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Abstract 

Machine learning and in particular deep learning (DL) are increasingly important in 

mass spectrometry (MS)-based proteomics. Recent DL models can predict the 

retention time, ion mobility and fragment intensities of a peptide just from the 
amino acid sequence with good accuracy. However, DL is a very rapidly developing 
field with new neural network architectures frequently appearing, which are 

challenging to incorporate for proteomics researchers. Here we introduce 
AlphaPeptDeep, a modular Python framework built on the PyTorch DL library that 

learns and predicts the properties of peptides 

(https://github.com/MannLabs/alphapeptdeep). It features a model shop that 
enables non-specialists to create models in just a few lines of code. AlphaPeptDeep 

represents post-translational modifications in a generic manner, even if only the 

chemical composition is known. Extensive use of transfer learning obviates the 
need for large data sets to refine models for particular experimental conditions. The 

AlphaPeptDeep models for predicting retention time, collisional cross sections and 
fragment intensities are at least on par with existing tools. Additional 
sequence-based properties can also be predicted by AlphaPeptDeep, as 

demonstrated with a novel HLA peptide prediction model to improve HLA peptide 

identification for data-independent acquisition.  

 

Introduction 

The aim of MS-based proteomics is to obtain an unbiased view of the identity and quantity 

of all the proteins in a given system1,2. This challenging analytical task requires advanced 

liquid chromatography – mass spectrometry (LC/MS) systems as well as equally 

sophisticated bioinformatic analysis pipelines3. Over the last decade, machine learning 

(ML) and in particular deep neural network (NN)-based deep learning (DL) approaches 

have become very powerful and are increasingly beneficial in MS-based proteomics4,5.  

 

Identification in proteomics entails the matching of fragmentation spectra (MS2) and other 
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properties to a set of peptides. Bioinformatics can now predict peptide properties for any 

given amino acid sequences so that they can be compared to actually measured data. 

This can markedly increase the statistical confidence in peptide identifications. 

 

To do this, a suitable ML/DL model needs to be chosen which is then trained on the 

experimental data. There are a number of peptide properties that can be predicted from 

the sequence and for each of them different models may be most appropriate. For the 

peptide retention times in LC, relatively straightforward approaches such as iRT-calculator, 

RTPredict, and ELUDE have shown good results6–8. However, large volumes of training 

data are readily available in public repositories today and DL models currently tend to 

perform best9. This is also the case for predicting the fragment intensities in the MS2 

spectra, where DL models such as our previous model pDeep10,11, DeepMass:Prism12, 

Prosit13 and many subsequent ones now represent the state-of-the-art. They mostly use 

long-short term memory (LSTM14) or gated recurrent unit (GRU15) models. Recently, 

transformers have been adopted in proteomics and show better performance16,17. This 

illustrates the rapid pace of advance in DL and the need for updating proteomics analysis 

pipelines with them. However, the focus of existing efforts has not been on extensibility or 

modularity, making it difficult or in some cases impossible to change or extend their NN 

architectures. 

 

Here we set out to address this limitation by creating a comprehensive and easy to use 

framework, termed AlphaPeptDeep. As part of the AlphaPept ecosystem18, we keep its 

principles of open source, community orientation as well as robustness and high 

performance. Apart from Python and its scientific stack, we decided to use PyTorch,19 one 

of the most popular DL libraries. 

 

AlphaPeptDeep contains pre-trained models for predicting MS2 intensities, retention time 

(RT), and collisional cross sections (CCS) of arbitrary peptide sequences or entire 

proteomes. It also handles peptides containing post-translational modifications (PTMs), 

including unknown ones with user-specified chemical compositions. AlphaPeptDeep 

makes extensive use of transfer learning, drastically reducing the amount of training data 

required.  

 

In this paper, we describe the design and use of AlphaPeptDeep and we benchmark its 

performance for predicting MS2 intensities, RT, and CCS on peptides with or without 

PTMs. On challenging samples like HLA peptides, AlphaPeptDeep dramatically boosts 

performance of peptide identification for data-dependent acquisition. We also describe 

how AlphaPeptDeep can easily be applied to build and train models for different peptide 

properties such as an HLA prediction model, which narrows the database search space 

for data-independent acquisition, and hence improves the identification of HLA peptides 

with the AlphaPeptDeep-predicted spectral library. 

 

Results 
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AlphaPeptDeep overview and model training 

For any given set of peptide properties that depend on their sequences, the goal of the 

AlphaPeptDeep framework is to enable easy building and training of deep learning (DL) 

models, that achieve high performance given sufficient training data (Fig. 1a). Although 

modern DL libraries are more straightforward to use than before, designing a neural 

network (NN) or developing a deployable DL model for proteomics studies is not as simple 

as it could be, even for biologists with programming experience. This is because of the 

required domain knowledge and the complexity of the different steps involved in building a 

DL model. The framework of AlphaPeptDeep is designed to address these issues (Fig 

1b).  

 

The first challenge is the embedding, which maps amino acid sequences and their 

associated PTMs into a numeric tensor space that the NN needs as an input. For each 

amino acid, a ‘one-hot encoder’ is customarily used to convert it into a 27-length 

fingerprint vector consisting of 0s and 1s (Online Methods). In contrast, PTM embedding 

is not as simple. Although recent studies also used one-hot encoding to embed 

phosphorylation for MS2 prediction via three additional amino acids16, this is not 

extendable to arbitrary PTMs. In pDeep2 (ref11), the numbers of C, H, N, O, S, P atoms for 

a site-specific modification are prepended to the embedding vector which is flexible and 

can be applied to many different PTMs. AlphaPeptDeep inherits this feature from pDeep2 

but adds the ability to embed all the other chemical elements. To make the input space 

manageable, we use a linear NN that reduces the size of the input vector for each PTM 

(Online Methods, Extended Fig. 1). This allows efficient embedding for most modification 

types, except for very complex ones such as glycans. The PTM embedding can be called 

directly from AlphaPeptDeep building blocks. 

 

To build a new model, AlphaPeptDeep provides modular application programming 

interfaces (APIs) to use different NN architectures. Common ones like LSTM, 

convolutional NN (CNN) as well as many others are readily available from the underlying 

PyTorch library. Recently transformers – attention-based architectures to handle long 

sequences – have achieved breakthrough results in language processing but were then 

also found to be applicable to many other areas like image analysis20, gene expression21 

and protein folding22. AlphaPeptDeep includes a state-of-the-art HuggingFace transformer 

library23. Our framework also easily allows combining different NN architectures for 

different prediction tasks.  

