

1 **Identification of a microbial sub-community from the feral chicken gut that reduces**
2 ***Salmonella* colonization and improves gut health in a gnotobiotic chicken model.**

3 Supapit Wongkuna^{a,b,c}, Roshan Kumar^{b,c}, Sudeep Ghimire^{b,c}, Samara Mattiello Drescher^{b,c},

4 Abhijit Maji^{b,c}, Achuthan Ambat^{b,c}, Linto Antony^{b,c}, Surang Chankhamhaengdecha^d, Tavan

5 Janvilisri^a, Eric Nelson^{b,c}, Kinchel C. Doerner^e, Melissa Behr^b, and Joy Scaria^{b,c*}

6

7 ^aDepartment of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand

8 ^bDepartment of Veterinary and Biomedical Sciences, South Dakota State University, Brookings,
9 SD, USA.

10 ^cSouth Dakota Center for Biologics Research and Commercialization, SD, USA.

11 ^dDepartment of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand

12 ^eDepartment of Biology and Microbiology, South Dakota State University, Brookings, SD, USA.

13

14

15

16

17

18 Running Title: *Salmonella* inhibiting defined bacterial mix.

19

20 *Address correspondence to: Joy Scaria

21 Email: joyscaria@gmail.com

22

23 **Abstract**

24 A complex microbial community in the gut generally prevent the colonization of enteric
25 pathogens such as *Salmonella*. Because of the high complexity, several species or combination
26 of species in the gut can confer colonization resistance. To gain a better understanding of the
27 colonization resistance against *Salmonella enterica*, we isolated a library of 1,300 bacterial
28 strains from feral chicken gut microbiota which represented a total of 51 species. Using a co-
29 culture assay, we screened the representative species from this library and identified 30 species
30 that inhibited *Salmonella enterica* Typhimurium. To improve the *Salmonella* inhibition capacity,
31 from a pool of fast-growing species, we formulated 66 bacterial blends, each of which composed
32 of 10 species. Bacterial blends were more efficient in inhibiting *Salmonella* as compared to
33 individual species. The blend that showed maximum inhibition (Mix10) also inhibited other
34 serotypes of *Salmonella* frequently found in poultry. The *in vivo* effect of Mix10 was examined
35 in a gnotobiotic and conventional chicken model. The Mix10 consortium reduced *Salmonella*
36 colonization, intestinal tissue damage and inflammation in both models. Cell free supernatant of
37 Mix10 did not show *Salmonella* inhibition, indicating that Mix10 inhibits *Salmonella* through
38 either nutritional competition or reinforcement of host immunity. Out of ten species, three
39 species in Mix10 did not colonize while three species constituted more than 70% of the
40 community. Two of these species represents previously uncultured bacteria. Our approach could
41 be used as a high-throughput screening system to identify additional bacterial sub-communities
42 that confer colonization resistance against enteric pathogens and its effect on the host.

43

44

45

46 **Importance**

47 *Salmonella* colonization in chicken and human infections originating from *Salmonella*-
48 contaminated poultry is a significant problem. Poultry has been identified as the most common
49 food linked to enteric pathogen outbreaks in the United States. Since multi-drug resistant
50 *Salmonella* often colonize chicken and cause human infections, methods to control *Salmonella*
51 colonization in poultry are needed. The method we describe here could form the basis of
52 developing gut microbiota-derived bacterial blends as a microbial ecosystem therapeutic against
53 *Salmonella*.

54

55 **Introduction**

56 A dense and complex microbial community colonizes the human and animal gastrointestinal
57 tract over time. This complex community collectively called the gut microbiota provides a range
58 of functions such as the development of the immune system, digestion, tissue integrity, vitamin
59 and nutrient production, and the ability to prevent colonization of enteric pathogens [1-3]. With
60 the advances in the microbiome research and because of the worldwide increase in the bacterial
61 antibiotic resistance [4], there is high interest in using mature gut microbiome as an alternative
62 means of suppressing enteric infections [5-7]. The ability of the healthy gut microbiota to
63 prevent pathogen colonization was first demonstrated by Nurmi and Rantala in a classic
64 experiment in which inoculation of young chicken with adult chicken feces prevented the
65 colonization of *Salmonella* [8, 9]. The same concept was used in recent years to treat recurrent
66 *Clostridium difficile* infection in humans by fecal transplantation from healthy individuals [10,
67 11]. Recently, rather than using the whole fecal microbial community, there were efforts to
68 identify individual species in the microbiome that confer colonization resistance [12, 13]. This

69 approach of using single species or combinations of species conferring colonization resistance to
70 prevent pathogen colonization and infection is termed as precision microbiome reconstitution
71 [14] or microbial ecosystem therapeutics [15].

72 Although colonization resistance of the gut microbiota was first demonstrated, *Salmonella*
73 colonization in poultry continues to be a significant problem even today. Poultry has been
74 identified as the most common food in outbreaks with pathogens in the United States [16, 17].
75 The poultry industry has responded to this problem by implementing biosecurity measures that
76 are designed to minimize exposure of chickens to the pathogens [18]. Conversely, increased
77 biosecurity and clean conditions in the production system would also decrease the exposure to
78 commensal bacteria and would reduce the microbiome diversity in the chicken gut. As proposed
79 by Rolf Freter in 1983 in his nutrient niche hypothesis [19], reduced exposure to commensal gut
80 microbes would open nutrient niches in the gut that can be easily used by pathogens which
81 increases their colonization risk. To reduce this risk, poultry industry has attempted to reduce the
82 pathogen colonization by inoculating chicken with complex commensal bacterial blends such as
83 the lyophilized mixture of anaerobic bacteria from the cecum of adult chicken [20], collection of
84 more than 200 bacteria from pathogen free-birds [21], bacteria from healthy chicken mucosal
85 scrapping [22], and continuous flow culture of cecal chicken bacteria [23]. Due to the complexity
86 of these mixtures, it is difficult to understand their mechanism of action and improve their
87 efficacy.

88 Recently, a modified Koch postulate was proposed for the mechanistic understanding of
89 the gut microbiota colonization resistance [24, 25]. As per this proposal, a mechanistic study of
90 the colonization resistance require the development of commensals as a pure culture library and
91 then mono or poly-associate them in a germfree host to demonstrate the amelioration of disease.

92 In this study, we used this framework to better understand the colonization resistance of chicken
93 gut microbiota. To this end, we developed a commensal bacterial culture library from
94 *Salmonella*-free feral chicken and formulated a defined bacterial sub-community from
95 *Salmonella* inhibiting commensal species. This consortium was tested to demonstrate the
96 *Salmonella* exclusion capacity using a gnotobiotic chicken model. Our results showed that the
97 defined consortium reduced *Salmonella* colonization, the severity of intestinal tissue damage and
98 inflammation. With further improvements, the current approach and the blend we demonstrate
99 here could offer a means of formulating defined communities of commensal bacteria as
100 microbial ecosystem therapeutic in poultry.

101

102 **Results**

103 ***Development of the feral chicken gut bacterial library.***

104 It is known that microbiota from healthy adult chicken could inhibit the growth of *S. enterica* in
105 the gut [8]. Because of the exposure to a broad range of environmental conditions, feral chicken
106 would have more diverse gut microbiome than commercial chicken and a high percentage of the
107 microbiota in the feral chicken gut could have inhibitory capacity against *S. enterica*. To
108 ascertain this, we isolated a bacterial library from the pooled intestinal contents of six feral
109 chicken using anaerobic culture conditions. We used a modified Brain Heart Infusion as the base
110 culture medium which is hereafter referred as BHI-M (Table S1). When a non-selective medium
111 is used for cultivation, it is common that fast-growing bacteria use up space and nutrients in the
112 medium. To avoid this problem, we used iterative antibiotic supplementation of BHI-M to
113 suppress bacteria that dominated the base medium (Table S1). For example, from the base BHI-
114 M, when 32 bacterial species were isolated, five species (*Massiliomicrobiota timonensis*,

115 *Faecalicoccus pleomorphus*, *Eubacterium cylindroides*, *Collinsella* sp., and *Olsonella* sp.)
116 accounted for 52.6% of picked colonies. To suppress the growth of these species, we
117 supplemented BHI-M with gentamycin and kanamycin which allowed isolation of several
118 species that was not isolated from the plain medium. Using 12 such selection conditions,
119 1,300 isolates were selected. Species identity of 1,023 isolates was determined by either
120 MALDI-TOF or 16S rRNA gene sequencing (Table S2). Fig. 1 shows an overview of the
121 culture conditions, diversity, and frequency of the isolated species. Overall, we identified 51
122 species using a cut off of 97.82% at 16S rRNA gene sequence level. The identified species
123 were mostly dominated by the phylum *Firmicutes* (36 species), followed by *Bacteroides* (5
124 species), *Proteobacteria* (5 species), *Actinobacteria* (4 species) and *Fusobacterium* (1
125 species). Altogether, we also captured 11 previously uncultured species which can represent
126 the novel type strains.

127
128 ***Screening and the selection of defined bacterial consortium that inhibits *Salmonella*.***
129 To determine the species that could inhibit *Salmonella* in our culture library, we tested the
130 inhibition capacity of representative isolates of 51 species against *S. enterica* Typhimurium (*S.*
131 *Typhimurium*) using a co-culture assay. From the total collection, 30 species showed varying
132 degree of inhibition against *S. Typhimurium* (Fig. 2A). Since the reduction in pH during
133 bacterial growth is inhibitory to *S. Typhimurium*, we also determined whether pH was reduced at
134 the end of the co-culture assay (Table S3). The pH range varied between 5.5 and 7.0 and in the
135 majority of the cases, pH did not drop below 6.0. This can be explained that the inhibition of *S.*
136 *Typhimurium* by these strains may not be primarily mediated by the production of organic acids
137 that would have lowered the pH of the medium. Interestingly, this screen also showed that 11

138 species in our collection enhanced the growth of *S. Typhimurium* (Fig. 2A). Further, we tested
139 whether the *Salmonella* inhibition capacity of these strains have improved when a subset of
140 strains is pooled together. To reduce the complexity of the pool, twelve inhibitory bacterial
141 strains that are fast growing and maintaining a pH above 5.8, were selected to formulate bacterial
142 blends (Table S4). Since there is the chance that species composition of the blend may positively
143 or negatively influence the *S. Typhimurium* inhibitory ability, we made several subsets using a
144 combinatorial approach, in which two species were randomly removed from the 12 selected
145 species. With this combinatorial approach, total 66 different blends, each of which composed of
146 10 species could be generated (Table S4). We then tested the *S. Typhimurium* inhibitory ability
147 of all these blends using co-culture assay. As shown in Fig. 2B, the blend approach improved the
148 *S. Typhimurium* inhibition. Out of 66 blends, blend 63 showed the highest inhibition with about
149 250-fold reduction of *S. Typhimurium* compared to control. The majority of blends were
150 inhibitory in varying degrees, while blend 32 and 59 increased the growth of *S. Typhimurium*.
151 This was unexpected because all the selected strains were individually inhibiting *Salmonella*. It
152 is an indication that the community composition of the bacterial blends can override the
153 individual strain phenotype (*Salmonella* inhibition in this case). Therefore, the combinatorial
154 testing we performed can reveal gut microbiota sub-community that might produce an entirely
155 different phenotype than that of the individual species membership in a bacterial consortium.
156 Since blend 63 showed the highest inhibition of *Salmonella* among all tested blends, we further
157 verified properties of this blend *in vivo* experiments. This blend which hereafter referred to as
158 Mix10 (Table 1) was composed of *Faecalibacter pleomorphus*, *Lactobacillus agilis*,
159 *Staphylococcus saprophyticus*, *Bacillus paralicheniformis*, *Enterococcus durans*, *Olsenella* sp.,
160 *Megasphaera statonii*, *Pseudoflavorifractor* sp., and *Massiliomicrobiota timonensis*. Based on

161 16S rRNA gene similarity search against EzTaxon and NCBI databases [26], two strains
162 (*Olsenella* sp. and *Pseudoflavonifractor* sp.) in this blend represented uncultured organisms of
163 their respective genera of which, a novel species *Olsenella lakotia* SW165^T was characterized
164 previously [27]. These results are consistent with our reasoning that feral chicken gut harbor
165 diversity that includes new taxa that are inhibitory against *Salmonella*. To determine whether
166 Mix10 could inhibit other serotypes of *Salmonella* that commonly colonize chicken, we tested
167 the inhibition of Mix10 against *Salmonella* Heidelberg, *Salmonella* Infantis, *Salmonella*
168 Enteritidis and *Salmonella* Typhimurium using the same co-culture assay. These assays revealed
169 that Mix10 inhibits tested *Salmonella* serotypes at similar levels (Fig. S1). To determine the
170 mechanism of Mix10 inhibition, cell free supernatants were tested against *Salmonella* after heat
171 and proteinase K treatment. Nevertheless, our results show that inhibitory activity is lost in the
172 cell free supernatant indicating that inhibition is mediated through nutrient competition (Fig S2).

