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Abstract

Multi-omics datasets are becoming more common, necessitating better integration methods to realize their revolutionary

potential. Here, we introduce Multi-set Correlation and Factor Analysis, an unsupervised integration method that

enables fast inference of shared and private factors in multi-modal data. Applied to 614 ancestry-diverse participant

samples across five ’omics types, MCFA infers a shared space that captures clinically relevant molecular processes.

Main
Recent years have seen an explosion in multi-omic data, with studies simultaneously profiling RNA expression,
protein levels, chromatin accessibility and more1. By providing complementary views into the underlying
biology, these datasets promise to illuminate molecular processes and disease states that cannot be gleaned
from any lone modality2. However, joint inference methods are lacking in either the number or type of
modes that can be used, or in flexibility and efficiency1. Multi-omic data bring substantial challenges:
distributions differ between modes, the sample size is typically small relative to features, efficient algorithms
are needed, and each mode has contributions from factors that are shared between modes and unique to
itself3,4. Canonical correlation analysis (CCA) is a statistical technique that infers shared factors between two
data modes by finding correlated linear combinations of the features in each5. CCA has enjoyed substantial
attention in genomics6–9, however, extending CCA to additional modes is fraught; at least 10 different
formulations are equivalent in the two-mode case10, and many are challenging to fit11. Equivalently, CCA
can be conceptualized as a probabilistic model (pCCA), revealing a connection to factor analysis12.

We have developed Multiset Correlation and Factor Analysis (MCFA, Figure 1a), an unsupervised
integration method that generalizes pCCA and factor analysis, enabling fast inference of shared and private
factors in multimodal data. MCFA is based on two insights: 1) unlike traditional CCA, pCCA has only one
natural extension to multi-modal data, which is both conceptually elegant and efficient to fit, and 2) after
fitting pCCA, the residual in a mode represents private structure, which is well-modeled by factor analysis.
Our method combines these insights to fit factors that are shared across modalities and private to each
simultaneously. For efficiency and regularization, MCFA uses the top principal components (PCs) of each
mode6,7. It allows use of random matrix techniques13 to choose the shared dimensionality and number of
PCs, eliminating tuning parameters. Finally, MCFA is a natural approach to integration: in the supplemental
note, we detail a theoretical connection between our model and multiset CCA.

We have applied MCFA to 614 ancestry-diverse individuals from the Multi-Ethnic Study of Atherosclerosis
(MESA)14, which has collected comprehensive phenotypic data of its subjects. The Trans-Omics for Precision
Medicine (TOPMed)15 program instituted a multi-omics pilot study to evaluate the utility of long-term
stored samples for discovery related to heart, lung, blood, and sleep disorders. MESA provided samples for
five ’omics types: 1) whole genome sequencing (WGS), 2) RNA-sequencing of peripheral blood mononuclear
cells (PBMCs), 3) DNA methylation array profiling from whole blood 4) protein mass spectrometry of blood
plasma, and 5) metabolite mass spectrometry of blood plasma. We integrated RNA-sequencing, methylation,
protein, and metabolite data from Exam 1 using MCFA, which inferred a fourteen-dimensional shared space.
We found that shared structure explained a large proportion of the variance in each mode (Figure 1b, right).
Protein levels had the highest sharing with 29.2% of the variance explained (VE) by the shared space, followed
by RNA and metabolite levels (16.6% and 17.1%, respectively). Methylation showed the least sharing, with
only 8.1% VE by the shared space. Due to the high dimensionality of the data and the limited sample size,
about half of the variance in each dataset is unmodeled to reduce overfitting. Using MCFA, it is possible
to further infer the variance in each modality explained by the individual factors, thus determining which
modalities contribute to each (Figure 1b, left). Our top factor has contributions from all modalities, but
their respective contributions to the other factors vary substantially.

We used uniform manifold approximation and projection (UMAP)16 to construct a 2D embedding of the
shared and private spaces (Figure 1c). We noticed a striking clustering of the individuals by self-reported
ancestry (SRA) and sex in the shared space, even though the top PCs of individual modes do not cluster by
these factors (Figure S1), and the shared space was inferred without genetic or sex chromosome features.
Shared factor 1 separates Black and white individuals, with Hispanic individuals in between, while factor 3
separates Chinese individuals, and factor 2 differentiates by sex (Figure S1, S2). We validated this structure
via leave-one-out cross-validation, indicating our PC selection strategy mitigated over-fitting (Figure S3).
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Next, we evaluated the total phenotypic variance explained by each of our inferred spaces (Figure 1d, S2,
Table S1-S3). The shared space captured 95.3% of the variation in sex, 83.3% in site, 80.0% in SRA,
and 60.2% in age. The shared space also captured anthropomorphic differences such as BMI (51.0% VE)
and clinical measures including those related to kidney function (creatine, 64.8% VE) and inflammation
(TNF-alpha receptor-1 69.1% VE). We used CIBERSORT17 and the Houseman method18 to estimate the
cell-type composition of our RNA (PBMC) and methylation (whole blood) samples, respectively. Both shared
and privates spaces contributed to the relative proportions of PBMC-abundent cell types (e.g. T cells and NK
cells) estimated from both data modalities, while the proportion of PBMC-depleted types (e.g. neutrophils)
estimated from the methylation data was only captured by the methylation private space. Modality-private
spaces frequently captured technical factors: 100% of the variance in sequencing center and 71.6% of the
variance in 3-prime bias are captured by the RNA private space, while 76.8% of methylation array batch
is captured by its private space. Many phenotypes that are themselves measurements of metabolites were
captured by the metabolite private space, however the strongest association was with the month of sample
collection (85.8% VE). We noticed no large associations between the protein private space and any of our
metadata, despite several of our phenotypes being clinical protein markers, however, several of these factors
are partially captured by the shared space.