 

The training and transfer learning steps are mostly generic tasks, even for different NNs. 

Therefore, we designed a universal training interface allowing users to train the models 

using just a single line of Python code – model.train(). In our training interface, we also 

provide a “warmup” training strategy to schedule the learning rate for different training 

epochs (Online Methods). This has proven very useful in different tasks to reduce the bias 

at the early training stage24. Almost all DL tasks can be done on graphical processing 

units (GPUs) and training a model from scratch on a standard GPU usually take not more 

than hours in AlphaPeptDeep and is performed only once. Transfer learning from a 
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pre-trained model is feasible within minutes, even without GPU. 

 

After training, all learned NN parameters should be saved for persistent applications. This 

can be readily done using DL library functionalities, and is also implemented in 

AlphaPeptDeep – model.save(). In the latter case, AlphaPeptDeep will save the source 

code of the NN architectures in addition to the training hyperparameters. Thus, the NN 

code and the whole training snapshot can be recovered even if the source code was 

accidentally changed in the AlphaPeptDeep or developers’ codebase. This is especially 

useful for dynamic computational graph-based DL libraries such as PyTorch and 

TensorFlow in ‘eager mode’ because they allow dynamically changing the NN 

architectures. 

 

The most essential functionality of the AlphaPeptDeep framework is the prediction of a 

property of a given peptide of interest. When using only the CPU, one can choose 

multiprocessing (predicting with multiple CPU cores), making the prediction speed 

acceptable on regular personal computers (PCs) and laptops (nearly 2h for the entire 

reviewed human proteome). Prediction on GPU is still an order of magnitude faster. As 

PyTorch caches the GPU RAM in the first prediction batch, subsequent batches for the 

same model will be even faster. However, GPU random access memory (RAM) should be 

released after the prediction stage, thus making the RAM available for other DL models. 

These steps are automatically done in AlphaPeptDeep within the model.predict() 

functionality. 

 

AlphaPeptDeep provides several templates in the “model shop” module to develop new 

DL models from scratch for classification or regression with very little code. All these 

high-level functionalities in AlphaPeptDeep give the user a quick on-ramp and they 

minimize the effort needed to build, train and use the models. As an illustrative example, 

we built a classifier to predict if a peptide elutes in the first or second half of the LC 

gradient using only several lines of code. Training took only ~16 minutes on nearly 350K 

peptide-spectrum matches (PSMs) on a standard HeLa dataset25 and the model achieved 

95% accuracy in the testing set (Extended Fig. 2).  
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Figure 1. Overview of the AlphaPeptDeep framework. (a) Measured peptide properties are encoded with 

the respective amino acid sequences and used to train a network in AlphaPeptDeep (left). Once a model 

is trained, it can be used on arbitrary sets of peptide sequences to predict the property of interest. This 

then improve the sensitivity and accuracy of peptide identification. (b) The AlphaPeptDeep framework 

reads and embeds the peptide sequences of interest. Its components include the build functionality in 

which the model can build. It is then trained, saved and used to predict the property of interest. The dial 

represents the different standard properties that can be predicted (RT, retention time; CCS, collision 

section; MS2, intensities of fragment spectra). Custom refers to any other peptide property of interest. 

lower part lists aspects of the functionalities in more detail. 

 

 

The MS2, RT, and CCS prediction models in AlphaPeptDeep are all publicly available in 
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our Python modules (Fig. 2). The MS2 prediction model was inherited from pDeep2 but 

reimplemented on transformers which have been shown very useful in MS2 prediction16,17. 

The pre-trained MS2 model in AlphaPeptDeep is much smaller than other models without 

sacrificing accuracy (4M parameters vs 64M in the Prosit-Transformer17), making the 

prediction extremely fast (Extended Fig. 3). We also applied the same principle of 

light-weight models to our RT and CCS models (less than 1M parameters for each, Online 

Methods), which we built on previous LSTM models25–27.  

 

We trained and tested the MS2 models with tens of millions of spectra from a variety of 

instruments, collision energies and peptides, and trained the RT and CCS models with 

about half a million RT and CCS values of peptides (Suppl. Data 1). The results of this 

initial training were then stored as pre-trained models for further use or as a basis for 

refinement with transfer learning.  

 

Using these pre-trained models and specifically designed data structures (Online 

Methods), the prediction of a spectral library with MS2 intensities, RT, and ion mobilities 

(converted from CCS, Online Methods) for the human proteome took only 10 min on a 

regular GPU and 100 minutes on the CPU with multiprocessing (Extended Fig. 3). As this 

prediction only needs to be done at most once per project, we conclude that the prediction 

of libraries by DL is not a limitation in data analysis workflows. 

 

 

Figure 2. The built-in and pre-trained MS2, RT, and CCS prediction models. The MS2 model is built on 

four transformer layers, and the RT/CCS models consist of a convolutional neural network (CNN) layer 

followed by two bidirectional long short-term memory (BiLSTM) layers. The pre-trained MS2 model 

currently supports predicting the intensities of backbone b/y ions as well as their modification-associated 

neutral losses if any (e.g. –98 Da loss of phosphorylation on Ser/Thr). However, the user can easily 

configure the MS2 model to train and predict water and ammonium losses from backbone fragments as 

well.  

 

Prediction performance of the AlphaPeptDeep model for MS2 spectra 
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With the AlphaPeptDeep framework for prediction of MS2 intensities, RT and CCS in hand, 

we first benchmarked the MS2 model against datasets of tryptic peptides (phase 1 in Fig. 

3a). The training and testing data were collected from various instruments and collisional 

energies (Suppl. Data 1), including ProteomeTools28, which were derived from synthetic 

peptides with known ground truth. We split the data sets in two and trained on a LSTM 

model similar to pDeep or on the new transformer model. As expected, transformer 

performed better than the LSTM model on the test datasets (Extended Fig. 4). Overall, on 

ProteomeTools, 97% of all significantly matching PSMs had Pearson correlation 

coefficients (PCC) of the predicted vs. the measured fragment intensities of at least 90% 

(Fig. 3a), which we term ‘PCC90’ in this manuscript. Note that the experimental replicates 

also exhibit some variation, making the best possible prediction accuracy somewhat less 

than 100%. On the ProteomeTools replicates measured with the Lumos mass 

spectrometer, 99% had PCCs above 90% (Suppl. Data 1), meaning that our predicted 

intensities mirrored the measured ones almost within experimental uncertainties (99% 

experimental vs. 97% predicted). Next, we tested the model on the same ProteomeTools 

sample but measured on a trapped ion mobility Time of Flight mass spectrometer 

(timsTOF) in dda-PASEF mode25,29, and achieved a PCC90 of 87.9% (Suppl. Data 1), 

showing that the prediction from the pre-trained model is already very good for timsTOF 

even without adaption. 

