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dMRI Head Motion 2
ABSTRACT

Correcting head motion artifacts in diffusion-weighted MRI (dMRI) scansis particularly
challenging due to the dramatic changes in image contrast at different gradient strengths and
directions. Head mation correction istypically performed using a Gaussian Process model
implemented in FSL’s Eddy. Recently, the 3dSHORE-based SHOREL ine method was
introduced to correct any dMRI sequence that has more than one shell. Here we perform a
comprehensive evaluation of both methods on realistic simulations of a software fiber phantom
that provides known ground-truth head motion. We demonstrate that both methods perform
remarkably well, but that performance can be impacted by sampling scheme, the pervasiveness
of head motion, and the denoising strategy applied before head motion correction. Our study also
provides an open and fully-reproducible workflow that could be used to accel erate evaluation

studies of other dMRI processing methods in the future.

Keywords: diffusion MRI, head motion, artifact, software, ensemble average propagator,

diffusion spectrum imaging

HIGHLIGHTS
e Both Eddy and SHOREL ine head motion correction methods performed quite well on a

large variety of simulated data
e Denoising with MP-PCA can improve head motion correction performance when Eddy is
used

e SHORELine effectively corrects motion in non-shelled acquisitions
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INTRODUCTION

Diffusion-weighted MRI (dMRI) modulates the MR signal to encode information about
the distribution of water diffusion, which is constrained by the orientation and permeability of
tissue (Basser, 1995; Callaghan, 1993; Stejskal & Tanner, 1965). This method has become
widely used to non-invasively image the structural properties of white matter in the brain. Over
the course of three decades, dMRI sequences have advanced to measure signal in many
directions (e.g., higher angular resolution) and diffusion sensitizations (Tuch, 2004; Wedeen et
al., 2005) with most modern sequences capturing hundreds of images over the course of 10 to 30
minutes of scanning.

Any scanning sequence where multiple images are acquired over timeis highly
susceptible to artifacts related to head motion during the scan. The effects of head motion during
functional MRI (fMRI), another imaging technique that acquiresimagesin a series over time, are
well-known and typically addressed by simply aligning each image to areference image using a
rigid or affine transformation (Jenkinson et al., 2002), followed by further corrections to the time
series data in each voxel (Ciric et a., 2018). The use of a single reference image works well for
gpatially correcting fMRI because the contrast and SNR remain relatively constant over the
acquisition.

In contrast to fMRI, dMRI sequences acquire images that can have dramatically different
gpatial contrasts and SNR depending on the diffusion-encoding gradient moment (i.e., the b-
valuein mm?) and direction. The set of directions and b-values that define adMRI sampling

scheme are what allow the method to estimate the ensemble average diffusion propagator (EAP)
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in each voxel (Callaghan, 1993). However, such differencesin contrast also preclude the use of
asingle image as the registration target for head motion correction. Instead, for each b>0 image
in the dMRI series, an image with similar spatial contrast must be generated asif it were aligned
with all other imagesin the dMRI series. Each image can then be registered to the target image,
thereby correcting the effect of bulk head motion in each volume.

At present the most widely-used method for dMRI head motion correction is Eddy
(Andersson & Sotiropoulos, 2015), which isincluded in the fMRIB software library (FSL). Eddy
has been broadly adopted, including by large imaging consortia such as the Human Connectome
Project (Glasser et a., 2013), the UK BioBank (Alfaro-Almagro et al., 2018), and a version of
the Healthy Brain Network (Richie-Halford et al., 2022). In addition to estimating bulk head
motion, Eddy estimates and corrects spatial warping related to eddy currents, fillsin dropped
dlices (Andersson et a., 2016), estimates intra-volume motion, and optionally incorporates
susceptibility distortion correction if afieldmap is estimated using the TOPUP tool (Andersson
& Sotiropoulos, 2016). Many of these features rely on Eddy’ s algorithm for generating
registration targets. Eddy operates on shelled dMRI sequences, which acquire multiple gradient
directions at the same b>0 value. Given that all images on the same shell are sampling the
surface of a spherein g-space, the differencesin their signal can be represented as a Gaussian
process (GP) on the azimuth and elevation coordinates on the unit sphere S2. Eddy estimates one
GP per shell and uses the GP to produce registration targets. A rigid registration is performed
between each b>0 image and its GP prediction, followed by alinear or quadratic warp in the
Phase Encoding Direction of the dMRI acquisition to correct for distortions related to eddy