Finally, we integrated WGS data by conducting a GWAS of the inferred factors while controlling for
site, age, sex and 11 genotype PCs. Given our limited sample size, we did not expect to find genome-wide
significant associations. However, we hypothesized that genetic associations with our inferred factors, which
represent major axes of molecular variation, may be enriched for known GWAS hits or trans-eQTLs. We
obtained a list of 10,174 such associations from the eQTLgen consortium19, of which 3,854 are trans-eQTLs,
and further defined a more limited set of 1,107 “influential” trans-eQTLs that affect at least 10 genes. We
tested the GWAS of each factor for enrichment of these three categories and found 9 significant enrichments
(mean χ2

cat > 1, FDR 5%, Figure 2a, Figure S4). Factor 7 showed the strongest enrichment for reported
GWAS hits and trans-eQTLs. The top GWAS SNPs associated with factor 7 are from blood lipid studies and
are located primarily around the FADS1 and FADS2 genes that are known to regulate lipid metabolism20.
These include rs174541 (p = 4.3× 10−5 for factor 7 association) which is also reported in GWAS of type-2
diabetes21, rs174549 (p = 5.6× 10−5) which is also reported in GWAS of white blood cell count22, and rs1535
(p = 8.3×10−5), which is also reported in GWAS of inflammatory bowel disease23 (Table S4). Factor 7 explains
6.7% of the modeled variation in methylation, the largest of any factor, and many of the top-associated SNPs
were also cis-methylation QTLs in MESA24 (Figure 2c). Factor 7 is anti-correlated with sample proportion of
CD8 T cells and NK cells estimated from methylation data (ρ = −0.41 and ρ = −0.25), and correlated with
BMI (ρ = 0.25) and measures of inflammation including TNF-R1 (ρ = 0.33) and interleukin-6 (ρ = 0.20)
(Figure 2b). While further research is needed to establish causal relationships of these genetic effects on
methylation in cis and trans as well as on diverse traits, we note that DNA methylation patterns have been
previously associated with lipid metabolism and metabolic disease25,26.

MCFA has several advantages compared to other multi-omic integration approaches. Compared to group
factor analysis methods4, MCFA separates modality-specific from dataset-shared factors. Compared to
non-negative matrix factorization-based methods3 that share a feature weight set across modalities, MCFA is
able to use all data types. Due to the use of observational data and unsupervised methods, all analyses should
be considered exploratory; they can find structure in the data while generating hypotheses but cannot be used
to make causal claims and may reflect properties of the underlying data. For example, in MESA the sample
collection site is strongly correlated with self-reported ancestry (SRA) and air-quality. We repeated our
analysis of the variance explained by the learned space while additionally controlling for site (Table S3), and
noticed a small decrease in the proportion of VE in SRA (from 80.0% to 71.6%) and a large decrease in the
variance explained in PM25 (from 66.8% to 24.2%). In this study air quality and site are nearly co-linear and
thus their independent effects cannot be distinguished. Future work with larger sample sizes may allow for
network inference methods to generate directed hypotheses27. Genetic associations are particularly valuable in
this, with the inferred axes of molecular variation providing a promising future trait for GWAS and pheWAS
studies. TOPMed is among the most ambitious current efforts to collect multi-omic population-level data,
thus given the results of this pilot analysis we expect future integration studies in this cohort to be fruitful.
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Figure 1: a) The MCFA model. b) Breakdown of the variance in four omics types captured by the inferred
space. c) UMAP embedding of the shared and private spaces, annotated with the most relevant feature set.
d) Variance in sample metadata explained by each learned space.
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a

b

Trait rsid Chr Position Gene p_val_trait p_val_F7 CpG p_val_mQTL n_snps

Red blood cell fatty acid levels rs174541 11 61565908 FADS2 3.000000e-19 0.000043 cg19610905 3.964333e-115 29

Height rs7184046 15 75866150 PTPN9 2.000000e-10 0.000061 cg01268058 1.333136e-48 1

Systemic lupus erythematosus rs4852324 2 74202578 DGUOK-AS1 6.000000e-14 0.000343 cg04315689 5.291427e-07 1

Mature red cell;HGB rs1256061 14 64703593 ESR2 NaN 0.000464 cg09764150 4.629048e-13 1

IgG glycosylation rs2186369 22 24170996 SMARCB1 3.000000e-08 0.000505 cg11916091 2.902150e-22 1

Mean platelet volume rs7743045 6 119102271 SELENOKP3 NaN 0.001140 cg12098441 3.562536e-18 1

Polycystic ovary syndrome rs2059807 19 7166109 INSR 1.000000e-08 0.001288 cg16940601 5.447991e-31 1

Plasma omega-6 polyunsat. 
fatty acid levels

rs7925523 11 61442492 DAGLA 2.000000e-59 0.001343 cg25599065 2.748742e-41 2

Height rs7155279 14 92485881 TRIP11 1.000000e-10 0.001414 cg27159443 4.693894e-42 3

Proinsulin levels rs11603334 11 72432985 ARAP1 3.000000e-102 0.001421 cg03713592 2.969683e-114 2

c

*

*

* *
*
*

Figure 2: a) QQ-plot of a GWAS for factors 1, 2, 6, and 7. b) Correlation of factor 7 with sample metadata.
c) Top unique SNP-CpG pairs for known trait-associated SNPs additionally associated with factor 7. n snps

indicates the number of SNPs suggestively-associated with factor 7 that have the same top-associated CpG.
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1 Online methods

1.1 Multiset correlation and factor analysis

Let Y = {Ym}
M
m=1 be a set of N × pm observed data matrices: N individuals measured in M data modalities

consisting of pm features each. We model each observed mode as having contributions from two low-dimensional
hidden factors (Figure 1a, Figure S7)

zn ∼ N (0, Id)

xmn ∼ N (0, Ikm
)

ymn ∼ N (Wmzn + Lmx
m
n ,Ψm)

where d is the shared hidden dimensionality, km are the dataset-private hidden dimensionalities,Wm are pm×d
shared space loading matrices, Lm are pm × km private space loading matrices and Ψm = diag(ψ1

m, . . . , ψ
pm

m )
are the diagonal residual covariance matrices. Given Y , d and km, our goal is to infer the hidden factors Z
and Xm and loading matrices Wm and Lm. This can be accomplished using a straightforward application of
expectation-maximization (EM)1. For a derivation of the EM update equations, as well as a more detailed
exposition including the relationship to pCCA, factor analysis and other multiset CCA (MCCA) methods,
see the Supplemental Note. In practice, we center and scale all data variables. This is not strictly required,
however it enables simple estimation of the number of PCs to include and simplifies explained variance
calculations, see below.

