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ABSTRACT 

Correcting head motion artifacts in diffusion-weighted MRI (dMRI) scans is particularly 

challenging due to the dramatic changes in image contrast at different gradient strengths and 

directions. Head motion correction is typically performed using a Gaussian Process model 

implemented in FSL’s Eddy. Recently, the 3dSHORE-based SHORELine method was 

introduced to correct any dMRI sequence that has more than one shell. Here we perform a 

comprehensive evaluation of both methods on realistic simulations of a software fiber phantom 

that provides known ground-truth head motion. We demonstrate that both methods perform 

remarkably well, but that performance can be impacted by sampling scheme, the pervasiveness 

of head motion, and the denoising strategy applied before head motion correction. Our study also 

provides an open and fully-reproducible workflow that could be used to accelerate evaluation 

studies of other dMRI processing methods in the future. 

 

Keywords: diffusion MRI, head motion, artifact, software, ensemble average propagator, 

diffusion spectrum imaging 

HIGHLIGHTS 

● Both Eddy and SHORELine head motion correction methods performed quite well on a 

large variety of simulated data 

● Denoising with MP-PCA can improve head motion correction performance when Eddy is 

used 

● SHORELine effectively corrects motion in non-shelled acquisitions 
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INTRODUCTION 

 Diffusion-weighted MRI (dMRI) modulates the MR signal to encode information about 

the distribution of  water diffusion, which is constrained by the orientation and permeability of 

tissue (Basser, 1995; Callaghan, 1993; Stejskal & Tanner, 1965). This method has become 

widely used to non-invasively image the structural properties of white matter in the brain. Over 

the course of three decades, dMRI sequences have advanced to measure signal in many 

directions (e.g., higher angular resolution) and diffusion sensitizations (Tuch, 2004; Wedeen et 

al., 2005) with most modern sequences capturing hundreds of images over the course of 10 to 30 

minutes of scanning. 

 Any scanning sequence where multiple images are acquired over time is highly 

susceptible to artifacts related to head motion during the scan. The effects of head motion during 

functional MRI (fMRI), another imaging technique that acquires images in a series over time, are 

well-known and typically addressed by simply aligning each image to a reference image using a 

rigid or affine transformation (Jenkinson et al., 2002), followed by further corrections to the time 

series data in each voxel (Ciric et al., 2018). The use of a single reference image works well for 

spatially correcting fMRI because the contrast and SNR remain relatively constant over the 

acquisition.   

In contrast to fMRI, dMRI sequences acquire images that can have dramatically different 

spatial contrasts and SNR depending on the diffusion-encoding gradient moment (i.e., the b-

value in s/mm2) and direction. The set of directions and b-values that define a dMRI sampling 

scheme are what allow the method to estimate the ensemble average diffusion propagator (EAP) 
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in each voxel (Callaghan, 1993).  However, such differences in contrast also preclude the use of 

a single image as the registration target for head motion correction. Instead, for each b>0 image 

in the dMRI series, an image with similar spatial contrast must be generated as if it were aligned 

with all other images in the dMRI series. Each image can then be registered to the target image, 

thereby correcting the effect of bulk head motion in each volume. 

At present the most widely-used method for dMRI head motion correction is Eddy 

(Andersson & Sotiropoulos, 2015), which is included in the fMRIB software library (FSL). Eddy 

has been broadly adopted, including by large imaging consortia such as the Human Connectome 

Project (Glasser et al., 2013), the UK BioBank (Alfaro-Almagro et al., 2018), and a version of 

the Healthy Brain Network (Richie-Halford et al., 2022). In addition to estimating bulk head 

motion, Eddy estimates and corrects spatial warping related to eddy currents, fills in dropped 

slices (Andersson et al., 2016), estimates intra-volume motion, and optionally incorporates 

susceptibility distortion correction if a fieldmap is estimated using the TOPUP tool (Andersson 

& Sotiropoulos, 2016). Many of these features rely on Eddy’s algorithm for generating 

registration targets. Eddy operates on shelled dMRI sequences, which acquire multiple gradient 

directions at the same b>0 value. Given that all images on the same shell are sampling the 

surface of a sphere in q-space, the differences in their signal can be represented as a Gaussian 

process (GP) on the azimuth and elevation coordinates on the unit sphere ��. Eddy estimates one 

