for abundant genes.

Gupta et al reported improvements to assay similarity after applying their normalization method
in terms of both reduced number of differentially abundant genes and increased correlation of
gene expression: the number of differentially abundant genes decreased from 1061 to 631 and
Pearson correlation of gene expression improved from 0.5 to 0.6. In neurons, intron&exon gene
expression estimates were comparatively well-correlated even without adjustment (Figure 2D,
R = .81, mean abundance of genes greater than 1 CPM). However, scaled abundances offered
no further improvement: while R remained at .81 (Figure 2E), differential expression testing
resulted in 33% more apparent differences (Figure 2C, 654 vs 492 genes with log2 fold change
> 1), in contrast to the 40% reduction reported by Gupta et al. The increase in the number of
differential genes likely reflects worsened correlation of scaled abundances among
more-abundant genes that are statistically powered to appear significantly different.

To understand the basis of this discrepancy, we compared intron and exon abundances
separately (Figure 2F,G). Intron counts resulted in a very high correlation of R=.95 and just 37
differentially expressed genes, whereas exon counts showed the weakest correlation at R=.72
and greatest number of differential genes (955, Figure 2C). Downsampling confirmed that the
high correlation of intron counts was not a function of sequencing depth, indicating that
differences in mRNA abundances primarily reflect biased cytosolic localization and/or
post-transcriptional regulation of mRNAs. These patterns are explanatory if we consider the
reduction in data that occurs upon scaling: the intron contribution (% of total of intron&exon vs
scaled) decreased from 40% to 25% in cells and from 67% to 50% in nuclei. As such,
amelioration of gene length bias in L5 IT neurons through scaling of intron UMI counts is
counteracted by increased emphasis on dissimilarities in mRNA abundance.

We next extended our analysis to the remaining cortex cell types. While we expected the
pre-mRNA content to vary, we were surprised to find that a higher intronic UMI fraction in nuclei
of a given type did not necessarily equate to a higher level in cells (Figure 3A, p = .45). This is
important because it implies that the magnitude of differential gene length bias, or, the potential
impact of the normalization method, is not only variable but also unpredictable from
snucRNA-seq data alone. Differential expression tests on intron&exon counts for each cell type
revealed a positive trend between the number of differentially-abundant genes and the ratio of
median intronic UMI content between nuclei and cells (Figure 3B, Spearman’s rho = .92),
supporting the premise that assay differences are driven in part by the discrepancy in gene
length bias between cells and nuclei from the same cell type.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2022. ; https://doi.org/10.1101/2022.08.01.502392doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.01.502392
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. (A) Intron content distribution (total intron UMIs divided by total intron&exon UMIs per cell or
nucleus) for each cell type. Mean intron content in cells does not increase with mean intron content in
nuclei (rho = .19, p = .46). Non-neuronal cells are abbreviated: astro, astrocytes; endo, endothelial cells;
oligo, oligodendrocytes; OPC, oligodendrocyte precursor cells; macro, macrophages. Remaining labels
specify types of neuronal cells. (B) Cell type-specific differential expression of cells vs nuclei. The number
of differential genes (log2FC > 1) increases with the ratio of mean intron content in the cell type (rho =
.92). Cells are colored by <class label= assigned by primary authors (C) Fold change in number of
differentially abundant genes for cells vs nuclei after applying the Gupta et al normalization procedure.
Red point shows the result reported by Gupta et al for white preadipocytes. Values greater than 1 indicate
adverse performance of the normalization method. Linear modeling (excluding preadipocyte) identifies
cell class and intron content ratio as significant predictors of method performance (R2 = .78, p = .0001).
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We repeated the differential expression and correlation tests after applying the normalization
method to the full dataset. The number of significant differences increased for 15 of the 17 cell
types, indicating adverse performance (Figure 3C), though performance tended to improve with
the intron content ratio after accounting for cell class as a covariate. A similar pattern was
observed in Pearson correlations (Figure S2); however, the exact values are sensitive to the
specific gene expression or fold change threshold. We emphasize that these results are not
incompatible with the values reported by Gupta et al (depicted as an open circle in Figure 3C),
where pre-mRNA enrichment (i.e., intron content ratio) between preadipocyte nuclei and cells
was more than twice the maximum of any cortex type. However, it suggests that the utility of the
method is constrained to scenarios where gene length bias is known to be highly discordant
between cell and nucleus assays a priori. While this limitation may be surmountable with
refinements to the normalization method, we also suggest that post hoc normalization methods
are a potential alternative.

