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Abstract. Cortical function emerges from the interactions of multi-scale networks

that may be studied at a high level using neural mass models (NMM), representing

the mean activity of large numbers of neurons. In order to properly reproduce

experimental data, these models require the addition of further elements. Here we

provide a framework integrating conduction physics that can be used to simulate

cortical electrophysiology measurements, particularly those obtained from multi-

contact laminar electrodes. This is achieved by endowing NMMs with basic physical

properties, such as the average laminar location of the apical and basal dendrites of

pyramidal cell populations. We call this framework laminar NMM, or LaNMM for

short. We then employ this framework to infer the location of oscillatory generators

from laminar-resolved data collected from the prefrontal cortex in the macaque monkey.

Based on the literature on columnar connectivity, we define a minimal neural mass

model capable of generating amplitude and phase coupled slow (alpha/beta, 4–22 Hz)

and fast (gamma, 30–250 Hz) oscillations. The synapse layer locations of the two

pyramidal cell populations are treated as optimization parameters, together with two

more LaNMM-specific parameters, to compare the models with the multi-contact

recordings. We rank the candidate models using an optimization function that

evaluates the match between the functional connectivity (FC) of the model and data,

where the FC is defined by the covariance between bipolar voltage measurements at

different cortical depths. The family of best solutions reproduces the FC of the observed

electrophysiology while selecting locations of pyramidal cells and their synapses that

result in the generation of fast activity at superficial layers and slow activity across

most depths, in line with recent literature proposals.
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Highlights:

• We provide a neural mass modeling formalism that includes a physical layer to

simulate electrophysiology measurements.

• To analyze in-vivo data collected in the macaque monkey during a memory task, we

propose a specific model with two coupled main circuits that can generate realistic

electrophysiological signals in two important oscillatory regimes—the alpha/beta

and the gamma bands.

• Physical elements in the model shed light on the generation of oscillations in the two

regimes and on the relative power distribution of fast and slow oscillatory signals

across cortical depth, which we show can be altered by the choice of the reference

location or method.

• The model is contrasted with in-vivo data, with parameters adjusted by matching

voltage statistics in the alpha/beta and gamma bands, leading to a solution with

slow frequency components generated by synapses spanning most cortical layers

and fast oscillations in superficial layers.

• The resulting formalism provides useful tools and concepts to analyze and model

data, with implications for understanding altered oscillatory EEG activity in

dementia, Alzheimer’s disease and other disorders with oscillatory features.

Keywords : laminar NMM, local field potentials, bipolar LFP, current source density,

relative power
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1. Introduction

Brain function results from interactions between specialized, spatially-distributed

areas of brain networks [4]. For this reason, to explore the relationship between function

and the underlying structure, the brain can be modeled as a complex and dynamic multi-

scale network (for a review, see [3, 1]). Along these lines, several computational studies

rely on large-scale neural mass models (NMM) networks to obtain insights into brain

physiology and its underlying mechanisms [40, 29, 52, 8].

Jansen and Rit’s NMM [24] is an effective lumped mesoscale model of neuronal

populations based on the work of Lopes Da Silva and van Rotterdam in the 1970s

[33, 34, 51]. It describes cortical column dynamics by capturing relevant physiological

features at the mesoscale, but in its original form, it has some limitations. For example,

it can represent oscillations only in one specific frequency band for each parameter

configuration [17], limiting its usefulness in modeling disorders with multifrequency

alterations such as Alzheimer’s [49]. This can be remedied by adding more neuronal

populations to the original model [55], as we do here. Furthermore, NMMs cannot per se

generate measurements such as local field potentials (LFP) or derived quantities such as

current source density (CSD) since these models are not mathematically embedded in a

physical medium. They do, however, provide a handle on synaptic current sources and

membrane potentials, where physics modeling can begin. While membrane potential

may be sufficient for comparison with patch-clamp experiments, adding further physical

structure is necessary to contrast model outputs with electrophysiological recordings

such as LFPs, stereotactic EEG (SEEG), or, in whole brain network models, scalp

electro- or magnetoencephalography (EEG or MEG).

The raw outputs of NMMs are the membrane potential alterations induced by

each synapse and the consequent firing rates of each population in the model. They

are determined by a set of parameters describing, e.g., the dynamics of post-synaptic

potentials, the relationship between membrane potential alteration and firing rate,

population connectivity, and external inputs. Several studies have employed rodent

multi-unit activity (MUA), LFP, and CSD measurements to estimate or fit some of

these parameters [56, 10, 31, 45]. The average membrane potential or firing rate of

the pyramidal populations is typically used to compare model outputs with MUA [10],

LFP [45], or CSD [31] measurements. Whole-brain computational studies use similar

methods to simulate macroscopic electrophysiological recordings (e.g., EEG) in humans

[40, 29, 46]. However, as discussed here, the connection between NMM membrane

potential or firing rates with electrophysiology is not well defined. Unlike detailed

neuron compartment models [30, 23], the modeling framework in these studies does not

use the physical laws of volume conduction (Poisson’s equation) to predict measurements

realistically, even though dipole approximation—weighted sums of the state variables of

NMMs— have been used to model EEG[20].

The first objective of this study is to create a framework for modeling cortical

column physics by embedding NMMs in a physical medium. Since synaptic and
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associated return currents in pyramidal cells are the main LFP generators [48, 16], we

will assign spatial coordinates to apical and basal dendrites of the pyramidal populations

corresponding to the locations where the flow of ions across the membrane takes place.

Then, using Poisson’s equation (which governs the distribution of electrostatic potential

in biological media) in a layered medium, we can realistically calculate the LFP profiles,

bipolar LFPs, and CSD. We call this framework laminar neural mass modeling, or

LaNMM for short, to emphasize its spatial and physical representation features.

As the first application of this approach, we explore a LaNMM adapted to simulate

fast (gamma band) and slow (alpha band) dynamics, and we fit the model parameters

to simulate multi-contact LFP recordings collected from the prefrontal cortex (PFC) of

two macaque monkeys performing a working memory task. This previously collected

dataset is described in Bastos et al. (2018) [6]. There, it was found that LFP power in

the gamma band (30–250 Hz) was strongest at superficial layers and in the alpha/beta

band (4–22 Hz) at deep layers and that the phase and amplitude from deep alpha drove

the phase and amplitude of superficial gamma dynamics.

