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ABSTRACT We present mdciao, an open-source command line tool and Python Application-

Programmers-Interface (API) for easy, one-shot analysis and representation of molecular dynamics 

(MD) simulation data. Building upon the widely used concept of residue-residue contact-frequencies, 

mdciao offers a wide spectrum of further analysis and representations, enriched with domain specific 

annotations when possible. It tries offer a user-friendly interface, which simplifies most decisions for 

non-expert users, while keeping customizability for expert ones. Emphasis has been put into 

automatically producing annotated, paper-ready figures and tables. Furthermore, seamless on-the-fly 

query and inclusion of consensus nomenclatures for GPCR, G-proteins, and kinases is made possible 

through the respective online databases, which allows for bulk selection and comparison across 

different systems. Finally, the fully documented Python API allows users to include the basic or 

advanced mdciao functions in their analysis workflows, and provides numerous examples and Jupyter 

Notebook Tutorials. The source code is published under the GNU Lesser General Public License v3.0 or 

later and hosted on https://github.com/gph82/mdciao. 

Introduction

Molecular Dynamics (MD) simulations are a widely used tool for the theoretical investigation of the 

dynamics of (bio)molecular systems with atomic-level detail[1].

In recent years, MD simulation tools have become increasingly user-friendly, and the hardware on 

which they run has become faster and cheaper[2]. Thus, the challenge that non-expert simulators face 
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shifts slowly from generating the MD trajectory data to analyzing and summarizing it1. The depth and 

scope of this analysis can range from fairly straightforward and intuition-guided to arbitrarily complex 

and automated[3].

Many software solutions have been produced over the last decades to analyze MD data, offering 

different degrees of pre-packaged solutions to experts and non-experts. Usually, first and easiest step 

is to visually inspect the trajectories in 3D using tools such as the popular VMD[4], PyMOL[5], and 

chimera[6] (among others). While these run locally, other tools like MDsrv[7] or Mol*[8] have recently 

been put forward to conduct and share 3D MD analysis remotely via web-browser. However, visual 

inspection is not generally scalable beyond a certain number of trajectories or a certain number of 

atoms and is often not sufficient to identify or characterize key events.

Hence, very often, the next level of analysis will be offered by these same programs, either via GUI-

menus and plugins or programmatically through scripting. Offered are general, community accepted 

metrics such as root-mean-square-deviation (RMSD), root-mean-square-fluctuation (RMSF), 

Ramachandran-plots[9], contact-maps, order-parameters, or more specific, user selected geometric 

values (distances, bond-angles, dihedral angles etc), or interaction types (Hydrogen bonds, salt-bridges, 

pi-stacking etc). Once arrived at the scripting/programmatic level, tools do not necessarily require a 

GUI, and can be used, even remotely, directly on the platform where the MD data resides. A very 

popular example are the analysis tools shipped with the GROMACS MD simulation suite[10], but 

many other standalone command-line tools provide these (and similar) analysis solutions, e.g. the 

GetContacts[11] command-line-tool or the popular Python modules MDtraj[12] or MDanalysis[13]  

All these offer a diverse catalogue of metrics, deliver atomic-level insights, and are available for non-

programming experts willing to learn basic scripting.

1 Notably, many challenges still remain, like, force-field parametrization of small molecules and overall validity of some physical assumptions of 
the model, but these are software independent.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 16, 2022. ; https://doi.org/10.1101/2022.07.15.500163doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.15.500163
http://creativecommons.org/licenses/by/4.0/


Finally, data-driven solutions -automated to varying levels-  can be considered the next level of 

analysis, ranging from geometric clustering, to general dimensionality reduction techniques, to more 

comprehensive, Physics-based modelling like Markov-State-Modelling (e.g. PyEMMA[14], 

MSMBuilder[15]). When attainable, these models provide a holistic representation of the MD data that 

is compact, physically accurate, and fully predictive.

However, of particular interest for this paper are tools published as Python modules, in particular those 

offering an application programming interface (i.e. a Python API) like e.g. MDtraj, MDanalysis, The 

API enables users to build and combine their analysis workflow with the growing universe of well-

documented and well-maintained scientific Python modules[16] (and references therein). Importantly, 

users can also fully exploit the feature-rich Jupyter Notebook computing environment, which have 

become a widely popular scientific result-sharing platform[17].

