bioRxiv preprint doi: https://doi.org/10.1101/2022.07.14.500096; this version posted October 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Inflammatory Signaling in Pancreatic Cancer Transfers Between a Single-cell RNA Sequencing Atlas
and Co-Culture

Authors: Benedict Kinny-Koster %, Samantha Guinn™3, Joseph A. Tandurella™-3, Jacob T. Mitchell**,
Dimitrios N. Sidiropoulos®>, Melanie Loth*>, Melissa R. Lyman>~, Alexandra B. Pucsek>>, Toni T.
Seppiild!"’, Christopher Cherry>®°, Reecha Suri!, Haley Zlomke!, Jin He!, Christopher L. Wolfgang?, Jun
Yu!, Lei Zheng?*, David P. Ryan'?, David T. Ting'?, Alec Kimmelman'', Anuj Gupta®, Ludmila Danilova®-
5, Jennifer H. Elisseeff>’¥, Laura D. Wood*!2, Genevieve Stein-O’Brien*%!3, Luciane T. Kagohara®>,
Elizabeth M. Jaffee’-®, Richard A. Burkhart*'*#, Elana J. Fertig?->>!4, Jacquelyn W. Zimmerman®-°

*Contributed equally

 Contributed equally

'Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
2Department of Surgery, New York University Grossman School of Medicine, New York, NY

3Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School
of Medicine, Baltimore, MD

“Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
SBloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD

’Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere
University Hospital

$Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins School of Medicine,
Baltimore, MD

’Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD

19The Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical
School, Boston, Massachusetts.

"Department of Radiation Oncology at New York University Grossman School of Medicine, NYU Langone
Health, New York, New York.

2Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
BDepartment of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD

“Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins
University, Baltimore, MD

Running Title: Organoid Modeling of Fibroblast-Cancer Interactions in Human PDAC

Keywords: pancreatic ductal adenocarcinoma (PDAC), scRNAseq, organoids, cancer associated fibroblasts
(CAFs), atlas


https://doi.org/10.1101/2022.07.14.500096
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.14.500096; this version posted October 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Corresponding Authors:

Richard A. Burkhart

1650 Orleans St., Room 4M
Baltimore, MD 21287
Phone:

Email: burkhart@jhmi.edu

Elana J. Fertig, PhD

550 N Broadway, Suite 1101
Baltimore, MD 21205
Phone: 410-955-4268

Email: ejfertie@jhmi.edu

Jacquelyn W. Zimmerman, MD, PhD
1650 Orleans St., Room 352
Baltimore, MD 21287

Phone: 443-287-2883

Fax: 410-614-8216

Email: jzimme27@jhmi.edu



mailto:ejfertig@jhmi.edu
mailto:jzimme27@jhmi.edu
https://doi.org/10.1101/2022.07.14.500096
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.14.500096; this version posted October 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy characterized by a heterogeneous
tumor microenvironment (TME) that is enriched with cancer associated fibroblasts (CAFs)!. Cell-cell
interactions involving these CAFs promote an immunosuppressive phenotype with altered inflammatory gene
expression. While single-cell transcriptomics provides a tool to dissect the complex intercellular pathways
that regulate cancer-associated inflammation in human tumors, complementary experimental systems for
mechanistic validation remain limited. This study integrated single-cell data from human tumors and novel
organoid co-cultures to study the PDAC TME. We derived a comprehensive atlas of PDAC gene expression
from six published human single-cell RNA sequencing (scRNA-seq) datasets?” to characterize intercellular
signaling pathways between epithelial tumor cells and CAFs that regulate the inflammatory TME. Analysis
of the epithelial cell compartment identified global gene expression pathways that modulate inflammatory
signaling and are correlated with CAF composition. We then generated patient-derived organoid-CAF co-
cultures to serve as a biological model of the cellular interactions learned from human tissue in the atlas.
Transfer learning analysis to additional scRNA-seq data of this co-culture system and mechanistic experiments
confirmed the epithelial response to fibroblast signaling. This bidirectional approach of complementary
computational and in vitro applications provides a framework for future studies identifying important

mechanisms of intercellular interactions in PDAC.

Main Text

Pancreatic ductal adenocarcinoma (PDAC) remains challenging to effectively treat largely due to detection at
advanced stages and a heterogeneous tumor microenvironment (TME) that limits treatment efficacy.
Molecular changes in the epithelial cell population during carcinogenesis promote further changes in the
surrounding non-epithelial cell populations and results in a dense and immunosuppressive TME!. The TME
in PDAC is characterized by its heterogeneity and includes a variety of infiltrating cell types, including
mesenchymal cells, such as cancer associated fibroblasts (CAFs), and multiple sub-populations of myeloid

and lymphoid cells'. The recognition of phenotypic heterogeneity in cell types comprising each patient’s
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unique TME, and our understanding of the functional and dynamic diversity of these distinct cell populations,
has historically been limited by available genomic technologies and represents a major barrier to our

understanding of PDAC cancer biology.

Single-cell RNA sequencing (scRNA-seq) has recently enabled a more nuanced study of the PDAC TME,
uncovering the heterogeneity in cell-type and function. Prior work with PDAC single-cell datasets has
provided a roadmap to help identify individual cell populations and associated transcriptional regulation of
the TME®!!. These data demonstrated previously underappreciated cellular heterogeneity throughout stages
of malignant progression in humans and mouse models of PDAC tumors and are complemented by studies
exploring the signaling pathways driving a tumor’s phenotype'>!3. Single-cell technologies have furthered our
capacity to identify discrete and functionally distinct subpopulations in both the malignant epithelial cells and
stromal cells. CAFs in the PDAC TME are abundant and specific phenotypes have been implicated as either
tumor enhancing or tumor-restraining subtypes'#!>. Myofibroblastic CAFs (myCAFs) and inflammatory

CAFs (iCAFs) are two subpopulations that have been well-described*!®

. More recently, additional subtypes
have been proposed, including those expressing major histocompatibility complex class II (MHC-II) genes,
termed antigen-presenting CAFs (apCAFs)*. While the identification of these subpopulations and their
associated characterization has opened new avenues of research in this disease, the mechanisms of intercellular

interaction and specifically how CAF functional heterogeneity influences the phenotype of the tumor cells

remains poorly understood.

To identify epithelial tumor cell and CAF intercellular interactions, we first collated an atlas of six published
scRNA-seq datasets generated from small cohorts of PDAC patients?”. Single-cell data provide opportunities
to isolate subpopulations for inferring intercellular interactions and identifying patterns of cell signaling
associated with individual cell types or cell stressors. To investigate the inflammatory signaling responsible

for major histocompatibility class (MHC) II expression in tumor cells demonstrated in prior work!” %,

we
focused on inflammatory signaling in epithelial tumor cells learned from applying our Bayesian non-negative
matrix factorization method CoGAPS? for discovery of gene expression patterns in this comprehensive atlas.