1.2 Model initialization

An important aspect of EM optimization is choosing a good initialization. We benchmarked three approaches
to initializing W : random initialization and two versions of MCCA that correspond to maximizing the sum
of pairwise correlations with the average variance and average norm constraints. These MCCA fomulations
can be solved via simple eigendecompositions. We found that the sum of pairwise correlations with average
variance constraint produced the best initial estimates (Figure S5). This can be solved with a simple two step
procedure: 1) whiten each data matrix using the singular value decomposition (SVD), 2) perform a second
SVD on the concatenated whitened data matrices2:

Input: Y1, . . . , YM , d
Result: Ŵ = [W>

1 : . . . :W>
M ]>

Uall ← concatenate(SVD(Y1).U, . . . , SVD(YM).U ) ;

Ŵ ← SVD(Uall).V [:, 0 : d] ;
ρ̂← SVD(Uall).λ[0 : d] ;

return Ŵ , ρ̂

We initialize L and Ψ using probabilistic PCA on the residual data matrices after fitting MCCA. Specifically:

Input: Yi,Wi, N, ki
Result: L̂i, Ψ̂i

Σ⊥
i ← Y >

i Yi/N −WiW
>
i ;

L̂i ← eigh(Σ⊥
i ).V [:, 0 : ki] ;

σ2 ← mean(eigh(Σ⊥
i ).λ[ki :]) ;

Ψ̂i ← σ2
1ki

;

return L̂i, Ψ̂i

1.3 High dimensionality and selection of hyperparameters

There are two primary approaches to control for over-fitting in applications of CCA-type methods to high-
dimensional (N � p) problems. The first is to use penalized optimization techniques, where the objective
function additionally contains an l1 constraint on the weight matrices3. The second is to project each
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dataset onto its informative principal components4–6. In this application, we choose the latter approach
in order to find components with broad effects on the structure of the data, rather than specific effects
on small numbers of molecular features6. We choose the number of principal components of each dataset
using the Marchenko-Pasteur law7, which states that for mean 0, variance 1 data, principal components
with corresponding eigenvalues above λm = 1 +

√

pm/N should be considered non-noise. We are not
aware of a corresponding law for the cross-covariance matrices used in CCA, however, the empirical spec-
tral distribution of the cross-covariance of matrices of random noise can be easily estimated in practice:

Input: N, k = {km}
M
m=1, nit

Result: ρ̄
ρ← array[nit] ;
for it← 0 to nit do

for km ∈ k do

[Ym]N,km

i=1,j=1 ∼ N (0, 1);

end

ρ[it]← max(InitializeMCFA(Y1, . . . , YM).ρ);

end

return mean(ρ)

Then we keep all components where ρinit > ρ̄.

1.4 Calculating the variance explained

The linear-Gaussian nature of the model simplifies estimation of the variance explained. That is, if the features

of each mode Y
(:,j)
m are normalized to variance 1, the model Y

(:,j)
m =

∑

dW
(j,d)
m Z(:,d)+

∑

km
L
(j,km)
m X

(:,km)
m + ε

implies that the variance in feature j of mode m explained by shared factor d isW
(j,d)2
m . Likewise, the variance

explained by the km-th private factor of mode m is L
(j,km)2
m . The total variance in mode m explained by a

given shared factor d (respectively, private factor km) is thus given by
∑

j W
(j,d)2
m (respectively,

∑

j L
(j,km)2
m ),

and the total variance in the mode explained by the factors are
∑

j,dW
(j,d)2
m and

∑

j,km
L
(j,km)2
m , respectively.

Note that when working in PC-space, the raw W and L features correspond to variance in PCs explained,
rather than modality features. Thus, we calculate the variance explained after projecting back into the
original feature space Wm ← VmWm, Lm ← VmLm where Vm are the right singular vectors of mode m.

To calculate the variance in a metadata feature explained by a particular space, we regressed the trait
value T on the shared or private space, T ∼ Z or T ∼ Xm. For continuous-valued traits we used linear
regression as implemented in SciKitLearn v1.0 linear model.LinearRegression8 and report the coefficient
of determination. For discrete-valued traits, we used multinomial logistic regression as implemented in
SciKitLearn v1.0 linear model.LogisticRegression8. We fit two models: a null model including only
intercept or intercept and site, and one including the factor variables. We report the variance explained as
the McFadden pseudo-R29, 1− llalt

llnull
, with llnull and llalt being the model negative log-likelihood for the null

and alternative model respectively.

1.5 Calculating relative feature importance

Feature importance in traditional CCA is defined by the correlation of the variables in the reduced space
ρ = cor(Y1f1, Y2f2). Unfortunately this notion breaks down in higher dimensions. As we discuss further in
the supplemental note, the degree of sharing in MCCA is defined by functions of the cross-correlation matrix
in the reduced space,

S = cor(Y1f1, . . . , Ymfm) ∈ R
m×m.

We seek to define an analogous quantity for our graphical model. In MCFA, the data in the reduced (shared)
space is given by the posterior mean of Z, Ẑ = E[Z|W,Ψ, L, Y ] = Y (WW> + LL>Ψ)−1W . We can also
calculate the posterior mean of Z conditional on observing a single mode, Ẑm = E[Z|Wm,Ψm, Lm, Ym] =
Ym(WmW

>
m + LmL

>
mΨm)−1Wm. This latter quantity is analogous to the reduced variables Ymfm in MCCA.
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Thus we can summarize the importance of each dimension of the shared space by calculating functions of the
cross-correlation of columns of Ẑm,

Sd = cor(Ẑ
(:,d)
1 , . . . , Ẑ(:,d)

m ).