 

As expected, our pretrained model performed equally well across different organisms. 

Interestingly, it did almost as well on chymotrypsin or GluC-digested peptides although it 

had not been trained on them (Fig. 3a).  

 

HLA class 1 peptides are short pieces of cellular proteins (about 9 amino acids) that are 

presented to the immune system at the cell surface, which is of great interest to 

biomedicine30. Because of their low abundance and non-tryptic nature, they are very 

challenging to identify by standard computational workflow, a task in which DL can help31. 

In a second training phase, we added a synthetic HLA dataset, which was also from 

ProteomeTools32, into the training set and trained the model for additional 20 epochs (‘fine 

tuning the model’). We first checked if the new model negatively impacted performance on 

the tryptic data sets, but this turned out not to be the case (phase 2 in Fig. 3a). On the HLA 

peptides, however, performance substantially increased the PCC90 from 79% to 92%.  

 

Finally, we extended our model to predict phosphorylated and ubiquitylated peptides, 

which have spectra somewhat distinct from unmodified peptides. In this case, in addition 

to backbone fragmentation intensities, AlphaPeptDeep also needs to learn the intensities 

of fragments with or without modifications. For phosphopeptide prediction, performance of 

the pre-trained model was much worse, with PCC90 values of only around 30%. However, 

after training on PTM datasets at phase 3, the performance dramatically increased, 

almost to the level of tryptic peptides (Fig. 3a). The ubiquitylation prediction (rightmost in 

Fig. 3a) was already reasonable with the pre-trained model but increased further after 

phase 3 training (PCC90 from 75% to 93%). 
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Prediction performance of the AlphaPeptDeep models for RT and CCS 

 

RT and CCS models are quite similar to each other as their inputs are the peptide 

sequences and PTMs, and outputs are scalar values. For both we used LSTM 

architectures. In the CCS prediction model, precursor charge states are considered in the 

model as well. Taking advantage of the PTM embedding in AlphaPeptDeep, the RT and 

CCS models naturally consider PTM information, and hence can predict peptide 

properties given arbitrary PTMs. We trained the RT model on datasets with regular 

peptides (unmodified and Met-oxidated) from our HeLa measurements25. 

 

We first tested the trained RT model on regular peptides from the pan human library33. As 

shown in Fig. 3b, the pre-trained model gave very good predictions in most of the RT 

range, but failed to accurately predict the last few minutes (iRT (ref7) values higher than 

100) possibly due to the different flushing settings of the LC in training and testing data. 

These differences could be addressed by fine-tuning the model with experiment-specific 

samples. Few-shot fine-tuning with only 500 training samples improved the accuracies of 

the RT prediction from an R2 of 0.927 to 0.986.  

 

We also tested the RT model on a phosphopeptide dataset,34 although the model had not 

been trained on such data. After fine-tuning on 500 peptides, the R2 increased from 0.958 

to 0.984 (Fig. 3b). As RT behavior of peptides varies with the LC conditions in different 

experiments, we highly recommend fine-tuning whenever possible. It turns out that 

few-shot fine-tuning worked well to fit short LC conditions as well (Extended Fig. 5). Finally, 

as expected, the more training peptides we used, the better the fine-tuning, and with many 

peptides our model reached R2 values up to 0.99 (Fig. 3b).  

 

While the CCS model was trained on regular human peptides from our prior HeLa 

dataset25 (Suppl. Data. 1), we tested the trained model on E. coli and yeast peptides from 

the same instrument in the same publication. For these regular peptides the CCS model 

achieved an R2 >0.98 of the predicted and detected CCS values. Next, we searched the 

HeLa and drosophila data by the open-search mode in Open-pFind35, to obtain 

experimental CCS values for modified peptides (Online Methods). For these peptides in 

the testing set, the R2 was 0.965 and 0.953, respectively, a prediction accuracy quite close 

to the one for regular peptides, even for unexpected modifications. The predicted CCS 

values can be converted to ion mobilities of Bruker timsTOF using the Mason Schamp 

equation.36 
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Figure 3. The performance of MS2/RT/CCS models. (a) The MS2 prediction accuracies of the three 

training phases on different testing datasets. The performance is evaluated by “PCC90” (percentage of 

PCC values larger than 0.9). The prefix ‘PT’ of each data set refers to ProteomeTools. PT1 and PT2 refer 

to ProteomeTools part I and II, respectively. The black bars are the PCC90 values of experimental 

spectra. (b) For RT prediction, few-shot learning can correct the RT bias between different LC conditions. 

(c) Our CCS model works well for both regular (top panels) and unexpectedly modified (bottom panels) 

peptides. 

 

 

Prediction performance for 21 PTMs with transfer learning 

 

To further demonstrate the powerful and flexible support for PTMs in AlphaPeptDeep, we 

tested the pre-trained tryptic MS2 (phase 1 in Fig. 3a) and RT models using the 21 PTMs, 

which were synthesized based on 200 template peptide sequences37.  

 

Interestingly, there is a group of modifications for which the prediction of MS2 spectra is as 

good as the values of unmodified peptides (Fig. 4a). These include Hydroxypro@P, 

Methyl@R, and Dimethyl@R for which the PCC90 was greater than 80%. This is 

presumably because these modifications do not change the overall fragmentation pattern 

much. In contrast, most of the other PTMs cannot be well predicted by the pre-trained 

models, for example, the PCC90 values were less than 10% for Malonyl@K and 

Citrullin@R. Remarkably, transfer learning for each PTM type using as few as ten 

peptides with different charge states and collisional energies greatly improved the 
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prediction accuracies on the testing data. The largest improvements of PCC90 were as 

high as 60% (Citrullin@R and Malonyl@K, Fig. 4a). Overall, compared with the 

pre-trained model, the ones tuned by ten peptides improved the PCC90 from a median of 

48% to 87% (Fig. 4b). We speculate that this is because the fragmentation properties of 

amino acids at different collisional energies have been well learned by the pre-trained 

model after which transfer learning only needs to learn the properties of modified ones. 