Even with a larger cohort for analysis, in silico analyses of these data are limited in their ability to evaluate

mechanism and implications of intercellular interactions. Thus, innovations in laboratory systems and
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complementary computational approaches are needed to accelerate further the study of intercellular
interactions and enable in vitro mechanistic evaluation of in silico hypotheses generated from high-throughput

datasets.

Currently, available biological models of PDAC are restricted in large part to either mouse models or in vitro
epithelial cell lines derived from human pancreatic tumor cells. While mouse models can provide a global
characterization of the TME, depletion experiments are required to isolate the effect of individual cell types,
and this approach is limited by a lack of depleting agents with specificity for functionally different TME cell
subtypes. In vitro experiments have traditionally been limited to epithelial tumor cells, but more recently have
been adapted to investigate the effect of cell-cell interactions and paracrine crosstalk with other cell types
using conditioned media. However, organoids and organoid co-cultures are an emerging system that may best

recapitulate the tumor and associated microenvironment?!.

To further our ability to dynamically examine intercellular interactions inferred from single-cell analysis, we
established an in vitro three-dimensional co-culture system of patient-derived organoids (PDOs) and patient-
derived CAFs. This system is useful for evaluating the transcriptional dynamics in response to external stimuli
and investigating core intercellular interactions. Combining this approach with our novel suite of
computational tools for single-cell analysis enables bi-directional investigation of fibroblast-tumor cell
interactions between human tissue and PDO biological models, which is broadly applicable to untangling the

complexities of intercellular interactions in the PDAC TME.

A harmonized atlas of gene expression in PDAC created from an integrative analysis of 6 single-cell

data to explore inflammatory signaling pathways

To explore inflammatory signaling between CAFs and tumor cells in PDAC, we integrated six published
human scRNA-seq datasets into a single comprehensive atlas. In total, the atlas reflected gene expression in
174,394 total cells from 61 PDAC (142,807 cells) and 16 non-malignant pancreatic tissue samples (31,587
cells) (Figure 1A-B, Supplemental Figure 1 with subset of PDAC specimens)*”’. All samples were of

pancreatic origin (no metastatic samples) and from treatment-naive patients (Table 1). Of the 61 PDAC
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samples (2 were described as arising from cystic pancreatic lesions), 52 samples originated from patients with
apparent localized disease, 6 samples originated from patients with distant metastases, and 3 samples were
from patients whose stage was unknown. Of the 16 non-malignant control samples, 5 were specified by the
authors as normal-adjacent to adenocarcinoma and 11 were derived from samples described as normal-
adjacent to non-malignant pathologies. All control samples and the majority of PDAC samples were obtained

from resected surgical specimens. Ten PDAC samples originated from fine-needle biopsies, four of which

presented with clinical metastatic disease.

After filtering cells based upon biological or technical quality metrics (fraction of mitochondrial reads and
number of transcribed genes as defined in the methods), the resulting atlas included 140,250 cells (dropout
19.6%). The median and mean cell counts per patient sample were 1,455 and 1,821, respectively (interquartile
range 828 — 2,200). Following computational pre-processing, we performed a clustering analysis for cell type
annotation (supplemental methods). To make inferences on biology from an integrated atlas, it is critical to
first determine inter-dataset variation for the mitigation of non-representative findings and technical artifacts.
Most of the contributing tissues and cells (35 and 54,813, respectively) originated from Peng et al® (Figure
1C-E) with a mean of 1,566 cells per tissue. The mean number of included cells per sample was highest (4,754
cells) in the dataset by Moncada et al’, a set that contributed PDAC samples from only three patients (Figure
1C-E). Despite the heterogeneity in cell count, mapping dataset of origin on the atlas demonstrated
contribution from all six datasets for most clusters, thereby visually verifying our integration strategy (Figure

1E).

Within PDAC samples, the predominant cell populations were epithelial malignant cells (32,515 or 29.3%),
cells of myeloid origin (28,971 cells or 26.1%), and T cells (17,284 cells or 15.6%) (Supplemental Figure
1B). The mesenchymal cell populations were composed of 8,953 CAFs (8.1%) and 6,049 stellate cells (5.4%).
Altogether, the components of the TME (immune and mesenchymal cell populations combined) contributed
67,690 cells or 60% of the total cell count. In the myeloid and lymphoid cell clusters, we derived
subpopulations reflecting macrophages, mast cells, neutrophils, regulatory T cells and natural killer/cytotoxic
T cells (Supplemental Figure 2). For the epithelial cells from tumor tissues, copy number variation analyses

(CNV, Supplemental Figure 3) were combined with differential gene expression analyses to confirm
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epithelial cell classification (benign or malignant). In the epithelial cell cluster, we classified malignant cells
from PDAC tissues according to the classical and basal gene expression programs first reported by Moffitt et
al>! (Supplemental Figure 4). In the CAF cluster, cells were subtyped according to iCAF and myCAF gene
expression programs (Supplemental Figure 5). Cell cycle analyses within the PDAC samples revealed high
cell cycle activity reflected by increased activity scores and translated phases primarily in the epithelial

malignant, acinar, myeloid and CAF populations (Supplemental Figure 1C-D).

To evaluate MHC-II expression in the PDAC epithelial compartment, we queried the atlas for expression of
12 MHC-II genes, including HLA-DRB1, HLA-DOA, HLA-DMA, and identified heterogenous expression in
the tumor epithelial cell population (Figure 1F-G). Overall, MHC-II gene expression was most pronounced
in epithelial cells derived from tumor tissue as compared to epithelial cells obtained from non-malignant,
control samples (Supplemental Figure 6). Additionally, strong expression of HLA-DO and HLA-DM

isoforms suggest functionality of MHC-II proteins given their role as chaperones in antigen presentation.

Inflammatory signaling drives MHC-II expression in the epithelial compartment of PDAC

Next, we investigated patterns of gene expression within the epithelial cell populations in the atlas. To
distinguish epithelial cells within PDAC tissues from epithelial cells derived from non-malignant samples, we
performed an unsupervised analysis of gene expression patterns with our single-cell Bayesian non-negative
matrix factorization algorithm CoGAPS?2. Batch effects were mitigated by identifying robust gene expression
patterns that are maintained across the two largest sample cohorts that contain both PDAC and non-malignant
samples: Peng et al® (18,261 epithelial cells) and Steele et al® (7,181 epithelial cells). These two datasets
account for 61.0% of all epithelial cells in the atlas. Mapping the epithelial cells from these two datasets on
the UMAP from the entire atlas confirmed that they represent 49.3% of all malignant cells, and 97.1% of all
benign cells. We then applied the CoGAPS algorithm to interrogate patterns of gene expression across these
epithelial populations, identifying 8 distinct patterns (Supplemental Figure 7). Each pattern was annotated
by estimated overrepresentation across genes identified by the CoGAPS pattern marker statistic*’ and
Hallmark gene sets from the Molecular Signatures Database?*. Pattern 1 identified pathways associated with

UV response and TGFf signaling that did not reach statistical significance (Supplemental Table 1). Pattern
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2 identified pathways of estrogen response and KRAS signaling that are relevant for PDAC development.
Metabolic pathways including cell cycle, oxidative phosphorylation, and glycolysis were significant in
Patterns 3-5. Pattern 6 identified pathways of apoptosis activity and Pattern 8 was dominated by genes inherent
in response to hypoxia. Notably, genes associated with Pattern 7 were classified by CoGAPS to included

increased pathway activities in inflammatory, fibrogenic, and malignant progression-associated gene sets,

including epithelial-mesenchymal transition (EMT) (Figure 2A-C).

