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Abstract

Natural products are chemical compounds that form the basis of many therapeutics
used in the pharmaceutical industry. In microbes, natural products are synthesized by
groups of colocalized genes called biosynthetic gene clusters (BGCs). With advances in
high-throughput sequencing, there has been an increase of complete microbial isolate
genomes and metagenomes, from which a vast number of BGCs are undiscovered. Here,
we introduce a self-supervised learning approach designed to identify and characterize
BGCs from such data. To do this, we represent BGCs as chains of functional protein
domains and train a masked language model on these domains. We assess the ability of
our approach to detect BGCs and characterize BGC properties in bacterial genomes.
We also demonstrate that our model can learn meaningful representations of BGCs and
their constituent domains, detect BGCs in microbial genomes, and predict BGC
product classes. These results highlight self-supervised neural networks as a promising
framework for improving BGC prediction and classification.

Author summary

Biosynthetic gene clusters (BGCs) encode for natural products of diverse chemical
structures and function, but they are often difficult to discover and characterize. Many
bioinformatic and deep learning approaches have leveraged the abundance of genomic
data to recognize BGCs in bacterial genomes. However, the characterization of BGC
properties remains the main bottleneck in identifying novel BGCs and their natural
products. In this paper, we present a self-supervised masked language model that learns
meaningful representations of BGCs with improved downstream detection and
classification.

Introduction

Natural products are chemical compounds that form the basis of many pharmaceuticals
and clinical therapeutics |1]. Their chemical structures are used in the development of
antimicrobial drugs, anticancer therapies, and other therapeutic areas [2]. To initiate
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the discovery of natural products, the pharmaceutical industry has traditionally relied
on laboratory research, yet this approach cannot feasibly capture the entire chemical
diversity of natural products. Thus, new methods are needed to advance natural
product discovery [3].

Diverse natural products can be produced in living organisms via groups of genes
called biosynthetic gene clusters (BGCs). Genome mining has become a powerful tool
for exploring the complex and diverse chemical space of natural products [3]. Fast,
inexpensive genome sequencing technology has contributed to the advancement of BGC
identification and, by extension, natural product discovery. This approach has been
particularly successful in microbes, where BGCs are often a group of physically
colocalized genes whose sequence and function dictates the synthesis of natural
products. However, evidence suggests that much of the biosynthetic capacity of the
microbial world remains unexplored [4]. Improved identification and characterization of
BGCs directly from genomic data could accelerate the discovery of novel natural
products with therapeutic relevance.

Identification of BGCs directly from genomic sequences is critical to navigating
natural product space and nominating novel natural products. While complementary
data modalities involving joint genome sequencing and mass-spectrometry data can be
used to link products with gene clusters [5], the majority of known BGCs were
characterized directly from DNA sequencing performed without any associated analysis
of chemical structures in the sample. As such, computational methods which focus
exclusively on identifying BGCs from genomes are essential components of BGC
discovery pipelines.

antiSMASH (ANTIbiotics & Secondary Metabolite Analysis SHell) is an early tool
for BGC discovery that uses a set of curated profile-Hidden Markov Models (pHMMs)
to call biosynthetic gene families and a set of heuristics to tag a portion of a genome as
a BGC [6|7). antiSMASH then annotates these called BGCs by using carefully curated
rules based on expert knowledge. Similarly, ClusterFinder uses a Hidden Markov Model
(HMM) to identify gene clusters of known and unknown classes [8]. Despite their
effectiveness, HMM-based algorithms do not capture higher-order dependencies between
genes, limiting their accuracy and generalizability [9]. Likewise, rule-based methods are

limited by the need for human expertise and do not generalize well to new BGC classes.

A recent approach, DeepBGC, introduced a deep learning genome-mining strategy
for biosynthetic gene cluster annotation that addresses these limitations [10]. Similar to
antiSMASH, DeepBGC uses sets of curated pHMMSs to call biosynthetic gene families;
however, it uses a supervised neural network to predict BGC boundaries and annotate
BGC function. Specifically, they employ a bidirectional long short-term memory
(Bi-LSTM) recurrent neural network (RNN), which offers the advantage of capturing
short- and long-term dependencies between adjacent and distant genes [11]. DeepBGC
reported promising improvements in the identification of BGCs in microbial genomes.
However, DeepBGC is trained on a small number of high-quality annotations, and the
supervised approach requires mining examples of genes that are not part of BGCs. The
quality of the predictions is highly dependent on the quality of the negative examples,
which must be similar to BGC sequences while ideally containing no false negatives.