Including 50 PTM bearing peptides improved this number to 93% whereas using 80% of 

all the identified peptides (n ≤ 200) with these PTMs only improved prediction by another 

2%. This demonstrates that our models can be adapted to novel situations with very little 

additional data, due to the power of transfer learning.  

 

AlphaPeptDeep has been included in AlphaViz38, a tool suite for RAW MS data 

visualization (https://github.com/MannLabs/alphaviz), which among other features allows 

users to visualize a mirrored plot between experimental and predicted spectra. As an 

example, the MS2 prediction of the peptide “AGPNASIISLKSDK-Biotin@K11” before and 

after transfer learning is displayed in Fig. 4c. The y12++ ion was first wrongly predicted by 

the pre-trained model, but this was corrected after transfer learning with only 50 other 

biotinylated peptides. AlphaPeptDeep also allows users to visualize the ‘attention’ 

weights– a key feature of transformer models – showing what data attributes were 

important for the prediction. To depict the attention changes between pre-trained and 

transfer learning transformer models, we used the BertViz package 

(https://github.com/jessevig/bertviz) (Extended Fig. 6). 

 

Next, we tested the performance of our pre-trained RT model using the datasets of 21 

PTMs. Although the model was never trained on any of these PTMs, the accuracy of RT 

prediction on these peptides exceeds that of DeepLC39, an RT prediction model designed 

for unseen PTMs (R2 of 0.95 of AlphaPeptDeep vs. 0.89 of DeepLC, Fig. 4d and 4e). In 

this case, transfer learning only slightly improves the results, presumably because some 

of these synthetic modified peptides elute in very broad peaks, which makes them hard to 

predict.  
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Figure 4. Model performance with transfer learning on 21 PTMs from ProteomeTools. (a) The accuracy of 

MS2 prediction with different numbers of peptides for transfer learning for each PTM. Each PTM is tested 

separately. “80% seqs” refers to using 80% of the identified modified sequences for transfer learning. (b) 

Overall accuracy without unmodified peptides from (a). (c) Transfer learning dramatically improves the 

MS2 prediction of the example peptide “AGPNASIISLKSDK-Biotin@K11” (tuned by 50 other peptides). (d) 

Comparisons of RT prediction for each PTM on pre-trained and transfer learning (by 50% of all the 

identified peptides) models, as well as DeepLC models. (e) Overall R2 distribution without unmodified 

peptides from (d). 

 

 

Boosting Data-Dependent Acquisition (DDA) identification of HLA peptides 

As explained above, HLA peptides are among the most challenging samples for 

MS-based proteomics. Given the excellent model performance of the transformers in 

AlphaPeptDeep, we hypothesized that prediction of their MS2 spectra could substantially 

improve their identification.  

 

The non-tryptic nature of these peptides results in an extremely large number of peptides 

that need to be searched, leading to a decreased statistical sensitivity at a given false 

discovery rate (FDR) level (usually 1%). The key idea of using MS2, RT and CCS 
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prediction to support HLA peptide identification is that, for correct peptides of the searched 

spectra, the predicted properties should be very close to the detected ones, while the 

predicted properties of the irrelevant peptides tend to be randomly distributed. Therefore, 

the similarities or differences between the predicted and detected properties can be used 

as machine learning features to distinguish correct from false identifications using 

semi-supervised learning. Such an approach has long been implemented in Percolator 

and later in other tools to re-score PSMs40, which increases the sensitivity at the same 

FDR level31,32, However, due to the lack of support for arbitrary PTMs with DL models it 

has not been for open-search of HLA peptides. Modern protein open-search engines like 

pFind35 can perform very fast unspecific peptide search without limiting the peptide mass 

window using the sequence tag technique41, enabling the identification of unexpected 

PTMs.  

 

AlphaPeptDeep fully supports the Percolator algorithm for regular as well as open-search 

of HLA peptides (Online Methods). To accelerate the rescoring, we calculate the fragment 

intensity similarities between predicted and detected spectra on a GPU, making the 

rescoring process extremely fast (~1 hour to rescore 16,812,335 PSMs from 424 MS runs 

using a PC with a GeForce RTX 3080 GPU, where ~60% of the time was used for loading 

the RAW files). This means that the rescoring by AlphaPeptDeep is not a bottleneck for 

HLA peptide search. 

 

To investigate how much AlphaPeptDeep can boost the HLA peptide search, we applied it 

on two datasets, MSV000084172 from samples in which particular mono-allelic HLA-I 

types were enriched42, here referred to as the ‘mono-allelic dataset’ and our published 

dataset from tumor samples (PXD00489443) referred to as the ‘tumor dataset’. These two 

datasets had been analyzed with a regular search engine (MaxQuant44) by the Kuster 

group32 (Fig. 5a) and we here used pFind in the open-search mode (Fig. 5b).  

 

First, we wanted to compare the AlphaPeptDeep results with MaxQuant as well as Prosit, 

a recently published DL based tool that has also been applied to HLA peptides32. Since 

Prosit only supports fixed iodoacetamide modification on alkylated peptides (IAA in Fig. 

5a), we only used the results of the same IAA RAW files in rescoring. On the mono-allelic 

and the tumor datasets, AlphaPeptDeep covered 93% and 96% of the MaxQuant results 

while more than doubling the overall numbers at the same FDR of 1% (Fig. 5a). 

Compared to Prosit, AlphaPeptDeep captured 91% of their peptides and still improved the 

overall number on the mono-allelic dataset by 7%.   

 

Next, we searched both datasets with the open-search mode of pFind (Fig. 6b), and 

rescored the results in AlphaPeptDeep. Here, both alkylated and non-alkylated peptides 

were analyzed. Interestingly, the open-search itself already identified similar numbers of 

peptides as the DL-boosted regular search, but AlphaPeptDeep further improved the total 

number of identified peptides by 29% and 42%, while retaining 99% and 98% of the pFind 

hits at the same FDR for the mono-allelic and tumor datasets, respectively (Fig. 5b).  

This demonstrates the benefits of AlphaPeptDeep’s support of open-search for HLA 
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peptide analysis.  