Annotation of the genes associated with Pattern 7 using the hallmark gene sets as a guide demonstrated
enrichment in this pattern for processes of inflammation in the epithelial compartment (Figure 2C). We also
observed that Pattern 7 weights were significantly higher in both the malignant epithelial cells and the benign
epithelial cells derived from patients with tumors relative to the epithelial cells in the non-malignant control
samples (Figure 2B). The enrichment of Pattern 7 within the malignant epithelial population suggests a
potentially transformative inflammatory program drives phenotype in the epithelial compartment in a manner
similar to that which has been described in non-epithelial cell types in PDAC?®. These findings are further
supported by inducible MHC-II expression in response to inflammatory stimuli anticipated in the malignant
epithelial compartment. We note that the MHC-II expression is identified in the malignant epithelial cell
compartment in a manner independent of the specific inflammatory stimuli defined by Pattern 7, suggesting

additional mechanisms driving MHC-II activation in epithelial cells may be playing a role.

To investigate alternative sources of activated inflammatory pathways in the TME, we next investigated the
fibroblast compartment in the atlas. Fibroblasts are an important driver of inflammatory processes in many
human diseases, though much of this association has been established in non-cancer inflammatory illnesses.
Therefore, we hypothesized that CAFs may also drive inflammatory signaling in the TME that influences
malignant epithelial cells. To test this hypothesis, we annotated the cell type composition in the tumor and
control samples to identify subpopulations in the TME. Notably, the non-epithelial populations in the atlas
largely originated from tumor samples (Figure 2D). When comparing the average cell type composition
between the control and tumor samples within the Peng et al® dataset, the fraction of fibroblast, myeloid and
lymphoid populations were greater in tumor samples, with a proportional decrease in cells of endothelial

origin, acinar cells and total epithelial cells (Figure 2E). Within the Steele et al® dataset, differences between
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the fibroblast/CAF, myeloid and lymphoid populations, while present, were less pronounced (Figure 2E). To
elucidate the impact of CAF signaling in the TME on epithelial inflammatory gene expression, we correlated
the mean CoGAPS weights of the inflammatory pattern 7 in the epithelial compartment with the presence of
CAFs in the TME using the datasets from Peng et al® and Steele et al>. We identified a direct association
between increasing fibroblast proportion in the TME and the mean weight of CoGAPS Pattern 7 in the
epithelial cells (Supplemental Figure 8). This association was lost when fibroblast populations were further
divided into iCAFs and myCAFs (Supplemental Figure 8). Therefore, uncovering the mechanisms that drive

CAF-mediated inflammatory signaling in the epithelial compartment requires further validation using

approaches beyond the publicly-available gene expression datasets.

PDOs as a system to evaluate mechanisms of inflammatory signaling in PDAC: Epithelial cells respond

to interferon gamma (IFNy) stimulation over time to induce MHC-1I

We further utilized our PDO cultures to validate the inflammatory phenotype identified in the atlas and to
interrogate the mechanisms of inflammatory gene expression in the setting of multi-compartmental three-
dimensional co-cultures. We previously demonstrated that PDAC PDOs, comprised exclusively of malignant
epithelial cells, have the capacity to recapitulate intratumoral heterogeneity and accurately provide clinically-
actionable data for chemotherapeutic selection?’-?8. Previous work has also shown that 24 hours of 200ng/mL
of IFNy added into cell media induces MHC-I and PD-L1 upregulation in organoids®. To extend these
findings in additional samples from our organoid bank, we screened eleven PDO lines by flow cytometry
(gating strategy Supplemental Figure 9) for both constitutive and IFNy-induced cell surface protein
expression of MHC-I and II and PD-L1 (Figure 3A). At 24 hours, both MHC-I and PD-L1 demonstrated a
robust increase in expression in response to IFNy stimulation. HLA-DR was used as a representative marker
for MHC-II expression in this system. As expected, HLA-DR expression was restricted at baseline and
remained low during the first 24 hours of IFNy stimulation. Longer-term exposure to IFNy treatment
demonstrated upregulation of HLA-DR expression over 96 hours consistent with induced gene expression
changes to MHC-II as a result of inflammatory signaling (Figure 3B). Reproducibility of this phenotype was

demonstrated in a set of PDOs with evaluation and characterization of MHC-II presence in the setting of both
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endogenous and IFNy-induced gene expression changes (Figure 3C-D). To further evaluate IFNy-induced
changes in MHC-II alleles which lack specific antibodies, we validated HLA-DRB1, HLA-DRA, HLA-DPBI,
HLA-DQBI by gPCR and observed a heterogenous IFNy-induced response in gene expression (Figure 3E).
To further confirm these data, we examined inducible MHC-II expression in formalin fixed and paraffin-
embedded (FFPE) PDAC PDOs using IHC with antibodies against HLA-DR and HLA-DR/DP/DQ to inform
the spatial distribution of the MHC-II expression across the PDO system (Figure 3F-G), further confirming

robust MHC-II upregulation in response to IFNy.

Co-culturing PDOs and CAFs enhances the epithelial inflammatory pattern identified in atlas samples

and drives expression of MHC-II genes.

To evaluate the mechanisms responsible for fibroblast-induced inflammatory signaling towards the malignant
epithelial compartment that was identified in the atlas, we established a system of PDAC PDOs co-cultured
with patient-derived CAFs. Each patient-matched PDO-CAF co-culture leverages our previously published

27.28 while concurrently extracting CAFs from surgical resection specimens

methods for generating PDOs
(Supplemental Figure 10). The three-dimensional cultures were established in Matrigel as the surrogate
basement membrane for suspending culture components. We then optimized the culture conditions to
maximize both the viability of input cell types during culture and the viability of cells following extraction

(Supplemental Figure 10). These methods for co-culture maintain viability of both cell-types allowing for

mechanistic study (Figure 4A).