These findings align with other studies of the visual cortex of non-human primates

[11, 15, 35, 57, 59, 28, 27]. However, the generality of these results has been recently

questioned [18] since they may depend on the location of the recording site (e.g., visual

vs. non-visual cortex), the task/stimuli type, and the type of measurement employed

(e.g., CSD vs. LFP). Bollimunta et al. (2008) [12], using bipolar LFP and CSD

measurements, found primary alpha power generators in the deep layers of the visual

areas. However, in the inferior temporal gyrus (IT), alpha generators were located in

superficial layers, and superficial to deep layer driving of alpha was found. Ninomyia et

al. (2015) [47], also using bipolar LFP and CSD measurements, replicated the findings

of Bastos et al. (2018) [6] in visual areas but not in the Supplementary Eye Field area.

Finally, Haegens et al. (2015) [22] found maximal LFP alpha power in deep layers but

a shift towards superficial layers using CSD. See Appendix A for a literature review

summary of studies with different recording areas and measurement types.

A potential explanation for these discrepancies is that the LFP is calculated as the

spatial line integral (along an arbitrary path) of the electric field from a (potentially

remote) reference electrode to the recording site (∆V = Vb − Va = −
∫ b

a
E · dl, with the

current density J = σE). Thus, LFPs are strongly susceptible to selecting the reference

point and currents potentially far from the measurement point. This can affect the

power distribution and coupling measurements (e.g., Granger causality). Using the

recorded data, we study the impact of the choice of reference or measurement type

on the electrophysiological power profiles. Ultimately, it would be desirable to avoid

the ambiguity induced by LFPs by estimating more local quantities such as bipolar

LFP—approximated as the first spatial derivative of the voltage along the linear array,

which removes the referencing ambiguity but not volume conduction confounds—or the

CSD—approximated as the second spatial derivative of the voltage multiplied by the

tissue conductivity, which deals with both problems. CSD analysis reveals the location,

direction (inwards or outwards), and strength of the flow of ions and is widely used to
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calibrate the laminar location of recording sites [36, 6, 19]. However, the derivatives

(differences) computation can also decrease the signal-to-noise ratio.

Our second objective is to use our modeling framework to conduct a model-driven

analysis of the data and spatially disentangle the slow and fast activity sources. By

adjusting model parameters such as pyramidal synapse locations, we can adjust the

LFP, bipolar LFP, and CSD power profile distributions and voltage correlations across

the PFC laminae and compare them with the recordings collected in macaque monkeys

by Bastos et al. (2018) [6]. To define a quantitative loss function for parameter

fitting while avoiding referencing issues, we use the complete set of bipolar voltage

correlations as the simulation target to maximize the correlation with the multi-contact

data. With this loss function, we deduce a family of laminar models, composed of

neuronal populations in superficial layers oscillating in the gamma band and neuronal

populations in deep layers oscillating in the alpha band. The optimized architectures

provide a mechanistic interpretation of the generation of slow and fast oscillations and

approximate the measured LFP and CSD power profiles.
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2. Methods

2.1. Multi-contact laminar recordings

The multi-contact dataset used in this study was collected in experiments described

in Bastos et al. (2018) [6]. LFPs from the prefrontal cortex (ventrolateral prefrontal

cortex and area 8a) of two macaque monkeys (Macaca mulatta) were recorded using

a linear array of multi-contact laminar probes (16 contacts, 0.2 mm separation) while

the animals were performing a search task (Figure 1A and 1B). All surgical and animal

care procedures were approved by the Massachusetts Institute of Technology’s (MIT)

Committee on Animal Care and were conducted following the guidelines of the National

Institute of Health and MIT’s Department of Comparative Medicine. For our analysis,

we selected the delay period (0.5—1s) of the successful memory encoding trials (see

Appendix B for more details). The reference (ground) of the LFP recordings was located

in the prefrontal cortex electrode chamber. To define which contacts belong to the

superficial and deep layers, we aligned the electrode contacts where the cerebrospinal

fluid (CSF) ends and the white matter (WM) begins. Our final selection included a total

of 11 contacts spanning 2 mm of grey matter (GM), the first five contacts (0.8 mm)

belonging to the superficial layers, and the rest in deep layers (1.2 mm), see Figure 1C

and Figure 1E [6]. The data is not openly available but can be reasonably requested

through a data sharing agreement to the corresponding author.

Figure 1D displays the power spectral density across depth of the LFP data; there

is a clear bump in slow frequencies (4–22 Hz), with a higher power in deep layers, and

broadband gamma activity in fast frequencies (30–250 Hz, just until 120 Hz shown),

with a higher power in superficial layers. We then filtered the data in these slow/fast

frequency bands (Figure 1E) and computed the relative power across depth (Figure 1F).

We found higher power in the fast band in superficial layers and the slow band in deep

layers, as reported in Bastos et al. (2018) [6].

2.2. Synapse-driven formulation of NMM

Neural mass models (NMM) are mathematical representations of the dynamics of

the average membrane potential and firing rate of a population of neurons in a cortical

column [34]. In essence, a second-order differential equation describes the average

membrane perturbation that a neuronal population m experiences at each synapse

where it receives inputs from another population n. The synapse equation represents

the conversion from an input presynaptic mean firing rate ϕn to a perturbation of the

mean membrane potential um←n of the postsynaptic neuron population. We represent

this relation here with the integral operator L̂−1m←n (a linear temporal filter), the inverse

of which is a differential operator L̂m←n,

um←n(t) = L̂−1m←n[Cm←n ϕn(t)]

L̂m←n[um←n(t)] = Cm←n ϕn(t)
(1)
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Figure 1. Multi-contact laminar recordings. A) Recordings from the ventrolateral

prefrontal cortex (VLPFC) (4 electrodes) and area 8a (2 electrodes) referenced to the

PFC electrode chamber. B) Visual search task. The macaque had to make a saccade

to the match after the delay period (0.5–1.2 s). C) Sample LFP (referenced to ground

in electrode chamber) recordings of the delay period for one of the trials. D) Sample

power spectrum across depth (gradient from superficial-black to deep-white contacts).