GP per shell and uses the GP to produce registration targets. A rigid registration is performed 

between each b>0 image and its GP prediction, followed by a linear or quadratic warp in the 

Phase Encoding Direction of the dMRI acquisition to correct for distortions related to eddy 

currents. 
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Although shelled acquisitions are popular, there are other methods of sampling q-space 

that have unique advantages. Diffusion Spectrum Imaging (DSI) samples a Cartesian grid in q-

space, enabling the direct reconstruction of the EAP with a simple Fourier transform (Wedeen et 

al., 2005). Shelled schemes require more complex modeling and leave open a question with no 

universal answer:  at which b-values should one acquire shells?  DSI scans typically have 

required the acquisition of more than 200 images, resulting in long scan times—particularly 

when multiband imaging is not available. However, sparse, random subsets of the Cartesian grid 

scheme along with a compressed-sensing reconstruction approach (CS-DSI) have been shown to 

provide comparable EAP reconstructions to the full grid sampling scheme at a fraction of the 

scanning time (Merlet & Deriche, 2013; Paquette et al., 2015). Yet, there is no widely accepted 

head motion correction for these non-shelled schemes, which limits the application of DSI in 

translational research. 

Recently the SHORELine algorithm (Cieslak et al., 2021) was introduced as a method to 

generate registration targets for any dMRI sequence with both radial and angular variability in its 

q-space sampling scheme. SHORELine is a cross-validated method where, for each b>0 image, 

the 3dSHORE basis (Özarslan et al., 2013) set is fit to all other images using L2-regularization. 

A registration target for the left-out image is estimated from the 3dSHORE fit, and the image is 

registered with a Rigid (6DOF) or optional Affine (12DOF) transform using ANTs (Figure 1). 

No eddy current correction is explicitly attempted. This process is repeated up to 2 times based 

upon user specifications. The 3dSHORE basis functions are defined in three-dimensional space 

(��) and are therefore appropriate for multi-shelled, Cartesian and sparse/random sampling 

schemes. Like Eddy, SHORELine can incorporate a susceptibility distortion correction along 

with head motion correction in a single interpolation. The original evaluation study showed an 
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overall improvement in the Neighboring DWI Correlation (NDC) quality measure of non-shelled 

sampling schemes compared to the unprocessed data (Cieslak et al., 2021).  

Independent of head motion correction, denoising algorithms are often applied prior to 

head motion correction. The application of MP-PCA denoising (Veraart et al., 2016) is enabled 

by default in both QSIPrep (Cieslak et al., 2021) and the MRtrix3_connectome (Smith & 

Connelly, 2020) pipelines. However, denoising is not applied in the HCP (Glasser et al., 2013) or 

UK Biobank (Alfaro-Almagro et al., 2018) pipelines. There are reasonable arguments both for 

and against performing  denoising  prior to motion correction. The registration targets generated 

by Eddy and SHOREline may be more realistic if their underlying models are fit with less-noisy 

data. However, denoising is not recommended by the developers of Eddy because it will affect 

how noise is distributed in the dMRI signal, thereby possibly violating assumptions of the GP 

(Andersson, 2019).  

Both Eddy and SHORELine are considerably more complex than standard fMRI head 

motion correction methods.  However, there has not been a systematic evaluation of how well 

these methods perform on commonly acquired sequences with different levels of head motion, 

nor has there been a systematic evaluation on the effect of denoising dMRI data prior to head 

motion correction. To address this gap, here we simulated hundreds of thousands of dMRI 

images from common shelled and non-shelled schemes incorporating known head motion and 

realistic MR artifacts to determine how accurate these methods are in estimating true head 

motion with and without denoising. 

 

METHODS 

Simulation of images and motion 
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MITK FiberFox (Neher et al., 2014) was used to simulate the entire dMRI series for a set 

of commonly acquired sampling schemes, including ABCD, HCP, a Cartesian DSI half sphere 

and a Cartesian/random CS-DSI.  The simulation used streamline segments from the ISMRM 

2015 fiber phantom (http://www.tractometer.org/ismrm_2015_challenge/data) to define a fiber 

ODF in each voxel and convert it into a diffusion ODF to generate an MRI signal. The MRI 

signal was combined with eddy currents, thermal noise, and susceptibility distortion artifacts. 