To compare the signaling processes in our co-culture to the inflammatory signals observed in human PDAC
from our atlas, we performed scRNA-seq profiling during a 12-hour PDO-CAF co-culture. Controls included
scRNA-seq for both PDO and CAF monoculture. Multiplex analysis, with the established MULTI-seq
protocol®®, was used to assess transcriptional heterogeneity in the epithelial and CAF compartments. As
expected, clustering analysis and visualization of the scCRNA-seq data from these conditions separated the
fibroblasts from epithelial cells. Our initial evaluation demonstrated that cells from the co-culture and
monoculture conditions did not separate into distinct clusters (Figure 4B-C). Despite the lack of separate

clusters from the co-culture-derived cells, we did identify transcriptional plasticity in the epithelial
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compartment with the co-culture condition demonstrating a greater number of cells expressing markers for
both the classical and basal epithelial subtypes and fewer cells lacking expression consistent with either
classification (Figure. 4E)*!. Baseline heterogeneity of the basal and classical programs in PDOs identified
using deconvolution of bulk RNA-seq was consistent with the recent report by Krieger et al*? (Supplemental
Figure 11). Moreover, induced plasticity was not limited to the epithelial compartment as the co-culture also

demonstrated increasing proportions of CAFs expressing gene markers for both iCAFs and myCAFs (Figure

4F). This further supports the notion that co-culture induces both epithelial and CAF transcriptional plasticity.

We hypothesized that the CAFs in this organoid co-culture drive inflammatory signaling in a manner similar
to that observed in the human system. Therefore, we sought an integrative analysis to quantify the similarity
between the scRNA-seq datasets from our human atlas and PDO co-culture. This analysis was performed
using our transfer learning method ProjectR*® to project the inflammatory pattern (CoGAPS Pattern 7),
identified in the epithelial cells from the human PDAC atlas, onto the epithelial cells of the PDO-CAF co-
culture. After 12 hours of co-culture, we identified increased gene expression in the Pattern 7 gene signature
in PDAC organoids co-cultured with CAFs, relative to those cultured in mono-culture (Figure 4D). These
data further support the hypothesis that the inflammatory signaling observed in epithelial cells is stimulated

by the presence of CAFs in the TME.

We next examined CAF-mediated upregulation of MHC-II in malignant epithelial cells by characterizing
MHC-II expression from the co-culture scRNA-seq data (Figure. SA-C). Similar to data seen under IFNy
stimulation, baseline and early (12 hours) HLA-DRA and HLA-DRB expression was low in both the
monoculture and co-culture conditions (Figure 5 A-C). “To expand beyond 12 hours and better understand if
there is a temporal change in the epithelial compartment over a longer period, we co-cultured PDO-CAF for
24 and 96 hours. At each timepoint, we flow sorted the co-culture to have a pure population of cells to query
MHC-II gene expression changes by qPCR. Similar as our findings with [FNg treatment, HLA-DRA and
HLA-DRB expression increased with increasing time in co-culture conditions up to 96 hours (Figure SD-E).
This further implicates CAFs as critical mediators of epithelial inflammatory signaling in the tumor

microenvironment.
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Domino analysis of intercellular signaling identifies VEGF-A as an epithelial-derived ligand and ITGB1
as a fibroblast-derived ligand driving molecular signaling between fibroblasts and malignant epithelial

cells

Next, we performed bidirectional in silico and in vitro experimental interrogation of the mechanisms leading
to crosstalk between CAFs and epithelial cells that underlies the observed Pattern 7 inflammatory signaling in
PDAC. No consistent association was observed between the composition of epithelial and CAF subtypes
across the cohort of PDAC tumors in the atlas (Supplemental Figure 12). Still, we hypothesized that signaling
pathways underlie epithelial and CAF interactions that are consistent between human tumors and our organoid
co-culture model. To infer these pathways, we selected the epithelial and CAF populations of the PDAC tumor
atlas derived from the Peng et al® (12,120 epithelial cells, 63.8%; 5,823 CAFs, 84.0%) and Steele et al® (6,883
epithelial cells, 36.2%; 1,110 CAFs, 16%) datasets. We then analyzed these data with Domino, a
computational method that infers intercellular interactions in scRNA-seq data by quantifying for coordinated
gene expression changes between the ligands of one cell type with receptors of another’*. The resulting
analysis generated a putative global signaling network in PDAC based on population-specific gene expression
of ligands and receptors with established signaling relationships (Figure 6A). Across both datasets, VEGF-A
was expressed by epithelial populations and predicted to target fibroblasts (Figure 6B-C). To validate this
inference in human tissue, we set about examining this relationship in our PDO-CAF co-culture. Cells were
flow sorted after 24 or 96 hours of co-culture and qPCR was performed to assess VEGF-A expression in the
co-culture as compared to the monoculture. At both timepoints, VEGF-4 demonstrated increased expression
in cells derived from the co-culture relative to those extracted from monoculture, consistent with the Domino

inference (Figure 6D).

Finally, we evaluated intercellular signaling, derived from CAFs, that drives gene expression in epithelial
PDOs. Across basal and classical epithelial subtypes, ITGBI was identified in both the Peng et al® and Steele
et al® datasets as a ligand from both iCAFs and myCAFs directed at the epithelial subpopulations (Figure 6E-
F). While ITGB1 expression was identified both in patient-derived organoids and CAFs in our co-culture
model, it was differentially expressed in the fibroblasts (Figure 6G). Although /TGBI expression is not tissue-

or cell-type specific, its expression is classically associated with fibroblasts and impact the structure and
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function of the extracellular matrix. Taken together, discovery of this novel mechanism of CAF-epithelial cell
inflammatory signaling, which was inferred by computational approaches using human tumor data and then
validated in PDO-CAF co-culture, we demonstrate the utility of integrating human scRNA-seq data from
human tissues with co-culture models to provide bidirectional study of critical TME effects on the cancer cells

in PDAC tumors.

Discussion

Despite improving outcomes and new therapeutic regimens for the majority cancer subtypes, PDAC outcomes
have remained stubbornly resistant to novel targeted therapeutics and new treatment approaches. Recent
technologic advances have shown that PDACs are composed of a complex and heterogenous TME that
actively restricts therapeutic access and limits cancer cell killing. In addition, studies suggest that cancer cells
co-opt normal stromal cell behavior, inducing fibroblasts to become CAFs that support PDAC development
and progression®>. Although the genomic landscape has identified oncogenes associated with this process in
PDAC, our understanding of additional mechanisms contributing to tumorigenesis is limited by a lack of
characterization of the complex TME. Single-cell technologies, and the computational tools used for their
analysis, enhance our ability to characterize the impact that this unique TME can impart on structure and
function of malignant epithelial cells in PDAC. These technologies have empowered unprecedented discovery
of cellular function directly in human studies. Nevertheless, one persistent barrier to advancement in the field
is that there are limited relevant experimental systems with a capacity to mimic the human tumor TME and
thereby enable mechanistic study to determine the function of in silico predictions in single-cell analysis. Here
we present a convergence approach to overcome this barrier, using a novel PDO-CAF coculture system to
validate changes in signaling between cells in the TME that we have combined with in silico inference through

transfer learning from single-cell analysis of publicly available datasets.