E) Sample in A) filtered in slow (4—22 Hz, blue) and fast (50—250 Hz) frequencies.

F) Relative power across depth for the slow and fast frequencies.

where Cm←n is the connectivity constant between the populations. The operator

L̂−1m←n can be expressed as a convolution of the input signal with a kernel of the

form h(t) = Aat exp[−at] for t > 0 [21], and satisfies the Green’s function equation

L̂m←n[h(t− t′)] = δ(t− t′) with appropriate causality boundary conditions.

For simplicity, we will use single index notation (s) to represent the synapse from

one neuronal population to another, such that the set of the synapse transmembrane

potential perturbations is {s} ≡ {m← n : Cm←n ̸= 0}.

The linear operator that describes the dynamics of synapse s is defined as

L̂s[us(t)] =
1

As

( 1

as

d2

dt2
+ 2

d

dt
+ as

)

us(t) (2)

where As is the average excitatory/inhibitory synaptic gain and as is the rate constant

of the synapse (as = 1/τs, τs being the synaptic time constant).

Each neuronal population converts the sum vm of the membrane perturbations from

each of the incoming synapses or external perturbations to an output firing rate (ϕm)

non-linearly by a sigmoid function,

vm(t) =
∑

s

us(t) (3)
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Figure 2. NMM for the macaque data. A) Diagram of the model equations. B)

Illustration of the neuronal populations and the connectivity between them. Top,

PING model, bottom, Jansen and Rit model. Rounded shapes in A) and B) represent

inhibitory populations, the rest, excitatory. C) Top, membrane potential of the

Pyramidal populations; bottom, power spectral density.

ϕm(t) = σm(vm(t)) =
2ϕ0

1 + er(v0−vm(t))
(4)

where ϕ0 is half of the maximum firing rate of each neuronal population, v0 is the value

of the potential when the firing rate is ϕ0 and r determines the slope of the sigmoid at

the central symmetry point (v0, ϕ0). We call this rewrite of the neural mass equations

[24, 21] a synapse-driven formulation of an NMM. See Appendix C for more details.

2.3. Neural Mass Model

To generate the dynamics described in previous experimental studies [6, 35, 15, 57,

47, 13, 27], where the amplitude and phase of slow oscillations were observed to drive

fast activity, we have combined two well-known NMMs. Slow oscillations in the alpha

band (10 Hz) are produced by the Jansen and Rit model [24], and fast oscillations in

the gamma band (40 Hz) by a variation of the PING model [14, 44].

The Jansen-Rit model (Figure 2) consists of a population P1 of pyramidal neurons,
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Figure 3. Laminar framework. A) Schematic of the geometry used to simulate LFPs.

For simplicity, we have removed the time variable. B) Representation of the return

currents for an apical synapse (top) and a basal synapse (bottom). C) Example of

a biologically informed architecture (only the synapses to pyramidal populations are

shown). D) LFPs generated by the architecture in C) for a probe distance ρ = 0.6 mm.

E) LFP shown in D) filtered in slow and fast frequency bands. F) Relative power across

depth for the LFPs shown in D) for the fast and slow frequency bands.

a population SS of excitatory cells (e.g., spiny stellate cells), and a population SST

representing slow inhibitory interneurons (e.g., somatostatin-expressing cells, such as

Martinotti cells). The PING model (Figure 2) consists of two populations: a pyramidal

population P2, and a fast interneuron population PV (e.g., parvalbumin-positive cells,

such as basket cells). The connectivity between these models is set so that there is

a positive cross-frequency coupling and a negative power correlation from slow-to-fast

frequencies, as is observed in experimental work [6]. Moreover, the connectivity profile is

inspired by experimental and modeling studies characterizing fast and slow oscillations

across the laminae ([38, 26] and the references therein).

The model equations are visually represented in Figure 2A and described in detail,

together with the parameters used, in Appendix D. Figure 2C shows the membrane

potential and power spectra of the two pyramidal populations of the model.

2.4. Physical environment

In the laminar framework, we embed the NMM into a physical medium composed

of two isotropic media—GM and CSF. We assume that the GM layers have a uniform

thickness across depth, from 0 to 2 mm. To produce electrophysiological measurements

from the model, we assume that synapses to pyramidal cells are the main current

generators, given the anatomy of these cells (an elongated form factor), organization

(perpendicular to the grey matter surface), and temporal coherence [48, 16].
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The apical and basal dendrites of the pyramidal populations, with locations across

the vertical z-axis (Figure 3A, zl with layer l ∈ [1, 6]), provide the location of the input

and output currents of each of the synapses (sinks and sources, respectively). For a

detailed geometrical representation of the locations of the synapses with respect to the

probe contacts across the GM see Appendix E. Since each synapse perturbation us

has its location in space (zl), it will produce a flow of ions across the membrane, and

therefore a synaptic current Is. We assume that the membrane perturbation of a given

synapse s, us, is linearly related to the injected current by a scaling factor that depends

on the post-synaptic neuron population type and represents different aspects such as cell

density and cell morphology. We capture this in a scaling factor—the gain parameter

gn —and write

Is(zl) =

{

gnus(zl), if zl is the location of s

0 otherwise
(5)

For simplicity, the time variable t is omitted here and in the following equations.