173

174 ***Mix10 consortium confers partial protection against S. Typhimurium infection.***

175 We further determined the effect of Mix10 colonization on host health and *in vivo* inhibition
176 capacity. To this end, we used a gnotobiotic chicken (*Gallus gallus*) model previously developed
177 by our group [28] and a conventional chicken model. Briefly, we pooled an equal number of
178 each species in Mix10 and used 10⁷ CFU/bird for inoculation while we used 10⁵ CFU/bird of *S.*
179 Typhimurium for infection. Birds were euthanized at day 2 and day 5 post-infection (Fig. 3A).
180 *Salmonella* load was determined from the cecum content. Overall, *S. Typhimurium* loads in each
181 group tended to rise at day 2 and lower at day 5 post-infection, excepted Mix10-colonized
182 gnotobiotic group that showed no difference of *S. Typhimurium* loads between day 2 and day 5
183 post-infection (Fig. 3B). At day 2 post-infection, *S. Typhimurium* loads in Mix10-colonized

184 gnotobiotic group with *S. Typhimurium* infection were significantly lower than in the
185 gnotobiotic group with *S. Typhimurium* infection (6.3-fold mean reduction). Although there was
186 no significant different at day 5 post-infection, Mix10 reduced 1.4-fold of *S. Typhimurium*
187 compared to the gnotobiotic group with *S. Typhimurium* infection. Mix10 also decreased
188 *Salmonella* in conventional chickens, in which Mix10-colonized conventional group showed 2.4-
189 fold of *S. Typhimurium* reduction compared to conventional group with *S. Typhimurium*
190 infection at day 5 post-infection (Fig. 3B). This implicated that Mix10 support the resident
191 bacteria to inhibit *Salmonella* colonization in chicken gut. Additionally, Mix10 also significantly
192 lowered *S. Typhimurium* load in both gnotobiotic and conventional chickens compared to Mix59
193 which was observed to enhance growth of *S. Typhimurium*, corresponding to *in vitro* experiment
194 (Fig. S2). The reduction of *Salmonella* load in Mix10 colonized groups was in line with our
195 expectation that this consortium could inhibit *Salmonella* *in vivo*. Then, we examined the effect
196 of Mix10 colonization on intestinal physiology via histopathology. Inflammatory symptoms of
197 cecal tissues were evaluated using histological sections (Fig. 3C). Fibrinopurulent exudate was
198 observed in the lumen of gnotobiotic group with *S. Typhimurium* infection (Fig. 3C; i). Also, the
199 mucosa was swollen due to mixed inflammatory cell infiltrates such as macrophages,
200 lymphocytes, and heterophils in lamina propria. Erosion of mucosa was evident with the loss of
201 mucosal folds indicating granulomatous transmural enteritis. This deeper inflammation is typical
202 of salmonellosis. Under higher magnification, early transmural inflammation with minimal
203 peritonitis was observed in the Mix10-colonized gnotobiotic group with *S. Typhimurium*
204 infection (Fig. 3C; ii). Inflammation of the mucosa was still detected which narrowed the luminal
205 space, nonetheless, the severity of the infection was reduced in this group. Mucosal folds were
206 noticeable but mixed inflammatory cells were still spotted. The mucosa was not eroded, and no

207 exudate was found in the lumen. Mix10-colonized gnotobiotic chickens showed a large empty
208 lumen with a small amount of ingesta (Fig. 3C; iii). Thin mucosa with mucosal folds was
209 protruding into the lumen. Mild cellularity of lamina propria with scattered glands was observed.
210 The intestinal epithelium of this group was improved towards that of conventional chicken (Fig.
211 3C; iv). In conventional chicken model, the highest inflammation symptoms were observed in
212 conventional group with *S. Typhimurium* infection (Fig. 3C; v). Mix10-colonized conventional
213 chicken with *S. Typhimurium* infection exhibited only a small amount of exudate in the lumen,
214 and submucosal and transmural edema with macrophages and heterophils (Fig. 3C; v). When
215 these histopathological images were compared, mucosal inflammation was very high in chicken
216 with *S. Typhimurium* infection but subsided in groups with Mix10 colonization (Fig. 3D). *S.*
217 *Typhimurium* infection in gnotobiotic and conventional group showed improved histopathology
218 scores at day 5 post-infection, while Mix10 resulted in the least lesions as depicted by the
219 histopathological scores compared to *S. Typhimurium* infection. The Mix10-colonized
220 gnotobiotic group showed lower histopathological score compared to gnotobiotic group with *S.*
221 *Typhimurium* infection that elevated score at day 5 post-infection. When Mix10 was
222 administrated into gnotobiotic group, low score was observed at day 2 post-infection, and this
223 score was reduced at day 5 post-infection. This suggested that Mix10 has capability to maintain
224 gut physiology of gnotobiotic chicks. Mix10-colonized conventional group reduced
225 histopathological scores compared to gnotobiotic group with *S. Typhimurium* infection. When
226 histopathology results of Mix10 and Mix59 were compared to control, the inflammation of cecal
227 tissue was lower in Mix10 administrating groups, whereas it was raised in Mix59 administrating
228 groups, corresponding to the increase number of *Salmonella* in Mix59 in vitro and in vivo
229 evidences (Fig. S4). These results suggested that Mix10 normalize chicken gut by supporting the

230 development of intestinal tissue and reducing inflammatory symptoms and intact mucosa during
231 *S. Typhimurium* infection.

232

233 ***Mix10 modulates gut immunity and reduces *Salmonella*-induced inflammation.***

234 In chicken, *Salmonella* infection is known to trigger inflammation of the gut by the production of
235 pro-inflammatory cytokines such as interleukin (IL)-1 and IL-6 [29-32], chemokines such as IL-
236 8, and type 1 T helper (Th1) cell cytokines such as IL-2 and interferon- γ (INF- γ), along with a
237 cascade of other cytokines including tumor necrosis factor- α (TNF- α), IL-12, and IL-15 [33,
238 34]. As Mix10 was observed to inhibit *S. Typhimurium* *in vitro* and *in vivo* experiment, we
239 investigated whether Mix10 colonization could ameliorate *Salmonella*-induced inflammation, the
240 expression level of 84 inflammation-associated genes were measured by quantitative reverse-
241 transcriptase polymerase chain reaction (qRT-PCR) array in the chicken caecum (Table S5). As
242 expected, gnotobiotic chickens with *S. Typhimurium* infection showed multiple fold increase in
243 the expression levels of various pro-inflammatory cytokines and chemokines; IL-18, IL-1 β , IL-6
244 and IL-8L1 at day 5 post-infection. Massive expression of these pro-inflammatory cytokines
245 were correlated to upregulated expression of other genes such as Toll-like receptors (TLRs),
246 Nucleotide-binding oligomerization domain containg 1 (NOD1), Myeloid defferentiation
247 primary response gene 88 (MyD88) which are cell surface pattern receptor recognitions (PPRs)
248 and activators of inflammatory pathways suggesting capability of *S. Typhimurium* in the
249 induction of inflammation in microbiota-free chickens. Conversely, *S. Typhimurium* infection in
250 Mix10-conlonized conventional chickens exhibited downregulated expression of most genes
251 particularly NFKB1, MAPKs and IRFs, mediators in the expression of inflammatory cytokines.
252 These results demonstrated that microbiota-induced immunity maturation limit *Salmonella*

253 induced inflammation. Furthermore, the chickens colonized with Mix10 did not generate a
254 severe inflammatory response as the expression levels of pro-inflammatory cytokines (IL-6 and
255 IL-18) was comparatively low. Antimicrobial peptides (AMPs) are crucial for eliminating a
256 broad range of pathogens through pathogen-associated molecule pattern (PAMP) receptors. Two
257 AMPs; cathelicidin2 (CATH2) as well as defensin-beta 1 (DEFB1) have been reported. In this
258 study, Mix10-colonized chickens with *S. Typhimurium* infection showed a higher level of
259 CATH2 as well as DEFB1 when compared to the group infected with *S. Typhimurium* (Fig. 4).
260 The results suggested that colonization of Mix10 species in the chicken gut can ameliorate *S.*
261 *Typhimurium* induced inflammation by activating AMPs production and anti-inflammatory
262 immune response.

263

264 ***Mix10 in vivo community composition and functional genomic analysis.***

265 The microbial community profile of Mix10 colonization in chicken gut was determined using
266 16S rRNA amplicon from the cecal samples. Although all species of Mix10 was inoculated in
267 equal proportion to gnotobiotic and conventional chickens, some species reached high abundance
268 while others have low abundance or did not colonize the gut at all (Fig. 5 and Table S6).
269 *Olsenella* sp., *Pseudoflavonifractor* sp., and *Megamonas funiformis* together constituted more
270 than 70% of Mix10 population in the cecum of Mix10-colonized chickens and Mix10-colonized
271 chickens with *S. Typhimurium* infection. Conversely, *Staphylococcus saprophyticus*, *Bacillus*
272 *paralicheniformis*, and *Enterococcus durans* were not detected in the samples suggesting that
273 they did not successfully colonize chicken gut. The abundance of *Salmonella* in all Mix10-
274 colonized groups compared to control groups was substantially lower (Fig. 5). This supported the
275 reduction of *Salmonella* determined by CFU enumeration (Fig. 3B). However, differences in
276 community composition were observed in Mix10-colonized conventional group compared to

277 Mix10-colonized gnotobiotic group. The abundance of *Megamonas* was increased, while
278 *Pseudoflavonifractor* was decreased. Furthermore, *Olsenella* whose abundance was very high in
279 gnotobiotic group, was lost in conventional group.