Simulation parameters used here are identical to the ISMRM simulated phantom, except that the 

original study contained only three volumes with simulated head motion, whereas we simulated 

hundreds of thousands of volumes under different sampling schemes and conditions (see below). 

A docker image of the exact version of Fiberfox can be downloaded at 

https://hub.docker.com/r/pennbbl/fiberfox using tag 1.0.  

To introduce controlled head motion, a random rigid transform was applied to the 

streamline data before the MR signal was simulated (Hering et al., 2014). Both translation and 

rotation about each axis were sampled from a random uniform distribution with a maximum 

absolute displacement of 5 mm and a maximum absolute rotation of 5 degrees (Figure 2). 

Individual dMRI series were created by replacing a random subset of images from the no-motion 

simulation with the motion-included simulated images. Unique dMRI scans were generated to 

have a specific motion prevalence such that 15%, 30%, or 50% of the volumes in the series 

included head motion. A total of 30 unique scans were generated for each sampling scheme for 

each of the three motion prevalence values, yielding 90 simulated complete series per scheme.  

In total this process resulted in 360 unique simulated dMRI scans.  

 

Image processing 
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 Eddy and SHORELine were run on each simulated scan using QSIPrep (v0.14.3). This 

version of QSIPrep included FSL version 6.0.3. Eddy was run twice, once with Linear and once 

with Quadratic models. However, a comparison of the two approaches revealed that these 

options do not appear to have a substantial impact on head motion estimation. Accordingly, we 

report the results from the Eddy with the quadratic setting because this is the way it is typically 

used as part of the HCP Pipelines. SHORELine was also run twice, once with a Rigid (6DOF) 

and once with an Affine (12DOF) transformation model. The rigid model had minor benefits and 

also a shorter run time; as such, the results for the rigid model are used to characterize 

SHORELine’s performance. Each configuration was run with and without MP-PCA denoising 

(from MRTrix 3.0.3) prior to head motion correction. In all, a total of 2,160 QSIPrep 

preprocessing runs were executed, encompassing the processing of 375,840 b>0 images (Table 

1). 

Importantly, to ensure reproducibility, the entire benchmarking experiment was run using 

the FAIRly big workflow (Wagner et al., 2022). This approach uses DataLad to track and 

distribute the data and code used during data analysis. The entire FiberFox phantom dataset 

along with a Singularity image of the software used to run the processing are publicly available. 

Each run of QSIPrep was recorded as a git commit and can be reproduced locally by anyone with 

DataLad who clones from the repository 

(https://github.com/PennLINC/dMRI_HMC_Benchmark). 

 

Outcome measures 

Performance was evaluated according to multiple metrics. First, the mean error in head 

motion parameter estimation was calculated to determine whether the algorithm is an unbiased 
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estimator. Second, to characterize the expected error of the estimators, we calculated the RMSE 

of the estimated head motion. Low RMSE reflects accurate head motion estimation and higher 

RMSE indicates greater estimation error. To understand the factors that affect motion parameter 

estimation, linear models were fit with root mean squared error (RMSE) as the dependent 

variable. As rotation and translation are in different units, we fit two linear models of RMSE for 

translation and rotation separately. The relative performance between SHORELine and Eddy was 

calculated by subtracting SHORELine’s RMSE from Eddy’s, resulting in positive values when 

SHORELine’s was more accurate at estimating motion parameters than Eddy. 

Third, we compared the interpolation-related smoothness of the corrected images. Image 

smoothness is a measure of blurring during preprocessing, which reduces anatomical detail; 

preprocessing should seek to minimize the introduction of additional image smoothness. We 

estimated the full-width at half-maximum (FWHM) of the mean b=0 image in the preprocessed 

data. Fourth, we evaluated a summary measure of data quality—the neighboring DWI 

Correlation (NDC) (Yeh et al., 2019). NDC summarizes the pairwise spatial correlation between 

each pair of dMRI volumes that sample the closest points in q-space; lower values reflect 

reduced data quality, driven by noise and misalignment between dMRI volumes. 