Considering all of the above, mdciao is introduced in this rich software landscape trying to add value 

with the following ideas: 

 Take non-expert users from their MD-data to a set of compact, paper-ready tables and figures 

in one single shot, while remaining highly customizable for expert users.

 Be able to work with minimal user input.

 Focus on a transparent, transferable, and universal metric that is understandable by experts and 

non-experts alike: contact-frequencies with hard cutoffs. 

 Exploit available consensus nomenclature for bulk selection, manipulation and annotation 

purposes.

 Place special care on user-friendliness, documentation (inline and online) and tutorials.

 Allow for local computation and representation, i.e. no need to upload data to external platforms.

 Provide expert users a fully-fledged API to integrate mdciao into their workflows without 

having to leave the Jupyter Notebook platform.
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In the following we will outline the principles, inputs, outputs, and features of mdciao in the Design 

and Implementation section, providing an overview of the command-line-tools in Table 1. Then, for 

the Results section we use three large composite figures, containing actual inputs and outputs with 

example data. The examples shown there correspond to one command-line-tool call and to two 

examples of multiple API calls inside two Jupyter Notebooks. Except for panel d) of Figure 2 , no 

graphics have been edited, i.e. they have been produced and annotated by mdciao automatically. Only 

some parts of the text outputs have been edited out, denoted as [�] and included in the supplementary 

materials and online documentation.

Design and Implementation

Basic Principle

At the core of mdciao lies the computation of residue-residue distances, implementing a modified 

version of the mdtraj.compute_contacts method of MDtraj, allowing mdciao to track the 

atom-types involved in the interactions, e.g. sidechain-sidechain, sidechain-backbone etc. From these 

distances, contact-frequencies are extracted using a hard distance cutoff of typically 3.5-4.5 Å. 

Input

The needed minimal user input consists of:

 the residues or molecular fragments of interest, such as a ligand, a mutated site etc. two 

interfacing proteins or subdomains, or arbitrary groups of residues. 

 the MD trajectory files to be analyzed. 

From this point on, with one command, mdciao automates all fragmentation, labelling, disambiguation, 

plotting and saving to file. Beyond this minimal input, the user may specify, among many other options 

(always in one call only). See below the CLT and Jupyter Notebooks for examples of what these 

options might be.
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Command-line Tools

We present an overview of the command-line tools (CLTs) shipped with mdciao in Table 1. We have 

divided them into pre-run, run, and post-run CLTs, with two extra learning CLTs to help the user 

familiarize with mdciao. An example of the inputs and outputs of the CLT 

mdc_neighborhoods.py  can be found in Figure 1.

Fragmentation Heuristics 

mdciao implements various heuristics to automatically split the molecular topology into different 

fragments. These heuristics are independent of the chain field of the PDB format, which might not 

always be correct or be even present, as is the case in the popular .gro-file format. These heuristics use 

factors such as sequence jumps, presence/absence of bonds, residue names (protein vs non-protein, ion, 

water) to infer the underlying molecular topology. The so-recovered fragments group residues in 

meaningful ways, greatly simplifying both the user input and the annotated program output. Example 

of the fragmentation heuristic being used can be seen in Figure 1 , Figure 2 (cell[4]) and in Figure 3 

(cell[4]).

Annotations and Consensus Labeling

Whenever possible, all outputs will be annotated using consensus nomenclature labels in texts, tables, 

and graphics. Currently, the implemented nomenclature databases are the GPCRdb[18] for GPCRs, the  

Common G-alpha Numbering (CGN[19]) for G-proteins and the KLIFS[20]�[22] for kinases. The user  

indicates the entry name via UniProt[23] Names, UniProt Accession Codes2,or PDB IDs, using either 

command-line flags, e.g. -�GPCR_uniprot adrb2_human for the CLTs, or as API optional 

arguments, e.g. CGN_pdb=�3SN6� or KLIFS_uniprotAC=�P31751�. These codes are used to 

download the consensus nomenclature labels on-the-fly from their respective online databases or, 

alternatively, to read local files (Excel or plaintext files) which mdciao is able to generate and store for 