280 To decipher the overall functional capabilities of the members of Mix10, the genomes
281 were sequenced and analyzed. The overall genomic attributes are presented in Table 1. Since the
282 presence of functional modules computed using KEGG has been used to design defined gut
283 bacterial blends that partially inhibited *Salmonella* [35], we examined whether presence of
284 KEGG modules correlated with *in vivo* colonization of strains in our study. The presence and
285 completeness of KEGG modules in the strains were annotated and based on that a total of 293
286 KEGG modules were present either completely or partially across 10 species of Mix10 (Fig. 6A
287 and Table S7). Based on the results from amplicon sequencing, only 7 organisms; *Olsenella*,
288 *Pseudoflavonifractor*, *Megamonas*, *Megasphaera*, *Massiliomicrobiota*, *Faecalibacter* and
289 *Lactobacillus* were able to colonize the gnotobiotic chicken gut with diverse abundance, in
290 which they harbored a total of 234 modules including 122 complete modules. However, out of
291 293 modules detected across all strains, 243 modules with 159 complete modules were
292 contributed by *Bacillus*, *Enterococcus* and *Staphylococcus* which did not colonize the
293 gnotobiotic chicken gut. This indicates that presence of KEGG modules in the genome of Mix10
294 species may not be the primary determinant of colonization ability in the chicken gut. This was
295 further evident when all functional modules in colonized and non-colonized strains of Mix10
296 were compared against the predicted complete modules in the feral chicken fecal metagenome
297 (Fig. 6B). Although colonized strains clustered closer to metagenome of the feral chicken
298 microbiome, presence or absence of KEGG module did not reveal any clear partitioning in this
299 comparison.

300

301 **Discussion**

302 A mature microbial community in the adult gut is highly diverse and generally prevents the
303 colonization of the pathogens such as *Salmonella*. The pathogen exclusion ability of the gut
304 microbiota has been used to suppress *Clostridium difficile* infection in humans [7] and to exclude
305 *Salmonella* in young chicken by fecal transplantation from healthy adults [8]. This capacity of
306 the healthy microbiota to exclude or keep the pathogen numbers extremely low in the gut has
307 been termed as competitive exclusion or colonization resistance [36]. The incredible complexity
308 of the gut microbiota offers avenues to obtain and identify specific species or defined
309 combination of species that can inhibit pathogens such as *Salmonella*. Recently, there have been
310 propositions to do so using a modified Koch postulate[24, 25, 37]. As per this proposition, first
311 the commensal organism is isolated as a pure culture, screened for pathogen exclusion capacity,
312 and in the second stage, the ability of single species or defined communities of the isolated
313 commensals to ameliorate disease is proven by mono or poly-associating them in a germfree host
314 [38].

315 In this study, we used a similar approach to identify *Salmonella* inhibiting species from
316 chicken gut microbiota. Since feral chicken has more microbial exposure than commercial
317 chicken, we hypothesized that feral chicken microbiome could contain a high number of species
318 that could provide colonization resistance against *Salmonella*. Using a culturomics based
319 approach [39-42], 1,300 strains were isolated, and the species identity of the strains was
320 determined. This collection was composed of 51 species (Fig. 1). From these, a co-culture assay-
321 based screen identified 30 species which inhibited *Salmonella* in varying degrees (Fig. 2A). A
322 modified Koch postulate to study microbiota function or mechanism proposes the concept of

323 defined bacterial consortium as a unit that could ameliorate disease[12, 43] [24]. Simply put, this
324 paradigm replaces “one pathogen = disease” with “one defined bacterial consortium = no
325 disease”. We reasoned that the *Salmonella* inhibition ability of individual species could be
326 improved if a defined consortium is made by pooling several strains. Consistent with this
327 expectation, a pool of 10 species showed several fold higher *Salmonella* inhibition capacity (Fig.
328 2B). What we also observed here is that two out of the 66 blends increased the *Salmonella*
329 growth *in vitro* and *in vivo* (Fig. 2B, Fig. S3 and Fig. S4). This is a clear demonstration of the
330 fact that bacterial interaction can change individual strain phenotype, for instant *Salmonella*
331 inhibition and is consistent with the concept of “defined bacterial consortium” as a unit to
332 interrogate microbiota function as proposed in the modified Koch postulate for micorbiota [24,
333 25].

334 The blend (Mix10) that showed maximum *Salmonella* inhibition was then tested in a
335 gnotobiotic and conventional chicken model [28] to determine whether it could exclude
336 *Salmonella* in the chicken gut and reduce *Salmonella*-induced disease. Our results clearly
337 showed that Mix10 partially excluded *Salmonella* (Fig. 3B), reduced tissue damage (Fig. 3C and
338 D), and substantially reduced inflammation (Fig. 4,) in the chicken gut. These results were the
339 validation of the second component in the modified Koch postulate, *i.e.*, a demonstration that
340 defined microbial consortium can ameliorate pathogen induced disease, such as *Salmonella*. Our
341 results also showed that this inhibition is not serotype dependent and is applicable to other
342 serotypes of *Salmonella* that commonly colonize chicken (Fig. S1). Moreover, the cell free
343 supernatant of the Mix10 failed to inhibit *Salmonella* (Fig S2). On the basis of these results, the
344 mechanism of Mix10 against *Salmonella* colonization could be nutrient competition of species or
345 improvement of host immune system. When the Mix10 population structure was determined

346 using 16S rRNA amplicon sequencing, we found that out of ten inoculated species, three did not
347 colonize (*Staphylococcus saprophyticus*, *Bacillus paralicheniformis*, and *Enterococcus durans*)
348 while three (*Olsenella* sp., *Pseudoflavoniratctor* sp., and *Megamonas funiformis*) dominated the
349 population constituting more than 70% abundance in the cecum. Since these three species
350 dominated all groups, we asserted that they are the key members of Mix10 consortium which
351 produce most of the disease reduction in gnotobiotic chicken. However, loss of colonization may
352 be because of host selection via adhesive molecule such as mucus glycans and immunoglobulin
353 A, and immune system such as antimicrobial compounds; RegIII γ and defensins [44-47]. Overall,
354 our approach of making defined bacterial consortium from a pure culture library and testing them
355 in a native germfree host offers a means to select a subset of strains for further enhancement by
356 excluding non-colonizers and selecting dominating species in the tested consortium.

357 Eventhough Mix10 may not be the best possible consortium of defined bacteria that
358 could exclude *Salmonella* in chicken, it is possible that many such defined consortia of same or
359 better effectiveness could be formulated from a pure culture library of isolates. As per the
360 redundancy or insurance hypothesis, more than one species is retained in the gut ecosystem to
361 ensure that loss of one species does not result in the loss of function contributed to microbiome
362 by that species [3, 48]. Therefore, it is more than likely that many species exist in chicken
363 microbiota contribute to the same function and their inhibition property can change depending on
364 the composition of the consortium. When the dominating species from several blends such as
365 Mix10 are pooled or stacked, better combinations may emerge. Nevertheless, our results show
366 that choosing a diverse microbiota source is essential to gain *Salmonella* inhibiting species
367 because two of three highly dominating species in Mix10 were previously uncultured species,
368 justifying our choice of feral chicken as the input for culture library development. The previous

369 study showed that the use of microbial diversity in the gut as a guide to developing *Salmonella*
370 inhibiting defined consortium that was tested in a gnotobiotic mouse model [35]. However, we
371 did not find a good correlation between the presence of KEGG modules in the genome and
372 colonization of the strains *in vivo*. In the present study, we have tested only representative
373 species in our library. Since other strains in the same species may have the inhibitory capacity,
374 formulating additional blends from such strains in our library, performing combinatorial *in vitro*
375 inhibition assay followed by testing in the gnotobiotic chicken model, and pooling highly
376 dominating species from multiple mixes may help to design well defined microbial ecosystem
377 therapeutic against *Salmonella*.

378

379 **Material and Methods**

380 ***Development of the feral chicken gut microbiota library.*** Protocols used in this study for sample
381 collection and chicken experiments were reviewed and approved by the Institutional Animal
382 Care and Use Committee (IACUC) at the South Dakota State University, Brookings, South
383 Dakota. For the isolation of bacteria from the feral chicken gut, six intestinal samples were
384 pooled. The pooled intestinal sample was serially diluted and was plated on modified Brain
385 Heart Infusion agar (BHI-M) with 12 different selective conditions (Supplementary Table 1).
386 The modified Brain Heart Infusion agar (BHI-M) contained the following ingredients: 37 g/L of
387 BHI, 5 g/L of yeast extract, 1mL of 1 mg/mL menadione, 0.3 g of L-cysteine, 1 mL of 0.25
388 mg/L of resazurin, 1 mL of 0.5mg/mL hemin, 10 ml of vitamin and mineral mixture, 1.7 ml of
389 30 mM acetic acid, 2 ml of 8 mM propionic acid, 2 ml of 4 mM butyric acid, 100 μ l of 1
390 mM isovaleric acid, and 1% of pectin and inulin. All cultures were performed inside an
391 anaerobic chamber (Coy Laboratories) containing 85% CO₂, 10% H₂, and 5% N₂ maintained at

392 37°C. Total of 1,300 colonies was picked from all conditions and dilutions based on colony
393 morphologies. Selected colonies were streaked on base BHI-M agar, and a single colony was
394 selected for preparing stocks and species identification. Species identity of the isolates was
395 determined using Matrix-Assisted Laser Desorption/ Ionization-Time of Flight (MALDI-TOF)
396 or 16S rRNA gene sequencing. For MALDI-TOF identification, a single colony was smeared on
397 the MALDI-TOF target plate and lysed by 70% formic acid. MALDI-TOF targets were covered
398 with 1 μ L of a matrix solution. MALDI-TOF was performed through Microflex LT system
399 (Bruker Daltonics). A MALDI-TOF score >1.9 was considered as positive species identification.
400 Isolates that could not be identified at this cut-off were identified using 16S rRNA gene
401 sequencing. To identify these isolates, genomic DNA of overnight culture from a single colony
402 was extracted using a DNeasy Blood & Tissue kit (Qiagen), according to the manufacturer's
403 instructions. Then 16S rRNA gene sequences were amplified using universal primer set 27F (5'-
404 AGAGTTGATCMTGGCTCAG-3'; Lane et al., 1991) and 1492R (5'-
405 ACCTTGTACGACTT- 3'; Stackebrandt et al., 1993) [49, 50], and sequenced using a Sanger
406 DNA sequencer (ABI 3730XL; Applied Biosystems) using 27F primer. The 16S rRNA gene
407 sequence was used to verify species using the GenBank (www.ncbi.nlm.nih.gov/genbank/) and
408 EZBioCloud databases (www.ezbiocloud.net/eztaxon) [26]. All identified isolates were
409 maintained in BHI-M medium with 10% (v/v) Dimethyl Sulfoxide (DMSO) at -80°C.
410 Aerotolerance of the bacterial species was tested by culturing in aerobic, anaerobic and
411 microaerophilic conditions. To this end, individual bacteria were first cultured overnight in BHI-
412 M broth at 37°C under anaerobic condition. The optical density at 600 nm (OD₆₀₀) of the cultures
413 was adjusted to 0.5. Then, 1% of OD₆₀₀ adjusted cultures were inoculated in fresh BHI-M media
414 in triplicates. Each replicate of cultures was then incubated under anaerobic, microaerophilic and

415 aerobic conditions. For microaerophilic condition, a hypoxic box was used to incubate the
416 culture. After 24 hours of incubation, the growth of individual bacteria was determined by
417 measuring OD₆₀₀.