In the model, each injected current is accompanied by a capacitive return current

(charge conservation) supplied by charges accumulated in the membrane. The precise

flow of this current depends on cell morphology and electrical properties and is a subject

of the study [39]. Based on previous studies [32], here we assume that inputs to apical

dendrites (layer location za) create a return CSD current at two locations on the basal

dendrites, layer zb and zb+1, each with half the total current since there are large dendritic

ramifications at the soma of pyramidal neurons (Figure 3B). On the other hand, inputs

to the basal dendrites (zb) create a return current at the layer above (zb+1). Thus, for

each pyramidal cell, the total current generated at apical (Ia) and basal locations (Ib
and Ib+1) is

Ia =
∑

s

Is(za)

Ib =
∑

s

Is(zb)−
1

2

∑

s

Is(za)

Ib+1 = −
∑

s

Is(zb)−
1

2

∑

s

Is(za)

(6)

Once the current sources are specified, we can compute the electric potential and

derived quantities. We model the potential field generated by each pyramidal cell by

assuming there exist two isotropic media with conductivities σ1 = 0.40 S/m (GM) and

σ2 = 1.79 S/m (CSF) [42] and a common planar boundary (Figure 3A). Then, the

potential induced by a set of synaptic point current sources in GM is [48]

V (z) =
1

4πσ1

∑

s

[

Is(zl)

Rs(z)
+

(

σ1 − σ2

σ1 + σ2

)

Is(zl)

Rs
′ (z)

]

(7)

Here, Rs(z) and Rs
′ (z) are the distances from the current source and mirror current

source to the recording point (z), respectively (Figure 3A). These distances depend on

the parameter ρ, representing the distance from the point source to the probe.
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The normal component of the electric field can be computed from the gradient of

the potential. We can simulate the experimentally measured “normal component” of

CSD (A/m3) from the electric potential using

CSD(z) = −
σ

(δz)2

(

V (z + δz)− 2V (z) + V (z − δz)
)

(8)

where σ (S/m) is the tissue conductivity [43, 50]. The values at the boundary layers are

not evaluated.

2.5. Optimization function for model fitting

In order to compare the model and data and find optimal parameters, we computed

the matrix of cross-contact correlations for the slow and fast frequency bands. The

optimization process is represented in Figure 4 and described hereafter.

Figure 4. Overview of the optimization function for model fitting. The shaded box

(top-left) shows the process from LFP data to the creation of the two-point function

matrix, or functional connectivity matrix (FC, normalized by the standard deviation).

To fit the model FC to the data, we optimized three different parameters: the

distance to the probe ρ, the model architectures (a total of 44,100, just three samples

represented), and the relative gain η (just one sample fit from all the architectures is

shown here).

Let Va be the empirical filtered measurement at a contact a referenced to ground.

We then create the list of all bipolar combinations

(∆a)i = (V )i − Va (9)

To avoid redundancy, in what follows, i > a. Then, to get a generalized reference-free

functional connectivity representation (FC) matrix between all pairs of bipolar channels

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2022. ; https://doi.org/10.1101/2022.07.19.500618doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.19.500618
http://creativecommons.org/licenses/by-nc-nd/4.0/


Modeling framework for physics-based analysis of laminar LFPs 13

in the data, we compute the two-point function

(FC)ai,bj = ï(∆a)i(∆b)jð (10)

where the brackets denote the time average. Note that the two-point matrix FC

includes as a subset the voltage power profiles referenced to any choice of the reference

electrode.

As with real data, we can produce the two-point matrix from our model, FCθ, that

will depend on the parameters θ. We select the best model parameters by maximizing

the Pearson correlation coefficient (r) between the flattened data FCθ and model FC

matrices (only their diagonal and upper diagonal entries because they are symmetric)

averaged over the two frequency bands, i.e., θ∗ = argmaxθ χ(θ) with

χ(θ) =
1

2

{

r(FC
slow
θ ,FC

slow
data) + r(FC

fast
θ ,FC

fast
data)

}

(11)

The results discussed below are provided as the percent match between the model and

data (χ(θ) ∗ 100).

We adjusted the model using three sets of parameters (represented by θ): the

distance to probe ρ, the model architecture, and the relative gain η between the slow

and fast population. We explored 11 different ρ values, from 0.4 mm to 1.4 mm, with

a size step of 0.1 mm (see Figure 4, for simplicity, just four values are shown). We

also explored all possible model architectures by varying the location of every synapse

to the pyramidal populations (a binary choice of either apical or basal location) and,

thus, the location and layer span of the pyramidal populations. Figure 4 presents three

examples of the different architectures. Each pyramidal population receives a total of 4

synapses to be assigned to one of six layers with the restriction that not all synapses in

a population can be assigned to the same layer, so the analysis of combinations results

in a total of ((6 · 5/2) (24 − 2))
2
= 44,100 possibilities. Here 6 · 5/2 is the number

of possible apical/basal location pairs for a pyramidal cell population.At the same

time, 24 − 2 is the number of possible synapse assignments to each location, excluding

the two cases where all the synapses are assigned to the same location (this ensures

that a pyramidal population always spans two different locations). Finally, for each

ρ and synaptic architecture choice, the relative gain factor between the slow and fast

populations (η = gP1
/gP2

) was adjusted to maximize the optimization function. The

SciPy library method optimize [58] was used to fit the model parameters.
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3. Results

3.1. Optimization results

We first need to adjust model parameters to assess the model’s ability to simulate

the power profiles for different LFP-derived measurements. The optimization function

for model fitting is a generalization of the power profiles, namely the covariance

of arbitrary differential voltage measurements (the two-point functions derived from

bipolar voltages, see Methods section 2.5). We explored different model parameters to

obtain the desired cross-correlation profiles.

The NMM parameters associated with intrinsic dynamics were fixed to produce

representative fast (gamma) and slow (alpha) oscillations. We focused the fitting on

laminar parameters directly influencing measurable quantities, namely the distance to

probe (ρ), the location of the synapses (architectures), and the relative synaptic gain η

(Figure 4 and F1). The laminar architecture parameters specify not only the location of

the synapses in the pyramidal cells (apical vs. basal) but also the location of the apical

and basal dendrites across the layers (I-VI).

The family of models that best fit the data is described in Figure 5. Figure 5A

displays the percentage match with real data for different distances to probe ρ and the

architectures ordered from worst to best match for an optimized relative gain (η). For

most architectures, the best match happens with ρ = 1.4 mm, but if we zoom in to

the 44 best architectures (0.1% of the total), we can see that the best fit happens with

ρ = 1.0 mm. The model’s fit to the data degrades for ρ > 1.0 mm. It is noteworthy that

the optimization function does not flatten out near the optimum, so the best solutions

are sharply defined.