As a simple demonstration of post hoc normalization, we tested the GOseq algorithm, originally
developed for removing transcript length bias from gene set enrichment analysis in conventional
fragmentation-based RNA-seq28,29. We applied the algorithm to the set of genes that were
enriched in L5 IT nuclei compared to cells (result from Figure 2B), with gene length as the bias
term. Without correction, the most overrepresented categories were terms indicative of neuronal
function, such as <synapse organization=, which is not biologically informative given that these
cells and nuclei are purportedly of the same type (Supplementary Table 1). After correcting for
gene length, top terms were consistent with patterns observed from localization assays, such as
<RNA splicing= (Supplementary Table 2)30: Specifically, Fazal et reported that <mRNAs
enriched in nuclear locations tend to code for proteins enriched in nuclear speckles and
nucleoplasm.= An equivalent pattern was reported by Bakken et al 2018 when comparing
intron&exon results to exon results using a technically distinct scRNA-seq assay7. This
demonstrates how a biologically plausible interpretation can be achieved without manipulation
of raw gene expression values and without access to raw sequence data, which may be
restricted.

Broadly, these findings demonstrate considerable variation in the equivalence of cell- and
nuclear measurements across cell types, with consequential variation in performance of the
proposed scaling-based normalization scheme. Because pre-mRNA enrichment is difficult to
predict, the capacity for snucRNA-seq to recapitulate whole-cell results is also difficult to predict
a priori. Whereas the reason for the qualitative difference in pre-mRNA enrichment between
cells and nuclei is clear, the basis for variation among cell types is not necessarily known. The
patterns we observed in the cortex likely reflect the interaction of biological and technical
factors, including cellular morphology and transcriptional activity level; sample preservation and
dissociation protocol; and absolute RNA content and levels of ambient RNA contamination. The
impact of this variation on accurate cell type assignment remains an open question. This
variation is also relevant to analyses such as bulk sample deconvolution31, because it implies
that cell types with a higher pre-mRNA content and/or longer marker genes will appear to be
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less abundant in bulk samples due to overestimation of those genes’ expression in
snucRNA-seq.

More fundamentally, our results beg the question of how well mRNA or protein abundances can
be predicted from pre-mRNA abundances, irrespective of gene length bias. In fact, others have
already reported that the inclusion of intronic reads in snucRNA-seq worsens correlation with
mRNA abundances from bulk RNA-seq5,32. Similarly, Thrupp et al 2020 reported that
snucRNA-seq was not able to recapitulate a microglial gene signature defined from single-cell
mRNA abundances12. These findings suggest that maximization of single-cell/nucleus assay
similarity is not an appropriate aim for all analyses. Further effort is needed to determine the
degree to which these are basic limitations imparted by post-transcriptional regulation vs the
effect of pre-mRNA sampling bias which can be modeled and corrected for directly, a la Gupta
et al.

Our analysis is subject to a number of limitations which are also pertinent to the design of the
Gupta et al method. Foremost, we did not alter the parameterization of the method. In particular,
the definition of internal priming site was specified arbitrarily, but it directly determines the
reduction in total intron UMI counts. Relaxing the motif definition (e.g., A(10)) would result in a
substantially greater reduction in counts but weaker reduction in gene length bias, and vice
versa. Similarly, the majority of genes were amplified, perhaps unintentionally, because they
contain fewer than one expected priming site. The intron-exon dichotomization of UMIs is also
imperfect: others have shown that gene length bias is not fully explainable by internal priming
sites alone, and is also present in exonic reads to a minor extent33. True biological differences,
or additional technical artifacts20 may also contribute. We suggest that the method could be
improved by instead dividing UMIs into poly(A) tail- and internally-primed; deriving the scale
factor empirically; and flooring the scalar at 1 to avoid variance inflation of short genes. Finally,
we assumed that the cell type assignments from the Yao et al cortex dataset were correct, and
we did not implement any additional steps such as ambient RNA decontamination, as these
were not part of the original study. Beyond computational solutions, these issues would likely be
circumvented to a large extent through the adoption of improved single-nucleus dissociation
protocols which retain more nuclear-associated mRNAs34.