 

 

 

RESULTS 

 

Both Eddy and SHORELine accurately correct simulated head motion 
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Both Eddy and SHORELine demonstrated excellent performance in correcting head 

motion. While collapsing across all experimental conditions, the mean error (calculated as the 

mean difference between the estimated motion parameter and the ground truth motion parameter) 

in estimated head rotation was very small: only 0.194 degrees.  Similarly, the mean error in 

estimated head translation was only ~1/100th of a voxel: 0.012 mm. Such miniscule mean errors 

suggest that both Eddy and SHORELine are accurate and unbiased estimators of head motion 

parameters. Mean errors and RMSE (the first and second moments of the error distribution) are 

provided in Table 2. 

 

Head motion correction accuracy varies by sampling scheme and denoising 

Next, we evaluated what factors impacted error (hereafter referring to RMSE) following 

head motion correction (Figure 3). As described below, results indicate that error following 

motion correction is primarily due to uncontrolled factors such as the amount of head motion 

present in the data but also preprocessing choices (use of denoising) and factors related to 

experimental design (sampling scheme); see Supplementary Table 1 for complete statistical 

results.  

Unsurprisingly, in most cases, higher motion in the input data was associated with greater 

error following head motion correction. However, this effect was sometimes impacted by an 

interaction with the denoising and motion correction methods chosen. While denoising with MP-

PCA had minimal impact on the error present in SHORELine output, it had a major impact on 

Eddy: error was systematically lower across both shelled schemes when the data was denoised 

first. Somewhat surprisingly, and in contrast to nearly all other parameter combinations 
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evaluated, the amount of rotation in the input data was not associated with greater error when 

Eddy was used in conjunction with MP-PCA (Note: the same was not true for translations). 

Error also varied substantially across acquisition schemes. For example, among shelled 

schemes, error was systematically lower in HCP than ABCD data. In general, acquisition 

schemes that sampled a greater number of directions tended to have less error following head 

motion correction (Figure 4). The interaction in Supplementary Table 1 is driven by the 

exception to this trend: CS-DSI has the fewest number of directions but retained a low RMSE. 

As SHORELine is the only existing algorithm that can process non-shelled schemes, data from 

these acquisition schemes could not be evaluated using Eddy.  

Next, we directly compared Eddy and SHORELine (Figure 5) using data from the 

shelled ABCD and HCP sampling schemes where both methods were applicable. Overall, 

differences between the methods were quite small and depended in part on the use of denoising, 

the sampling scheme, and whether rotations or translations were evaluated (see full statistical 

results in Supplementary Table 2).  For ABCD, SHORELine had less error than Eddy in all 

scenarios when no denoising was applied first.  However, when the data was first denoised with 

MP-PCA, Eddy showed a slight superiority that scaled with the prevalence of motion in the input 

data. 

In contrast, results from the data simulated with the HCP scheme were more 

heterogeneous, and related to both the measure evaluated (rotation vs. translation) and the 

amount of motion present in the input data.  For rotations, Eddy following MP-PCA 

outperformed SHORELine as more motion is present in the simulation. However, without MP-

PCA denoising, SHORELine modestly outperformed Eddy overall for HCP data. For 

translations, SHORELine error was lower across all conditions, but differences were quite small.  
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Output image smoothness is impacted primarily by motion present in data   

Next, we evaluated the image smoothness (quantified as FWHM) of the preprocessed 

data following head motion correction (Figure 6).  Image smoothness is a measure of blurring 

during preprocessing, which reduces anatomical detail. Ideally, preprocessing minimizes the 

introduction of additional image smoothness. As expected, we found that the largest driver of 

output image smoothness was the motion prevalence in the simulated data: across all sampling 

schemes and motion correction methods, more motion in the input data was associated with 

greater smoothness in the output images.  Somewhat surprisingly, denoising did not significantly 

impact output image smoothness (see Supplementary Table 3). Additionally, although 

differences were small (i.e., <0.5mm FWHM), SHORELine produced significantly sharper 

output than Eddy. 

 

Output image quality is improved by head motion correction and denoising 

 As a final step, we quantified the quality of the output images using the neighboring DWI 

correlation (NDC; Figure 7).  We calculated NDC for both the unprocessed input data and the 

output from both SHORELine and Eddy; this approach allowed us to examine how much pre-

processing improved data quality compared to the raw input data. Notably, head motion 

correction yielded substantial improvements in NDC across levels of input data motion and 

sampling schemes. Indeed, the improvement in NDC with preprocessing in general scaled with 

the prevalence of motion in the input data (see bottom row, Figure 7).  However, in nearly all 

cases, greater prevalence of motion was associated with reduced output data quality even 
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following preprocessing. One important exception to this association was the use of Eddy with 

HCP data, where higher prevalence of motion was not associated with reduced NDC.    