This study combined an in silico analysis of transcriptional states in human tissue using our novel suite of
computational tools with PDO-CAF co-culture to examine the role of inflammatory gene expression patterns
in PDAC. This approach was facilitated by the evaluation of dynamic intercellular interactions using a single-

cell atlas to uncover cell-specific expression patterns that were then validated in cell-specific organoid co-
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cultures from additional patient tumors. Notably, the inflammatory gene expression patterns observed in the
single-cell data from human tumors were also observed in tumor-adjacent epithelial cells that were
transcriptionally more suggestive of “benign” epithelium. These findings provide additional data to support
earlier observations that the tissue surrounding a tumor, even that in the epithelial compartment, is
phenotypically distinct from normal epithelial cells obtained from a non-malignant specimen’®. Consistent
with this observation, our complementary study of spatial transcriptomic profiling in human pancreatic
intraepithelial neoplasia (PanIN) demonstrates dynamic inflammatory signaling in epithelial cells during
tumor progression’’. These data provide a model in which the changes to epithelial cells induced by the
biological alterations in the background TME contribute to subsequent tumorigenicity of the malignant

epithelial state, with a transition between inflammatory and growth signaling that is further supported in our

complementary PanIN data.

Previous studies have shown that tumor cells from numerous cancer types can be induced to express MHC-II,
but less is understood about the functional and therapeutic implications of this induction'®!**®, The multi-
gene signature that we uncovered in the atlas using our CoGAPS pattern detection algorithm?®®, associated
with inflammatory signaling and EMT in epithelial cells (Pattern 7), was also enriched in our PDO-CAF co-
culture, suggesting that the co-culture system can recapitulate fibroblast induction of inflammatory processes
in epithelial cells in PDAC. Similarly, EMT has been previously linked to inflammation in PDAC cells and
CAFs through an IFNy response!2. Applying our established transfer learning methods**-*? to our new organoid
co-cultures showed, for the first time, that these co-cultures can also model fibroblast-induced changes in
epithelial cells associated with inflammation. These data provide supporting evidence that PDO-CAF co-
culture can serve as an effective experimental system for future mechanistic studies of these interactions.
Specifically, through this analysis we were able to recapitulate the overrepresentation of the inflammatory
signal observed in human scRNA-seq data when PDAC PDOs were co-cultured with CAFs, demonstrating
that CAFs do alter tumor epithelial cell transcriptional phenotype and overall function. More generally, our
combined single-cell analysis and PDO co-cultures suggest that both CAF and epithelial populations are

transcriptionally plastic as shown in the changes observed in cell sub-population distribution after co-culture.
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Additional studies are needed to distinguish whether fibroblasts directly regulate the inflammatory processes
observed in the epithelial cells, whether the inflammatory process is MHC-II-independent or if inflammatory
signaling through fibroblasts induces MHC-II expression to a lesser extent than direct activation in response
to IFNy treatment. Still, further ligand-receptor inference analysis of the single-cell datasets uncovered a
directed mechanism of signaling between epithelial cells and fibroblasts within human tissue that could be
experimentally validated in our organoid co-culture model. Our study identified a fibroblast-induced
inflammatory signaling pathway through ITGB1 that was shown to directly influence PDAC cells. While
ITGBI is a member of the integrin family of proteins that function diversely in cell adhesion and serve as
receptors for collagen, it was recently identified as a marker of cytotoxicity potential in CD4+ and CD8+ T
cells*’. Additionally, mutated /TGBI was shown to result in an MHC-II-restricted neoantigen in an established

sarcoma cell line when evaluated in a subcutaneous xenograft model*!

. Our computational analyses of the
single-cell datasets in this study predicted that fibroblasts receive VEGF-A as a ligand to initiate downstream
signaling through the VEGF-A pathway that could be experimentally validated in our co-culture PDOs. This
finding also supports the inflammatory pattern identified in the tumor epithelial cells in both the atlas and
PDO models, as increased VEGF-A expression has been identified in alveolar epithelial cells in response to
inflammatory stimuli*?. Further, CAFs were identified in squamous cell carcinoma of the skin as mediators of
tumor-enhancing inflammation and angiogenesis, a signature validated in models of mammary and pancreatic
tumors®. This particular interaction is of biological interest given the role of VEGF-A across different
malignancies as well as the ability to inhibit VEGF-A clinically using bevacizumab**. While not currently a

standard of care agent in PDAC, this finding further demonstrates the clinical relevance of this approach for

future mechanistic studies.

While our study robustly demonstrates that computationally inferred intercellular interactions in the TME are
preserved between human scRNA-seq datasets and PDO co-culture models, there are also shortcomings to
this study. Our collated scRNA-seq atlas of PDAC tumors is restricted to treatment naive biospecimens from
61 patients, with limited representation of some cell types and limited clinical annotations of the samples. This
presents a challenge when trying to relate intercellular dynamics and signaling to patient outcomes for target
discovery for translational research. Nonetheless, adapting our validated suite of computational tools to this

atlas and the organoid co-culture still provides novel insight into the role of cellular crosstalk in tumorigenesis.
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While additional computational tools enable more direct inference of molecular changes from cellular
interactions*, the unique application of transfer learning between human scRNA-seq data and organoid co-
culture enables direct bidirectional investigation of cellular state transitions and intercellular signaling
between in silico discovery and experimental validation. Currently, this analysis relies on inferences resulting
from a pipeline combining NMF-based pattern detection with CoGAPS?®, transfer learning with ProjectR3?,
and finally ligand-receptor networks from Domino**. While CoGAPS and ProjectR allow for unsupervised
discovery and query of novel cell states, Domino is limited to investigation of pre-specified pairs of cell types.
Additional methods that enable discovery of multicellular interactions and their impacts across both cell types
and cellular phenotypes are needed to model the complex processes that underlie carcinogenesis in the PDAC
TME. Similarly, while our organoid co-culture model is established to represent the epithelial and fibroblast
compartments of the tumor, the immune cells which contribute to the complex TME in this disease are absent
in our current PDO co-culture. The data presented here demonstrate the need for immune cell inclusion in
future studies, particularly when asking questions related to the tumor immune microenvironment or
mechanisms of response or resistance to immunotherapy. With these limitations in mind, we advocate for a

complementary approach moving forward that combines reference human single-cell atlases and PDO co-

culture to transfer discoveries into mechanistic experiments of the TME effects in PDAC.