Then, we analyzed the statistics of the resulting number of synapses per layer of

the 0.1% best architectures (Figure 5B) for ρ = 1.0 mm, and the optimized relative gain

(Figure F1). For the fast circuit, most of the synapses appear located in the superficial

layers I–III, whereas the synapses of the slow circuit span layers I–V. The synapses to

the basal dendrites for the slow population are located in layers IV and V, and in the

fast circuit, the majority happens in layer III. In both the sum each connectivity plot,

the peak synaptic activity for the slow population is always deeper than for the fast

population. Although layer VI was included in the model, it was never the primary

layer providing the synaptic currents in the top 0.1% of architectures. See Figure F1

for the optimized gains for the 0.1% best architectures.

3.2. Influence of the reference location in LFP measurements and model fit

To explore the effect of the electrical reference location on LFP measurements, we

computed the LFP power profile using different electrical reference points: the ground

in the prefrontal cortex chamber —a point distant to the sources (LFPdist— and the

first superficial contact in the gray matter (LFP0). In order to mitigate the impact of

possible far-field sources and referencing artifacts, we also evaluated the relative power of
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Figure 5. A) Percentage match with the real data for the different distances to probe ρ

and ordered architectures from worst to best. B) Histograms of the number of synapses

per layer among the best 0.1% architectures for each connection in the model with the

best distance to probe (ρ = 1.0 mm). Synapses to the fast population are shown on the

top row, and synapses to the slow population are shown on the bottom. Dark colors

denote apical synapses and light colors basal synapses. The sum of the histograms for

the synapse locations for both populations is shown for reference in black. C) Sum

over all the synapses for both slow and fast populations.

the fast and slow-frequency bands for the bipolar LFP and CSD measurements (Figure

6A).

Given the definition of voltage as an integral of the field or currents and the results

obtained from bipolar LFP and CSD measurements, we infer that the low-frequency

LFP power data can be explained by currents generated by a long dipole spanning

most of the cortex, with the high-frequency components generated by a shorter dipole

in more superficial layers. Moreover, the LFP0 profiles in superficial layers display a

rapid increase in power with depth compared with deep layers, where it slowly plateaus,

which differs from the LFPdist case, where the profiles remain more stable across layers

for the fast frequency band, probably due to influences from more remote brain areas

near the ground. This suggests that the spatial integral of the field along the vertical

axis sums signals more coherently between the contacts in superficial layers than in deep

layers, i.e., there is more spatial coherence of the electric field in superficial than deep

layers. Moreover, the power peak of bipolar LFPs and CSD measurements also occurs

in superficial layers.

We next computed the average relative power depth profile for the best 0.1% of

architectures with ρ = 1.0 mm for each measurement (Figure 6B). These models also

predict the rapid increase in power in superficial layers for LPF0 and the plateau in

deep layers for both fast and slow frequencies. Furthermore, it shows a more superficial

peak for the fast frequencies, as observed in the empirical data (Figure 6A, LPF0). The

models also replicate the increased power in superficial layers for bipolar LFP and CSD.

The estimated resulting density of synapses (Figure 5 C) is seen to reflect the associated
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Figure 6. A) Relative power across depth for the real data. B) Relative power across

depth for the average of the 0.1% best solutions in Figure 5. Each column shows the

relative power profile for each measurement: LFP with a distant reference (LPFdist,

not present in the model), LFP with the reference in the first contact (LFP0), bipolar

LFP, and CSD. The dashed lines show the relative power of the best fit (architecture

shown at the left). Filled areas show one standard error of the mean. Normalized FC

by the standard deviation of C) the data and D) of the best model fit for the slow and

fast frequency bands.

CSD profiles from the model, with a peak in layer III (Figure 6 B, CSD).

The best solution is also shown in Figure 6B (best fit), in dashed lines, and together

with the FCdata used for the model fitting (Figure 6C) as the best FCmodel solution

(Figure 6D). We observe that the model fits the slow-frequency FCdata better than the

fast-frequency FCdata. We also explored the power correlation and the modulation index

of the model in Appendix G. We find similar patterns to those described in Bastos et al.

(2018) [6], namely a bottom-up coupling of phase and amplitude and anti-correlation of

fast and slow-frequency power.

Altogether, we conclude from fitting the data that our model’s main fast oscillatory

synapses are located in superficial layers. This is consistent with the optimization results

in Figure 5B, where most synapses were present in superficial layers in the fast frequency

sub-circuit. In the slow population model fit, the synapses are located in significantly

lower layers than the fast ones. Moreover, they span across almost all layers, peaking

in layer IV with considerable synapse activity also in layer V, which is absent from the

fast population.
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4. Discussion

4.1. The relative power distribution across layers depends on the choice of the

measurement

In addition to the importance of taking into account the reference point when

studying data in LFP space, Figure 6A demonstrates that the distributions of the

relative power vary significantly depending on the type of measurement. The CSD

or bipolar LFP for the slow band peak shifts to superficial layers compared to voltage

profiles, in agreement with other existing studies [11, 22]. We note that most studies

that find the peak of slow oscillations in deep layers are based on monopolar LFP voltage

recordings (LFPdist here), with a remote reference far from the electrode contacts [6,

35, 15, 54, 28].

The referencing issue can, in part, be addressed by re-referencing the data to local

electrode contacts [47, 28, 22]. It can be further mitigated using bipolar measurements

(bipolar LFP, related to the local electric field and current density) or CSD estimates.

Unlike CSD measurements, monopolar measurements (LFP) and bipolar LFPs are

susceptible to volume conduction from remote sources since they are calculated as the

spatial integral of the electric field between the measurement and reference point. It is

critical to consider more local types of measurements, such as the bipolar LFP or CSD,

to gain more information about the synaptic currents underlying LFP measurements

[12, 22, 23] (see Figure A1).

It is important to note that other factors may influence the power profiles across

layers: recording area [22, 47, 12], experimental task [28, 11, 22, 27, 18], and

experimental procedures such as electrode placement [47]. The proper identification

of the transition between superficial and deep layers, which should also depend on the

area recorded [19, 15, 47], can also be confounding across studies. Future work should

consider all these factors while trying to establish a golden standard for the experimental

procedures (as suggested in [47]). The current availability of massively dense depth

probe electrodes should shed light on these issues in the coming years.