418

419 ***Co-culture assays, formulation of the bacterial blends and determination of inhibitory***
420 ***mechanism.*** A co-culture assay was used to screen all bacterial species for *S. Typhimurium*
421 inhibition capacity. The growth of each bacterial species was measured following overnight
422 incubation in BHI-M using a spectrophotometer at OD₆₀₀. Subsequently, bacterial cells were
423 maintained by adjusting the OD₆₀₀ to 0.5 with 10% (v/v) DMSO at -80°C. In this assay, each
424 bacterial stock was anaerobically cultured together with *S. Typhimurium* in a ratio of 9:1 in 1 mL
425 of BHI-M broth and incubated at 37°C for 24h. To quantify the magnitude of *S. Typhimurium*
426 inhibition by each species, the individual co-cultures were 10-fold serially diluted with 1X
427 anaerobic phosphate buffer saline (PBS) and plated on Xylose Lysine Tergitol 4 (XLT4) agar
428 (BD Difco, Houston, TX). The plates were incubated aerobically at 37°C for 24 hours followed
429 by plating on XLT4 agar and colony forming units (CFU) were enumerated to determine the
430 degree of *S. Typhimurium* inhibition.

431 To test whether Mix10 could inhibit multiple serotypes of *Salmonella*, we determined the
432 inhibitory capacity of Mix10 against four serovars *Salmonella* (*S. Typhimurium*, *S. Heidelberg*,
433 *S. Infantis* and *S. Enteritidis*) that are frequently infect poultry. A co-culture assay was performed
434 as previously described in the methods.

435 To determine whether Mix10 inhibits *Salmonella* through nutrient competition or through
436 other mechanisms, cell-free supernatants were tested for *Salmonella* inhibition. To this end,
437 Mix10 was grown cultured as before for 48 hours. The cell pellets were removed by

438 centrifugation at 3,000 rpm for 1 h. The supernatant was then filtered through 0.4 μ m filter. The
439 purified supernatant was adjusted pH to 6.5-6.8 using NaOH and HCl. The supernatant was
440 divided into three fractions. The first fraction was untreated, the second fraction was heated at
441 100°C for one hour while the third fraction was treated with 50 μ g/mL of proteinase K for one
442 hour at 37°C. Following this, *S. Typhimurium* was cultured in the three fractions diluted 50%
443 with BHI-M. In parallel, equal dilution of BHI-M with 1X PBS was used to culture *Salmonella*
444 as a control sample. After 24 hours of incubation, CFU of *Salmonella* was enumerated as
445 previously described.

446

447 ***Determination of in vivo effect of ten species consortium using gnotobiotic and conventional***
448 ***chicken model.*** We used a gnotobiotic chicken model developed by our group to determine the
449 *in vivo* effect of Mix10. Briefly, the gnotobiotic chicks were hatched by following the previously
450 described protocol [28]. Fertile Specific Pathogen Free (SPF) eggs were wiped with Sporicidin®
451 disinfectant solution (Contec®, Inc.), an FDA approved sterilizing solution, followed by washing
452 in sterile water. Further, the eggs were incubated at 37°C and 55% humidity for 19 days. Eggs
453 containing an embryo, confirmed after candling, were dipped in Sporicidin® for 15s and wiped
454 with sterile water before transferring to a biosafety cabinet maintained at 37°C and 65% humidity
455 until hatching. Chickens were orally drenched with 10⁷ CFU of Mix10 (best *Salmonella*
456 inhibiting mix) / Mix59 (Mix enhancing *Salmonella* growth) (Fig 2) at day 3, 4, and 5 post-
457 hatching, followed by 10⁵ CFU of *S. Typhimurium* challenge on day 6 post-hatching (Fig 3A).
458 Similarly, for the conventional group, eggs were not sterilized and were allowed to hatch
459 normally. We fed chickens with 10⁵ CFU of *S. Typhimurium* and 10⁷ CFU of Mix10/Mix59 on
460 day 6 post-hatching. Chickens were euthanized by cervical dislocation on day 2 and day 5 post-

461 infection (**Fig. 3A**). The cecum contents and tissues were aseptically collected for further
462 analysis. *S. Typhimurium* load in the cecum contents were determined by plating on *Salmonella*
463 selective XLT4 agar.

464

465 ***Histopathology***. The tissues for histopathology were initially fixed in 10% formalin. The cecum
466 tissues were trimmed and processed into paraffin blocks by routine histopathological methods,
467 *i.e.*, gradual dehydration through a series of ethanol immersion, followed by xylene and then
468 paraffin wax. They were sectioned at 4 μ m and stained with hematoxylin and eosin (HE),
469 followed by scanning of glass slides in a motic scanner. Further, the cecum pathology was
470 evaluated based on scores.

471

472 ***Assessment of immune response using Quantitative Reverse-Transcriptase PCR (Q-PCR)***. To
473 study the chicken immune response after bacterial treatment, gene expression in the cecal tissue
474 was determined. Total RNA from cecal tissue samples was extracted using the TRIzol[®] reagent
475 (Ambion | RNA, Invitrogen) method. Briefly, an average weight of 0.042 g of cecal tissue per
476 sample (n=7 per group) was used. Tissue samples from each group were pooled and
477 homogenized separately in TRIzol[®] reagent (1mL per 100 mg of tissue sample). RNA extraction
478 was performed according to manufacturer's protocol. RNA concentration was determined using
479 spectrophotometric optical density measurement (A260/A280) by NanoDropTM One (Thermo
480 Fisher Scientific, Wilmington, DE). For Q-PCR, cDNA was synthesized using First-strand
481 cDNA synthesis kit (New England BioLabs, Inc.) according to the manufacturer's protocol. To
482 get enough cDNA for downstream procedures, 4 μ g of RNA was used as input in a cDNA
483 synthesis. The dynamics of the chicken immune response was analyzed using RT2 Profiler PCR

484 Array (cat# 8ZA-1214, Qiagen) according to the manufacturer's protocol. Real-time q-PCR was
485 performed following the manufacturer's protocol using an ABI 7500HT thermal cycler (Applied
486 Biosystems). A cycle threshold cut-off of 0.2 was applied to all gene amplifications and was
487 normalized to Ribosomal protein L4 (RPL4) and Hydroxymethylbilane synthase (HMBS) as
488 they were stably expressed across all treatment groups from a panel of five housekeeping genes.
489 The fold regulation of genes in 4 treatment groups was calculated by comparing to control group
490 (gnotobiotic chickens). Data was clustered using Pearson correlation with complete linkage in
491 Morpheus package.

492

493 ***Determination of the population structure of the bacterial consortium in the cecum using 16S***
494 ***rRNA amplicon analysis.*** We determined the relative abundance of individual species in the
495 Mix10 after colonizing the gnotobiotic and conventional chicken using 16S rRNA amplicon
496 sequencing. Genomic DNA from cecal contents was extracted using the PowerSoil DNA
497 isolation kit (Mo Bio Laboratories Inc, CA). To ensure even lysis of the microbial community,
498 bead beating was performed on 100 mg of cecal contents for 10 min using a tissue lyser (Qiagen,
499 Germantown, MD). Remaining steps for DNA isolation were performed as per manufacturer's
500 instruction. Final elution of DNA was carried out in 50 μ L of nuclease-free water. The quality of
501 DNA was assessed using a NanoDropTM One and quantified using a Qubit Fluorometer 3.0
502 (Invitrogen, Carlsbad, CA). The samples were stored at -20°C until further use. The samples
503 carrying low DNA yield were removed from the downstream processes. The enrichment of the
504 microbial DNA was performed using the NEBNext[®] Microbiome DNA Enrichment Kit (New
505 England Biolabs Inc, MA) according to the manufacturer's instruction. A total of 31 DNA
506 samples were used for 16S rRNA gene sequencing using the Illumina MiSeq platform with 250

507 base paired-end V2 chemistry. DNA library preparation was performed using Illumina Nextera
508 XT library preparation kit (Illumina Inc. San Diego, CA) targeting the V3 and V4 region of the
509 16S rRNA gene sequence (Klindworth et al., 2013). The amplicons were then purified using
510 Agencourt AMPure XP beads (Beckman Coulter). Before loading, libraries were bead
511 normalized and pooled in equal concentration. After sequencing, CLC Genomics Workbench
512 (version 11.0.1) (Qiagen) was used to analyze the 16S rRNA sequence data. An average of
513 72,749 raw reads per sample (ranging from 34,962 to 100,936) was imported to CLC workbench.
514 After the initial quality check, reads with low Q30 score was removed by trimming with a
515 quality score limit of 0.01. Paired reads were merged at a minimum alignment score of 40. OTU
516 clustering was performed at the 97% similarity level using a locally downloaded Greengenes
517 database [51] and a custom database of full-length 16S rRNA gene sequence of Mix10 species
518 and *Salmonella*. Best matches were found at chimera cross over cost of 3 and kmer size of 6.
519 Finally, on an average 28,759 reads per sample were used to generate OTUs. The abundance
520 table and metadata were then used to create stacked bar plots in Explicet software tool (version
521 2.10.5) [52]. The plot was generated using only those OTUs (genus level) that have more than
522 0.25 percent relative abundance across all samples.

523

524 ***Genome analysis of Mix10 species and metagenomic analysis of intestinal content using next-***
525 ***generation sequencing.*** We used the Bacterial DNA kit (D3350-02, e.Z.N.ATM, OMEGA bio-
526 tek, USA) to isolate the genomic DNA of individual species. The quality of DNA was assessed
527 using Qubit Fluorometer 3.0. Whole genome sequencing was performed using Illumina MiSeq
528 platform using MiSeq Reagent Kit V3 chemistry. The reads were assembled using Unicycler that
529 builds an initial assembly graph from short reads using the de novo assembler SPAdes 3.11.1

530 [53]. The quality assessment for the assemblies was performed using QUAST [54]. The open
531 reading frames (ORFs) were predicted using Prodigal 2.6 [55] in the Prokka software package
532 [56]. To determine the functional modules in the genome, the amino acid sequences were
533 mapped against the KEGG (Kyoto Encyclopedia of Genes and Genomes) database using the
534 BlastKOALA genome annotation tool [57]. Each KEGG module was represented on a scale of
535 0 to 4 (0= complete, 1=1 block missing, 2= 2 block missing and 3= module absent). The
536 matrix was used for hierarchical clustering using the Morpheus
537 (<https://software.broadinstitute.org/morpheus>) server for constructing the heat map using
538 Pearson correlation matrix and average linkage method. As mentioned previously, the strains
539 of culture library were isolated from the pooled intestinal content of six feral chickens. This
540 original sample was used for DNA isolation, sequencing and analysis for our previous study
541 [28]. In this study, the assembled contigs from this inoculum were used to predict the putative
542 protein coding sequences using FragGeneScan [58]. The resulting amino acid sequences were
543 clustered using CD-HIT to reduce the sequence redundancy [59]. The clustered proteins were
544 then annotated against the KEGG Orthology (KO) database to assign the molecular functions
545 using GhostKOALA (PMID: 26585406). The complete modules present in the metagenomics
546 sample were compared against the colonized (n=7) and non-colonized strains (n=3).

547
548 **Statistical analysis.** Statistical analysis was performed using the exact Mann-Whitney (MW)
549 U test using GraphPad Prism version 9.0.0 for Windows (GraphPad Software,
550 www.graphpad.com). *P* values less than 0.05 were considered as statistically significant (* *P* <
551 0.05, ** *P* < 0.01, *** *P* < 0.001, **** *P*, 0.0001)

552

553 **Data availability.** Draft genome of individual Mix10 strains and raw data of 16S rRNA
554 amplicon metagenomics in this study were deposited in the NCBI under BioProject number
555 PRJNA524186.

556

557 **Acknowledgements**

558 Computations supporting this project were performed on High-Performance Computing systems
559 managed by Research Computing Group, part of the Division of Technology and Security at
560 South Dakota State University. This work was in part supported by the grants from the South
561 Dakota Governors Office of Economic Development (SD-GOED) and the United States
562 Department of Agriculture (grant numbers grant numbers SD00R646-18 and SD00H702-20)
563 awarded to JS. SW received support from the Science Achievement Scholarship of Thailand.