 

AlphaPeptDeep with open-search identified PTMs such as phosphorylation, which are 

known to exist on HLA peptides but are very difficult to identify by regular unspecific 

search. For the mono-allelic dataset we identified a total of 490 phosphopeptides. To 

gauge the biological reasonability of these peptides, we searched for sequence motifs of 

both the phosphorylated and non-phosphorylated peptides. This revealed the expected 

HLA peptide motifs, dominated by the anchor residues for their cognate major 

histocompatibility complex proteins. Only the phospho-HLA peptides additionally had 

linear phospho-motifs, like the prominent SP motif common to proline directed kinases 

(Fig. 5c and Extended Fig. 7). We also identified 359 phospho-HLA peptides from the 

tumor dataset, with similar phospho-motifs (Extended Fig. 7). We further used 

AlphaPeptDeep to inspect retention time and MS2 spectrum similarities (Extended Fig. 8). 

Note that the MS2 and RT models were only fine-tuned by at most 100 phospho-PSMs 

from eight RAW files (Online Methods), so most of the phosphopeptides from other RAW 

files were not used in fine-tuning. Our method was also able to identify other PTMs 

associated with HLA peptides, such as cysteinylation45 (Extended Fig. 9). Overall, most of 

the HLA peptides additionally identified by this method had modifications related to 

sample preparation, such as deamidation, N-terminal pyro-Glu, and N-terminal 

carbamidomethylation (Extended Fig. 9). 
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Figure 5. AlphaPeptDeep drastically improves upon regular (a) and open-search (b) results for DDA 

identification of HLA peptides. IAA refers iodoacetamide alkylated peptides. (c) Logo plots of unmodified 

and phosphorylated peptides with nine amino acids identified by open-search for four different HLA types. 

Logo plots were generated by LogoMaker.46 

 

 

Building an HLA prediction model for HLA DIA Search  

 

In recent years, DIA has become a method of choice to generate large-scale proteome 

datasets. DIA data analysis traditionally requires DDA experiments to generate a library to 

which the data is then matched47. These libraries contain RT, ion mobility (if applicable) 
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and the most intense and specific fragments for each peptide. The generation of 

experimental libraries is laborious and sample consuming. With the development of DL in 

proteomics, libraries with predicted RT, CCS/ion mobilities and fragment intensities from 

whole proteome sequences are becoming more and more popular, although there is still a 

debate about whether measured or predicted libraries are preferable. This is because the 

large search space introduced by purely in silico libraries can make FDR control difficult. 

 

DIA for HLA peptide analysis is also getting more attention48,49. So far, these efforts have 

been restricted to experimental DIA libraries because analysis with a predicted HLA library 

is far more challenging than with an experimental one. This is mainly because HLA 

peptides are not tryptic, meaning they do not follow specific cleavage rules and do not 

necessarily have a favorable fragmentation pattern. The number of theoretical peptides 

with amino acid lengths between 8 and 14 from a reviewed human proteome is more than 

70M, which is nearly two orders of magnitude more than that of tryptic peptides in the 

same length range (~900K). Due to this enormous search space, a predicted library is 

difficult or even impossible to search by state-of-the-art DIA search tools such as 

DIA-NN50 and Spectronaut51. 

 

Fortunately, HLA peptides follow certain sequence motifs guided by the HLA-types that 

are present. We reasoned that these motifs could be learned by DL for more efficient 

peptide identification. To test this hypothesis, we built an HLA prediction model using the 

model shop functionalities in our AlphaPeptDeep framework (Online Methods). This 

model - a binary LSTM classifier predicts if a given sequence is likely to be an HLA 

peptide presented to the immune system and extracts these peptides from the human 

proteome sequence. There are two main goals of the model: (1) keep as many actually 

presented HLA peptides as possible (i.e., high sensitivity); and (2) reduce the number of 

predicted peptides to a reasonable number (i.e., high specificity). Note that sensitivity is 

more important here as we hope that all measured HLA peptides are still in the predicted 

set. 

 

Based on these goals, we developed a pipeline which enables predicted library search for 

DIA data (Fig. 6a). In brief, we first trained a pan-HLA prediction model with peptides from 

all known HLA types (‘pre-trained model’ in Fig. 6a). Normally, only a few HLA types are 

actually present in the samples from any given individual. Therefore, we used transfer 

learning to create a person-specific model with sample-specific peptides (‘tuned model’ in 

Fig. 6a). This model should then be able to predict whether an HLA peptide is potentially 

present in the sample or not, thus further reducing the number of peptides to be searched 

and increasing prediction accuracy. For this strategy, we need to identify a number of 

sample specific HLA peptides. This can be done directly from the already acquired DIA 

data by a ‘direct-DIA search’ 52 obviating the need for a separate DDA experiment. This 

involves grouping eluting fragment detected peaks belonging to the same peptide signal 

into a pseudo-spectrum for DIA data, and then searching the pseudo-spectrum with 

conventional DDA search algorithms.  
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To test this pipeline, we used the HLA-I dataset of the RA957 cell line in PXD02295048. 

We started with our pan-HLA prediction model from 94 known HLA types (Fig. 5). It 

reduced the number of sequences from 70M to 7M with 82% sensitivity. However, 7M 

peptides are still too many to search and the model would have lost 18% of true HLA 

peptides. Furthermore, the pre-trained model is not able to identify unknown HLA types as 

it is only trained on already known ones. 

 

To enable transfer learning, we searched RA957 data with DIA-Umpire52. It identified 

12,998 unique sequences with length from 8 to 14. We used transfer learning on 80% of 

this data to train the sample specific HLA model while keeping 20% for testing. This 

dramatically increased the specificity to 96% with 92% sensitivity (note that this is judged 

on the identifications by direct-DIA; thus our sensitivity may be even higher). The number 

of HLA peptides predicted by this model is 3M, which is comparable to the tryptic human 

proteome library.  

 

Having predicted our sample-specific HLA peptides, including their MS2 fragment spectra 

and RTs, we used this as input for a DIA-NN search of the DIA data. Our workflow 

identified 36,947 unique sequences. PEAKS-Online53 is a very recently published tool 

which combines searching a public library, direct-DIA, and de novo sequencing. It 

identified 30,733 unique sequences within the same length range. Our workflow almost 

tripled the number of unique sequences of DIA-Umpire and obtained 20% more than 

PEAKS-Online. As a reference, MaxQuant identified 14,563 sequences in the 8 to 14 aa 

range on DDA of the same sample in the original publication48. 

 

To judge the reliability of the identified HLA peptides, we used MixMHCpred54 to 

deconvolute these identified peptides at the 5% rank level based on the HLA type list in 

the original publication of the datasets48 (Fig. 6b). The overall peptide distribution 

identified by our pipeline for different HLA types was very similar to that of the original 

DDA data, indicating that our additionally identified HLA peptides were reliable at the 

same level. 