2 Please note the difference between UniProt Accession Codes and UniProt Names, as explained here 
https://www.uniprot.org/help/difference%5Faccession%5Fentryname
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offline use (see Table 1). Subsequently, mdciao maps these labels via pairwise sequence alignment[24] 

and �tags� residues everywhere in the output with those labels. For example, in the residue-pair 

R131@3.50-Y391@G.H5.23, an extra layer of information is added succinctly: namely that, in the 

receptor, R131 is on helix 3, position 50 ([25]) and, on the G-protein, Y391 is on helix 5, position 23 

([19]). Additionally, consensus fragments are automatically inferred and labeled3, s.t. mdciao will be 

aware of exactly what residues (and importantly, what indices) are contained in TM6 (transmembrane 

helix 6 for a GPCR) or G.H5 (helix 5 for a G-protein). These definitions can then, in turn, be used to 

quickly define interfaces of interest, e.g. for GPCR--G-protein or GPCR�ligand interface. For 

example, specifying ICL* and G.H* will compute all contacts between intracellular loops (ICL1, 

ICL2, ICL3) with the Ras-domain of the G-protein without the user having to define them specifically. 

This is particularly useful when repeating the same computation for different (but related) systems, 

where residue indices might have changed and off-by-one errors are likely to happen.

Additionally, mdciao uses the consensus labels can to obtain (multiple) sequence alignments between 

sequences that share a set of consensus labels but share little sequence identity. Although the four 

sequences in our EGFR example (Figure 3) are identical, we show how this alignment works in cell 

[9] and how it is used for optimal 3D superposition in cell [10] and [11].

Output

While mdciao�s CLTs are running, the live terminal output is informing of the different steps taking 

place. It becomes interactive if user-input is needed, e.g. for disambiguating two equally named 

residues, and finally produces text reports containing contact frequencies. On top of that, all 

information is optionally saved to disk as text, spreadsheet, graphic and molecular files. For more 

details, please see Figure 1.

3 Please note that this is also valid for kinase consensus fragments, like linker, hinge, D etc.
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API

The Application Programming Interface (API) expands the functionalities of the CLTs and gives the 

more experienced users programmatic control of mdciao, allowing for the easy inclusion of its methods 

and classes into arbitrary Python workflows, via import mdciao. Crucially, any other, arbitrary 

Python modules that any user considers of importance for the problem at hand (clustering, time-series 

analysis, statistical modelling, plotting, formatting) can be used on mdciao�s results without forcing 

the user to abandon the familiar and powerful (I)Python console or the Jupyter Notebook. This is 

particularly useful e.g. in  Figure 3, where the 3D representation of relevant contacts is carried out �in-

notebook� using nglviewer[26], and can thus be iteratively fine-tuned while having live access to 

the data. Finally, all of mdciao�s native objects (classes) can be serialized into NumPy �.npy� files for 

later use, circumventing the time-intensive computation of a high-number of residue-residue distances. 

Documentation and Built-In Examples

Considerable effort has been invested in making mdciao user-friendly. Firstly, it installs directly with 

the widely used pip Python manager via pip install mdciao. Secondly, mdc_examples.py 

offers new users a catalogue of ready-to-run, pre-packaged CLT-calls that use sample MD data already 

downloaded at installation. Furthermore, the documentation is extensive and accessible both inline (via 

the terminal, any integrated development environment (IDE), or the Jupyter Notebook) and online at 

http://proteinformatics.org/mdciao. There, multiple FAQs, walkthroughs, and Jupyter Notebook 

Tutorials are presented to showcase most of mdciao�s methods and present potential caveats. 

Additionally, these notebooks can always be accessed and modified locally in a sandboxed way by 

using the CLT mdc_notebooks.py (cf. Table 1).

Limitations

Using a hard distance cutoff can over- or underrepresent some residue-residue interactions, since not 

all of these occur at the same residue-residue distance and relative position, e.g. salt-bridges vs. pi-

stacking.vs. Hydrogen bonds. Some analysis tools[4], [11], [13] use individual definitions for each 
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interaction type, making the results depend on each of those individual definitions, which may be more 

or less established or ad-hoc. 