564

565 **References**

- 566 1. Lawley, T.D. and A.W. Walker, *Intestinal colonization resistance*. Immunology, 2013.
567 **138**(1): p. 1-11.
- 568 2. Ley, R.E., D.A. Peterson, and J.I. Gordon, *Ecological and evolutionary forces shaping
569 microbial diversity in the human intestine*. Cell, 2006. **124**(4): p. 837-48.
- 570 3. Relman, D.A., *The human microbiome: ecosystem resilience and health*. Nutr Rev, 2012.
571 **70 Suppl 1**: p. S2-9.
- 572 4. Yarygin, K.S., et al., *ResistoMap-online visualization of human gut microbiota antibiotic
573 resistome*. Bioinformatics, 2017. **33**(14): p. 2205-2206.
- 574 5. Khoruts, A., M.J. Sadowsky, and M.J. Hamilton, *Development of fecal microbiota
575 transplantation suitable for mainstream medicine*. Clin Gastroenterol Hepatol, 2015.
576 **13**(2): p. 246-50.
- 577 6. Hamilton, M.J., et al., *High-throughput DNA sequence analysis reveals stable
578 engraftment of gut microbiota following transplantation of previously frozen fecal
579 bacteria*. Gut Microbes, 2013. **4**(2): p. 125-35.
- 580 7. Khoruts, A., et al., *Changes in the composition of the human fecal microbiome after
581 bacteriotherapy for recurrent Clostridium difficile-associated diarrhea*. J Clin
582 Gastroenterol, 2010. **44**(5): p. 354-60.
- 583 8. Rantala, M. and E. Nurmi, *Prevention of the growth of *Salmonella* infantis in chicks by
584 the flora of the alimentary tract of chickens*. Br Poult Sci, 1973. **14**(6): p. 627-30.

585 9. Nurmi, E. and M. Rantala, *New aspects of Salmonella infection in broiler production*.
586 *Nature*, 1973. **241**(5386): p. 210-1.

587 10. Juul, F.E., et al., *Fecal Microbiota Transplantation for Primary Clostridium difficile*
588 *Infection*. *N Engl J Med*, 2018. **378**(26): p. 2535-2536.

589 11. Lofland, D., F. Josephat, and S. Partin, *Fecal transplant for recurrent Clostridium difficile*
590 *infection*. *Clin Lab Sci*, 2013. **26**(3): p. 131-5.

591 12. Caballero, S., et al., *Cooperating Commensals Restore Colonization Resistance to*
592 *Vancomycin-Resistant Enterococcus faecium*. *Cell Host Microbe*, 2017. **21**(5): p. 592-602
593 e4.

594 13. Martz, S.L., et al., *Administration of defined microbiota is protective in a murine*
595 *Salmonella infection model*. *Sci Rep*, 2015. **5**: p. 16094.

596 14. Buffie, C.G., et al., *Precision microbiome reconstitution restores bile acid mediated*
597 *resistance to Clostridium difficile*. *Nature*, 2015. **517**(7533): p. 205-8.

598 15. Petrof, E.O., et al., *Microbial ecosystems therapeutics: a new paradigm in medicine?*
599 *Benef Microbes*, 2013. **4**(1): p. 53-65.

600 16. Chai, S.J., et al., *Poultry: the most common food in outbreaks with known pathogens,*
601 *United States, 1998-2012*. *Epidemiol Infect*, 2017. **145**(2): p. 316-325.

602 17. Antunes, P., et al., *Salmonellosis: the role of poultry meat*. *Clin Microbiol Infect*, 2016.
603 **22**(2): p. 110-121.

604 18. Cox, J.M. and A. Pavic, *Advances in enteropathogen control in poultry production*. *J Appl*
605 *Microbiol*, 2010. **108**(3): p. 745-55.

606 19. Freter, R., et al., *Mechanisms that control bacterial populations in continuous-flow*
607 *culture models of mouse large intestinal flora*. *Infect Immun*, 1983. **39**(2): p. 676-85.

608 20. Salvat, G., et al., *Use of a competitive exclusion product (Broilact) to prevent Salmonella*
609 *colonization of newly hatched chicks*. *Int J Food Microbiol*, 1992. **15**(3-4): p. 307-11.

610 21. Ferreira, A.J., et al., *Comparison of three commercial competitive-exclusion products for*
611 *controlling Salmonella colonization of broilers in Brazil*. *J Food Prot*, 2003. **66**(3): p. 490-
612 2.

613 22. Schneitz, C., *Competitive exclusion in poultry—30 years of research*. *Food Control*, 2005.
614 **16**(8): p. 657-667.

615 23. Corrier, D.E., et al., *Control of Salmonella typhimurium colonization in broiler chicks with*
616 *a continuous-flow characterized mixed culture of cecal bacteria*. *Poult Sci*, 1995. **74**(6): p.
617 916-24.

618 24. Byrd, A.L. and J.A. Segre, *Infectious disease. Adapting Koch's postulates*. *Science*, 2016.
619 **351**(6270): p. 224-6.

620 25. Neville, B.A., S.C. Forster, and T.D. Lawley, *Commensal Koch's postulates: establishing*
621 *causation in human microbiota research*. *Curr Opin Microbiol*, 2018. **42**: p. 47-52.

622 26. Kim, O.S., et al., *Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database*
623 *with phylotypes that represent uncultured species*. *Int J Syst Evol Microbiol*, 2012. **62**(Pt
624 3): p. 716-21.

625 27. Wongkuna, S., et al., *Taxono-genomics description of Olsenella lakotia SW165 (T) sp.*
626 *nov., a new anaerobic bacterium isolated from cecum of feral chicken*. *F1000Res*, 2020.
627 **9**: p. 1103.

628 28. Thomas, M., et al., *Gut Microbial succession during conventionalization of germfree*
629 *chicken*. 2018: p. 360784.

630 29. Broz, P., M.B. Ohlson, and D.M. Monack, *Innate immune response to Salmonella*
631 *typhimurium, a model enteric pathogen*. *Gut Microbes*, 2012. **3**(2): p. 62-70.

632 30. Pham, O.H. and S.J. McSorley, *Protective host immune responses to Salmonella infection*.
633 *Future Microbiol*, 2015. **10**(1): p. 101-10.

634 31. Behnson, J., et al., *Exploiting host immunity: the Salmonella paradigm*. *Trends Immunol*,
635 2015. **36**(2): p. 112-20.

636 32. Chen, L., et al., *Inflammatory responses and inflammation-associated diseases in organs*.
637 *Oncotarget*, 2018. **9**(6): p. 7204-7218.

638 33. Belkaid, Y. and T.W. Hand, *Role of the microbiota in immunity and inflammation*. *Cell*,
639 2014. **157**(1): p. 121-41.

640 34. Belkaid, Y. and O.J. Harrison, *Homeostatic Immunity and the Microbiota*. *Immunity*,
641 2017. **46**(4): p. 562-576.

642 35. Brugiroux, S., et al., *Genome-guided design of a defined mouse microbiota that confers*
643 *colonization resistance against Salmonella enterica serovar Typhimurium*. *Nat Microbiol*,
644 2016. **2**: p. 16215.

645 36. van der Waaij, D., J.M. Berghuis-de Vries, and L.-v. Lekkerkerk, *Colonization resistance of*
646 *the digestive tract in conventional and antibiotic-treated mice*. *J Hyg (Lond)*, 1971. **69**(3):
647 p. 405-11.

648 37. Singh, V.P., S.D. Proctor, and B.P. Willing, *Koch's postulates, microbial dysbiosis and*
649 *inflammatory bowel disease*. *Clin Microbiol Infect*, 2016. **22**(7): p. 594-9.

650 38. Vonaesch, P., M. Anderson, and P.J. Sansonetti, *Pathogens, microbiome and the host:*
651 *emergence of the ecological Koch's postulates*. *FEMS Microbiol Rev*, 2018. **42**(3): p. 273-
652 292.

653 39. Lagier, J.C., et al., *Culturing the human microbiota and culturomics*. *Nat Rev Microbiol*,
654 2018: p. 540-550.

655 40. Ferrario, C., et al., *Untangling the cecal microbiota of feral chickens by culturomic and*
656 *metagenomic analyses*. *Environ Microbiol*, 2017. **19**(11): p. 4771-4783.

657 41. Lagier, J.C., et al., *Culture of previously uncultured members of the human gut*
658 *microbiota by culturomics*. *Nat Microbiol*, 2016. **1**: p. 16203.

659 42. Lagier, J.C., et al., *Microbial culturomics: paradigm shift in the human gut microbiome*
660 *study*. *Clin Microbiol Infect*, 2012. **18**(12): p. 1185-93.

661 43. Petrof, E.O., et al., *Stool substitute transplant therapy for the eradication of Clostridium*
662 *difficile infection: 'RePOOPulating' the gut*. *Microbiome*, 2013. **1**(1): p. 3.

663 44. McLoughlin, K., et al., *Host Selection of Microbiota via Differential Adhesion*. *Cell Host*
664 *Microbe*, 2016. **19**(4): p. 550-9.

665 45. Donaldson, G.P., et al., *Gut microbiota utilize immunoglobulin A for mucosal*
666 *colonization*. *Science*, 2018. **360**(6390): p. 795-800.

667 46. Salzman, N.H., et al., *Enteric defensins are essential regulators of intestinal microbial*
668 *ecology*. *Nat Immunol*, 2010. **11**(1): p. 76-83.

669 47. Vaishnava, S., et al., *The antibacterial lectin RegIIIgamma promotes the spatial*
670 *segregation of microbiota and host in the intestine*. *Science*, 2011. **334**(6053): p. 255-8.

671 48. Yachi, S. and M. Loreau, *Biodiversity and ecosystem productivity in a fluctuating*
672 *environment: the insurance hypothesis.* Proc Natl Acad Sci U S A, 1999. **96**(4): p. 1463-8.

673 49. Lane, D.J., *16S/23S rRNA Sequencing.* In: Stackebrandt E and Goodfellow M, *Nucleic Acid*
674 *Techniques in Bacterial Systematic*, John Wiley and Sons, New York. 1991.

675 50. Stackebrandt, E. and W. Liesack, *Nucleic acids and classification.* In: Goodfellow M and
676 O'Donnell AG (ed.), *Handbook of new bacterial systematics*. Academic Press, London,
677 England. 1993.

678 51. McDonald, D., et al., *An improved Greengenes taxonomy with explicit ranks for*
679 *ecological and evolutionary analyses of bacteria and archaea.* ISME J, 2012. **6**(3): p. 610-
680 8.

681 52. Robertson, C.E., et al., *Explicet: graphical user interface software for metadata-driven*
682 *management, analysis and visualization of microbiome data.* Bioinformatics, 2013.
683 **29**(23): p. 3100-1.

684 53. Wick, R.R., et al., *Unicycler: Resolving bacterial genome assemblies from short and long*
685 *sequencing reads.* PLoS Comput Biol, 2017. **13**(6): p. e1005595.

686 54. Gurevich, A., et al., *QUAST: quality assessment tool for genome assemblies.*
687 Bioinformatics, 2013. **29**(8): p. 1072-5.

688 55. Hyatt, D., et al., *Prodigal: prokaryotic gene recognition and translation initiation site*
689 *identification.* BMC Bioinformatics, 2010. **11**: p. 119.