Rather than relying on expert-curated annotations and negative examples,
self-supervised masked language models promise the ability to learn biologically-relevant
patterns directly from a large set of BGC examples. Recently, self-supervised masked
language models of biological sequences have been used to study proteins [12H19],
DNA [20], RNA [21})22], and glycans |23}[24]. In these models, a neural network is
trained either to reconstruct the original sequence from a corrupted version of the
sequence, or to predict the next element in the sequence given the preceding elements.
After training on a large dataset, such as all protein sequences in UniProt [25], the
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model can be used for zero-shot predictions of fitness [26] or structure [27], and can
additionally be fine-tuned on downstream supervised tasks [28}29)].

To accelerate identification and classification of BGCs, we developed a
self-supervised neural network masked language model of BGCs from bacterial genomes
(Fig. . Our model represents BGCs as chains of functional protein domains, and uses
ESM-1b [12], a protein masked language model, to obtain pretrained embeddings of
functional protein domains with amino acid-level context. We then train a convolutional
masked language model on these domains to develop meaningful learned representations
of BGCs and their constituent domains. The architecture for our model is based off of
convolutional autoencoding representations of proteins (CARP) [30], a masked language
model of proteins, and we will therefore refer to it as Biosynthetic Gene CARP
(BiGCARP). We leverage these representations to detect BGCs from microbial genomes
and then classify them based on their natural product class. We further investigate the
potential advantages of our model by comparing our approach with DeepBGC, and
demonstrate that BIGCARP achieves improvements in BGC prediction and natural
product classification. BIGCARP highlights self-supervised neural networks as a
promising framework for improving BGC characterization.

Results

Self-supervised training

We first developed a self-supervised training scheme to train BIGCARP to learn
representations of BGCs. As BGCs have a hierarchical structure, they can be
represented at four main levels. From least-to-most granular, these are: genes, Pfam
domains (families of evolutionary-related proteins), amino acids, and nucleotides. We
note that more granular units of representation lead to longer sequences. BGCs

typically contain several dozen genes, each of which contains one or more Pfam domains.

Each Pfam domain contains tens to hundreds of amino acids, and each amino acid is
encoded by three nucleotides. This introduces a trade-off between modeling short
sequences where each unit is complex or modeling long sequences where each unit is
simple. In order to balance input sequence length and information content of individual
units, we chose to represent BGCs as sequences of Pfams. This is the same level chosen
by DeepBGC [10]. As shown in Fig. [} during training, we append a BGC product class
token to the start of each BGC Pfam sequence in order to learn BGC product classes
from their Pfam domain sequences. We then corrupt the sequence according to the
BERT [31] corruption scheme and train Biosynthetic Gene Convolutional
Autoencoding Representations of Proteins (BIGCARP) to reconstruct the original class
token and Pfam sequence. BIGCARP combines the ByteNet encoder dilated CNN
architecture from [32] with linear input embedding and output decoding layers, as
shown in Figure [Zp.

Pfam embeddings map protein families from our vocabulary to vectors in a
high-dimensional space, and thus serve as the inputs to BIGCARP. We train three
versions of BIGCARP with different initial Pfam embeddings. The
BiGCARP-ESM-1b-finetuned and BiGCARP-ESM-1b-frozen models are both initialized
with Pfam embeddings obtained by averaging the per-residue output from ESM-1b for
each domain. BIGCARP-ESM-1b-finetuned has its embeddings finetuned during
self-supervised BGC training, while BIGCARP-ESM-1b-frozen has the initial
embeddings frozen at the onset of self-supervised BGC training. Finally,
BiGCARP-random is initialized with a random Pfam embedding, which is finetuned
during self-supervised BGC training. All three versions of BIGCARP are trained on
BGC sequences extracted from the antiSMASH dataset [67]. We used approximately
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Fig 1. Self-supervised deep learning workflow for characterizing biosynthetic
gene cluster (BGC) properties. Schematic of the workflow for characterizing BGCs
with BIGCARP, a self-supervised deep neural network. We curate a dataset of
annotated BGCs from antiSMASH for training BiIGCARP. We then use ESM-1b [12], a
protein masked language model, to obtain pretrained embeddings of protein family
(Pfam) domains in our dataset and to explore whether pretrained Pfam domain
embeddings show improvement on the quality of their representations. By representing
BGCs as chains of Pfams, we train a self-supervised masked language model on these
domains to characterize BGC properties in microbial genomes. We leverage these
learned representations to detect BGCs from microbial genomes and to predict their
natural product class.