 

Finally, we directly tested if our pipeline is also able to identify peptides with unknown HLA 

types. To simulate this situation, we removed all peptides of the dominant HLA-A*68:01 

and used the rest to train a new pan-HLA model. This means that all HLA-A*68:01 

peptides in the RA957 sample were now unknown. Then we used only 100 HLA-A*68:01 

and all non-HLA-A*68:01 peptides identified by direct-DIA and deconvoluted by 

MixMHCpred for transfer learning. The resulting library then identified 29,331 peptides 

including 7,868 from HLA-A*68:01 (Transfer learning with 1000 HLA-A*68:01 peptides 

retrieved almost all of them) (Fig. 6b). This demonstrates that few-shot transfer learning is 

able to rescue many of the peptides of an unknown HLA type even if the peptide number 

is low after direct-DIA identification. 
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Figure 6. HLA prediction model built on AlphaPeptDeep functionalities. (a) The pipeline with the HLA 

prediction model to extract potential HLA peptides from the proteome databases. The HLA model is a 

binary classifier that predicts if a given sequence is a potentially presented HLA sequence. (b) Our HLA 

prediction model boosts the number of identified HLA-I peptides compared to other tools. Cell line HLA 

data from RA957 with sequence lengths from 8 to 14 were used. The top bar plots show the number of 

identified unique sequences of HLA types for each search method. The bottom bar plots the relative 

frequency of these HLA types. ‘Trash’ means the peptides cannot be assigned to any HLA types by 

MixMHCpred at 5% rank level. ‘AlphaPeptDeep lib’ (red) refers to the library predicted by the 

sample-specific HLA model and our MS2 and RT models. The bars represent DDA data analyzed by 

MaxQuant, and the DIA data analyzed by DIA-Umpire, or PEAKS-Online including de novo sequencing. 

AlphaPeptDeep with the sample-specific HLA library clearly outperforms these. The results of omitting 

the dominant HLA-A*68:01 (A6801) HLA type in the pan-model and using transfer learning with including 

1000 or 100 of these peptides identified by direct-DIA from the data are shown in the last two bars of the 

A6801 type (see arrows in the panel).  

 

Conclusion 

We developed a deep learning framework called AlphaPeptDeep that unifies high-level 

functionalities to train, transfer learn and use the models for peptide property prediction. 

Based on these functionalities, we built MS2, RT and CCS models, which enabled the 

prediction for a large variety of different PTM types. These models can boost DDA 

identification of for example, HLA peptides, not only in regular search but also in 

open-search. We also provided a module called ‘model shop’ which contains generic 

models so that users can develop new ones from scratch with just a few lines of code. 

Based on the model shop, we also built an HLA prediction model to predict whether a 
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peptide sequence is a presented HLA peptide. With the HLA model and the MS2, RT and 

CCS models in AlphaPeptDeep, we predicted the HLA spectral libraries directly from the 

whole human proteome, and searched them using HLA DIA data. This is the first time that 

the predicted libraries at the proteome-level have been used to search DIA data for HLA 

peptides. Our predicted libraries out-performed other methods including recently 

published pipelines specifically designed for HLA DIA analysis. 

 

Although AlphaPeptDeep is both powerful and easy to use, we note that traditional 

machine learning issues, such as overfitting in the framework, still need to be kept in mind. 

For instance, users still need to split the data, train and test the models on different sets. 

Trying different hyperparameters such as the number of training epochs is still necessary 

as well. Different mini-batch sizes and learning rates may also impact on the model 

training. However, the model shop at least provides baseline models for any property 

prediction problem. 

 

We hope AlphaPeptDeep will minimize the challenges for researchers that are not AI 

experts to build their own models either from scratch or on top of our pre-trained models. 

As we pointed out in our recent review4, peptide property prediction can be involved in 

almost all steps to improve the computational proteomics workflow. Apart from specific 

properties of interest in MS-based proteomics, it can in principle be used to solve any 

problem where a peptide property is a function of the amino acid sequence, as we 

demonstrated by successfully predicting potential HLA peptides to narrow the database 

search. Therefore, with sufficient and reliable training data, we believe AlphaPeptDeep 

will be a valuable DL resource for proteomics. 

 

 

Online Methods 

 

Infrastructure development 
To develop AlphaPeptDeep, we built an infrastructure package named AlphaBase 

(https://github.com/MannLabs/alphabase) which contains many necessary functionalities 

for proteins, peptides, PTMs, and spectral libraries. In AlphaBase, we use the pandas 

DataFrame as the base data structure, which allows transparent data processing in a 

tabular format and is compatible with many other Python packages. AlphaPeptDeep uses 

the AlphaBase DataFrames as the input to build models and predicts properties of 

peptides. Amino acid and PTM embedding is performed directly from ‘sequence’ (amino 

acid sequence), ‘mods’ (modification names), and ‘mod_sites’ (modification sites) 

columns in the peptide DataFrame.  

 

Amino acid embedding 

Each amino acid of a sequence is converted to a unique integer, for example, 1 for ‘A’, 2 

for ‘B’, …, and 26 for ‘Z’. Zero is used as a padding value for N- and C-terminals, and 

other “padding” positions. As a result, there are 27 unique integers to represent an amino 

acid sequence. A ‘one-hot encoder’ is used to map each integer into a 27-D vector with 
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zeros and ones. These vectors are mapped to an N-dimensional embedded vector using 

a linear layer (Extended Fig. 1). For this, we additionally make use of the 

‘torch.Embedding’ method, which is more efficient and flexible and can support more 

letters such as all the 128 ASCII codes. 

 

PTM embedding 

For each PTM, we use a 6-D embedding vector to represent the C, H, N, O, S, and P 

atoms. All other atoms of a PTM are embedded into a 2-D vector with a fully connected 

(FC) layer. The 6-D and 2-D vectors are concatenated into an 8-D vector to represent the 

PTM (Extended Fig. 1).  

 

MS2 model 

The MS2 model consists of an embedding layer, positional encoder layer, and four 

transformer layers followed by two FC layers. The embedding layer embeds not only 

amino acid sequences and modifications but also metadata (if necessary) including 

charge states, normalized collisional energies, and instrument type. All these embedded 

tensors are concatenated for the following layer.  