currents.
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Although shelled acquisitions are popular, there are other methods of sampling g-space
that have unique advantages. Diffusion Spectrum Imaging (DSI) samples a Cartesian grid in g-
space, enabling the direct reconstruction of the EAP with a ssmple Fourier transform (Wedeen et
al., 2005). Shelled schemes require more complex modeling and leave open a question with no
universal answer: at which b-values should one acquire shells? DSI scans typically have
required the acquisition of more than 200 images, resulting in long scan times—particularly
when multiband imaging is not available. However, sparse, random subsets of the Cartesian grid
scheme along with a compressed-sensing reconstruction approach (CS-DSI) have been shown to
provide comparable EAP reconstructions to the full grid sampling scheme at a fraction of the
scanning time (Merlet & Deriche, 2013; Paquette et al., 2015). Y et, there is no widely accepted
head motion correction for these non-shelled schemes, which limits the application of DSI in
translational research.

Recently the SHORELine algorithm (Cieslak et al., 2021) was introduced as a method to
generate registration targets for any dMRI sequence with both radial and angular variability inits
g-space sampling scheme. SHOREL ineis a cross-validated method where, for each b>0 image,
the 3dSHORE basis (Ozarslan et al., 2013) set isfit to all other images using L 2-regularization.
A registration target for the left-out image is estimated from the 3dSHORE fit, and theimage is
registered with aRigid (6DOF) or optional Affine (12DOF) transform using ANTs (Figure 1).
No eddy current correction is explicitly attempted. This processis repeated up to 2 times based
upon user specifications. The 3dSHORE basis functions are defined in three-dimensional space
(R?) and are therefore appropriate for multi-shelled, Cartesian and sparse/random sampling
schemes. Like Eddy, SHOREL ine can incorporate a susceptibility distortion correction along

with head motion correction in a single interpolation. The original evaluation study showed an
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overall improvement in the Neighboring DWI Correlation (NDC) quality measure of non-shelled
sampling schemes compared to the unprocessed data (Cieslak et al., 2021).

Independent of head motion correction, denoising algorithms are often applied prior to
head motion correction. The application of MP-PCA denoising (Veraart et al., 2016) is enabled
by default in both QSIPrep (Ciedak et a., 2021) and theMRtrix3 connectome (Smith &
Conndly, 2020) pipelines. However, denoising is not applied in the HCP (Glasser et al., 2013) or
UK Biobank (Alfaro-Almagro et a., 2018) pipelines. There are reasonable arguments both for
and against performing denoising prior to motion correction. The registration targets generated
by Eddy and SHOREIline may be more realistic if their underlying models are fit with less-noisy
data. However, denoising is not recommended by the devel opers of Eddy because it will affect
how noiseisdistributed in the dMRI signal, thereby possibly violating assumptions of the GP
(Andersson, 2019).

Both Eddy and SHOREL ine are considerably more complex than standard fMRI head
motion correction methods. However, there has not been a systematic evaluation of how well
these methods perform on commonly acquired sequences with different levels of head motion,
nor has there been a systematic evaluation on the effect of denoising dMRI data prior to head
motion correction. To address this gap, here we simulated hundreds of thousands of dMRI
images from common shelled and non-shelled schemes incorporating known head motion and
realistic MR artifacts to determine how accurate these methods are in estimating true head

motion with and without denoising.

METHODS

Smulation of images and motion
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MITK FiberFox (Neher et al., 2014) was used to s mulate the entire dMRI series for a set
of commonly acquired sampling schemes, including ABCD, HCP, a Cartesan DSI half sphere
and a Cartesian/random CS-DSI. The simulation used streamline segments from the ISMRM

2015 fiber phantom (http://www.tractometer.org/ismrm_2015 challenge/data) to define a fiber

ODF in each voxel and convert it into a diffusion ODF to generate an MRI signal. The MRI
signal was combined with eddy currents, thermal noise, and susceptibility distortion artifacts.
Simulation parameters used here are identical to the ISMRM simulated phantom, except that the
origina study contained only three volumes with simulated head motion, whereas we simulated
hundreds of thousands of volumes under different sampling schemes and conditions (see below).
A docker image of the exact version of Fiberfox can be downloaded at

https://hub.docker.com/r/pennbbl/fiberfox using tag 1.0.