In summary, we introduce a novel bidirectional approach leveraging scRNA-seq data and PDO co-culture to
examine patterns of inflammation in PDAC. Further, we used this approach to specifically query patterns of
inflammation inherent in the malignant epithelial cell compartment, identifying programs of gene expression
that are both intrinsic to the epithelial compartment and those that are influenced by tumor residing CAFs.
The power of applying computational biology to relate human tissue to organoid co-culture can be exploited
in future studies spanning discovery, mechanistic validation, and perturbation of the complex cell-to-cell

cross-talk in tumors that underlies tumorigenesis.
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Peng et al Steele et al Lin et al Elyada et al Mon;z;da et Bern;lrd et

Year of publication 2019 2020 2020 2019 2020 2019
Slfrl(l)rllf;yegf China USA Soutll}siorea’ USA USA USA
PDAC pancreas tissue samples
Treatment-naive, % 100% 100% 100% 100% 100% 100%
Patients, N 24 16 10 6 3 2
Sex, N

Female 13 6 4 2 Unknown 0

Male 11 10 6 4 Unknown 2
éfgzgg)ears mediah 59(36.72) 66 (42-80)  66(41-80)  73(64-87)  Unknown 61 (59-62)
Diabetes, N 10 6 Unknown Unknown Unknown Unknown
Staging, N

Localized 24 12 10 Unknown 1

Metastatic 0 4 Unknown 1
Grading, N

Well
dlgeordegﬁzzs 3 Unknown 0 0 Unknown 0
differentiated 8 =6 ¢ . i s v

Doy 13 Unknown 2 3 Unknown 2
differentiated 0 Unknown 2 0 Unknown 0

Anaplastic
Tumor location, N

Head or uncinate 15 Unknown Unknown Unknown Unknown 1

Neck, body or tail 9 Unknown Unknown Unknown Unknown 1
Specimen, N

S 24 6 10 6 3 2
(resected) 0 10 0 0 0 0

Biopsy (FNA)
Survival Unknown Unknown Unknown Unknown Unknown Unknown
Non-malignant pancreas tissue samples
Patients, N 11 3 0 2 0 0
Sex, N

Female 6 2 -—- 1 - -

Male 5 1 --- 1 - -
Histology, N

Normal

Normal-adjacent 10 1 - 0 - -
to 1 2 -—- 2 -—- -—-
adenocarcinoma
Specimen, N

Surgery
(resected) 11 3 -—- 2 -—- -—-

Biopsy (EUS- 0 0 - 0 - -
FNA)

PDAC, pancreatic ductal adenocarcinoma
EUS-FNA, endoscopic ultrasound guided-fine needle aspiration

Table 1. Clinical patient data extracted from the six harmonized published datasets integrated in the PDAC

atlas.
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Figure 1. Summary of atlas composition and evaluation of MHC-II gene expression in atlas samples. (A)
Complete atlas with assigned cell types. (B) Heatmap of differentially expressed genes used for cell type
annotations. (C) Relative contribution of the 77 different samples with 140,250 cells, separated by tumor
(below line) and control tissue (above line). (D) Mean number of cells per tissue by dataset origin. (E) Cell
mapping by dataset origin from the six manuscripts in the complete atlas. (F) Epithelial cell clusters from
patient tumor samples. (G) Expression of 12 MHC-II genes was queried in the atlas demonstrating variable
endogenous expression of each gene. UMAP: Uniform Manifold Approximation and Projection.
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Figure 2. Identification of pattern of inflammation (Pattern 7) in the atlas and cell type distribution in the
atlas. (A) Complete atlas subset of the epithelial cell populations (malignant, benign and unspecified) from
the Peng et al’® and Steele et al® data with assigned weights of Pattern 7 as resulting from CoGAPS analyses.
(B) Boxplot of Pattern 7 weights within the Epithelial, benign cell population demonstrating differences
between control and tumor pancreas tissues. p < 2.22 e-16, generated by Wilcoxon test. (C) Overrepresented
MSigDB hallmark gene sets in cells expressing Pattern 7 genes. (D) Cell mapping by tumor vs. control
pancreas tissue in the complete atlas. (E) Differences in cell type composition for selected tumor vs. control
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Figure 3. MHC-II expression in PDAC PDOs. (A) Cell surface MHC-I, PD-L1, and MHC-II expression as
determined by flow cytometry. Organoids were stimulated with 200ng/mL of IFNy for 24hr or were left
unstimulated. Bar graphs represent Mean Fluorescence Intensity (MFI). (B) HLA-DR (MHC-II) expression
as determined by flow cytometry is increased after [FNy stimulation for 24-96 hours shown both by % increase
(left panel) and by increase in MFI (right panel) across one PDO line. (C) Representative flow cytometry dot
plots of 5 organoid lines that were treated with 200ng/mL of IFNy for 96 hours or left unstimulated. (D) Bar
graph quantification of plots in C, bar graphs represent % increase in HLA-DR (MHC-II) expression of
EpCAM+ cells (top panel) and Mean Fluorescence Intensity (MFI) (bottom panel). (E) gPCR readout of
organoid lines that were stimulated with 200ng/mL of IFNy for 96 hours or left unstimulated; genes quantified
include HLA-DRA/HLA-DRBI1/HLA-DPB1/HLA-DQBI1. P-value for HLA-DRA/HLA-DRB/HLA-DP
when tested between control and treated groups = 0.0006, p-value for HLADQ = 0.4 (statistical analysis was
performed using a two-tailed, unpaired, parametric Mann-Whitney test). (F) H&E slides of PDOs with and
without IFNy induction. Organoids were harvested 96 hours after IFNy induction. (G) Immunohistochemistry
(IHC) demonstrating expression of HLA-DRB1 (middle) and antibody binding to the common beta chain of
HLA-DR/DP/DQ (right) after 96 hours of IFNy stimulation.
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Figure 4. Patient-derived organoids co-cultured with CAFs recapitulate the inflammatory pattern identified
in tumor epithelial cells and demonstrate dynamic cellular phenotypes. (A) Representative brightfield image
of co-culture at 20x magnification. Representative IHC of co-culture demonstrating proliferation by Ki-67
after co-culture (top right), vimentin positive CAFs (bottom left), and EpCAM positive organoids (bottom
right). Images obtained at 20x magnification. (B) UMAP demonstrating culture conditions: organoid
monoculture (Orgl), CAF monoculture (CAF1), co-culture (CC1). (C) UMAP demonstrating cell-type calls
after co-culture: Organoid monoculture (Orgl), CAF monoculture (CAF1), CAFs from co-culture (CC_CAF),
organoids from co-culture (CC_Org). (D) Pattern 7 is composed of inflammatory genes and was enhanced in
organoid cells from co-culture relative to organoid cells from monoculture, p=1.3e-6. (E) Co-culture
demonstrates dynamic epithelial representation in the co-culture condition with a greater percentage of cells
representing both basal and classical markers (dual positive) present in co-culture. (F) Co-culture
demonstrates dynamic CAF representation in the co-culture condition with a greater percentage of cells
representing both iCAF and myCAF markers (dual positive) present in co-culture.


https://doi.org/10.1101/2022.07.14.500096
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.14.500096; this version posted October 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

HLA-DRA HLA-DRB1 HLA-DRBS5
04
A B C 025
0.8
0.3 0.20
06
g % % 0.15
5 &o2 5
5 04 ] @
i} 1 2
3 -3 20.10
] i ]
i 01
0.05
0.0 0.0 0.00 —
& ~ & ~ > )
g o (e = [ &
& & o & d
D Identity Identity Identity
HLA-DRA JHH320 24h HLA-DRA JHH320 96h
ook ok ok
4= 4
=
3+ 3
o . S
o [
S 2- | 5 2-
o ©
2 =}
T uo. i |;I
0= , 0 T T
> R ; ]
'bi‘o‘ c§’¢° {\°‘b 'a‘\o\
& o &
\‘\-‘)‘.e \"‘e
3 >
L o
< 2
HLA-DRB JHH320 24h HLA-DRB JHH320 96h HLA-DRB JHH326 24h HLA-DRB JHH326 96h
10- 10- ****' 2.5+ 2.5+
. 8 . & ] 2.0 -1 2.0+
2 e | 5 &
8 ] & 1.5 s 1.5+
] o 5 5
- ns -
z 4 z 4 T 1.0 T 104
. s [=] o
2 | 24 “ s “ s
Joa 1 11 2 o
N > : I 1 : ' .
O o > 3 : .
ép‘ ‘4"0 fb“O\ &oo P ¢°\6 & <\°®
& o & o & &» & &
& @ & ot o@: ot
S & & ° $
° & & &
00 00