 

We added an additional transformer layer to predict the ‘modloss’, which refers to neutral 

loss intensities of PTMs, for example, the –98 Da of the phospho-group. This modloss 

layer can be turned off by setting ‘mask_modloss’ as ‘True’. The output layer dimension is 

�� � 1� � 8 for each peptide, where � is the length of the peptide sequence, and 8 refers 

to eight fragment types, i.e. b+, b++, y+, y++, b_modloss+, b_modloss++, y_modloss+, 

and y_modloss++. With ‘mask_modloss=True’, the modloss layer is disabled and the 

predicted modloss intensities are always zero. The hidden layer size of transformers is 

256. The total number of the model parameters is 3,988,974. 

 

All matched b/y fragment intensities in the training and testing datasets were normalized 

by dividing by the highest matched intensity for each spectrum. The MS2 models were 

trained based on these normalized intensities. For prediction, negative values will be 

clipped to zero, hence the predicted values will be between zero and one. 

 

In training phase 1, we only used tryptic peptides in the training datasets. The training 

parameters were: epoch=100, warmup epoch=20, learning rate (lr)=1e–5, dropout=0.1. In 

training phase 2, HLA peptides were added to the training set and the parameters were: 

epoch=20, warmup epoch=5, lr=1e–5, dropout=0.1, mini-batch size=256. In phase 3, 

phosphorylation and ubiquitylation datasets were added for training, and only 

phosphorylation sites with >0.75 localized probabilities were considered. The training 

parameters were: epoch=20, warmup epoch=5, lr=1e–5, dropout=0.1, mini-batch 

size=256. For transfer learning of the 21 PTMs, the parameters were: epoch=10, warmup 

epoch=5, lr=1e–5, dropout=0.1, mini-batch size depends on the peptide length. L1 loss 

was used for all training phases. We used the “cosine schedule with warmup” method 

implemented in HuggingFace for warmup training of these models including all the 

following models. 
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For Thermo Orbitrap instruments, the fragment intensities of each identified PSM are 

directly extracted from the raw data. For this, we imported the centroided MS2 spectra 

with Thermo’s RawFileReader API that is integrated in AlphaPept, hence the extracted 

intensities are reproducible across different search engines. For dda-PASEF data, the b/y 

ion intensities are extracted directly from the msms.txt file of MaxQuant results. Note that 

different search engines may have different centroiding algorithms for dda-PASEF, 

resulting in quite different fragment intensities, so fine-tuning is highly recommended for 

dda-PASEF data analyzed by different software. 

 

A fragment DataFrame is designed to store the predicted intensities. Its columns are 

fragment ion types (e.g., ‘b_z1’ for b+ and ‘y_z2’ for y++ ions), and the rows refer to the 

different fragmented positions of peptides from which the fragments originate. The start 

and end pointers of the rows (‘frag_start_idx’ and ‘frag_end_idx’) belonging to peptides 

are stored in the peptide DataFrame to connect between peptides and their fragments. 

The fragment DataFrame is pre-allocated only once for all peptides before prediction. 

While predicting, the predicted values of a peptide are assigned to the region of the 

peptide located by ‘frag_start_idx’ and ‘frag_end_idx’. The fragment DataFrame allows 

fast creation and storage of the predicted intensities. The tabular format further increases 

human readability and enables straightforward access by programming.  

 

RT model 

The RT model consists of an embedding layer for sequences and modifications, and a 

CNN layer followed by two LSTM layers with a hidden layer size of 128. The outputs of the 

last LSTM layer are summed over the peptide length dimension and processed by two FC 

layers with output sizes of 64 and 1. The total number of the model parameters is 

708,224. 

 

All RT values of PSMs in the training datasets were normalized by dividing by the time 

length of each LC gradient, resulting in normalized RT values ranging from 0 to 1. As a 

result, the predicted RTs are also normalized. The training parameters were: epoch=300, 

warmup epoch=30, lr=1e–4, dropout=0.1, mini-batch size=256. The fine-tuning 

parameters are: epoch=30, warmup epoch=10, lr=1e–4, dropout=0.1, mini-batch 

size=256. L1 loss was used for training. 

 

To compare predicted RT values with experimental ones, each value is multiplied with the 

time length of each LC gradient. For testing on peptides with iRT values, we used 11 

peptides with known iRT values7 to build a linear model between their iRT and predicted 

RT values. Then all the predicted RTs in the testing sets are converted to iRT values using 

the linear model.  

 

CCS model 

The CCS model consists of an embedding layer for sequence, modifications and charge 

states, and a CNN layer followed by two LSTM layers with a hidden layer size of 128. The 
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outputs of the last LSTM layer are summed over the peptide length dimension and 

processed by two FC layers with output sizes 64 and 1. The total number of the model 

parameters is 713,452. 

 

The training parameters are: epoch=300, warmup epoch=30, lr=1e–4, dropout=0.1, 

mini-batch size=256. L1 loss was used for training. The predicted CCS values are 

converted to mobilities of Bruker timsTOF using the Mason Schamp equation.36  

 

Rescoring 

Rescoring includes three steps: 

1. Model fine-tuning. 5,000 PSMs are randomly sampled from at most eight RAW files at 

1% FDR to fine-tune the MS2, RT and CCS (if applicable) models to obtain 

project-specific models. The top-10 frequent modifications are also selected for 

fine-tuning from the eight RAW files. At most 100 PSMs are sampled for each 

modification. Therefore, the fine-tuning covers not only unmodified peptides, but also 

modified peptides. 

2. Deep learning feature extraction. The tuned MS2, RT and CCS models are used to 

predict MS2, RT and CCS values for all the reported PSMs including decoys. All 

PSMs are matched against the MS2 spectra in the RAW files to obtain detected 

fragment intensities. Then the predicted and detected values are used to calculate 61 

score features, which include correlations of fragments, RT differences, mobility 

differences, and so on (Suppl. Data. 2).  

3. Percolator for rescoring. We use the cross-validation schema55 to perform the 

semi-supervised Percolator algorithm to reduce the chance of overfitting. All the 

peptides are divided into K folds (K=2 in the analyses of this work) and rescored by 5 

iterations in Percolator.  In each iteration, a Logistic regression model from 

scikit-learn56 is trained with the 61 features on the K–1 folds, and the model is used to 

re-score on the remainder. All the K folds will be re-scored after repeating this for K 

times on each of the folds. 