127,000 BGC sequences and split the dataset 80/10/10 between training, validation, and
testing, respectively. The training set is deduplicated against all datasets used in
downstream evaluation. We refer the reader to Materials and Methods for details about
the model training and architecture and the self-supervised training dataset.

Figure [2b plots the learning curves of the validation performance on the
self-supervised dataset for all three versions of BIGCARP. We discover
BiGCARP-ESM-1b-frozen is outperformed by BiGCARP-ESM-1b-finetuned and
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Fig 2. BiGCARP architecture with validation performance curves on the
self-supervised dataset. (a) We use the masked language model objective described
in [31] to train BiIGCARP to reconstruct the BGC product class and Pfam sequence on
our self-supervised dataset, which contains around 127,000 BGC Pfam sequences.
BiGCARP is a dilated 1D-convolutional neural network masked language model based
on CARP [30] and ByteNet [32]. (b) Validation loss (cross-entropy) and accuracy for
BiGCARP with different initial Pfam embeddings.

BiGCARP-random, which both show similar performance and attain an accuracy of
around 75%.
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Learned embeddings encode relevant representations of Pfam
domains

We used uniform manifold approximation and projection (UMAP) to visualize the input

Pfam embeddings after self-supervised training on the antiSMASH training set (Fig. |3).

Each protein family is represented as a single point, and protein families of similar
sequence and function should have similar representations and thus be mapped to
nearby points. In order to determine if our embeddings capture these properties of
related Pfam domains, we plot every Pfam domain that falls under the ten most
common Pfam superfamilies (clans) in our self-supervised dataset: NADP Rossman
(CL0063), P-loop NTPase (CL0023), Zn Beta Ribbon (CL0167), E-set (CL0159), HTH
(CL0123), TPR (CL0020), PDDEXK (CL0236), MBB (CL0193), Beta propeller
(CL0186), and OB (CL0021) [33].

BiGCARP-ESM-1b-finetuned BiGCARP-ESM-1b-frozen BiGCARP-random
K.
Pfam clan
~ NADP_Rossmann | N N
& P-loop_NTPase % %
> Zn_Beta_Ribbon | = =
= E-set > >
HTH
TPR
PDDEXK
MBB
Beta_propeller
. oB -
UMAP 1 UMAP 1 UMAP 1

Fig 3. Relevant representations of Pfam domains are encoded in learned
ESM-1b embeddings. Uniform manifold approximation and projection (UMAP)
visualization of learned representations of Pfam domains from BiGCARP with different
initial Pfam embeddings.

We find that initializing Pfam domain embeddings using ESM-1b improves the
quality of the learned representations, as these embeddings take into account protein
family amino-acid sequence. Fig. [3|indicates BIGCARP-ESM-1b and
BiGCARP-ESM-1b frozen embeddings form clear clusters of structurally related Pfam
domains, whereas using randomly initialized Pfam embeddings shows minimal
interpretable information after self-supervised BGC training.

BiGCARP captures meaningful patterns in BGCs

We next evaluated BIGCARP’s pretraining performance after self-supervised training
(Table [1)). We use the exponentiated cross entropy (ECE) metric for evaluating
BiGCARP. This metric provides a measure for a model’s ability to narrow its prediction
of a token from the set of options. An ideal model would have an ECE of 1, whereas a
model choosing at random would have an ECE of the vocabulary size, which in our case
is 19,550 for Pfam domains and 55 for BGC product classes. On our antiSMASH
dataset test set, BIGCARP-ESM-1b-finetuned achieves the lowest ECE on the Pfam
domains, while BIGCARP-ESM-1b-frozen achieves the lowest ECE on the product
classes despite performing worse on domain ECE.