Conclusion

A mechanistic understanding of the biological and technical factors which influence the
equivalence (or lack thereof) of single cell- and single nucleus transcript measurements is
essential to the design and interpretation of experiments. Pre-mRNA and mRNA are subject to
distinct sampling biases, but the feature-of-origin of the resulting gene expression data is
obfuscated by typical workflows. By reprocessing published data, we have shown here that
pre-mRNA abundances (i.e., intron-derived UMIs) are more similar than mRNA abundances
(i.e., exon-derived UMIs) between cells and nuclei of the same type, independent of sampling
depth. Overall similarity (pre-mRNA+mRNA) is moderated by gene length bias which reflects
cell type-specific differences in pre-mRNA enrichment. Attempted removal of the gene length
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bias through scaling of pre-mRNA UMI counts is counteracted to a varying extent by a
consequential emphasis on the unaltered mRNA counts. Because snucRNA-seq is often used
in lieu of scRNA-seq, it is difficult to determine if removal of gene length bias during
pre-processing will more closely recapitulate what would have been found in whole cells, so we
conclude that post hoc normalization is preferable in the absence of contrary evidence.
Foundational to this analysis is the computation of per-cell pre-mRNA (intron) content as a bias
metric. Published literature typically provides pre-mRNA content either at the sample-wide level
or not at all; this precludes the analyst from anticipating adverse impacts of high or variable
pre-mRNA abundances on comparisons between cell types and assays. To this end, we
encourage the estimation of gene expression both with and without intronic reads included,
which is an available option in all commonly-used preprocessing software.

Methods
All data described in this analysis are publicly available. We analyzed only the 10x Genomics v3
data subset from Yao et al25 generated at the Allen Institute for Brain Studies; a complementary
dataset generated at the Broad Institute was excluded because it sampled nuclei only. Raw
sequence data and metadata were downloaded from
http://data.nemoarchive.org/biccn/lab/zeng/transcriptome/

Alignment and gene expression quantification were performed using STARsolo27 version 2.7.3a
with option <--soloFeatures Gene GeneFull=, which corresponds to the exon and intron&exon
schemes. We used the GRCm38 reference genome and Ensembl version 99 gene annotation
filtered by biotype per 10x Genomics guidelines and the <cellranger mkgtf'' utility. Due to
erroneous resequencing of some original cortex libraries, we used seqtk35 to filter out read pairs
with truncated barcodes (read1 shorter than the intended 28 base pairs), as the mixture of
barcode read lengths was incompatible with STARsolo. This procedure affected the total depth,
but not the relative abundances. Resulting abundance estimates were nearly identical to
CellRanger values provided by the authors, which is the stated aim of STARsolo.

Preprocessed data and metadata from the human fetal atlas study26 were downloaded from
NCBI GEO accession GSE156793.

Primary analyses were conducted in Rstudio using Seurat36 and tidyverse packages37. The
number of A(15) motifs in the mouse genome was calculated with Biostrings38 and
GenomicRanges39 R packages.
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Supplementary Materials

Figure S1: Variation in intronic read fraction reported by the Human Fetal Atlas(Cao et al. 2020).
Tissues are ordered by median fraction; nervous tissues exhibit the strongest correlations
between average intron&exon abundance (log of average CPM) and gene length. Some tissues
show stark bimodality, such as Liver and Adrenal gland.
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Figure S2: Effect of normalization on correlation between cell and nuclear abundances in mouse
motor cortex, for genes greater than 1 CPM. Points are colored by cell category and sized by
the total number in both assays. Result reported by Gupta et al is shown as an open circle.

Table S1: Top 10 terms enriched in L5 IT nuclei without correcting for gene length
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Table S2: Top 10 terms enriched in L5 IT nuclei after correcting for gene length with GOseq
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