To introduce controlled head motion, arandom rigid transform was applied to the
streamline data before the MR signal was simulated (Hering et al., 2014). Both trandlation and
rotation about each axis were sampled from a random uniform distribution with a maximum
absolute displacement of 5 mm and a maximum absol ute rotation of 5 degrees (Figure 2).
Individual dMRI series were created by replacing a random subset of images from the no-motion
simulation with the motion-included simulated images. Unique dMRI scans were generated to
have a specific motion prevalence such that 15%, 30%, or 50% of the volumesin the series
included head motion. A total of 30 unigue scans were generated for each sampling scheme for
each of the three motion prevalence values, yielding 90 simulated complete series per scheme.

In total this process resulted in 360 unique simulated dMRI scans.

Image processing
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Eddy and SHORELine were run on each simulated scan using QSIPrep (v0.14.3). This
version of QSIPrep included FSL version 6.0.3. Eddy was run twice, once with Linear and once
with Quadratic models. However, a comparison of the two approaches revealed that these
options do not appear to have a substantial impact on head motion estimation. Accordingly, we
report the results from the Eddy with the quadratic setting because thisisthe way it istypically
used as part of the HCP Pipelines. SHORELine was also run twice, once with aRigid (6DOF)
and once with an Affine (12DOF) transformation model. The rigid model had minor benefits and
also a shorter run time; as such, the results for the rigid model are used to characterize
SHOREL.in€e' s performance. Each configuration was run with and without MP-PCA denoising
(from MRTrix 3.0.3) prior to head motion correction. In al, atotal of 2,160 QSIPrep
preprocessing runs were executed, encompassing the processing of 375,840 b>0 images (Table
1).

Importantly, to ensure reproducibility, the entire benchmarking experiment was run using
the FAIRIy big workflow (Wagner et a., 2022). This approach uses Datalad to track and
distribute the data and code used during data analysis. The entire FiberFox phantom dataset
along with a Singularity image of the software used to run the processing are publicly available.
Each run of QSIPrep was recorded as a git commit and can be reproduced locally by anyone with
Datal.ad who clones from the repository

(https://qgithub.com/PennLINC/dMRI HMC Benchmark).

Outcome measures
Performance was evaluated according to multiple metrics. First, the mean error in head

motion parameter estimation was calculated to determine whether the algorithm is an unbiased


https://doi.org/10.1101/2022.07.21.500865
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.21.500865; this version posted July 22, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

dMRI Head Motion 9
estimator. Second, to characterize the expected error of the estimators, we calculated the RM SE
of the estimated head motion. Low RM SE reflects accurate head motion estimation and higher
RMSE indicates greater estimation error. To understand the factors that affect motion parameter
estimation, linear models were fit with root mean squared error (RM SE) as the dependent
variable. Asrotation and translation are in different units, we fit two linear models of RM SE for
translation and rotation separately. The relative performance between SHORELine and Eddy was
calculated by subtracting SHORELine's RM SE from Eddy’s, resulting in positive values when
SHORELIn€' s was more accurate at estimating motion parameters than Eddy.

Third, we compared the interpolation-related smoothness of the corrected images. Image
smoothnessis a measure of blurring during preprocessing, which reduces anatomical detail;
preprocessing should seek to minimize the introduction of additional image smoothness. We
estimated the full-width at half-maximum (FWHM) of the mean b=0 image in the preprocessed
data. Fourth, we evaluated a summary measure of data quality—the neighboring DWI
Correlation (NDC) (Yeh et a., 2019). NDC summarizes the pairwise spatial correlation between
each pair of dMRI volumes that sample the closest pointsin g-space; lower values reflect

reduced data quality, driven by noise and misalignment between dMRI volumes.