4.2. Mesoscale laminar models can predict physical measurements of cortical rhythms

across the laminae

A model-driven interpretation of the role of synaptic currents can shed some light

on disagreements in the literature concerning the location of oscillatory generators.

In addition to measurement issues related to referencing, confusion may arise from

terminology—“generator” is a loose term that a physical modeling approach can clarify.

Because electrophysiological recordings are driven synaptic currents which may be

distant from the projecting or receiving cell bodies, there is a disassociation between

soma location and generation locus. Thus, in this paper, we associate the term

generators with synapses and the currents they generate.

In this study, we showed that our modeling framework could produce different
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oscillatory rhythms across layers and different types of laminar measurements extracted

from multi-contact electrodes in a physically realistic manner (Figure 6). Despite the

caveats listed in Section 4.1, it is interesting to note that we found the laminar generators

for the slow rhythm to be located in significantly deeper layers than the generators of

the fast rhythm. Indeed, the top-performing models for the fast (“gamma”) frequency

synaptic generators included exclusively superficial layers 1–3. In contrast, the top

performing models for the synaptic generators of the slower (“alpha”) frequency included

deeper layers 4 and 5. This suggests that the generating circuit for alpha (and beta)

oscillations integrates information across a larger spatial extent and samples from all

layers.

4.3. Relation of the current model to current theories of alpha/beta and gamma

oscillations

Our observation of superficial layers for gamma generation and superficial and

deep layers for alpha/beta generation fits nicely with previous proposals of the role

of these oscillations in the cortex. Alpha/beta has been implicated in feedback

processes and gamma in feedforward sensory processing [7, 41]. Generally, top-

down anatomical projections derive mostly from deep cortical layers, and bottom-

up anatomical projections derive most strongly from superficial layers [37]. Bottom-

up sensory processing is thought to rely on point-to-point connectivity and driving

connections which determine the receptive field properties of downstream neurons

[53]. Consistent with a bottom-up process, our model suggests that the gamma

oscillatory circuit is largely constrained to the layers that send feedforward output

(layers 2/3). Top-down processing is thought to rely on more modulatory, non-linear

connections which integrate multiple streams of information [5]. Consistent with a more

integrative, top-down process, our modeling results suggest that alpha/beta oscillations

are generated by a more complex and spatially distributed process that may combine

anatomical feedforward and feedback connections.

4.4. Limitations

Several limitations exist regarding the physical modeling framework we propose in

this study. First, when estimating the voltage of the cortical column model (Equation

7), we assume the column can be represented as a set of monopoles and that the

measurement point is relatively far from it. In reality, there is a field of dipoles in

the cortical surface/patch, and the measurement contact can be placed precisely where

the main dipole is located [16]. More realistic modeling approaches can be explored,

such as describing the sources as homogeneous density distribution in the horizontal

plane [39]. Additionally, as is often done in experimental work using depth probes,

we assume that all currents occur in the vertical plane in our estimation of CSD from

data. To properly extract the CSD, we need measurements in 3D space. However, this

assumption is reasonable given that pyramidal cells are mostly homogeneously oriented
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perpendicular to the surface [16, 48].

Another limitation of this work is the relative simplicity of the presented NMM,

with just two pyramidal populations oscillating in alpha and gamma bands, respectively.

However, this simple model architecture inspired by the experimental work of Bastos

et al. (2018) [6] has allowed us to explore all its combinations of pyramidal synapses.

The LaNMM only allows for two synapse locations (apical and basal dendrites). Still,

recent work that has addressed this limitation along with improving the model of return

currents [39], which is also simplified in the present work.
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5. Conclusions

In this study, we first extend the neural mass modeling formalism to include multiple

oscillatory circuits and simulate realistic electrophysiological signals. We then use it to

analyze data collected from multi-contact laminar measurements in the macaque. The

analysis is performed with a simple laminar model whose connections are derived from

literature and that is designed to produce coupled fast and slow oscillatory activity. We

fit model parameters and the location of synapses by matching voltage statistics in the

alpha/beta and gamma bands, leading to a solution with slow frequency oscillations

generated by synapses spanning most cortical layers and fast oscillations in superficial

layers. The laminar modeling framework developed here can help understand the neural

mechanisms of electrophysiological signals and shed some light on controversial issues

regarding discrepancies in LFP, bipolar LFP, and CSD measurements. The modeling

framework may also help establish a firmer connection between neural mass models and

EEG/MEG data and can be easily extended to analyze future data collected with dense

probes. Finally, the possibility of modeling both slow and fast oscillatory activity within

the same computational framework opens the possibility of understanding the origin of

generalized EEG slowing observed in neurodegenerative conditions such as Alzheimer’s

Disease and dementia, where slowing of alpha and reduced power of gamma activity are

observed with disease onset and progression [9].
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Appendix A. Literature review

Figure A1. Summary of literature review of the slow (alpha/beta) and fast (gamma)

cortical generators.

Figure A1 provides a graphical summary of the literature review performed of the

different measurement types (rows) used in this study. It also shows the different results

obtained for the different areas recorded. When using LFPs without taking into account

reference location, most studies conclude that the fast activity is in upper layers and slow

activity in lower layers. The conclusions change with other, more local measurement

types (bipolar LFPs and CSD).

Appendix B. LFP data analysis

The multi-contact dataset used in this study was collected in experiments described

in Bastos et al. (2018) [6]. We analyzed the data from 2 monkeys (L, S, male and female,

respectively) for six different sessions and two different brain areas (VLPFC and 8a).

In Figure B1, the average across the correct trials for each session is shown. The delay

period of monkey-L was fixed (1s), but for monkey-S it varied from 0.5 s to 1 s.