For sake of simplicity and transferability, mdciao�s results depend parametrically only on one value 

(the hard cutoff) which is transparently presented in all of the reports. Ultimately, mdciao�s analysis 

power relies first and foremost on differentiating between frequent and infrequent interactions, and not 

on slight numerical frequency variations, which will systematically increase or decrease with a given 

cutoff.

Results

We present our results in form of overview, multi-panel figures in Figure 1 and Figure 2, and Figure 

3, where the extensive captions highlight the information flows and the produced graphics shown in 

the figure.

Please note that, whereas only a few (of many) use cases have been chosen for this manuscript, readers 

are highly encouraged to use mdciao�s online tutorials and FAQs to get a full view of the software�s 

capabilities. It should be noted that mdciao is not a GPCR-specific tool, and can be used with any 

system, cf. our example notebook on the mutated interface of the SARS-CoV-2 spike protein receptor 

binding domain (RBD) bound to human angiotensin converting enzyme-related carboypeptidase 

(ACE2), with data kindly provided by the COVID-19 Molecular Structure and Therapeutics Hub 

(https://covid.molssi.org/tools/) and the lab of J. Chodera.

Conclusions

We present a user-friendly command-line tool that produces one-shot reports that are paper-ready. It 

can be incorporated in any Python workflow via its API, and while it analyses MD data locally, it can 

contact online databases for rich annotation of the results. A variety of plotting functionalities have 

been implemented to quickly gain insight into the salient features of any MD dataset with little prior 

knowledge about the system. This tool has already been used in one external publication[27].
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Availability

mdciao is published under the GNU Lesser General Public License v3.0 or later. The source code is 

hosted on https://github.com/gph82/mdciao, the current stable release is hosted at 

https://pypi.org/project/mdciao/ and the documentation, including guides and examples can be found 

at https://proteinformatics.uni-leipzig.de/mdciao. The release used for this manuscript is v.0.0.5.

Supplementary Information

The entire inputs and outputs of the mdciao calls presented in Figure 1, Figure 2, Figure 3 can be found 

in the SI.
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Table 1 Overview of command-line tools (CLTs) shipped with mdciao. These tools are one-shot tools that take users from basic 
input to paper-ready figures and tables.

tool  type Command-l ine Tool (CLT) Comment

mdc_notebooks.py 

create a fresh, ready-to-execute local copy of worked-out 

example Jupyter Notebook Tutorials ready to be run. They 

include the ones in this publication and others.

mdc_examples.py 
ready-to-execute, pre-filled examples for all the CLTs (add -x 

to execute)

mdc_pdb.py fetch and download RCSB PDB structure, including citation.

mdc_fragments.py 
overview of all available fragmentation schemes for a user-

provided topology (e.g. a PDB file)

mdc_CGN_overview.py 

mdc_GPCR_overview.py

mdc_KLIFS_overview.py

mdc_neighborhoods.py 
select residues with a very flexible input, e.g. 
-r GLU*,GDP,L394,380-390

mdc_interface.py

select residues via fragments: automatically defined, user-

specified, or derived from consensus nomenclature, e.g. 
TM5,TM6

mdc_sites.py 
select by user specification of residue pairs of interest, e.g. 
R135-E131, R135-E247 etc

post-run tools mdc_compare.py compare and combine results from different runs

fetch (online or locally) consensus numbering labels. Produce 

an overview, e.g. of the fragments derived from the 

nomenclature. Optionally map the labels and fragments on a 

user provided topology. Optionally store the nomenclature 

locally.