As we show in the supplemental note, the relevant function in our model is the generalized variance |S|. The
determinant of a correlation matrix is bounded between 0 and 1, with lower values indicating more correlation,
and higher values less. Thus to aid interpretability, we report ρd = − log |Sd| and re-order columns of Z and
W with decreasing ρd.

1.6 SNP set enrichment analysis

For SNP set enrichment analysis, we broadly follow the approach of CAMERA10. In brief, enrichment
statistics can be inflated due to correlations in the sample - in this case, linkage disequilibrium between two
GWAS SNPs. This results in an under-estimate of the standard error of the enrichment test statistic and an
increase in false positives. We calculate the variance inflation factor10 by using plink v1.911,12 to estimate
linkage disequilibrium between annotation SNPs in 337, 781 unrelated individuals from the UK Biobank13.
The variance inflation factor is ν = 1 + (pA − 1)ρ̄A, with ρ̄A the average person correlation between features
in set A. We test the known GWAS mean χ2 statistic h0 : χ̄2

A = 1 against the alternative h1 : χ̄2
A > 1. The

standard error of the test statistic is σt = σ
√

ν
pA
− 1

pm
with σ the pooled empirical standard deviation of the

test statistics.

1.7 Preprocessing of the MESA multi-omics pilot dataset

The Multi-Ethnic Study of Atherosclerosis (MESA) is a prospective cohort study with the goal to identify
progression of subclinical atherosclerosis14. MESA recruited 6,814 participants, ages 45-84 years and free
of clinical cardiovascular disease, during 2000-2002. The participants are 53% female, 38% non-Hispanic
white, 28% Black, 22% Hispanic and 12% Asian-American. The Multi-Omics pilot dataset includes 30x whole
genome sequencing (WGS) through the Trans-Omics for Precision Medicine (TOPMed) Project15. Blood
samples for multi-omic analysis of participants were collected at two time points (exam 1 and exam 5) and
assayed for transcriptomics (RNA-seq in PBMCs, monocytes and T cells), Illumina EPIC methylomics data
(whole blood), targeted and untargeted metabolomics data (plasma), and proteomics data (plasma). The
MESA Multi-Omics pilot biospecimen collection, molecular phenotype data production and quality control
(QC) are described in detail in Aguet et al16.

We analyzed individuals from Exam 1 where all five data types were collected and pass QC. All data
modalities were inverse rank normalized prior to sample filtering based on the availability of other data types.
There were 614 individuals with observations of WGS, RNA-seq, methylation, metabolomics and proteomics
that all pass QC. We further removed all features (CpGs, genes, proteins) located on sex-chromosomes,
0-variance features, CpGs with missing data, and CpGs where the probe was within 5 bases of a SNP, leaving
us with 6, 042 metabolites, 1, 222 proteins, 19, 034 genes, and 724, 210 CpGs. We analyzed 28 PCs of RNA
expression, 39 PCs of methylation, 27 PCs of protein expression and 63 PCs of metabolite, as determined
using the aforementioned method. For sample metadata, we leveraged the rich phenotype data available in
MESA that were harmonized by the TOPMed Data Coordinating Center17. For details on the estimation of
sample cell-type proportions from methylation and RNA-seq data, see Kasela et al18.

1.8 Cross-validation

We used leave-one-out cross-validation (CV) to evaluate our model. The primary reason we chose leave-one-out
CV over k-fold CV is that our hyperparameter selection method depends on the sample size. With n− 1
individuals, the same parameters used for the full inference procedure are likely to be valid. For small k,
fitting with k−1

k n individuals while using the same number of PCs may result in over-fitting in the training
set, and using a smaller number of PCs may not capture the same variation as the full model.
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To perform cross-validation we hold out a set of individuals, fit the MCFA model, then project the held
out individuals into the learned space. If Wtr, Ltr and Φtr are the model parameters learned from the training
set, the projections of the test data into the learned spaces are given by

Ẑte = Yte(WtrW
>
tr + LtrL

>
trΨtr)

−1Wtr

X̂te = Yte(WtrW
>
tr + LtrL

>
trΨtr)

−1Ltr

The full data reconstruction is

Ŷte = ẐteW
>
tr + X̂teL

>
tr

We evaluate model fit by calculating the normalized root mean squared error (NRMSE). In order to
provide a fair evaluation across modes with a highly variable number of features, we calculate NRMSE on a
per mode basis

NRMSE =

√

√

√

√

√

1

pm

pm
∑

i=1

(

Y
(:,i)
m − Ŷ

(:,i)
m

)2

varY
(:,i)
m

and potential over-fitting can be assessed by comparing the median training set NRMSE against the median
test set NRMSE over many cross-validation iterations.
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Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot
tech. rep. (2011), 2825–2830.

9. McFadden, D. Conditional logit analysis of qualitative choice behavior. Frontiers in Econometrics,
105–142 (1973).

10. Wu, D. & Smyth, G. K. Camera: A competitive gene set test accounting for inter-gene correlation.
Nucleic Acids Research 40, 1–12 (2012).

11. Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets.
GigaScience 4, 1–16. arXiv: 1410.4803 (2015).

12. Purcell, S. & Chang, C. PLINK [1.9]

13. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562,

203–209 (Oct. 2018).

11

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.07.18.500246doi: bioRxiv preprint 

https://arxiv.org/abs/1802.03759v1
https://arxiv.org/abs/1410.4803
https://doi.org/10.1101/2022.07.18.500246
http://creativecommons.org/licenses/by-nc/4.0/


14. Bild, D. E. et al. Multi-Ethnic Study of Atherosclerosis: objectives and design. American journal of
epidemiology 156, 871–881 (Nov. 2002).

15. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature
2021 590:7845 590, 290–299 (Feb. 2021).

16. Aguet, F. & Lappalainen, T. Placeholder for FA paper (2022).

17. Stilp, A. M. et al. A System for Phenotype Harmonization in the National Heart, Lung, and Blood
Institute Trans-Omics for Precision Medicine (TOPMed) Program. eng. American journal of epidemiology
190, 1977–1992 (Oct. 2021).

18. Kasela, S. et al. Interaction molecular QTL mapping discovers cellular and environmental modifiers of
genetic regulatory effects. Forthcoming (2022).

2 Acknowledgements

BCB would like to thank Lior Pachter and Nicholas Bray for numerous insightful conversations about
CCA over the years. Funding for DAK and BCB is provided by NIA U01AG068880. Funding for BCB
is provided by NHGRI K99HG012373 and the Columbia Data Science Institute. Funding for TL and
SK is provided by NHLBI R01HL142028. Funding for TL is provided by NIH R01AG057422 and NIMH
R01MH106842. TL is a paid adviser or consultant of Variant Bio, GSK, Pfizer and Goldfinch Bio. Whole
genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) program was supported
by the National Heart, Lung and Blood Institute (NHLBI). WGS for “NHLBI TOPMed: Multi-Ethnic
Study of Atherosclerosis (MESA)” (phs001416.v1.p1) was performed at the Broad Institute of MIT and
Harvard (3U54HG003067-13S1). Centralized read mapping and genotype calling, along with variant quality
metrics and filtering were provided by the TOPMed Informatics Research Center (3R01HL-117626-02S1).
Phenotype harmonization, data management, sample-identity QC, and general study coordination, were
provided by the TOPMed Data Coordinating Center (3R01HL-120393-02S1), and TOPMed MESA Multi-
Omics (HHSN2682015000031/HSN26800004). The MESA projects are conducted and supported by the
National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for
the Multi-Ethnic Study of Atherosclerosis (MESA) projects are conducted and supported by the National
Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is
provided by contracts 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-
95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163,
75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-
95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001420, UL1TR001881, DK063491, and
R01HL105756. The authors thank the other investigators, the staff, and the participants of the MESA study
for their valuable contributions. A full list of participating MESA investigators and institutes can be found
at http://www.mesa-nhlbi.org. This publication was developed under a STAR research assistance agreement,
No. RD831697 (MESA Air), awarded by the U.S Environmental protection Agency. It has not been formally
reviewed by the EPA. The views expressed in this document are solely those of the authors and the EPA
does not endorse any products or commercial services mentioned in this publication.

12

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.07.18.500246doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.18.500246
http://creativecommons.org/licenses/by-nc/4.0/


Figure S1: The top shared components learned from the MCFA model clearly reflect self-reported ancestry
(SRA), age and sex, while none of the top PCs of any of the datasets show this structure.
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Figure S2: Correlation of each dimension of each learned space (rows) with each metadata factor (columns).
Red values indicate positive correlation and blue values negative correlation.
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a

b

c

Figure S3: a) The top shared cross-validated MCFA components, annotated by self-reported ancestry (SRA),
age and sex. Each point is creating by holding that individual out, fitting MCFA on the remaining individuals,
then projecting the held-out individual into the shared space (see Online Methods). b) UMAP embeddings of
the cross-validated MCFA components. c) Normalized root mean square error of the 613 training individuals
for each dataset (top), versus the held-out individual (bottom), split by data type. Blue dashed line indicates
the median.
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Figure S4: Q-Q plot of GWAS results for each shared factor.
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Figure S5: Average normalized model likelihood (y-axis, negative log-likelihood divided by minimum negative
log-likelihood) as a function of EM step iteration. We simulated three datasets with p = 30, 40, 50 observed
features generated by km = 8, 11, 15 private and d = 10 shared factors and N = 1000 individuals in 100
simulations. We compared random, SUMCORR-AVGVAR, and SUMCORR-AVGNORM model initializers.
SUMCORR-AVGVAR produced good initial estimates resulting in fast convergence, while other approaches
took longer to converge.
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Supplemental Note

PCA, pPCA and FA

Principal components analysis1 is a classic technique for dimensionality reduction. Assume we have N
samples measured at p features each. Let yn be a p-vector denoting the observations for sample n and let
Y = [y1 : . . . : yN ]> be the corresponding N × p data matrix. For ease of notation, we assume throughout
that each feature has mean 0 but note that this is not a requirement.

There are many ways to derive PCA, but perhaps the most common is to consider the problem of finding
a unit projection vector vi that maximizes the variance in the reduced space Ti = Y vi. The first k principal
axes v1, . . . , vk are a sequence of orthonormal vectors which successively maximize the variance in the reduced
space Ti = Y vi. Let Σ̂ = Y >Y/N be the empirical covariance matrix of Y . PCA solves the following problem:

maxvv
>Σ̂v

s. t. v>v = 1

The top-k principal axes are thus given by the eigenvectors of Σ̂ that have the k highest eigenvalues. The data
in PC space is thus given by the linear projection of the data into this space. Specifically, let Vk = [v1, . . . , vk]
be the projection matrix, and let Y = UΛV > be the singular value decomposition of Y . Notice that the
eigenvectors of the covariance matrix Σ̂ and the right singular values of the data matrix Y are the same. The
points in PC-space are thus given by Tk = Y Vk = UkΛk where Uk are the the left singular vectors with the
k-highest singular values.

Tipping and Bishop2 introduced a graphical model called probabilistic Principal Components Analysis
that provides a generative framework for understanding PCA. The model is as follows:

xn ∼ N (0, Ik)

yn ∼ N (Lxn, σ
2I)

where L is a p× k weight matrix and σ2 ≥ 0 is the residual noise. They show that the maximum likelihood
estimate of the parameters W and σ2 are given by

LML = Vk(Λ
2
k − σ

2Ik)
1/2R

σ2
ML =

1

p− d

d
∑

j=k+1

Λ2
j

where R is an arbitrary k × k orthogonal rotation matrix. Thus, as σ2 → 0, W represents an orthogonal
projection into standard PC space. This defines an equivalence relationship between pPCA and PCA.