Appendix C. Jansen and Rit model in synapse-driven formulation

Appendix C.1. Jansen and Rit model description

In 1993, Jansen and Rit [25] developed a model of a cortical column which consists

of three different neural populations: pyramidal neurons (P ), inhibitory interneurons (I)

and excitatory interneurons (E). The state variables of the model are the membrane
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Figure B1. Average LPFs across trials, N, for the different monkeys and different

sessions. The delay period is in between the ’sampleOff’ and ’testOn’ mark, in pink,

which varies in time for monkey S (mean shown for the ’testOn’, standard deviation

in dashed lines). Each trace represent a different contact.

potential and the firing rate of the neuron populations, and they are linked by two

different transformations that shape the classical properties of neurons: the pulse-to-

wave h(t) and wave-to-pulse σ(v) functions [21, 2].

The σ(v) operator, also called “wave-to-pulse”, introduces a nonlinear component

that transforms the average membrane potential of a population v(t) (mV ) into an

average firing rate ϕ(t) (Hz)

ϕ(t) = σ(v(t)) =
2ϕ0

1 + er(v0−v(t))
(C.1)

where ϕ0 is half of the maximum firing rate of each neuronal population, v0 is the value

of the potential when the firing rate is ϕ0 and r determines the slope of the sigmoid at

the central symmetry point (v0, ϕ0). See Table C1 for the standard parameter values of

the model equations.

The h(t) operator, also called “pulse-to-wave”, converts the average rate of action

potentials into an average post-synaptic potential, either excitatory h0,1(t) or inhibitory

h2(t). The transformation is done by a second-order linear differential operator whose

impulse response is given by

h(t) =

{

aA te−t t g 0

0 t < 0
(C.2)

where A is the synaptic gain (in potential units, e.g., mV) and a (with units of time,

s−1) is the rate constant (and its reciprocal τ the time constant) of the synapse. Each
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Table C1. Parameters, description, and standard values of the JR synapse model.

Values taken from [24]. Note that the sigmoid parameters in this model (v0, ϕ0, r) are

common to all neuron populations.

Parameter Description Value

As Average excitatory and inhibitory synaptic gain
A1,3,4,5 = 3.25 mV

A2 = −22 mV

as
Time rate constant of average excitatory and

inhibitory postsynaptic potentials

a1,3,4,5 = 100 s−1

a2 = 50 s−1

Cs

Average number of synaptic contacts between

population types

C1 = 108

C2 = 33.7

C3 = 1

C4 = 135

C5 = 33.75

v0 Potential when 50% of the firing rate is achieved 6 mV

ϕ0 Half of the maximum firing rate 2.5 Hz

r Slope of the sigmoid function at v0 0.56 mV−1

of these post-synaptic boxes corresponds to solving a differential equation of the form

ü(t) + au̇(t) + a2u(t) = aAϕ(t) (C.3)

where ϕ(t) is the output of the sigmoid function (average firing rate of a population,

in Hz) and u(t) is the membrane potential alteration in each of the synapses. The

function h(t) is the equation’s Green’s function or impulse response, i.e., the solution

with ϕ = δ(t) and appropriate boundary conditions. The parameters A and τ = 1/a

represent the maximal amplitude of excitatory or inhibitory post-synaptic potential and

the average time constant for each synapse type, respectively.

This second-order differential equation can be decomposed in a system of two

equations,

u̇(t) = z(t)

ż(t) = aAϕ(t)− 2a z(t)− a2u(t)
(C.4)

There are thus three main state variables in the model: the average membrane potential

of each of the subpopulations of the system: vP (t) for the pyramidal cells, and vE(t),

vI(t) for the excitatory and inhibitory interneurons, respectively. The average membrane

potential vP of the pyramidal population has been typically used as a proxy source of

electrophysiological signals such as LFPs and EEG (dipole generator). We improved

upon this first-order approximation in the LaNMM framework (see next section).

The Jansen and Rit model can be described with a set of six differential equations
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Figure C1. Jansen and Rit model. A) Schematics of the connections between the

different populations: P—Pyramidal, I—Inhibitory interneuron and E—Excitatory

interneuron. B) simplified wired diagram exploiting the presence of common synapse

types, c) full synapse-driven wiring diagram with all synapses explicitly represented.

with each pair corresponding to a population,

u̇0(t) = u3(t)

u̇3(t) = a0A0

[

σP (u1(t)− u2(t))
]

− 2a0 u3(t)− a20u0(t)

u̇1(t) = u4(t)

u̇4(t) = a1A1

[

ϕext(t) + C2σE(C1u0(t))
]

− 2a1 u4(t)− a21u1(t)

u̇2(t) = u5(t)

u̇5(t) = a2A2

[

C4σI(C3u0(t))
]

− 2a2 u5(t)− a22u2(t)

(C.5)

For an illustrative description of the model equations see Figure C1 A) and B). In

this cortical column configuration, the membrane potential of the pyramidal population

is vP (t) = u1(t)−u2(t), the membrane potential of the inhibitory interneuron population

is vI = u0 and of the excitatory interneuron population is vE = u0.

Appendix C.2. Derivation of the synapse-driven formulation from Jansen and Rit

equations

We can rewrite the Jansen and Rit NMM focusing on the dynamics of each of the

synapses independently, which will allow us to generalize the equations and simplify the

definition of the neural dynamics for the development of more complex models. We will

define a new linear operator, L̂−1[·], to transform the pre-synaptic average firing rate of

neuron n ϕn into a post-synaptic membrane perturbation of neuron m um←n:

um←n(t) = L̂−1m←n[Cm←n ϕn(t)]

L̂m←n[um←n(t)] = Cm←n ϕn(t)
(C.6)

The inverse of the L̂(·) operator and can be expressed as an integral (convolution)

operator using the typical h(t) kernel,

L̂−1[f(t)] =

∫ ∞

−∞

dt′ h(t− t′)f(t′) (C.7)
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Note that, for simplicity, the index s will represent the synapse from one neuronal

population to another m← n, where n,m ∈ [P,E, I, ext] and (m,n) : Cm←n ̸= 0. Then,

we can define the linear operator that captures the synapse dynamics L̂s(·) as

L̂s[us(t)] =
1

As

( 1

as

d2

dt2
+ 2

d

dt
+ as

)

us(t) (C.8)

The sum of each pre-synaptic perturbation into neuron n is the overall membrane

potential perturbation of the post-synaptic neuron, vm,

vm(t) =
∑

s

us(t) (C.9)

and the average firing rate of the neural population, ϕm, is the output of the non-linear

function,

ϕm(t) = σm(vm(t))

σm(vm(t)) =
2ϕ0

1 + er(v0−vm(t))

(C.10)

Finally, the set of equations, one for each synapse (m,n) and neuron m,

um←n(t) = L̂−1m←n[Cm←n ϕn(t)]

vm(t) =
∑

n:Cm←n ̸=0

um←n(t)

ϕm(t) = σm(vm(t))

(C.11)

which we call the synapse-driven reformulation of the Jansen-Rit that can be easily be

extended to other, more complex NMMs.