run tools 

based on residue-residue distance

learning tools

pre-run tools
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Figure 1 Overview of one mdc_neighborhoods.py call from the command line. a) Terminal input (on top, shaded) and output, 
with slight edits denoted as [�]. The chosen residues are the C-terminal residues of the G-5 helix of the G-protein. We can see the 
fragmentation heuristic recognizing the G, G and G subunits (fragment indices 0, 1, and 2, respectively), the 2AR (index 3), and 
the PG0 ligand (index 4). Then, the uniprot code adrb2_human is used to contact the GPCRdb, retrieve consensus labels, align them 
with the input topology, and map the consensus fragments (TM1 through H8, edited). Analogously, the PDB code 3SN6 is used to 
retrieve CGN nomenclature. Then, after a computation of likely neighbors, the entire data is scanned for the neighborhoods of LEU393 
and LEU394. Once this is done, the individual neighborhoods are reported, and the output files saved and listed. b) The file 
neighborhood.overall@3.5_Ang.pdf with the contact-frequencies represented as bars, which themselves contain information 
about interaction types (sidechain or backbone) encoded in their different hatching (i.e. the patterns filling the individual bars).  Note 
the consensus labels, which help distinguish between G-protein residues (CGN nomenclature) and receptor residues (GPCR 
nomenclature with the Ballesteros-Weinstein[25] scheme). c) neighborhoodLEU394@G.H5.26.time_trace@3.5 