In addition, using the 9-genomes validation set from DeepBGC [10], we evaluate
whether BIGCARP can identify the start locations of BGCs and whether each domain
is in a BGC without further supervised training. We append a mask token to the

July 22, 2022

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153


https://doi.org/10.1101/2022.07.22.500861
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.22.500861; this version posted July 23, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Table 1. Pretraining results, including the exponentiated cross entropy (ECE) metric
on the pretraining test set and area under the receiver operating characteristic curve
(AUROQC) for BGC start locations and domains on the 9-genomes validation set.

BiGCARP
ESM-1b-finetuned ESM-1b-frozen random
pretrain test set Pfam domain 4.64 4.99 4.67
(ECE) product class 1.50 1.46 1.50
9-genomes start 0.720 0.701 0.723
(AUROC) domain 0.876 0.611 0.856

beginning of every window of 64 domains in the dataset and pass them through
BiGCARP. Intuitively, if the window is the start of a BGC, the model’s BGC class
prediction should have low entropy, and its reconstructions of the domains should be
both low-entropy and have low cross-entropy with the original input domain. This
scheme is shown in Fig. [I} We refer the reader to Materials and Methods for details
about scoring start positions and BGC Pfam domains. As shown in Table [1] all three
versions of BIGCARP can detect BGC start locations and whether domains are part of
a BGC, with BIGCARP-ESM-1b-frozen performing worse on both tasks than the other
two versions.

We then finetuned BiGCARP on the training dataset reported in DeepBGC
v0.1.0 [10], which uses all BGC domain sequences from MiBIG (version 1.4) as positive
BGC samples and 10128 negative examples for 100 epochs and choose the epoch with

the lowest validation loss on the 9-genomes validation set for further testing (Methods).

Table [2[ shows domain-level classification performance using area under the receiver
operating characteristic curve (AUROC) on the 9-genomes validation set and the
6-genomes test set from DeepBGC. Note that the DeepBGC results on 9-genomes are
for cross-validation directly on 9-genomes. All three versions of BIGCARP outperform
DeepBGC on the 6-genomes test set and 9-genomes validation set. However,
self-supervised training did not improve performance on the 6-genomes test set for

BiGCARP.

Table 2. Domain AUROC after supervised training on the DeepBGC training set.

pretraining 6-genomes  9-genomes
BiGCARP-ESM-1b-finetuned 0.950 0.941
BiGCARP-ESM-1b-frozen 0.946 0.940
BiGCARP-random 0.943 0.936
none 0.950 0.937
DeepBGC 0.921 0.934

BiGCARP predicts BGC product classes

In addition to detecting BGCs in microbial genomes, predicting their product classes
would provide further aid in discovering new natural products. BIGCARP learns to
predict a BGC’s product class from its Pfam sequence by reconstructing masked class
tokens during self-supervised training (Fig. . During self-supervised training, we use
the antiSMASH product classes. In order to compare BIGCARP’s performance to
DeepBGC, we map antiSMASH product classes to those in the Minimum Information
about a Biosynthetic Gene cluster (MIBiG) dataset used in DeepBGC [10,34].
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DeepBGC trains a random forest classifier on its embeddings to predict BGC product
classes. In contrast, we simply append a mask token to the beginning of each BGC
sequence and evaluate the model’s predictions for the identity of the mask, removing
the need to train an additional model.

All three versions of BIGCARP out-perform DeepBGC on average across the
product classes, and an ensemble of their predictions further improves accuracy, as
shown in Table [3] and BiGCARP-ensemble outperforms DeepBGC on four out
of seven product classes. This is likely because the antiSMASH training set is
approximately 100-times larger than MIBiG. Performance is generally similar for
product classes that are well-represented in both datasets, with the largest gains coming
in the “other” and alkaloid classes, which are under-represented in MIBiG. This

underscores the importance and utility of training on a large and diverse BGC dataset.

We note that DeepBGC is advantaged here by reporting 5-fold cross-validation results
on MIBIiG, while BIGCARP is not trained on any sequences from MIBiG.