Rewritten using the synapse-driven formalism, the Jansen and Rit equations specify

the dynamics as a function of the average firing rate for each neural population ϕn, the

average membrane potential for each population vn, and the membrane perturbation

per each synapse us,

L̂1[u1(t)] = C1ϕP = C1σ(vP ) = C1σ(u2(t) + u5(t) + u4(t))

L̂2[u2(t)] = C2ϕE = C2σ(vE) = C2σ(u1(t))

L̂3[u3(t)] = C3ϕP = C3σ(vP ) = C3σ(u2(t) + u5(t) + u4(t))

L̂4[u4(t)] = C4ϕI = C4σ(vI) = C4σ(u3(t))

L̂5[u5(t)] = C5ϕext(t)

(C.12)

Figure C1 C) provides the diagram and dynamics of the Jansen and Rit NMM in the

Synapse-driven implementation.
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Appendix D. Model parameters and equations

The parameters of the model are described in Table D1 and the equations are the

following:

L̂1[u1(t)] = C1 σSS(vSS)

L̂2[u2(t)] = C2 σSST (vSST )

L̂3[u3(t)] = C3 ϕe1

L̂4[u4(t)] = C4 σP1
(vP1

)

L̂5[u5(t)] = C5 σP1
(vP1

)

L̂6[u6(t)] = C6 σP2
(vP2

)

L̂7[u7(t)] = C7 σPV (vPV )

L̂8[u8(t)] = C8 ϕe2

L̂9[u9(t)] = C9 σP2
(vP2

)

L̂10[u10(t)] = C10 σPV (vPV )

L̂11[u11(t)] = C11 σP2
(vP2

)

L̂12[u12(t)] = C12 σP1
(vP1

)

L̂13[u13(t)] = C13 σP1
(vP1

)

(D.1)

with neuronal population membrane potentials given by:

vP1
= u1 + u2 + u3 + u11

vSS = u4

vSST = u5

vP2
= u6 + u7 + u8 + u12

vPV = u9 + u10 + u13

(D.2)

Appendix E. Geometrical representation of the laminar model

In this section we show the location of the synapses used in the LaNMM together

with the contact location of the different electrode positions in the GM (Figure E1). The

cortical depth (2 mm) is shown in the shaded area, where all the sources and contacts are

located. The sources (N=6) and contacts (N=11) are equally distributed in the cortical

space. We also show the different distances to probes ρ used in the model fitting.

Appendix F. LaNMM contact couplings

The median relative gain of the 0.1% best architectures for ρ = 1.0 mm is 0.13,

meaning that the gain of the fast circuit gP2
is approximately seven times higher than

the gain of the slow circuit gP1
, η = gP1

/gP2
. This might be due to the fact that the
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Table D1. Parameters, description, and standard values of the model. Values are

taken from [24] and [44]. Note that the sigmoid parameters in this model (v0, ϕ0, r)

are common to all neuron populations. Moreover, excitatory synapses have the same

synapse dynamics, (A, a)AMPA = (A, a)1,3,4,5,6,8,9,11,12,13, and inhibitory synapses

have either fast dynamics, (A, a)GABAfast
= (A, a)7,10, or slow, (A, a)GABAslow

=

(A, a)2.

Parameter Description Value

As

Average excitatory and inhibitory synaptic

gain

AAMPA = 3.25 mV

AGABAslow
= −22 mV

AGABAfast
= −30 mV

as
Time rate constant of average excitatory

and inhibitory postsynaptic potentials

aAMPA = 100 s−1

aGABAslow
= 50 s−1

aGABAfast
= 220 s−1

Cs

Average number of synaptic contacts

between population types

C1 = 108, C2 = 33.7

C3 = 1, C4 = 135

C5 = 33.75, C6 = 70

C7 = 550, C8 = 1

C9 = 200, C10 = 100

C11 = 80, C12 = 200

C13 = 30

v0
Potential when 50% of the firing rate is

achieved

6 mV

except for P2 : 1mV

ϕ0 Half of the maximum firing rate 2.5 Hz

r Slope of the sigmoid function at v0 0.56 mV−1

ϕe External input

ϕe1: pink noise with

mean 200 Hz and

standard deviation 30 Hz

ϕe2 = 90 Hz

intrinsic power of gamma oscillations in our model is one order of magnitude lower than

the power of alpha oscillations (Figure F1).

Appendix G. LaNMM contact couplings

Here we show the power correlation and the modulation index (MI) for the model

LFP data. The power correlation is computed by extracting the amplitude of the band-

passed signals using the Hilbert transform and then computing the Spearman correlation

of the envelopes. The MI is computed as the entropy of the phase-amplitude histogram,

with phase measured in the slow band and amplitude in the gamma band.

We show in Figure G1 that there is a generic negative power correlation between

contacts. The most negative peak happens between the deep slow band and the

superficial fast band for the best fit model parameters (box 4), and for the average

over the best 0.1% model parameters from superficial to superficial layers (box 1).
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Figure E1. Schematic of the locations of the sources in every layer and the probe

contacts for the different distances to probe (ρ) in the grey matter (2 mm).

Figure F1. Box plot of the optimized relative gain η with the median of the

distribution in green for the best 0.1% architectures in Figure 5.

In the case of MI, the model always displays a positive MI through all the contacts,

with the peak in box 1, from superficial slow frequencies to superficial fast ones.
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Figure G1. Power correlation (left) and modulation index (right) for the best model

fit (top) and averaged over the best 0.1% model results. The dashed lines refer to the

transitions between superficial and deep layers. The white rows indicate the reference

contact.
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