690 56. Seemann, T., *Prokka: rapid prokaryotic genome annotation.* Bioinformatics, 2014.
691 **30**(14): p. 2068-9.

692 57. Kanehisa, M., Y. Sato, and K. Morishima, *BlastKOALA and GhostKOALA: KEGG Tools for*
693 *Functional Characterization of Genome and Metagenome Sequences.* J Mol Biol, 2016.
694 **428**(4): p. 726-731.

695 58. Rho, M., H. Tang, and Y. Ye, *FragGeneScan: predicting genes in short and error-prone*
696 *reads.* Nucleic Acids Res, 2010. **38**(20): p. e191.

697 59. Fu, L., et al., *CD-HIT: accelerated for clustering the next-generation sequencing data.*
698 Bioinformatics, 2012. **28**(23): p. 3150-2.

699

700

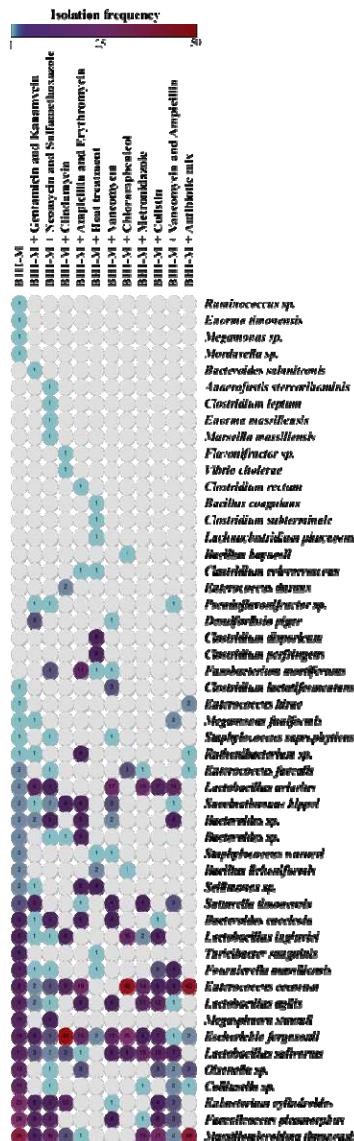
701

702

703

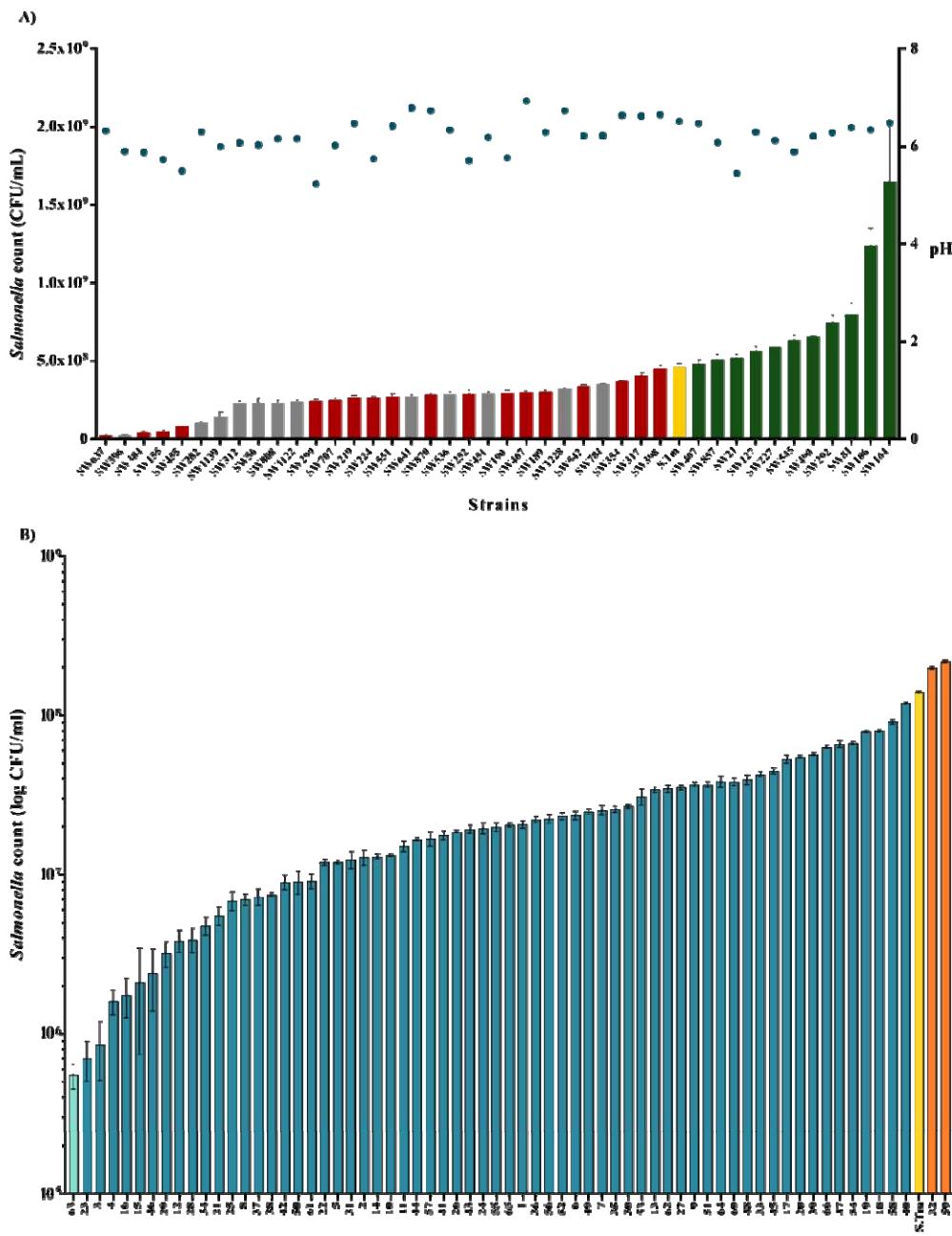
704

705

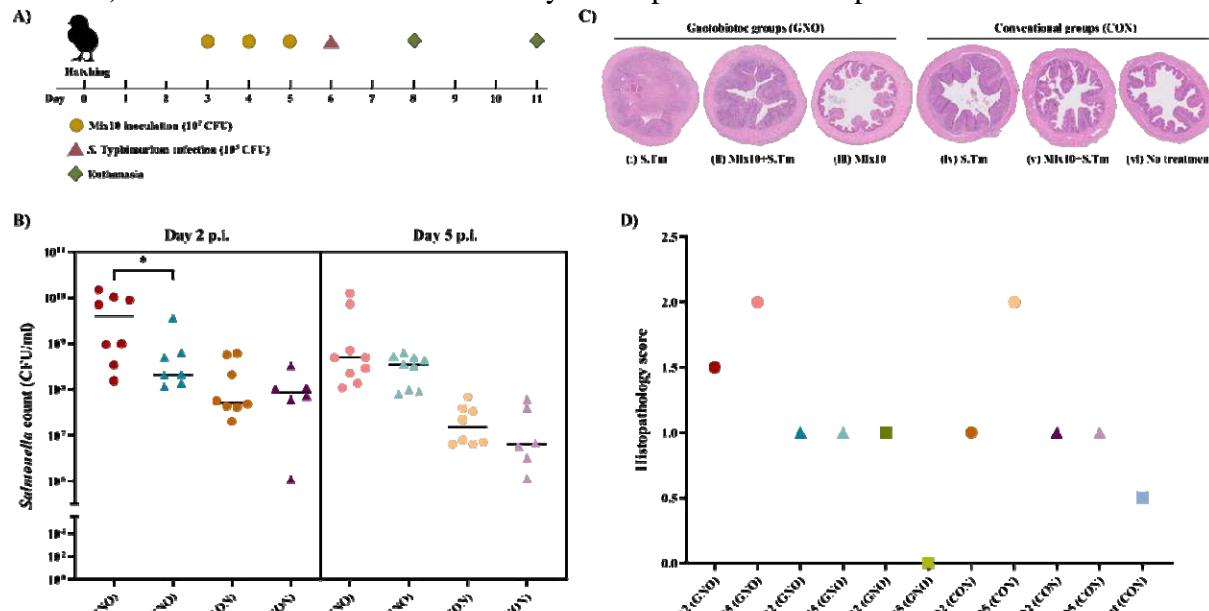

706

707 **Table 1. Description of bacterial strains used to formulate Mix10.** Whole genome sequencing of each species was performed using
 708 Illumina MiSeq. Genome assembly was performed using Unicycle that builds an initial assembly graph from short reads using the *de*
 709 *novo* assembler SPAdes 3.11.1. The open reading frames (ORFs) were predicted using Prodigal 2.6 implemented in the Prokka
 710 software package. Species identity of the individual species was determined by searching against EzTaxon using full-length 16S
 711 rRNA sequence.

712

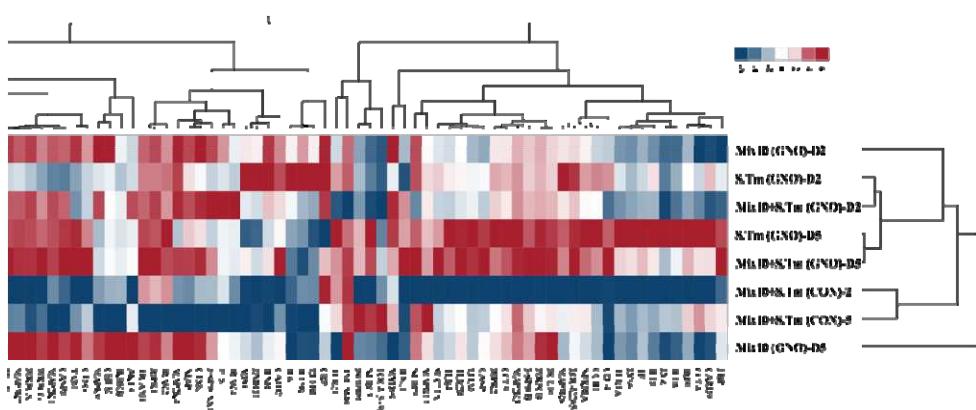

Strain ID	Phylum	Assigned Taxonomy	Oxygen Tolerance	16S rRNA gene length (bp)	Similarity (%)	Genome Size (Mb)	No. of Contigs	CDS	tRNA	rRNA
SW56	<i>Firmicute</i>	<i>Faecalicoccus pleomorphus</i>	Obligate anaerobe	1539	99.73	1.98	53	1950	42	2
SW282	<i>Firmicute</i>	<i>Lactobacillus agilis</i>	Facultative anaerobe	1560	100	2.09	22	1965	49	2
SW396	<i>Firmicute</i>	<i>Staphylococcus saprophyticus</i>	Facultative anaerobe	1550	100	2.6	16	2571	57	3
SW536	<i>Firmicute</i>	<i>Bacillus paralicheniformis</i>	Facultative anaerobe	1548	99.86	4.23	20	4210	78	2
SW641	<i>Firmicute</i>	<i>Enterococcus durans</i>	Facultative anaerobe	1557	99.55	3.01	65	2864	44	1
SW781	<i>Actinobacteria</i>	<i>Olsenella</i> sp.	Facultative anaerobe	1509	96.23	2.41	38	2096	53	2
SW808	<i>Firmicute</i>	<i>Megasphaera statonii</i>	Obligate anaerobe	1560	98.42	2.48	61	2253	52	1
SW1122	<i>Firmicute</i>	<i>Pseudoflavonifractor</i> sp.	Obligate anaerobe	1528	95.73	2.63	105	2311	51	4
SW1139	<i>Firmicute</i>	<i>Massiliomicrobiota timonensis</i>	Obligate anaerobe	1521	98.52	2.28	54	2341	51	2