Figure 5. Evaluation of MHC-II expression in the co-culture in response to the presence of CAFs. Expression
of (A) HLA-DRA, (B) HLA-DRBI, and (C) HLA-DRBS after co-culture for 12 hours evaluated using
MULTI-seq. Expression is limited in all populations. (D) HLA-DRA and (E) HLA-DRB expression after 24
and 96 hours of co-culture after which cells were flow sorted prior to qQPCR. HLA-DRA did not amplify in
JHH 326 at either 24 or 96 hours. HLA-DRB demonstrated less consistent amplification limiting statistical
analysis. Co-cultures were established from two patients for which there were matched PDOs and CAFs.
Plotted are the Fold Change values comparing our PDO co-culture to monoculture using GAPDH as an
endogenous control. Comparisons of monoculture and co-culture conditions are statistically supported using
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the two-tailed students t-test with equal variance in PRISM (V9.2.0 [283]). Significance is measured as: ****,
p<0.0001; *** p<0.001; **, p<0.01; *, p<0.05; ns, not significant.
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Figure 6. Domino evaluation of intercellular interactions in the atlas with validation in PDO-CAF co-culture.
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et al’® dataset as derived from the Domino R package. Nodes of the subpopulations are sized according to the
amounts of expressed targeting ligands. The thicknesses of the intercellular connections are scaled based on
the strength of signaling with their color indicating the signals’ origin (directionality). (B) Heatmap
demonstrating VEGF-A as a ligand originating in the epithelial populations with the CAFs receiving this signal
from the Peng® and (C) Steele’ datasets. (D) Differential expression by qPCR of VEGF-A in monoculture and
co-culture CAFs and epithelial cells after 24 or 96 hours of co-culture. (E) Heatmap demonstrating /TGB1 as
a ligand originating in the CAF populations with the epithelial cells receiving this signal from the Peng et al®
and (F) Steele et al® datasets. (G) ITGBI expression in monoculture and co-culture CAFs and epithelial cells
after 24 or 96 hours of co-culture. Plotted are the Fold Change values comparing our PDO co-culture to
monoculture using GAPDH as an endogenous control. Comparisons of monoculture and co-culture conditions
are statistically supported using the two-tailed students t-test with equal variance in PRISM (V9.2.0 [283]).
Significance is measured as: **** p<0.0001; *** p<0.001; **, p<0.01; *, p<0.05; ns, not significant.
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Methods
scRNA-seq dataset integration and harmonization for the PDAC atlas

The six different datasets provided gene expression data with different versions (GRCh37 or GRCh38) and
nomenclatures (Ensembl identifiers vs. HUGO gene nomenclature) of the human reference genome. Available
patient metadata are summarized in Table 1. All analyses were performed in R (V 3.6-4.1) or Python (version
3.8). Unified integration of the measured features revealed 15,219 genes that could be matched between all
datasets with assured certainty. Next, cells with unfavorable quality, defined as mitochondrial counts >15%
and unique features of <50 or >5,000, were removed. Computational pre-processing was performed with the
Monocle3! R package. Dimensionality reduction into a unified manifold approximation and projection
(UMAP) was based on the first 100 principal components and batch correction was applied per manuscript to
account for potential dataset-intrinsic biases (technical or biological) using Batchelor R as utilized by the
Monocle3 pipeline?. Annotation of cell types is described in detail in the Supplemental Methods. The
distributions of epithelial and fibroblast populations and patient-level correlations across epithelial and CAF
subtypes are further methodologically detailed and illustrated in Supplemental Fig. 10-12. Plotting was
performed with the ggplot2 R package and Excel (Microsoft, Redmond, WA). For high-performance
computing tasks, we leveraged the MARCC (Maryland Advanced Research Computing Center, Baltimore,

MD) and AWS (Amazon Web Services, Seattle, WA) servers.

CoGAPs analysis of expression patterns

Non-negative matrix factorization (NMF) of transcript counts was conducted using CoGAPS (V 3.5.8)*%.
Given a matrix of single-cell data with normalized expression values, CoGAPS factorizes this matrix into two
related matrices of gene weights (amplitude matrix) and sample weights (pattern matrix) for random subsets
of the data based on the nsets parameter followed by relearning of the amplitude matrix on the full dataset.
CoGAPS was run on log2 transformed counts of 15,176 genes from 25,442 cells in Peng et al and Steele et al

annotated as epithelial normal, epithelial cancer, or epithelial unspecified>®.
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Standard parameters were set to 8 Patterns, 50,000 iterations, seed 367, sparse optimized, and distributed:
“Single-Cell”. Sparsity parameters were alpha = 0.01, max Gibb mass 100. Distributed CoGAPS parameters

were 15 nSets, cut 10, minNS 8, maxNS 23.

Marker genes for each pattern were identified using the patternMarkers function in CoGAPS (V3.9.5) with
the ‘“cut” threshold to provide subsets of the top-ranking genes associated with each pattern’.
Overrepresentation analysis was then conducted using the fora function in the fgsea R package (V1.18.0) to
find enrichment of any hallmark gene sets from the Molecular Signatures Database®® among the pattern
markers for each CoOGAPS pattern. The universe used in the overrepresentation analysis was all human genes

with HGNC symbols in the GRCh38.p13 genome assembly (n = 39,535)!%!1,

Organoid and CAF co-culture and single-cell analysis

Patients with PDAC undergoing endoscopic biopsy or surgical resection were enrolled in IRB-approved tissue
acquisition protocols at Johns Hopkins Hospital and Massachusetts General Hospital (MGH)
(NCT03563248). Patient-derived organoids (PDOs) were generated from patient surgical specimens
following a combination of mechanical and enzymatic dissociation as previously described'!. CAFs were
extracted from surgical resection specimens after straining remnant tissue through a 70um cell strainer and
washed twice with human organoid wash media (Advanced DMEM/F12, 10mM HEPES, 1x GlutaMAX,
100pg/mL Primocin, 0.1% BSA) with centrifugation between washes. For co-culture, organoids were
combined with patient-matched CAFs in Matrigel (Corning, 356234) at a 1:10 ratio of organoids to CAFs. In
parallel, CAFs and PDOs were plated separately in Matrigel. Co-cultures and monocultures were plated in 24-
well tissue culture dishes and extracted after 12 hours using Cell Recovery Solution (Corning, 354253) and
incubated on ice at 4°C for 45 minutes for Matrigel depolymerization. Cells were then pelleted and washed in
human organoid wash media prior to pelleting again. Organoids were dissociated to single cells using TrypLE
Express (ThermoFisher Scientific, 12604013) following manufacturer instructions. Single-cells were
barcoded using the MULTI-seq protocol as previously described!?. Single-cell transcriptomics library prep
was completed using the 10x Genomics Chromium Single Cell 3> Gene Expression Dual Index Library (V3.1)