RESULTS

Both Eddy and SHORELIine accurately correct simulated head motion
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Both Eddy and SHOREL ine demonstrated excellent performance in correcting head
motion. While collapsing across all experimental conditions, the mean error (calculated asthe
mean difference between the estimated motion parameter and the ground truth motion parameter)
in estimated head rotation was very small: only 0.194 degrees. Similarly, the mean error in
estimated head translation was only ~1/100™ of a voxel: 0.012 mm. Such miniscule mean errors
suggest that both Eddy and SHOREL ine are accurate and unbiased estimators of head motion
parameters. Mean errors and RM SE (the first and second moments of the error distribution) are

provided in Table 2.

Head motion correction accuracy varies by sampling scheme and denoising

Next, we evaluated what factors impacted error (hereafter referring to RM SE) following
head motion correction (Figure 3). As described below, resultsindicate that error following
motion correction is primarily due to uncontrolled factors such as the amount of head motion
present in the data but also preprocessing choices (use of denoising) and factors related to
experimental design (sampling scheme); see Supplementary Table 1 for complete statistical
results.

Unsurprisingly, in most cases, higher motion in the input data was associated with greater
error following head motion correction. However, this effect was sometimes impacted by an
interaction with the denoising and motion correction methods chosen. While denoising with MP-
PCA had minimal impact on the error present in SHORELine output, it had a mgor impact on
Eddy: error was systematically lower across both shelled schemes when the data was denoised

first. Somewhat surprisingly, and in contrast to nearly all other parameter combinations
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evaluated, the amount of rotation in the input data was not associated with greater error when
Eddy was used in conjunction with MP-PCA (Note: the same was not true for translations).

Error also varied substantially across acquisition schemes. For example, among shelled
schemes, error was systematically lower in HCP than ABCD data. In general, acquisition
schemes that sampled a greater number of directions tended to have less error following head
motion correction (Figure 4). The interaction in Supplementary Table 1 isdriven by the
exception to thistrend: CS-DSI has the fewest number of directions but retained alow RM SE.
As SHORELineisthe only existing algorithm that can process non-shelled schemes, data from
these acquisition schemes could not be evaluated usng Eddy.

Next, we directly compared Eddy and SHOREL.ine (Figure 5) using data from the
shelled ABCD and HCP sampling schemes where both methods were applicable. Overall,
differences between the methods were quite small and depended in part on the use of denoising,
the sampling scheme, and whether rotations or trandations were evaluated (see full statistical
resultsin Supplementary Table 2). For ABCD, SHORELIine had less error than Eddy in all
scenarios when no denoising was applied first. However, when the data was first denoised with
MP-PCA, Eddy showed a slight superiority that scaled with the prevalence of motion in the input
data.

In contrast, results from the data simulated with the HCP scheme were more
heterogeneous, and related to both the measure evaluated (rotation vs. trandlation) and the
amount of motion present in the input data. For rotations, Eddy following MP-PCA
outperformed SHORELine as more motion is present in the simulation. However, without M P-
PCA denoising, SHOREL ine modestly outperformed Eddy overall for HCP data. For

trandations, SHOREL ine error was lower across al conditions, but differences were quite small.
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Output image smoothnessisimpacted primarily by motion present in data

Next, we evaluated the image smoothness (quantified as FWHM) of the preprocessed
data following head motion correction (Figure 6). Image smoothness is a measure of blurring
during preprocessing, which reduces anatomical detail. Ideally, preprocessing minimizes the
introduction of additional image smoothness. As expected, we found that the largest driver of
output image smoothness was the motion prevalence in the simulated data: across all sampling
schemes and motion correction methods, more motion in the input data was associated with
greater smoothness in the output images. Somewhat surprisingly, denoising did not significantly
impact output image smoothness (see Supplementary Table 3). Additionally, although
differences were small (i.e., <0.5mm FWHM), SHORELine produced significantly sharper

output than Eddy.