Factor analysis is a very similar model, with the only difference being the form of the noise term. Rather
than force an isotropic noise model σ2I, factor analysis allows for an arbitrary diagonal positive semi-definite
matrix Ψ = diag(ψ1, . . . , ψp) � 0. This allows each observed feature to have it’s own error variance.

CCA and pCCA

Now assume each sample is measured on two different sets of conceptually distinct features y1n and y2n with
corresponding N ×p1 and N ×p2 data matrices Y1 and Y2. As before let Σ̂11 = Y >

1 Y1/N and Σ̂22 = Y >
2 Y2/N

be the empirical covariance matrices for modalities 1 and 2, and let Σ̂12 = Y >
1 Y2/N be empirical cross-

covariance matrix between the features in each mode. The first set of canonical vectors f1, f2 are those that
maximize the correlation

cor(Y1f1, Y2f2) =
f>1 Σ̂12f2

√

f>1 Σ̂11f1

√

f>2 Σ̂22f2
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Note that, similarly to PCA, this definition reveals that CCA is a constrained optimization problem:

maxf1,f2f
>
1 Σ̂12f2

s. t. f>1 Σ̂11f1 = f>2 Σ̂22f2 = 1

but note that rather than the unit norm constraint f>f = 1 used in PCA, we have a unit variance constraint
f>Σ̂f = 1. This unit variance constraint allows there to be correlation within the features of a dataset that
is not explained by correlation between the features across datasets.

Successive components can be found by projecting out the first canonical component and again maximizing
the correlation of the residuals3. Equivalently, all components can be found by solving an eigenvalue problem.
To see this consider the change of variables g1 = V1Λ

−1
1 f1 and g2 = V2Λ

−1
2 f2. The correlation is now given

by:

cor(Y1f1, Y2f2) =
g>1 U

>
1 U2g2

√

g>1 g1
√

g>2 g2

which indicates that g1, g2 are the top pair of left-right singular vectors of the matrix U>
1 U2. Further

components are further singular vectors of U>
1 U2, and it’s singular values are the correlations. This also

reveals that CCA is equivalent to using PCA to whiten the variables of each data matrix, concatenating
them, and then performing PCA again on the whitened, concatenated data matrix.

Likewise to probabilistic PCA, probabilistic CCA is a graphical model that provides a generative framework
for thinking about CCA4. The model is as follows:

zn ∼ N (0, Id)

y1n ∼ N (W1xn,Ψ1)

y2n ∼ N (W2xn,Ψ2)

similarly to FA and pPCA, we sample a d-dimensional random normal hidden vector, pass it through a weight
matrix, and add random noise. We have two weight matrices W1 and W2 of shape p1 × d and p2 × d, and
two noise matrices Ψ1 and Ψ2, however in this case these noise matrices are arbitrary positive semi-definite
matrices (Ψ• � 0). Bach and Jordan show that the maximum likelihood estimate of the parameters of pCCA
can be determined from the CCA solution:

W1,ML = Σ̂11F1dM1

W2,ML = Σ̂22F2dM2

Ψ1,ML = Σ̂11 −W1,MLW
>
1,ML

Ψ2,ML = Σ̂22 −W2,MLW
>
2,ML

where F•d = [f•1; . . . ; f•d] are the first d canonical directions and M1,M2 are arbitrary matrices with spectral
norm less than 1 such that M1M2 = ρd.

Multi-set canonical correlation analysis

Now rather than having two sets of conceptually distinct features for each sample, assume we haveM different
conceptually distinct sets of features {ymn } with corresponding N ×pm data matrices {Ym}. In MCCA, we are
still interested in finding projection vectors {fm} which map our high dimensional data into a one-dimensional
space, however there are many formulations that are equivalent to classical CCA with two datasets. Let
Σ̂kl = Y >

k Yl/N be the empirical cross-covariance matrix between the features in dataset k and dataset l. The
covariance of the data in the reduced space is given by

S =







f>1 Σ̂11f1 . . . f>1 Σ̂1MfM
...

. . .
...

f>M Σ̂M1f1 . . . f>M Σ̂MMfM






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The various formulations of MCCA correspond to optimizing different objective functions J(S) subject to
the a constraint function h(f, Σ̂)5,6. In brief, possible objective functions include:

• SUMCOR: Maximize the sum of pairwise correlations: J =
∑

i,j f
>
i Σ̂i,jfj = 1>S1

• SUMSQCOR: Maximize the sum of squares of pairwise correlations: J =
∑

i,j(f
>
i Σ̂i,jfj)

2 = ||S||2F

• MAVAR: Maximize the largest eigenvalue of S: J = λ1(S)

• MINVAR: Minimize the smallest eigenvalue of S: J = λd(S)

• GENVAR: Minimize the determinant of S, also known as the generalized variance: J = |S| =
∏

i λi(S)

while possible constraints include:

• VAR: The canonical directions each have unit variance: h : ∀if
>
i Σ̂iifi = 1

• AVGVAR: The canonical directions have unit variance on average: h :
∑

i f
>
i Σ̂iifi = d

• NORM: The canonical directions each have unit norm: h : ∀if
>
i fi = 1

• AVGNORM: The canonical directions have unit norm on average: h :
∑

i f
>
i fi = d

It is straightforward to see that any of the 5 listed objective functions could be combined with either of the
first two constraints to create 10 optimization problems that are equivalent to CCA in the two-dataset case.
The final two constraints correspond to relaxations of the unit variance constraint which can reveal a simpler
optimization problem in some cases, and which does not suffer from being trivially satisfiable when p > N .