 Additionally, we found that denoising with MP-PCA improved NDC values in all 

scenarios that we evaluated (Supplementary Table 4). Denoising related improvements were 

particularly marked for non-shelled schemes, which could only be processed with SHORELine.  

Furthermore, we found that Eddy had slightly higher NDC scores than SHORELine; however, 

the difference was reduced when MP-PCA was not performed. The small relative advantage for 

Eddy over SHORELine scaled with greater motion prevalence in the input data.  

 

DISCUSSION 

 The primary finding from this large-scale evaluation is that existing tools for dMRI 

motion correction work—and work well. Across all methods, denoising, motion prevalence, and 

sampling schemes, both Eddy and SHORELine estimated head motion correctly, with observed 

errors being unbiased and quite small. This analysis is a necessary prerequisite to show that head 

motion correction is accurate on real dMRI data: there would be little hope that these methods 

would work on real world data if these analyses showed biased estimation of motion, or if errors 

of more than a fraction of a voxel translation or degree rotation were present.  This outcome was 

clearly not the case, which should reassure users of both methods, whether they are already in 

wide use (Eddy) or recently introduced (SHORELine). 

 Although observed errors were on average quite small, our evaluation did identify several 

factors that influenced error magnitude.  These factors included input data quality (specifically 

motion prevalence), denoising, and acquisition scheme.  Unsurprisingly, across all scenarios 

examined, the single biggest determinant of the amount of error observed was the prevalence of 
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motion in the simulated input data.  Similarly, more prevalent motion in the input data resulted in 

greater image blurring (e.g., FWHM) and reduced data quality (as quantified by the NDC).  

These results emphasize that acquiring high quality data remains of critical importance for all 

studies, as no amount of image processing can fully compensate for extensive in-scanner motion. 

 Nonetheless, one preprocessing step that is not always used in standard pipelines—

denoising—had remarkably beneficial effects on the outcomes we evaluated.  Across all 

scenarios, data denoised with MP-PCA improved in quality without impacting smoothness, 

meaning that a simple increase in smoothness did not drive the increased performance (Woods, 

Grafton, Holmes, et al., 1998a; Woods, Grafton, Watson, et al., 1998b). However, the use of 

denoising did interact with choice of head motion correction method in an unexpected manner: 

while denoising did not impact the error estimated by SHORELine, estimation error was 

markedly reduced when Eddy was applied to data that had been first denoised by MP-PCA. This 

result was unanticipated: Eddy developers do not recommend denoising prior to head motion 

correction because of theoretical concerns regarding the way denoising might change the noise 

distribution in the data.  When paired with MP-PCA, Eddy performed uniquely well in some 

contexts, with rotation error failing to scale with severity of motion. While some field-standard 

pipelines—such as QSIPrep – do by default apply MP-PCA denoising prior to head motion 

correction, other widely used pipelines (such as HCP pipelines) do not.  These empirical results 

suggest that this recommendation may require re-evaluation, in particular for the many large-

scale data resources that rely on processing pipelines that apply Eddy without denoising. 

 Our study considered four different acquisition schemes—including two 

commonly used shelled schemes and two non-shelled schemes—that allowed us to examine how 

outcomes were impacted by this important experimental design choice.  We found that sequences 
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with more directions tended to have lower error, likely due to the fact that increased data volume 

facilitated model training and fitting.  However, perhaps the most important result of comparing 

these four schemes was the finding that non-shelled schemes could be successfully corrected as 

well as shelled schemes. Notably, processing of non-shelled schemes was only possible with 

SHORELine.  As DSI methods have important advantages for modeling the average ensemble 

propagator, this represents a milestone for the preprocessing of non-shelled schemes and may 

accelerate their adoption by the neuroimaging community.  Furthermore, the particularly 

impressive performance on the very-brief 55-direction CS-DSI scheme emphasizes the promise 

of compressed sensing methods for the many translational applications where scan time is 

limited and motion may be prominent (i.e., children and clinical populations). 