Output image quality isimproved by head motion correction and denoising

As afina step, we quantified the quality of the output images using the neighboring DWI
correlation (NDC; Figure 7). We calculated NDC for both the unprocessed input data and the
output from both SHOREL ine and Eddy; this approach allowed us to examine how much pre-
processing improved data quality compared to the raw input data. Notably, head motion
correction yielded substantial improvementsin NDC across levels of input data motion and
sampling schemes. Indeed, the improvement in NDC with preprocessing in general scaled with
the prevalence of motion in the input data (see bottom row, Figure 7). However, in nearly al

cases, greater prevalence of motion was associated with reduced output data quality even
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following preprocessing. One important exception to this association was the use of Eddy with
HCP data, where higher prevalence of motion was not associated with reduced NDC.
Additionally, we found that denoising with MP-PCA improved NDC valuesin all
scenarios that we evaluated (Supplementary Table 4). Denoising related improvements were
particularly marked for non-shelled schemes, which could only be processed with SHOREL.ine.
Furthermore, we found that Eddy had slightly higher NDC scores than SHORELine; however,
the difference was reduced when MP-PCA was not performed. The small relative advantage for

Eddy over SHOREL ine scaled with greater motion prevalence in the input data.

DISCUSSION

The primary finding from this large-scale evaluation is that existing tools for dAMRI
motion correction work—and work well. Across all methods, denoising, motion prevalence, and
sampling schemes, both Eddy and SHOREL. ine estimated head motion correctly, with observed
errors being unbiased and quite small. Thisanalysisis a necessary prerequisite to show that head
motion correction is accurate on real dMRI data: there would be little hope that these methods
would work on real world data if these analyses showed biased estimation of motion, or if errors
of more than afraction of avoxel translation or degree rotation were present. This outcome was
clearly not the case, which should reassure users of both methods, whether they are already in
wide use (Eddy) or recently introduced (SHOREL.ine).

Although observed errors were on average quite small, our evaluation did identify several
factors that influenced error magnitude. These factors included input data quality (specifically
motion prevalence), denoising, and acquisition scheme. Unsurprisingly, across all scenarios

examined, the single biggest determinant of the amount of error observed was the prevalence of
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motion in the simulated input data. Similarly, more prevalent motion in the input data resulted in
greater image blurring (e.g., FWHM) and reduced data quality (as quantified by the NDC).
These results emphasize that acquiring high quality data remains of critical importance for all
studies, as no amount of image processing can fully compensate for extensive in-scanner motion.

Nonetheless, one preprocessing step that is not always used in standard pipelines—
denoising—had remarkably beneficial effects on the outcomes we evaluated. Across all
scenarios, data denoised with MP-PCA improved in quality without impacting smoothness,
meaning that a ssmple increase in smoothness did not drive the increased performance (Woods,
Grafton, Holmes, et al., 1998a; Woods, Grafton, Watson, et al., 1998b). However, the use of
denoising did interact with choice of head motion correction method in an unexpected manner:
while denoising did not impact the error estimated by SHOREL ine, estimation error was
markedly reduced when Eddy was applied to data that had been first denoised by MP-PCA. This
result was unanticipated: Eddy developers do not recommend denoising prior to head motion
correction because of theoretical concerns regarding the way denoising might change the noise
distribution in the data. When paired with MP-PCA, Eddy performed uniquely well in some
contexts, with rotation error failing to scale with severity of motion. While some field-standard
pipelines—such as QSIPrep — do by default apply MP-PCA denoising prior to head motion
correction, other widdly used pipelines (such as HCP pipelines) do not. These empirical results
suggest that this recommendation may require re-evaluation, in particular for the many large-
scale data resources that rely on processing pipelines that apply Eddy without denoising.

Our study considered four different acquisition schemes—including two

commonly used shelled schemes and two non-shelled schemes—that allowed us to examine how

outcomes were impacted by this important experimental design choice. We found that sequences
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with more directions tended to have lower error, likely dueto the fact that increased data volume
facilitated modd training and fitting. However, perhaps the most important result of comparing
these four schemes was the finding that non-shelled schemes could be successfully corrected as
well as shelled schemes. Notably, processing of non-shelled schemes was only possible with
SHORELine. AsDSI methods have important advantages for modeling the average ensemble
propagator, this represents a milestone for the preprocessing of non-shelled schemes and may
accelerate their adoption by the neuroimaging community. Furthermore, the particularly
impressive performance on the very-brief 55-direction CS-DSI scheme emphasizes the promise
of compressed sensing methods for the many tranglational applications where scan timeis
limited and motion may be prominent (i.e., children and clinical populations).