according to manufacturer specifications. Library preparations quality were analyzed using the 2100
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Bioanalyzer (Agilent). Sequencing was completed at the Johns Hopkins Genetic Resources Core Facility
(GCRF). Cellranger (V6.0.0) was used to generate the feature-barcode matrices, aligned to the hg38 genome.
Multiseq10x (V1.0) was used as the preprocessing pipeline companion to split the MULTI-seq FASTQs into
cell barcode, unique molecular identifiers (UMI), and sample barcode sequences. Reads that did not align with
>1 mismatch to any reference sequence and reads representing duplicated UMIs on a cell-by-cell basis were
removed. Demultiplex (V1.0.2) was used for demultiplexing the data. The 3DGE data were log normalized,
linear dimension was reduced using principle component analysis, and differentially expressed genes were
identified in Seurat by Wilcoxon Rank Sum Test (V4.0.1). Additional annotations of Moffitt classifiers,
denoting classical and basal epithelial subtypes, and CAF subtypes were added to the Seurat object metadata
based on the clustering'®. Co-culture cell types were parsed based on these annotations and the barcode
distinctions. Projection of the discovered CoGAPS Pattern 7 onto the 12HR MULTI-seq expression data was
completed using ProjectR (V1.8.0). The MULTI-seq expression data and CoGAPs feature loadings were run
through the projectR function of the package!*. The projection results were combined with the MULTI-seq

metadata and plotted using ggplot2 (V3.3.5) and Wilcoxon results added using ggpubr (V0.4.0)'*.

Flow Cytometry and Cell Sorting

Organoids were extracted using Cell Recovery Solution (Corning, 354253) and incubated on ice at 4°C for 45
minutes for Matrigel depolymerization. Cells were pelleted and washed in human organoid wash media.
Organoids were dissociated to single cells using TrypLE Express and washed in MACS buffer (PBS + 5 mM
EDTA + 1% Fetal bovine serum). Cells were resuspended in PBS + Zombie NIR catalog no. 423106 (dilution
1:1000) + Human TruStain FcX catalog no. 422302 (dilution 1:100) for 10 minutes at room temperature in
the dark. Cells were quenched with MACS buffer, spun down, and then resuspended in surface stain for 20
minutes on ice at 4°C in the dark; antibodies were purchased from Biolegend, APC EpCAM catalog no.
324208 (dilution 1:200), PE/Cy7 HLA-A, B, C catalog no. 311429 (dilution 1:200), AF700 HLA-DR catalog
no. 307626 (dilution 1:200), PerCP/Cy5.5 PD-L1 catalog no. 329738 (dilution 1:100). Cells were washed

twice in MACS buffer. Flow cytometry analyses were performed on the Beckman Coulter Cytoflex.
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For co-culture cell sorting, ImL of Img/mL Dispase II (Thermofisher, 17105041) in organoid wash media
was added to each coculture and monoculture dome to depolymerize Matrigel for 1 hr at 37°C. Digest was
quenched with 1mL of wash media and cells were spun down. Cells resuspended in PBS + Zombie NIR
catalog no. 423106 (dilution 1:1000) + Human TruStain FcX catalog no. 422302 (dilution 1:100) for 10
minutes at room temperature in the dark. Cells were quenched with MACS buffer, spun down, and then
resuspended in surface stain APC EpCAM catalog no. 324208 (dilution 1:200) and FAP R&D Systems,
catalog no FAB3715P-100 (dilution 1:75) on ice at 4°C for 20 minutes in the dark. Cells were washed twice

in MACS buffer and filtered through 70um filter. Cell sorting was performed on BD Fusion Sorter.

Quantitative PCR (qPCR)

To evaluate gene expression of MHC-II genes in patient-derived organoids, total RNA extraction using the
RNeasy Mini Kit (Qiagen, - Catalog Number: 74104) was completed for each patient-derived organoid line
according to manufacturer specifications. cDNA synthesis was performed using Invitrogen TagMan Reverse
Transcription Reagents (Catalog Number: N8080234), following manufacturer’s instructions. Real-time
quantitative PCR was completed using the ThermoFisher Tagman Gene Expression Assays according to
manufacturer’s protocol in the QuantStudio 6 Flex System (Applied Biosystems) mRNA targets included:
ITGB1 (Hs01127536_ml1), VEGFA (Hs00900055 m1), HLA-DRA (Hs00219575 ml), HLA-DRBI
(Hs04192464), HLA-DQBI1 (Hs03054971 ml), and HLA-DPB1 (Hs03045105 ml). Relative gene
expression was quantified using the 2722t method as previously described'’, and GAPDH (Hs02786624 gl1)
was used as the endogenous control. Data were analyzed using Applied Biosystems QuantStudio™ Real Time

PCR System Software (V1.7.1).

Inference of transitions in cellular phenotypes and intercellular interactions

Within each cell group, additional analyses were performed to compute heterogeneity of cellular phenotypes,
state transitions, and inter-cellular signaling across the atlas datasets. First, cell cycle scores and phases were

computed with tricycle (V1.2.0)!°. Further unsupervised exploratory analysis of transitions in epithelial cell
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states was performed with CoGAPS (V3.5.8)° analysis across epithelial populations in tumor and normal
samples from Peng et al® and Steele et al®. Single cell COGAPs was run for 8, 10, and 12 patterns. Eight
patterns were selected as the final analysis because 12 patterns returned 10 patterns suggesting an overfitting
of the data. Further the 8-pattern run resulted in all 8 patterns that were analogous with the other patterns found
in the higher dimensional runs. Finally, the impact of fibroblast cells on epithelial cells was computed by

estimating intercellular signaling with Domino (V0.1.1)!7 independently for each of the datasets in the atlas.

For Domino analysis, pyScenic (V0.11.0) for Python was first used to generate the gene regulatory network
and co-expression modules, the regulon predictions, and the area under the curve (AUC) matrix of cellular
enrichment'®, This was completed by providing the extracted counts matrix, a list of transcription factors,
motif annotations, and cisTarget motifs for the hg38 genome!®. With the use of the AUC and regulon
predictions, a domino object is created and the signaling network built. This allowed for the visualization of
global signaling network, gene networks and incoming signaling heatmaps for each narrow subtype
annotation, a heatmap of the correlation between transcription factors and receptors, and lastly, the global

transcription factor-ligand-receptor network between all subtype annotations'’.

Data Availability Statement: Submission of the RNA-seq data to dbGaP is in process. All analysis scripts
are available from: https://github.com/fertiglab/
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