SW1228	<i>Firmicute</i>	<i>Megamonas funiformis</i>	Obligate anaerobe	1553	98.78	2.41	57	2323	53	1
--------	------------------	-----------------------------	-------------------	------	-------	------	----	------	----	---


713
714
715 **Figure 1. Diversity and frequency of bacterial species isolated from the feral chicken gut**
716 **microbiota in culture library.** The abundance and diversity of 51 bacterial species (1,023
717 isolates) were accounted according to culture conditions. Intestinal content of six feral
718 chickens was pooled, stocked, and cultured using 12 culture combinations given in
719 Supplemental Table 1. Species identification was performed using matrix-assisted laser
720 desorption/ionization-time of flight (MALDI-TOF) or 16S rRNA sequencing. A heat map
721 showed diversity and abundance of bacterial species in a culture library was generated using
722 Morpheus, versatile matrix visualization and analysis software. The numbers in each circle

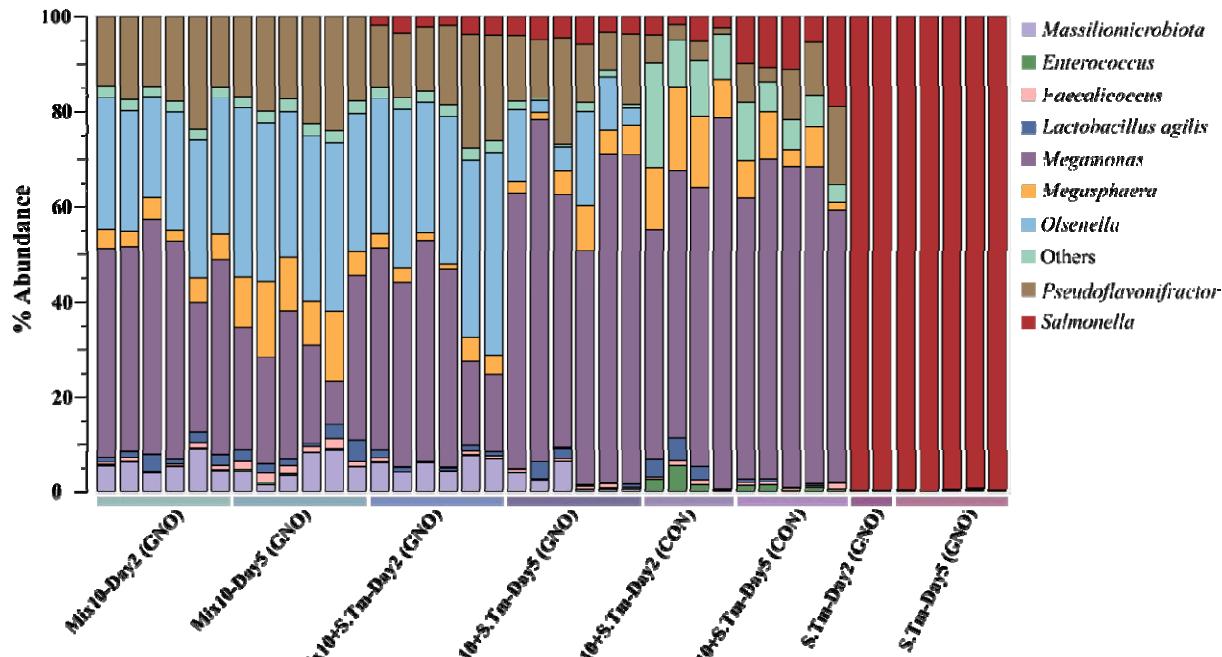
723 represent the frequency of isolation of that species. Full list of strains is given in
724 Supplemental Table 2.

725
726
727 **Figure 2. *In vitro* screening of representative species from the feral chicken gut microbiota**
728 **library to identify *S. Typhimurium* inhibiting species. A)** *Salmonella* inhibition capacity of
729 individual species: Forty-one species isolated from the pool cecum of feral chickens were used
730 for co-culture assays in this experiment. The OD₆₀₀ of overnight bacterial culture was adjusted to
731 0.5 and individual strains were mixed with *S. Typhimurium* at a ratio of 9:1. The CFU of
732 *Salmonella* (left y- axis) and pH (right y- axis) were determined after 24 hours incubation. The *S.*


733 Typhimurium inhibiting strains are shown as red bars. The *S. Typhimurium* growth enhancing
734 strains are shown as green bars. Twelve strains (grey color bars) were chosen to generate 66
735 combinations containing 10 species. **B)** *Salmonella* inhibition capacity of the bacterial blends:
736 All 66 combinations were tested against *Salmonella* using the same co-culture assay described
737 above. The *Salmonella* inhibiting blends are shown as blue bars. The *S. Typhimurium* growth
738 enhancing blends were shown as orange bars. The blend showing highest inhibition level (light
739 blue bar) is referred to as Mix10. All assays were performed in triplicate.

740
741 **Figure 3. *In vivo* effect of Mix10 tested in a gnotobiotic chicken model. A)** Chicken
742 experimental design using Mix10 against *S. Typhimurium* *in vivo*: At hatching, the gnotobiotic
743 chickens were divided into six different groups representing Mix10-colonized gnotobiotic group;
744 Mix10 (GNO), Mix10-colonized gnotobiotic group with *S. Typhimurium* infection;
745 Mix10+S.Tm (GNO), gnotobiotic group with *S. Typhimurium* infection; S.Tm (GNO),
746 conventional group; no treatment (CON), Mix10-colonized conventional group with *S.*
747 Typhimurium infection; Mix10+S.Tm (CON), and conventional group with *S. Typhimurium*
748 infection; S.Tm (CON). Mix10 at 10⁷ CFU was administered via oral drenching at day 3, 4 and 5
749 post-hatching. Chickens were infected with 10⁵ CFU of *S. Typhimurium*. Half the number of
750 chickens in each group were euthanized at day 2 post-infection, and others on day 5 post-
751 infection. **B)** *S. Typhimurium* load in the infected groups: cecum content of gnotobiotic group
752 with *S. Typhimurium* infection (n=17), Mix10-colonized gnotobiotic group with *S. Typhimurium*
753 infection (n=16), conventional group with *S. Typhimurium* infection (n=16) and Mix10-
754 colonized conventional group (n=12) with *S. Typhimurium* infection (n=10) on day 2 and 5 post-
755 infection. Significant difference between control and Mix10-colonized groups was performed
756 using the Mann-Whitney test; *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. **C)** H&E
757 stained histopathology of the cecum at day 11: (i) gnotobiotic group with *S. Typhimurium*
758 infection; S.Tm (GNO), (ii) Mix10-colonized gnotobiotic group with *S. Typhimurium* infection;
759 Mix10+S.Tm (GNO), (iii) Mix10-colonized gnotobiotic group; Mix10 (GNO), (iv) conventional
760 group with *S. Typhimurium* infection; S.Tm (CON), (v) Mix10-colonized conventional group
761

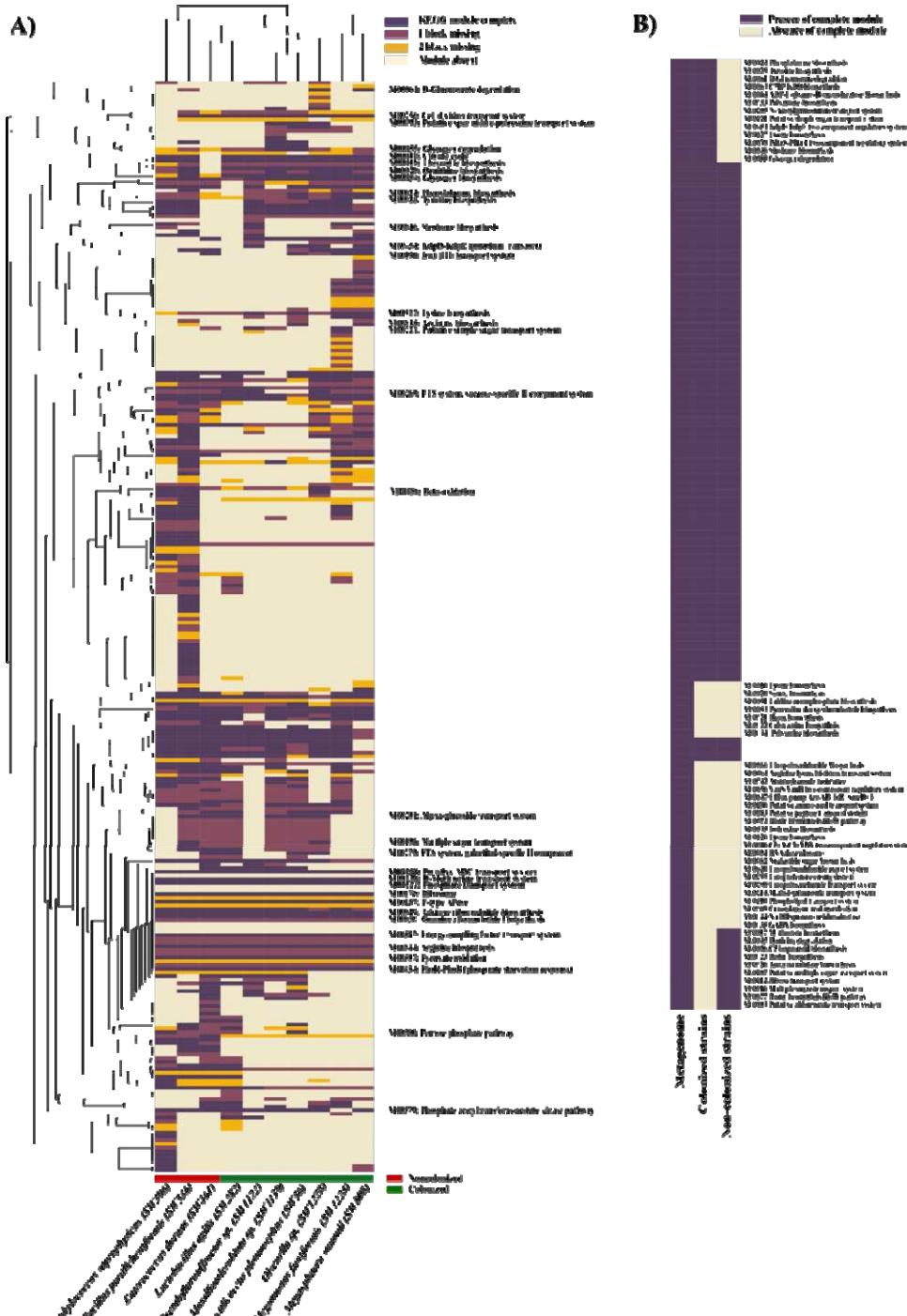
762 with *S. Typhimurium* infection; Mix10+S.Tm (CON), and (vi) conventional group; notreatment
763 (CON) **D**) Histopathological scores: Cecal tissue samples of six groups at day 2 and day 5 post-
764 infection were used to evaluate.