In contrast to the impact of input data quality, denoising, and acquisition scheme, direct
comparisons of Eddy and SHORELIine were notable mainly for the small effects that were
observed. There were small but significant differencesin estimation error between the two
methods, but the direction of the effect largely depended on whether MP-PCA was also used. As
noted above, adding denoising resulted in a notable reduction in the observed error for Eddy.
Images processed by SHOREL ine were dlightly sharper than Eddy, but the magnitude of
difference was of uncertain practical significance (i.e., 0.06 mm FWHM). Conversely, we found
that Eddy had a higher NDC than SHORELine. However, this difference was aso of unclear
practical impact. To put the NDC difference in context, Eddy on average had an NDC that was
0.02 units higher than SHOREL ine-processed images; the difference in NDC between
unprocessed data and processed images was approximately 20 times larger. Overall, our results

emphasi ze that both methods perform quite well.
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Several limitations of this study should be noted. First, we compared Eddy and
SHOREL.ine, but other dMRI head motion estimation methods exist. However, the MAPMRI-
based method implemented in TORTOISE (Irfanoglu et al., 2017) islikely to perform similarly
to SHOREL.ine dueto its smilar method for estimating registration targets. Second, SHORELine
requires sampling schemes with at least two unique non-zero b-values, preventing a comparison
of performance on common single shell schemes. Third, real world data may differ in both the
types of artifacts and the types of movement observed. For example, the FiberFox simulations
do not simulate within-volume motion and slice dropout and Eddy current distortion is always
linear. However, our use of simulated data allowed usto have a known ground truth by which to
benchmark these methods and systematically manipulate multiple distinct parametersin a
factorial design.

Moving forward, we anticipate that preprocessing methods for DWI will continue to
advance. In particular, several important features that are included in Eddy—such as eddy
current correction—could be included in SHORELine in future releases. Furthermore, the
advent of cutting-edge denoising techniques—such as Patch2Self (Fadnavis et al., 2020)—that
leverage self-supervised learning may have important implications for head motion correction.
Finally, we have released all simulated images, processing software, analytic code, and results
associated with this work; these may prove useful for future benchmarking efforts and facilitate
comparisons to existing methods. This open and fully-reproducible workflow both bolsters

confidence in the current results and may accelerate evaluation studies moving forward.
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TABLES

Table 1. Properties of simulated datasets and how they were processed. Each sequence was
simulated such that 15%, 30%, and 50% of volumes contained head motion. Each level of

motion was processed both with and without denoising.

ABCD HCP DSIQ5 HASC55

Type Shelled Shelled Cartesian Random
Max. b 3000 3000 5000 5000
Num. b>0 96 270 257 55
Algorithm Model Denoising Motion # Pipeline runs
Prevalence
Eddy Linear MP-PCA 15% 30 30 0 0
30% 30 30 0 0
50% 30 30 0 0
None 15% 30 30 0 0
30% 30 30 0 0
50% 30 30 0 0
Quadratic MP-PCA 15% 30 30 0 0
30% 30 30 0 0
50% 30 30 0 0
None 15% 30 30 0 0
30% 30 30 0 0
50% 30 30 0 0
SHORELine Rigid MP-PCA 15% 30 30 30 30
30% 30 30 30 30
50% 30 30 30 30
None 15% 30 30 30 30
30% 30 30 30 30
50% 30 30 30 30
Affine MP-PCA 15% 30 30 30 30
30% 30 30 30 30
50% 30 30 30 30
None 15% 30 30 30 30
30% 30 30 30 30
50% 30 30 30 30
Totl 360 360 180 180
Scans
Total b>0

69,120 194,400 92,520 19,800
Volumes
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Table2. Mean error of head motion correction methods

Translation (mm) Rotation (°)
Sampling Scheme Method Mean Error RMSE Mean Error RMSE
ABCD Eddy + MP-PCA 0.016 0.71 0.096 0.70
Eddy 0.071 1.1 0.27 2.3
SHORELine -0.086 0.80 -0.037 1.6
HCP Eddy + MP-PCA -0.044 0.73 0.0093 0.56
Eddy 0.063 0.71 -0.063 1.0
SHORELine -0.051 0.56 048 0.86
DSIQ5 SHORELine 0.10 0.61 0.24 0.96

HASC55 SHORELine 0.059 0.99 0.33 1.5
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FIGURES