 

Multiprocessing is used in step 2 for faster rescoring. Because GPU RAM is often limited, 

it can become a bottleneck meaning that only one process is allowed to access the GPU 

space at a time for prediction. We developed a producer-consumer schema to schedule 

the tasks with different processes (Extended Fig. 10). The PSMs are matched against 

MS2 spectra in parallel with multiprocessing grouped by RAW files. Then, they are sent 

back to the main process for prediction in GPU. At last, the 61 Percolator features are 

extracted in parallel again. All correlation values between matched and predicted MS2 

intensities are also calculated in GPU for acceleration. As this is not memory intensive, the 

GPU RAM can be shared and used in parallel from different processes. For 

multiprocessing without GPU, all predictions are done with separate processes and 

results merged into the main process to run Percolator. 

 

HLA prediction model 

The HLA prediction model consists of an embedding layer for sequences, a CNN layer 
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followed by two LSTM layers with a hidden layer size of 256. The outputs of the last LSTM 

layer are summed over the sequence length dimension and processed by two linear 

layers with output sizes of 64 and 1. The sigmoid activation function is applied for last 

linear layer to obtain probabilities. The total number of the model parameters is 1,669,697. 

 

For training and transfer learning, identified HLA peptides with sequence lengths from 8 to 

14 are regarded as positive samples. Negative samples were randomly picked from the 

reviewed human protein sequences. The sequence number and length distribution were 

the same for the positive and negative samples. These samples were then split 80% for 

training and 20% for testing. The parameters for training the pre-trained model were: 

epoch=100, warmup epoch=20, lr=1e–4, dropout=0.1. For transfer learning, the DIA data 

were searched by DIA-Umpire and MSFragger57 in HLA mode at 1% FDR with reviewed 

human protein sequence. The parameters for transfer learning were: epoch=50, warmup 

epoch=20, lr=1e–5, dropout=0.1, mini-batch size=256. Binary cross-entropy loss was 

used for training. 

 

To predict HLA peptides from fasta files, we first concatenate protein sequences into a 

long string separated by the “$” symbol. Next, we use the longest common prefix (LCP) 

algorithm58 to accelerate the unspecific digestion for the concatenated sequence. Only the 

start and end indices of the peptides in concatenated sequence are saved, thus 

minimizing the usage of RAM. These indices are used to generate peptide sequences on 

the fly for prediction. The LCP functionalities have been implemented in AlphaBase. All 

sequences with a predicted probability larger than 0.7 were regarded as potential HLA 

peptides. 

 

Open-search for Orbitrap and dda-PASEF data 

We performed an open search on the Thermo RAW data with Open-pFind. For HLA DDA 

data, the reviewed human protein sequences from UniProt (https://www.uniprot.org/) were 

searched with the following parameters: open-search mode=True, enzyme=Z at 

C-terminal (i.e., unspecific enzyme), specificity=unspecific. The search tolerance was set 

to ±10 ppm for MS1 and ±20 ppm for MS2. All modifications marked as ‘isotopic label’ in 

UniMod (www.unimod.org) were removed from the searched modification list. The FDR 

was set as 1% at the peptide level. 

 

To enable Open-pFind search for dda-PASEF data, the spectra were loaded by AlphaPept 

APIs18 and exported as pFind compatible MGF files using our in-house Python script. The 

reviewed drosophila and human sequences were used to search the respective tryptic 

DDA data with parameters: open-search mode=True, enzyme=KR at C-terminal, enzyme 

specificity=specific. The search tolerance was set to ±30 ppm for both MS1 and MS2. 

 

Spectral libraries 

Functionalities for spectral libraries are implemented in AlphaBase. When providing 

DataFrames with sequence, modification and charge columns, the fragment m/z values 

and intensities are calculated and stored in fragment DataFrames. AlphaBase also 
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integrates functionalities to load and save DataFrames in a single Hierarchical Data 

Format (HDF) file for fast access. For subsequent use with DIA-NN or Spectronaut, all the 

DataFrames are then converted into a tab-separated values file (*.tsv) which is compatible 

with these tools.  

 

For HLA DIA analysis, we used reviewed human protein sequences to predict HLA 

peptides. We considered charge states from one to three for each peptide. All RT, CCS, 

and MS2 were predicted using the model from training phase 3. The 12 most abundant 

b/y ions with 1+ and 2+ charge states were written to the *.tsv file. Fragment m/z range 

was set to be from 200 to 1800, precursor m/z range was from 300 to 1800.  

 

In DIA-NN, the mass tolerance for MS1 and MS2 were set to 20 and 10 ppm respectively, 

with a scan window of 8. All other parameters were the default values of DIA-NN. The 

results identified from the first pass were used for post-search analysis. 

 

Data availability 

The reviewed protein sequence databases of human, E. coli, fission yeast, and drosophila 

were downloaded from uniprot (https://www.uniprot.org/). The training and testing data 

were from PRIDE with IDs: PXD010595, PXD004732, PXD021013, PXD009449, 

PXD000138, PXD019854, PXD019086, PXD004452, PXD014525, PXD017476, 

PXD019347, PXD021318, PXD026805, PXD026824, PXD029545, PXD000269, and 

PXD001250.  

 

The mono-allelic HLA DDA dataset was downloaded from MassIVE with ID 

MSV000084172. The tumor HLA dataset was downloaded from PRIDE with ID 

PXD004894.  

 

HLA DIA data and the MaxQuant results of DDA data from the RA957 cell line were 

downloaded from PRIDE with ID PXD022950. HLA DIA results of PEAKS-Online were 

downloaded from the PEAKS-Online publication.53 Only results from RAW files 

‘20200317_QE_HFX2_LC3_DIA_RA957_R01.raw’ and 

‘20200317_QE_HFX2_LC3_DIA_RA957_R02.raw’ from RA957 were used to compare 

different methods. 

 

Result files and Python notebooks to reproduce the analysis results in this study (total of 7 

GByte) can be found in https://doi.org/10.6084/m9.figshare.20260761. 

 

 

Code availability 

The source code of AlphaBase and AlphaPeptDeep are fully opened on GitHub: 

https://github.com/MannLabs/alphabase and 

https://github.com/MannLabs/alphapeptdeep. They are also available through PyPI with 

“pip install alphabase” and “pip install peptdeep”. The versions used in this study of 

AlphaBase and AlphaPeptDeep are 0.1.2 and 0.1.2 respectively. All the pre-trained MS2, 
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RT, and CCS models can be found in 

https://github.com/MannLabs/alphapeptdeep/releases/download/pre-trained-models/pretr

ained_models.zip. These models will be automatically downloaded when using the 

AlphaPeptDeep package for the first time.  

 

The versions of other software are displayed in the Reporting Summary. 
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