Table 3. Product classification results (AUROC) on MIBiG.
n MIBIG n antiSMASH BiGCARP-ensemble DeepBGC

polyketide 644 21,679 0.898 0.903
NRP 433 14,655 0.898 0.907
RiPP 199 26,721 0.963 0.907
saccharide 179 144 0.773 0.811
other 154 26,909 0.763 0.583
terpene 120 16,049 0.869 0.824
alkaloid 39 331 0.820 0.607
average 0.855 0.792
Discussion

Biosynthetic gene clusters (BGCs) are a promising source of natural products, but are
difficult to discover, express, and characterize. Recent work in self-supervised deep
learning has shown promise for modeling DNA, RNA, proteins, and glycans. We
develop Biosynthetic Gene Convolutional Autoencoding Representations of Proteins
(BiGCARP), a masked language model that learns representations of BGCs based on
their Pfam domains, detects BGCs, and predicts their product classes. To our
knowledge, this is the first work to use Pfam domains as tokens in a masked language
model. We demonstrate that our model learns biologically-reasonable representations of
Pfam domains. Representing BGCs as Pfam domains was a compromise between
limiting the sequence length while having fine-grained sequence information. Models on
the level of amino acid residues or the nucleotide sequence may be able to resolve more
details at the cost of more computation. BIGCARP is a strong BGC detector even
without seeing negative examples, and achieves state-of-the-art accuracy in product
class prediction.

The BGC masked language model introduced here demonstrates promise for the
expansion of BGC science and engineering. In natural language processing and protein
engineering, masked language models are often fine-tuned on downstream tasks of
interest. For BGCs, these downstream tasks could include predicting their expression
conditions or the chemical structures of their products. Without fine-tuning, our models
may be useful for detecting previously unknown BGCs in microbial genomes and
predicting BGC product classes.
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Materials and methods

In this section, we elaborate on details of our self-supervised deep learning framework
for detecting BGCs from bacterial genomes and classifying them into their natural
product classes. The workflow is summarized in Figure [1} which consists of curating
data, pretraining Pfam domain embeddings, training BIGCARP, and using BIGCARP
to characterize BGCs.

Data

Pretraining dataset curation.

To curate our pretraining dataset, we ran antiSMASH (ANTIbiotics & Secondary
Metabolite Analysis SHell) 2.0, a microbial genome mining tool for BGC identification
and analysis [6], on a database of 6,200 full bacterial genomes and 18,576 bacterial draft
genomes [7]. This led to 142,821 total BGCs spanning 55 classes identified for model
development and evaluation. Our choice of representing BGCs as Pfam domains led to
a vocabulary size of 19,500 unique Pfam domains collected from Pfam database versions
31 and 32 [33]. We also remove sequences from the self-supervised training and
validation sets that contain substrings from or are substrings of sequences from the
MIBiG, 9-genomes, and 6-genomes datasets from DeepBGC described below. This
results in 127,294 BGCs in our pretraining dataset prior to data splitting. All |datasets
used can be found on Zenodo.

Pretraining data split for training and evaluation.

Our training, validation, and test sets were produced from an 80/10/10 split of the total
set. Note that random splitting of data is widely avoided in biological sequence
modeling, since it leads to evaluation of overly simple generalization. For example, in
protein modeling, one instead uses sequence-identity based splits as a proxy for
evolutionary signal [35]. Proper splitting of BGCs is more complex, as evolution of
BGCs is poorly understood. To reduce redundancy between the data splits, we ensured
that no example in one set was a strict substring of an example in another set.

DeepBGC datasets for evaluating BGC detection and product classification.

We evaluated the performance of our models and compared it to the DeepBGC model
by testing its ability to detect BGCs within bacterial genomes and to predict their
corresponding product classes. To do this, we utilized DeepBGC’s training set with 617
positive and 10128 negative BGC samples to finetune our models [10]. We also used
their 6-genomes and 9-genomes datasets to perform supervised domain classification
tasks. For BGC product classification, we used DeepBGC’s MIBiG dataset, which
contains 1406 BGCs. Our mapping from antiSMASH product types to common MIBiG
compound classes can be found on Zenodo.

Embeddings of Pfam domains with ESM-1b.