In contrast to the impact of input data quality, denoising, and acquisition scheme, direct 

comparisons of Eddy and SHORELine were notable mainly for the small effects that were 

observed.  There were small but significant differences in estimation error between the two 

methods, but the direction of the effect largely depended on whether MP-PCA was also used. As 

noted above, adding denoising resulted in a notable reduction in the observed error for Eddy. 

Images processed by SHORELine were slightly sharper than Eddy, but the magnitude of 

difference was of uncertain practical significance (i.e., 0.06 mm FWHM). Conversely, we found 

that Eddy had a higher NDC than SHORELine. However, this difference was also of unclear 

practical impact. To put the NDC difference in context, Eddy on average had an NDC that was 

0.02 units higher than SHORELine-processed images; the difference in NDC between 

unprocessed data and processed images was approximately 20 times larger.  Overall, our results 

emphasize that both methods perform quite well.    
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  Several limitations of this study should be noted. First, we compared Eddy and 

SHORELine, but other dMRI head motion estimation methods exist. However, the MAPMRI-

based method implemented in TORTOISE (Irfanoglu et al., 2017) is likely to perform similarly 

to SHORELine due to its similar method for estimating registration targets. Second, SHORELine 

requires sampling schemes with at least two unique non-zero b-values, preventing a comparison 

of performance on common single shell schemes. Third, real world data may differ in both the 

types of artifacts and the types of movement observed.  For example, the FiberFox simulations 

do not simulate within-volume motion and slice dropout and Eddy current distortion is always 

linear.  However, our use of simulated data allowed us to have a known ground truth by which to 

benchmark these methods and systematically manipulate multiple distinct parameters in a 

factorial design.    

 Moving forward, we anticipate that preprocessing methods for DWI will continue to 

advance.  In particular, several important features that are included in Eddy—such as eddy 

current correction—could be included in SHORELine in future releases.  Furthermore, the 

advent of cutting-edge denoising techniques—such as Patch2Self (Fadnavis et al., 2020)—that 

leverage self-supervised learning may have important implications for head motion correction. 

Finally, we have released all simulated images, processing software, analytic code, and results 

associated with this work; these may prove useful for future benchmarking efforts and facilitate 

comparisons to existing methods. This open and fully-reproducible workflow both bolsters 

confidence in the current results and may accelerate evaluation studies moving forward. 
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TABLES 

Table 1. Properties of simulated datasets and how they were processed. Each sequence was 

simulated such that 15%, 30%, and 50% of volumes contained head motion. Each level of 

motion was processed both with and without denoising.  

    ABCD HCP DSIQ5 HASC55 
   Type Shelled Shelled Cartesian Random 
   Max. b 3000 3000 5000 5000 
   Num. b>0 96 270 257 55 

Algorithm Model Denoising Motion 
Prevalence # Pipeline runs 

Eddy Linear MP-PCA 15% 30 30 0 0 
30% 30 30 0 0 
50% 30 30 0 0 

None 15% 30 30 0 0 
30% 30 30 0 0 
50% 30 30 0 0 

Quadratic MP-PCA 15% 30 30 0 0 
30% 30 30 0 0 
50% 30 30 0 0 

None 15% 30 30 0 0 
30% 30 30 0 0 
50% 30 30 0 0 

SHORELine Rigid MP-PCA 15% 30 30 30 30 
 30% 30 30 30 30 
 50% 30 30 30 30 
None 15% 30 30 30 30 
 30% 30 30 30 30 
 50% 30 30 30 30 

Affine MP-PCA 15% 30 30 30 30 
 30% 30 30 30 30 
 50% 30 30 30 30 
None 15% 30 30 30 30 
 30% 30 30 30 30 
 50% 30 30 30 30 

   Total 
Scans 360 360 180 180  

   Total b>0 
Volumes 

69,120 194,400 92,520 19,800 
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Table 2.  Mean error of head motion correction methods 
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FIGURES 

 

Figure 1: SHORELine. Images shown here are from an actual scan using the CS-DSI sampling 

scheme. The slice in the yellow-dashed box is the SHORELine-predicted slice for the left-out 

volume. The actual left-out slice is shown on the left in Step 3. The contrast in the predicted slice 

is visually very similar to the actual left-out slice, which enables standard image registration 

methods to work. 
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Figure 2: Simulation of head motion in DWI images with Fiberfox.  Fiberfox simulates MRI 

data from a set of streamlines. Here we show the streamlines used for benchmarking (top row). 