Some of these can be fit by solving eigenvalue problems, while others require more complicated iterative
methods. Of particular note are the SUMCOR and GENVAR objectives. The GENVAR objective was the
first considered MCCA approach7, where a simple solution for the M = 3 and p1 = p2 = p3 = 2 case is given.
GENVAR is a particularly natural way of thinking about MCCA - it is a single value that represents the
multidimesnioal scatter of points in space8. Smaller values of the generalized variance indicate less scatter,
and thus higher “correlation” of the points in the reduced space. Despite this, is has received relatively
little attention as a method for MCCA, perhaps because it is challenging to fit6. On the other hand, most
attention has been focused on the SUMCOR objective9, which can be solved easily with the AVGVAR and
AVGNORM constraints. SUMCOR with AVGVAR constraint can be solved via a simple two-stage procedure:
first whiten each data matrix, concatenate the whitened features, and then perform PCA on the whitened,
concatenated features. SUMCOR with AVGNORM constraint is even simpler to solve: simply perform PCA
on the concatenated feature set. In the two dataset case, this latter method is sometimes called “diagonal
CCA” and forms the basis of the original integration approach used in Seurat10 as well as many sparse
CCA approaches11. This is also closely related to group factor analysis approaches for multi-modal data,
see for example12 and references therein. The equivalence to PCA on the concatenated feature set makes it
straightforward to see that the NORM-based constraints involve an implicit assumption that shared factors
are responsible for both covariation across features in different modes and between features within a mode.

Probabilistic graphical model for multi-set CCA

Here, we describe a probabilistic graphical model for multi-set CCA (pMCCA). Note that while this model
is an option in our software package, we derive and discuss it primarily to draw connection to traditional
multiset CCA. The full model which includes simultaneous factor analysis of the private spaces is described
in the next section. Unlike traditional CCA, pCCA has one single obvious generalization to multiple datasets:

zn ∼ N (0, Id) (1)

ymn ∼ N (Wmzn,Ψm) (2)

where again we have weight matrices Wm of shape pm × d and arbitrary positive semi-definite noise matrices
Ψm � 0. This model is illustrated as a plate diagram in Figure S6.

We will now see that pMCCA is related to MCCA in the following ways:
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Figure S6: Probabilistic multi-set canonical correlation analysis (pMCCA). For each individual n (the outer
plate), we sample zn from the d-dimensional unit Gaussian, zn ∼ N (0, Id). For each dataset m (the inner
plate) we sample the features of that dataset from a pm-dimensional unit Gaussian, ymn ∼ N (Wmzn,Ψm).
Here Wm ∈ R

pm×d is the transformation weight matrix and Ψm ∈ R
pm×pm � 0 is the residual covariance

matrix.

Observation 1. The maximum likelihood solution to the pMCCA model corresponds to the GENVAR
objective with VAR constraint in the M = 3 dataset case.

Observation 2. The maximum likelihood solution to the pMCCA model does not correspond to any of the
listed MCCA formulations in the M ≥ 4 case.

Let W = [W>
1 : . . . : W>

M ]> be the stacked weight matrices and Ψ = diag(Ψ1, . . . ,ΨM ) be the block
diagonal covariance matrix. The model covariance is given by:

Σ =











W1W
>
1 +Ψ1 W1W

>
2 . . . W1W

>
M

W2W
>
1 W2W

>
2 +Ψ2 . . . W2W

>
M

...
...

. . .
...

WMW
>
1 WMW

>
2 . . . WMW

>
M +ΨM











=WW> +Ψ (3)

Let Y = [Y1 : . . . : YM ] so that the empirical covariance matrix can be written Σ̂ = Y >Y/N . The model
negative log-likelihood is given by:

l(Σ|Σ̂) =
Np

2
log 2π +

N

2
log |Σ|+

N

2
Tr(Σ−1Σ̂) (4)

where p =
∑

m pm is the total number of features from all datasets. It is straightforward to see that many
arguments from Bach and Jordan4 carry over to the multi-set case, thus we refer readers there for proofs. In
particular we have

Lemma 1. At a stationary point of the likelihood Σmm =WmW
>
m +Ψm = Σ̂mm.

Thus, at a stationary point

Tr (Σ−1Σ̂) = Tr















Σ̂11 . . . W1W
>
M

...
. . .

...

WMW
>
1 . . . Σ̂MM







−1

Σ̂









= p (5)

so that the models minimum negative log-likelihood is proportional to the log generalized variance of the
model:

l(Σ|Σ̂) ∝ log |Σ| (6)

Moreover, Lemma 1 allows us to further factorize Σ

Σ =













Σ̂
1/2
11 0 . . . 0

0 Σ̂
1/2
22 . . . 0

...
...

. . .
...

0 0 . . . Σ̂
1/2
MM























I W̃1W̃
>
2 . . . W̃1W̃

>
M

W̃2W̃
>
1 I . . . W̃2W̃

>
M

...
...

. . .
...

W̃MW̃
>
1 W̃MW̃

>
2 . . . I























Σ̂
1/2
11 0 . . . 0

0 Σ̂
1/2
22 . . . 0

...
...

. . .
...

0 0 . . . Σ̂
1/2
MM













(7)

21

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.07.18.500246doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.18.500246
http://creativecommons.org/licenses/by-nc/4.0/


and so

l(Σ|Σ̂) ∝

∣

∣

∣

∣

∣

∣

∣

∣

∣

I W̃1W̃
>
2 . . . W̃1W̃

>
M

W̃2W̃
>
1 I . . . W̃2W̃

>
M

...
...

. . .
...