We represent each Pfam as a vector. To do this, we take the first sequence in the
alignment for a Pfam, then use ESM-1b [12], a protein masked language model, to
embed all amino acids of this sequence. We averaged the embeddings over the full
sequence, yielding a representation vector of size 1280. By obtaining pretrained
embeddings of Pfam domains with ESM-1b, our model takes into account sequence
details. To explore whether pretrained Pfam domain embeddings show improvement on
the quality of Pfam domain representations, we use three different initial Pfam
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embeddings for BIGCARP: ESM-1b embeddings finetuned, ESM-1b embeddings frozen,
and randomly initialized embeddings updated throughout training. ESM-1b-finetuned
and ESM-1b-frozen have the same initialization at the start of self-supervised training.
All other model weights were randomly initialized.

BiGCARP architecture and training.

We train BIGCARP using the masked language model objective described in [31]. We
prepend a token representing the antiSMASH BGC class to each BGC sequence. Each
sequence is then corrupted by changing some tokens to a special mask token or another
Pfam domain token, and the model is tasked with reconstructing the original sequence.
Specifically, 15% of tokens from each sequence are randomly selected for supervision
during each training step. For those 15% of tokens, 80% are replaced by the mask token,
10% are replaced by a randomly-chosen Pfam domain token, and 10% remain
unchanged. The model is trained to minimize the batch average cross entropy loss
between its predictions for the selected tokens and the true tokens at those locations.

BiGCARP is a dilated 1D-convolutional neural network masked language model
based on ByteNet [32] and CARP [30]. The input is a sequence of Pfam domains
represented by 1280-dimensional vectors. Model hyperparameters include the following;:
kernel width of 3, maximum dilation of 128, 32 layers, and a hidden dimension of 256
for a total of 34 million parameters. Training parameters include the following: batch
size of 64, Adam optimizer with a learning rate of 1074, and mixed precision training
using PyTorch [36] and NVIDIA Apex. Each version of BIGCARP was trained on one
32GB NVIDIA V100 GPU for 300 epochs. The epoch with the lowest validation loss
was selected for downstream experiments. Model weights and datasets| are available on
Zenodo; training code| and |code to run pretrained BIGCARP models| is available on
Github. We do not report replicates for results as that would require training each
model from scratch multiple times.

Evaluation on 9-genomes and 6-genomes.

We use the intuition that the model should make more confident predictions when given
BGC sequences than non-BGC sequences to predict BGC start locations and whether
each domain is part of a BGC. For each bacterial genome, we prepend a mask token to
each possible subsequence of 64 domains and pass the resulting sequences to BIGCARP.
With the exception of domains at the beginning and end of the genome, each domain is
thus scored 64 times. For each window, we calculate the entropy of the predictions for
the prepended mask token (start entropy), the entropy for each of the 64 domains in the
window (domain entropy), and the negative log-likelihood of each domain in the window
(negative log-likelihood). We predict whether a domain is the start of a BGC using the
start entropy of the window for which it is the first domain; positions with a lower start
entropy are more likely to be BGC start locations. We predict whether each domain is
part of a BGC using the average of the start entropies for every window in which it
appears and its domain entropy and negative log-likelihood within each window in
which it appears (a total of 64 x 3 values). Domains with lower scores are more likely to
be within a BGC.

Supervised training on DeepBGC training set.

We follow the supervised training procedure described in DeepBGC. Using the positive
BGC domain sequences from MiBIG (version 1.4) and 10128 negative BGC domain
sequences from DeepBGC, at each epoch, we shuffle the sequences into a “genome” and
then predict whether each domain is part of a BGC. We fine-tune the self-supervised
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versions of BIGCARP as well as a randomly-initialized version using the Adam optimizer
and a learning rate of 10~* with early stopping using supervised results on 9-genomes.
Supporting information

Table S1 Product classification results (AUROC) for individual
BiGCARPs on MIBIiG.

ESM-1b-finetuned ESM-1b-frozen random

polyketide 0.885 0.883 0.898
NRP 0.886 0.881 0.887
RiPP 0.960 0.950 0.950
saccharide 0.772 0.752 0.726
other 0.754 0.733 0.750
terpene 0.854 0.762 0.848
alkaloid 0.763 0.817 0.807
average 0.839 0.825 0.837
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