Preliminary: Collect DWI series

Use transformed image and
its rotated gradient vector
as input to a new Step 1

Figure 1: SHOREL ine. Images shown here are from an actual scan using the CS-DS| sampling
scheme. The dlice in the yellow-dashed box isthe SHOREL ine-predicted dlice for the left-out
volume. The actual |eft-out slice is shown on the left in Step 3. The contrast in the predicted slice
isvisually very similar to the actual left-out slice, which enables standard image registration

methods to work.
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ISMRM 2015 Streamline Data

Figure 2: Simulation of head motion in DWI imageswith Fiberfox. Fiberfox simulates MRI
data from a set of streamlines. Here we show the streamlines used for benchmarking (top row).
We introduced motion to our test data by applying rigid (6-DOF) transformations to the
streamlines before the volumes were simulated. The diffusion restriction introduced by the fibers
represented by the streamlinesisincluded in the signal attenuation in each voxel, which isthen
“acquired” in k-space where artifacts can be introduced (middle row). Finaly, the k-space dataiis

reconstructed into realistic 3D volumes that are used for benchmarking (bottom row).
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Figure 3: Head motion correction error varies by motion present in input data, sampling
scheme, and de-noising. Means and standard deviations of the motion parameter estimate
RMSE are plotted for both Eddy and SHORELine. Eddy does not support non-shelled schemes
and therefore could not be evaluated for DSIQ5 and HASCS5. Error bars reflect the standard
deviation of the RM SE for the sample, each of which consists of 30 simulated scans. Error
varied by sampling scheme, with lower errors present in simulated HCP data than ABCD data.
Notably, greater motion in the input data was associated with greater error. Additionally, greater
error was observed when Eddy was used without MP-PCA denoising; error was lower in Eddy

than SHOREL ine when denoising was used, but higher when no denoising was performed.
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Figure4: Head motion correction error varies by number of directionsin sample scheme.
RM SE as a function of the number of sampled directions. Points near x=103 are from the ABCD
sequence; those near 270 are from the HCP; those near x=258 are from the DSIQ5; and those
near x=55 are from the HASC55. SHORELIin€' s performance was equivalent with and without
denoising, so results without denoising are shown. In general, better performance was seen with

more directions and when MP-PCA was used in conjunction with Eddy.
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Figure5: De-noising impactsr elative perfor mance of motion correction methods. Violin
plots of the difference between Eddy’ s and SHORELine' s RM SE for shelled schemes. Positive
values indicate that SHOREL ine had lower RM SE than Eddy, while negative values mean Eddy
had lower RM SE than SHOREL ine. In general, Eddy performed slightly better than SHORELine
when MP-PCA denoising was performed first, whereas SHORELine was slightly superior when

Eddy was used without denoising. However, overall absolute differences were quite small.


https://doi.org/10.1101/2022.07.21.500865
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.21.500865; this version posted July 22, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

dMRI Head Motion o7
ABCD o

4.25 4

A4.DO' J i é I *$ ‘

E 7 d k Method

Z DSIQS HASCS55 BS SHORELine

E 4.25 - BY Eday
4.00-
ol et e 1B

15% 30% 50% 15% 30% 50%

Motion Prevalence

Figure 6: Spatial smoothness following motion correction isimpacted by the amount of
motion present in the input data. Both methods produce blurrier images as the amount of
motion present increases. Denoising with MP-PCA did not significantly impact smoothness, so
variation in de-noising is not shown. Eddy cannot process non-shelled schemes, so only data

from SHORELineis shown. In general, Eddy produced blurrier images than SHOREL.ine,

although differences were small.
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Figure 7: Motion correction and denoising improve data quality. Dataquality was
quantified as the neighboring DWI correlation (NDC). Thetop row displays the mean and
standard deviation of the NDC values after preprocessing. The bottom row shows the changein
NDC from the NDC calculated on the unprocessed scans. In general, NDC was improved by
motion correction, especially following MP-PCA denoising. Eddy yielded improvementsin

NDC that were significantly higher than SHOREL ine, although differences were small.
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SUPPLEMENTARY MATERIAL

Supplementary Table 1. Statistical comparisons of denoising, scheme type, number of

directions, denoising method, and motion prevalence on RM SE of estimated motion.