We introduced motion to our test data by applying rigid (6-DOF) transformations to the 

streamlines before the volumes were simulated. The diffusion restriction introduced by the fibers 

represented by the streamlines is included in the signal attenuation in each voxel, which is then 

“acquired” in k-space where artifacts can be introduced (middle row). Finally, the k-space data is 

reconstructed into realistic 3D volumes that are used for benchmarking (bottom row). 
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Figure 3:  Head motion correction error varies by motion present in input data, sampling 

scheme, and de-noising. Means and standard deviations of the motion parameter estimate 

RMSE are plotted for both Eddy and SHORELine. Eddy does not support non-shelled schemes 

and therefore could not be evaluated for DSIQ5 and HASC55. Error bars reflect the standard 

deviation of the RMSE for the sample, each of which consists of 30 simulated scans.  Error 

varied by sampling scheme, with lower errors present in simulated HCP data than ABCD data.  

Notably, greater motion in the input data was associated with greater error.  Additionally, greater 

error was observed when Eddy was used without MP-PCA denoising; error was lower in Eddy 

than SHORELine when denoising was used, but higher when no denoising was performed.  
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Figure 4:  Head motion correction error varies by number of directions in sample scheme. 

RMSE as a function of the number of sampled directions. Points near x=103 are from the ABCD 

sequence; those near 270 are from the HCP; those near x=258 are from the DSIQ5; and those 

near x=55 are from the HASC55. SHORELine’s performance was equivalent with and without 

denoising, so results without denoising are shown. In general, better performance was seen with 

more directions and when MP-PCA was used in conjunction with Eddy.   
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Figure 5: De-noising impacts relative performance of motion correction methods.  Violin 

plots of the difference between Eddy’s and SHORELine’s RMSE for shelled schemes. Positive 

values indicate that SHORELine had lower RMSE than Eddy, while negative values mean Eddy 

had lower RMSE than SHORELine. In general, Eddy performed slightly better than SHORELine

when MP-PCA denoising was performed first, whereas SHORELine was slightly superior when 

Eddy was used without denoising. However, overall absolute differences were quite small.   
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Figure 6: Spatial smoothness following motion correction is impacted by the amount of 

motion present in the input data. Both methods produce blurrier images as the amount of 

motion present increases. Denoising with MP-PCA did not significantly impact smoothness, so 

variation in de-noising is not shown. Eddy cannot process non-shelled schemes, so only data 

from SHORELine is shown.  In general, Eddy produced blurrier images than SHORELine, 

although differences were small.   
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Figure 7: Motion correction and denoising improve data quality.   Data quality was 

quantified as the neighboring DWI correlation (NDC).  The top row displays the mean and 

standard deviation of the NDC values after preprocessing. The bottom row shows the change in 

NDC from the NDC calculated on the unprocessed scans. In general, NDC was improved by 

motion correction, especially following MP-PCA denoising. Eddy yielded improvements in 

NDC that were significantly higher than SHORELine, although differences were small. 
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SUPPLEMENTARY MATERIAL 

 

Supplementary Table 1.  Statistical comparisons of denoising, scheme type, number of 

directions, denoising method, and motion prevalence on RMSE of estimated motion.    
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Supplementary Table 2. Statistical comparison of Eddy and Shoreline in shelled schemes.  The 

outcome measure was the difference in error (RMSE) between Eddy and Shoreline (Eddy-

Shoreline); the model included main effects of denoising, motion prevalence in the input data, 

and shell scheme; interactions of these main effects were modeled as well. 
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Supplementary Table 3. Statistical comparisons of image smoothness between Eddy and 

Shoreline. The outcome measure was the difference in image smoothness (FWHM) between 

Eddy and Shoreline (Eddy-Shoreline); the model included main effects of denoising, motion 

prevalence in the input data, and sampling scheme. 
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Supplementary Table 4.  Statistical comparisons of image quality between Eddy and Shoreline. 

The outcome measure was the difference in image quality (NDC) between Eddy and 

SHORELine (Eddy-Shoreline); the model included main effects of denoising, motion prevalence 

in the input data, and shell scheme. 
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