W̃MW̃
>
1 W̃MW̃

>
2 . . . I

∣

∣

∣

∣

∣

∣

∣

∣

∣

(8)

where W̃m = Σ̂
−1/2
mm Wm. Notice that the off-diagonal blocks are the cross-covariance matrices in the model of

individually-whitened datasets. If there exists a set of projection vectors fm such that f>mΣ̂mmfm = 1 and
the projection of the data into the space spanned by fm has covariance equal to the above, then minimizing

the above determinant solves the GENVAR MCCA objective with VAR constraint. Let Ỹm = YmΣ̂
−1/2
mm be

the whitened datasets and let gm = Σ̂
1/2
mmfm be the change of variables that gives g>mgm = 1. The projection

in MCCA space is given by Ỹ m
|| = Ỹ mgmg

>
m. We seek gm such that

Ỹ k>
|| Ỹ l

|| = gkg
>
k Ỹ

k>Ỹ lglg
>
l (9)

= gkg
>
k Σ̂

−1/2
kk Σ̂klΣ̂

−1/2
ll glg

>
l (10)

= gkf
>
k Σ̂klflg

>
l (11)

= W̃kW̃
>
l (12)

Thus we must satisfy
g>k W̃kW̃

>
l gl = f>k Σ̂klfl (13)

Notice that for d = 1, the left and right side are scalars. This means we can express our necessary criterion as

qkql = ckl (14)

ForM = 3, this results in a system of 3 equations in 3 unknowns, which has solutions of the form q1 =
√

c12c13
c23

.

Note that these can be found by setting gk = W̃k/||W̃k||2 which yields qk = ||W̃k||2. For M > 3, there are
more equations than unknowns and they cannot be mutually satisfied in general. Note also that a similar
argument can be used in the d > 1 case to show that this system is not satisfiable even for M = 3. Thus,
unlike CCA and pCCA, fitting d > 1 components is not equivalent to iteratively fitting single components
and projecting them out.

Multiset Correlation and Factor Analysis

The residual covariance matrices Ψd deserve additional attention. Put simply, these matrices represent the
residual structure in each modality after accounting for shared structure across modes. Instead of allowing
this matrix to be arbitrary, we can instead think of this matrix as having some additional structure. For
example, Ψd might be the sum of a low rank and an isotropic covariance matrix. This suggests that we add
an additional latent variable to each dataset, corresponding to a factor model for the “private” structure (e.g.
not shared with other datasets). Specifically, we modify pMCCA such that for each dataset, we additionally
sample a latent variable from a km-dimensional unit Gaussian. The observed data are then sampled from a
multi-variate Gaussian where the mean is a linear combination of both private variables, but the residual
covariance matrix is now diagonal.

zn ∼ N (0, Id) (15)

xmn ∼ N (0, Ikm
) (16)

ymn ∼ N (Wmzn + Lmx
m
n ,Ψm) (17)

where Lm are the km × pm private space loading matrices and Ψm = diag(ψ1
m, . . . , ψ

pm

m ) are the diagonal
residual covariance matrices. Note that in general we allow the entries on the diagonal of Ψm to take different
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Figure S7: Multset correlation and factor analysis as a plate diagram. For each individual n (the outer plate),
we sample zn from the d-dimensional unit Gaussian, zn ∼ N (0, Id). For each mode m (the inner plate) and
individual n we sample xmn from a km-dimensional unit Gaussian. The observed features of that mode are
then sampled from a pm-dimensional unit Gaussian, ymn ∼ N (Wmzn +Lmx

m
n ,Ψm). Here Wm ∈ R

pm×d is the
transformation weight matrix, Lm is the private-space loadings matrix, and Ψm = diag(Ψ1

m, . . . ,Ψ
pm

m ) is the
diagonal residual covariance matrix.

values, similarly to factor analysis. One could additionally constrain the entries of the diagonal to be the
same, Ψ = σ2Ip, similar to pPCA.

This model can be fit via a straightforward application of the expectation-maximization (EM) algorithm13.
We first derive conditional expectation of the log-likelihood, L for the model under the generative process
specified in Figure S7. For convenience, let

yn = [y1>n : . . . : ym>
n ]> ∈ R

p (18)

xn = [x1>n : . . . : xm>
n ]> ∈ R

k (19)

W = [W>
1 : . . . :W>

M ]> ∈ R
p×d (20)

L = diag(L1, . . . , Lm) ∈ R
p×k (21)

Ψ = diag(Ψ1, . . . ,ΨM ) ∈ R
p×p (22)

where k =
∑

m km. At a given time step t during the computation of the EM algorithm, let the conditional
expectation for given latent variables zi and xi be E[·|Wt,Ψt, Lt, yi] = 〈·〉.

The conditional expectation of the log-likelihood (E-step) is:

〈L〉 = −
N
∑

i=1

C̃ +
1

2
ln |Ψ|+

1

2
Tr

(

Ψ−1yiy
>
i

)

+
1

2
Tr

(

L>Ψ−1L 〈xix
>
i 〉

)

(23)

+
1

2
Tr

(

W>Ψ−1W 〈ziz
>
i 〉

)

+Tr

(

L>Ψ−1W 〈zix
>
i 〉

)

− y>i Ψ
−1W 〈zi〉 (24)

− y>i Ψ
−1Lxi +

1

2
Tr 〈xix

>
i 〉+

1

2
Tr 〈ziz

>
i 〉 (25)

At a given timestep t, we compute the update of parameters t+ 1 by differentiating L with respect to
Wt, Lt, and Ψt, and setting the derivative of the corresponding expected log-likelihood to 0. The following
update steps are derived using standard matrix differentiation results14.

Wt+1 =

( N
∑

i=1

yi 〈z
>
i 〉 − Lt 〈xiz

>
i 〉

)( N
∑

i=1

〈ziz
>
i 〉

)−1

(26)

Lt+1 =

( N
∑

i=1

yi 〈x
>
i 〉 −Wt 〈zix

>
i 〉

)( N
∑

i=1

〈xix
>
i 〉

)−1

Ψt+1 (27)

=
1

N

N
∑

i=1

yiy
>
i + L 〈xix

>
i 〉L

> +W 〈ziz
>
i 〉W

> + 2L 〈xiz
>
i 〉W

> − 2yi 〈z
>
i 〉W

> − 2yi 〈x
>
i 〉L

> (28)
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