Predicting RMSE of Estimated Motion

Translation Rotation
Characteristic Beta 95% CIT  p-value Beta 95% CI!  p-value
(Intercept) 0.528 0.487,0.569 <0.001 1.125 1.019,1.231 <0.001
Scheme Type

Shelled — - - -

Non-Shelled 0.115 0.068,0.161 <0.001 -0.278 -0.398, -0.157 <0.001
N. Directions -0.001 -0.001, -0.001 <0.001 -0.004 -0.005,-0.004 <0.001
Denoising

MP-PCA — - — —

None 0.060 0.039,0.081 <0.001 0.335 0.280,0.391 <0.001
Motion Prevalence 0.013 0.012,0.014 <0.001 0.021 0.019,0.023 <0.001

Scheme Type * N. Directions

Non-Shelled * N. Directions -0.001 -0.001, 0.000 <0.001 0.001 0.001,0.002 <0.001

T Cl = Confidence Interval
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Supplementary Table 2. Statistical comparison of Eddy and Shoreline in shelled schemes. The
outcome measure was the difference in error (RM SE) between Eddy and Shoreline (Eddy-
Shoreline); the model included main effects of denoising, motion prevalence in the input data,

and shell scheme; interactions of these main effects were modeled as well.

Predicting RMSE Difference (Eddy — SHORELine) in ABCD & HCP Schemes

Translation Rotation
Characteristic Beta 95% CI  p-value Beta 95% CI?  p-value
(Intercept) 0.129 0.042,0.216 0.004 0.297 0.056,0.538 0.016
Scheme

ABCD — — — —

HCP 0.059 -0.065,0.182 0.3 0.254 -0.087,0.595 0.14
Denoising

MP-PCA — — — —

None 0.302 0.178,0.425 <0.001 0,512 0.171,0.853 0.003
Motion Prevalence -0.007 -0.009, -0.004 <0.001 -0.037 -0.044,-0.030 <0.001
Scheme * Denoising

HCP * None -0.286 -0.460,-0.112 0.001 -0.215 -0.697, 0.267 0.4
Scheme * Motion Prevalence

HCP * Motion Prevalence 0.006 0.003,0.010 <0.001 0.011 0.001,0.020 0.034
Denoising * Motion Prevalence

None * Motion Prevalence 0.002 -0.001,0.006 0.2 0.083 0.023,0.043 <0.001
Scheme * Denoising * Motion Prevalence

HCP * None * Motion Prevalence -0.003 -0.008,0.002 0.2 -0.028 -0.042,-0.014 <0.001

7 Cl = Confidence Interval
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Supplementary Table 3. Statistical comparisons of image smoothness between Eddy and
Shoreline. The outcome measure was the difference in image smoothness (FWHM) between
Eddy and Shoreline (Eddy-Shoreline); the model included main effects of denoising, motion

prevalence in the input data, and sampling scheme.

Predicting FWHM (Eddy — Shoreline) of Each Scan

Main Effects of Percent Motion, Scheme, and Denoising

Characteristic Beta 95% CI7 p-value
(Intercept) -0.060 -0.083, -0.036 <0.001
Motion Prevalence

15% — —

30% -0.086 -0.111, -0.060 <0.001

50% -0.199 -0.225, -0.174 <0.001
Scheme

ABCD - -

HCP 0.018 -0.002, 0.039 0.084
Denoising

MP-PCA - -

None -0.009 -0.030, 0.012 0.4

1 Cl = Confidence Interval
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Supplementary Table 4. Statistical comparisons of image quality between Eddy and Shoreline.
The outcome measure was the difference in image quality (NDC) between Eddy and
SHOREL ine (Eddy-Shoreline); the model included main effects of denoising, motion prevalence

in the input data, and shell scheme.

NDC Model
Characteristic Beta 95% CI? p-value
(Intercept) -0.020 -0.026, -0.014 <0.001

Motion Prevalence -0.001 -0.001, -0.001 <0.001
Denoising

MP-PCA — —

None 0.016 0.011,0.020 <0.001
Scheme

ABCD — —

HCP -0.004 -0.008, 0.000 0.072

1 Cl = Confidence Interval
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