765

766

Figure 4. Determination of the immune response in chicken during Mix10 inoculation and *S. Typhimurium* infection. Total RNA from pooled cecal tissue from 4 groups: gnotobiotic group with *S. Typhimurium* infection; S.Tm (GNO), Mix10-colonized gnotobiotic group; Mix10 (GNO), Mix10-colonized gnotobiotic group with *S. Typhimurium* infection; Mix10+S.Tm (GNO), and Mix10-colonized conventional group with *S. Typhimurium* infection; Mix10+S.Tm (CON) was used to determine the inflammatory response. Data were presented as normalized fold change compared to gnotobiotic chicken as the baseline. Relative expression of the innate immune response, pro-inflammatory response and anti-inflammatory response at day 2 and 5 post-infection in all groups was compared.

777
778
779
780
781
782
783
784


785
786

787 **FIG 5. Mix10 population structure in chicken cecum determined using 16S rRNA**

788 **sequencing.** The relative abundance of individual species in the Mix10 after colonizing the
789 gnotobiotic and conventional chicken and during *S. Typhimurium* infection were determined
790 using 16S amplicon sequencing. The OTU clustering was performed at 97% similarity level
791 using CLC Genomics Workbench (version 11.0.1) with the Greengenes database and a custom
792 database of full length 16S rRNA gene sequences of Mix10 and *Salmonella*. The stacked bar
793 plots of relative abundance at genus and species level (color code) were generated using Explicet
794 software (version 2.10.5).

795
796
797

798
799
800
801
802
803

804

805 **FIG 6. Functional clustering of KEGG modules present in Mix10 strains, and metagenome.**

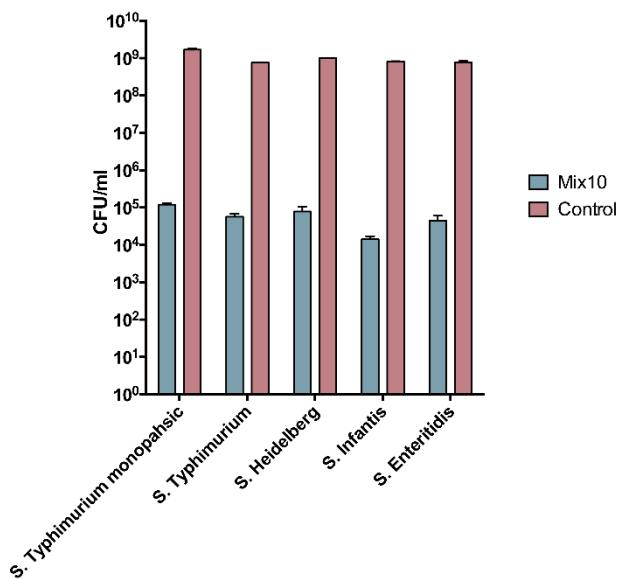
806 To investigate the functional potential of all the strains, present in Mix10 and metagenome, the
807 coding amino acid sequences were searched against the KO database against BlastKOALA and
808 GhostKOALA server. **A)** The functional units of individual strains in Mix10 were presented by
809 KEGG modules with 4 color scale: complete, 1 block missing, 2 blocks missing and module
810 absent. **B)** All complete modules presented in metagenome data was compared to the set of
811 colonized and non-colonized stains of Mix10. The matrix was then used to generate the heat
812 maps using Pearson correlation and average linking method. The color code indicates the
813 presence and completeness of each KEGG module. A few important KEGG module pathways
814 were indicated in the heatmap. An extended list of KEGG modules and clusters are provided in
815 supplementary table 7.

816 **Supplementary Material**

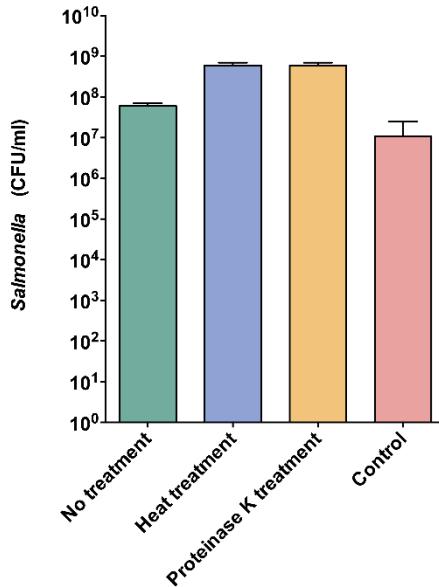
817 **Table S1. Media composition and supplements used for bacterial isolation.** BHI-M was used
818 as a base medium in this study. Total 12 culture conditions; base BHI-M medium and 11
819 selective conditions by supplementing BHI-M with antibiotics were used to isolate bacterial
820 strains. The concentration of antibiotics used in this study was selected from Minimum inhibitory
821 concentration (MIC) data from the EUCAST.

822 **Table S2. List of bacterial strains isolated in this study.** Total 1,300 isolates were selected
823 from the cultures of pooled intestinal content in 12 culture conditions. Species identity of 1,023
824 isolates was determined using MALDI-TOF or 16S rRNA gene sequencing.

825 **Table S3. Bacterial strains used in the individual co-culture assay against *S. Typhimurium*.**
826 After species identification, 41 species representative isolates were co-cultured with *S.*
827 *Typhimurium* in anaerobic condition. After 24 hours of co-culture, enumeration of *S.*
828 *Typhimurium* was performed on *Salmonella* selective plate XLT4 agar, and pH of individual co-
829 cultures was measured.

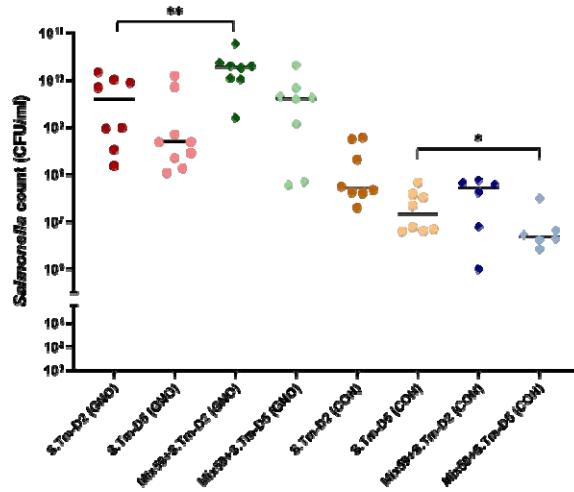

830 **Table S4. List of bacterial species used to generate defined blends and composition of the**
831 **blends.** Twelve *S. Typhimurium* inhibiting, and fast-growing species were selected from the
832 individual co-culture assay. They were used to generate combination by randomly removing 2
833 species at a time.

834 **Table S5. Immune response of gnotobiotic chicken during Mix10 colonization and *S.***
835 ***Typhimurium* infection.** Antibacterial immune response in the cecal tissue measured using


840 qRT-PCR array at day 2 and 5 post infection. The normalization and analysis of the data were
841 performed using GeneGlobe Data Analysis Center Web server.

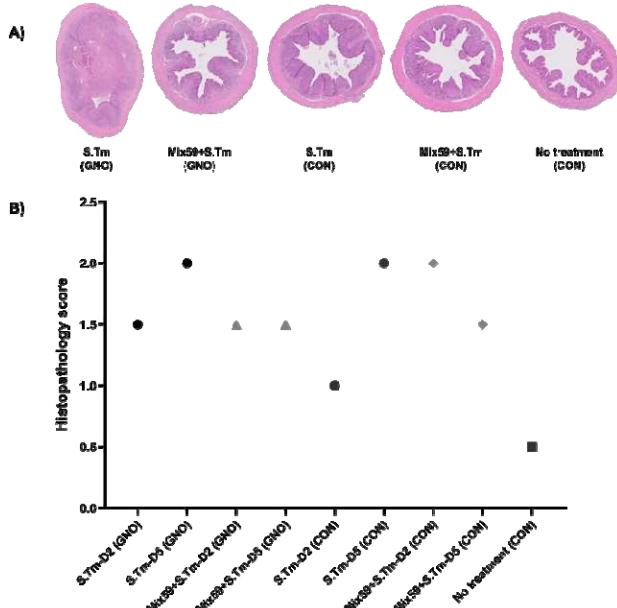
842
843 **Table S6. OTUs clustering at genus level of Mix10 colonization in gnotobiotic chicken gut.**
844 The table shows OTU at genus level present in 3 groups at day 2 and day 5 post-infection by
845 CLC Genomics Workbench (version 11.0.1) (Qiagen). The color codes of columns correspond to
846 groups in Fig. 5. The rows with yellow highlight referred to as genus shown in Fig. 5.
847

848 **Table S7. Functional clustering of KEGG modules of individual strains of Mix10.** The
849 amino acid sequences were mapped against the KEGG (Kyoto Encyclopedia of Genes and
850 Genomes) database using the BlastKOALA and GhostKOALA genome annotation tool. Each
851 KEGG module was represented using the following scale: 0= Complete module, 1= 1 block
852 missing, 2= 2 block missing and 3= module absent.
853



854
855 **FIG S1. Mix10 inhibition of Salmonella serovars frequently found in poultry.** Inhibitory
856 capacity of Mix10 against serovars *S. Typhimurium*, *S. Heidelberg*, *S. Infantis* and *S. Enteritidis*
857 were determined using the co-culture assay. The bars show CFU/ml of serotypes of *Salmonella*
858 after 24 h of co-culture with Mix10 (blue bars) and *Salmonella* monoculture (pink bars).
859

860


861 **FIG S2. Inhibitory effect of Mix10 cell-free supernatant on *S. Typhimurium*.** To determine
862 the inhibitory mechanism of Mix10 against Salmonella, a cell-free supernatant co-culture assay
863 was performed. Cell free supernatant of Mix10 was prepared by centrifugation of Mix10 culture at
864 3,000 rpm for 1 hour. The supernatant was then filtered through 0.4 μ m filter. The purified
865 supernatant was adjusted pH to 6.5-6.8 using NaOH and HCl. The supernatant was divided into 3
866 fractions; no treatment, heat treatment heated at 100°C for 1 hour, and 50 μ g/ml of proteinase K
867 for 1 hour at 37°C. After 24 hours of incubation with cell free supernatant, *Salmonella* CFU was
868 enumerated as described previously.

869

870 **FIG S3. *Salmonella* load in *Salmonella* growth enhancing blend (Mix59) colonized chickens.**
871 Mix59 was designed to test against *S. Typhimurium* *in vivo*. The experiment platform was
872 similar to the *in vivo* test of Mix10 (Fig. 3A). *S. Typhimurium* load in the infected groups: cecum
873 content of gnotobiotic group with *S. Typhimurium* infection (n=17), Mix59-colonized
874 gnotobiotic group with *S. Typhimurium* infection (n=16), conventional group with *S.*
875 *Typhimurium* infection (n=16) and Mix59-colonized conventional group with *S. Typhimurium*
876 infection (n=12) on day 2 and 5 post-infection. Significant difference between control and

877 Mix59-colonized groups was performed using the Mann-Whitney test; $^*P < 0.05$, $^{**}P < 0.01$, $^{***}P < 0.001$, and $^{****}P < 0.0001$.
878
879

880

881 **FIG S4 Histopathology of the cecum.** A) Cecum of gnotobiotic and conventional chickens were
882 performed H&E staining; gnotobiotic group with *S. Typhimurium* infection; S.Tm (GNO),
883 Mix59-colonized gnotobiotic group with *S. Typhimurium* infection; Mix59+S.Tm (GNO),
884 conventional group with *S. Typhimurium* infection; S.Tm (CON), Mix59-colonized
885 conventional group with *S. Typhimurium* infection; Mix59+S.Tm (CON), and conventional
886 group; notreatment (CON) B) Histopathological scores: Cecal tissue samples of 5 groups were
887 used to evaluate.
888