_Ang.pdf containing the actual time-traces of the residue-residue distances behind the bars in panel a), also annotated with consensus 
labels and frequency values (three sub-panels have been edited out).The bottom panel of c) also contains the time-trace of the sum over 
all formed contacts, which  oscillates around 1.73 as reported in a). A time-averaging window has been applied to smooth out the 
fluctuations. d) Snapshot of the   neighborhood.LEU394@G.H5.26@3.5_Ang.xlsx spreadsheet containing the 
L394@G.H5.26 neighborhood, numerically specifying the interaction types hatched into the frequency bars of b). f) Alternative 
neighborhood representation had the user chosen the option �-report distro, which plots residue-residue distance-distributions, 
providing more insight beyond the plain frequency values. g) Alternative neighborhood representation had the user chosen the option 
�-report violins, which plots residue-residue distance-distributions in violin form, trying to provide a representation as compact 
as panel b) but as informative as panel f). A full version of these outputs pictures can be found in the supplementary materials, and an 
online at  https://proteinformatics.uni-leipzig.de/mdciao/notebooks/Tutorial.html. Locally, mdciao users can access this CLT example 
(and others) by invoking the CLT mdc_examples.py (cf. Table 1)
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Figure 2 a) Example Jupyter notebook illustrating how mdciao can be used in API mode. The notebook consists of 12 cells of Python 
code (numbered in brackets) and some markdown to provide titles and describe the information flow. Panel a) shows cells [1] to [7], 
while cells [8] through [12] are shown in b), tiled to the right of a) for a clearer overview. The outputs of cells [3] and [5] have been 
edited out ([�]) but are analogous to Figure 1A and can be found in the online documentation and the supplementary information. The 
main computation is the generation of the mdciao object, intf, in cell [5]. It contains the G-2AR-interface contact frequencies and 
can later be used to generate multiple text, tabular, and graphic reports of the frequencies, distributions, and time-traces. Here, we just 
highlight a few, namely the per-residue interface-participation (cell [6]), the contact matrix (cell [7]) and the flareplot (cell 8), which, to 
the best of our knowledge is not implemented in Python as an API anywhere else. As can be seen also in the zoom-in in panel b), the 
flareplot can integrate many different types of information: the molecular topology with fragments (G, 2AR), the consensus 
subdomains (e.g. TM3 or G.H5), the contact frequencies of the individual residue pairs, the consensus labels of the residues, their 
secondary structure (letters C for coil, H for Helix and B for -sheet) and an outer ring (�aura�), which can represent any per-residue 
numerical value. Here, we have plotted each residue�s participation in the interface (i.e., the same bars as in cell [6]), but in principle 
any other (arbitrary) per-residue quantity could be included into the flareplot, e.g. the sequence conservation degree across a protein 
class, the root-mean-square-fluctuation (RMSF), the solvent-accessible-surface-area (SASA), the hydrophobicity, or any other 
informative numerical value that can be imported into the Python namespace. In cell [9], frequencies are coarse-grained to the 
subdomains, as a table and as chord-diagram. Cell [10] uses mdciao to select, within the used MD trajectory data, a frame that is 
representative of the interface, upon which an interface heatmap is added as bfactor in cell [11]. Again, this amounts to inserting the 
bar-heights of cell [6] into the bfactor field of the PDB file interface_heatmap.pdb, which contains the representative frame. 
Note that the bfactor is signed along interface definitions, meaning G-residues get negative bfactors and 2AR residues get positive 
bfactors. When reading the PDB-file into any 3D molecular viewer (e.g., in VMD with the blue-gray-red BGrR colormap, shown in 
panel d), the signed bfactor highlights the molecular fragments in different colors, Thus, the 2D information of the flareplot can be 
readily identified, e.g. the middle of the G.H5 (blue) interacting with the tips of TM3, TM5, and ICL3 (red) or the ICL3 interacting 
lightly with the G.H4 and G.h4s6 subdomains of the G (in light blue). This notebook is distributed with mdciao as 
Manuscript.ipynb and can be run using mdc_notebooks.py. A full version of this notebook, with full outputs and high-res 
pictures can be found in the supplementary materials, and an online version can be found at https://proteinformatics.uni-
leipzig.de/mdciao/gallery.html#examples. Locally, mdciao users can access this notebook (and others) by invoking the CLT 
mdc_notebooks.py (cf. Table 1)
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Figure 3 Example Jupyter notebook illustrating how mdciao is used in API mode to compute and compare ligand-kinase interactions for four 
different inhibitors bound to the Epidermal Growth Factor Receptor (EGFR). The notebook consists of 12 cells of Python code (numbered in 
brackets) and some markdown to provide titles and describe the information flow. Panel a) shows cells [1] to [6], while cells [6] through [12] 
are shown in b), tiled to the right of a) for a clearer overview. The outputs of cell [6] has been edited out ([�]) but are analogous to Figure 1A 
and can be found in the online documentation and the supplementary information. As in Figure 1, the main computation is the generation of 
the mdciao object binding_pocket, using the method mdciao.cli.interface, for the four inhibitors of choice EUX1, 7VH1, W321, 
and P31. As in Figure 2, we generate the nomenclature object on the fly, using the UniProt Accession Code P00533, which is associated to the 
kinase EGFR. Then, after downloading the example data in [3], we loop over the four datasets and use mdciao.fragments to check that 
the datasets share the same fragmentation, i.e. the kinase and the inhibitor are in the first and second fragments, respectively. Since that is the 
case, in cell [6] we carry out the same computation four times without any alteration to the API call. Since the goal of the notebook is to 
compare datasets, we do not show individual plots as in Figure 2, but rather combine all the contact information into one compact violinplot, 
in cell [7] (please see the SI for a large version of this picture). This plot shows (in vertical) the distributions of the residue-residue distances 
between the residues of the kinase binding pocket and the three inhibitors (each in one color). The kinase residues are listed along the x-axis 
and are tagged, with their KLIFS labels. In this plot, one can quickly appreciate individual differences in the binding patterns, in particular 
when more than one mode (per residue) is present. Furthermore, we use the representatives option to superimpose, on top of each 
violin, a single dot representing the residue-residue distance-value of the representative geometries, which are explained in the next cell. 
Namely, in [8], we use each binding_pocket�s repframes-method to locate (out of the original trajectory data) geometries (=�frames�) 
representative of the distance distributions shown in the violinplot of [7]. Next, in [9], we exploit the implicit alignment of the KLIFS labels 
to optimally align, in 3D, the representative frames, which we show in [11]. We do this using the in-notebook 3D molecular viewer nglview. 
For the 3D plots, we have decided to highlight (in the same color as the violinplots in [7]) the kinase residues C775@b.l.36, P841@c.l.74, 
D855@xDFG.81, F997@EGFR, which all show different behavior for each inhibitor, as can be seen in the distributions of [7] and in the 3D 
visualization. A full version of this notebook, with full outputs and high-res pictures can be found in the supplementary materials, and an online 
version can be found at https://proteinformatics.uni-leipzig.de/mdciao/gallery.html#examples. Locally, mdciao users can access this notebook 
(and others) by invoking the CLI tool mdc_notebooks.py (cf. Table 1)
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